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Abstract: South and Southeast Asia, a major global hub for paddy rice cultivation, exhibits the highest rice 11 

cropping intensity worldwide due to its favourable hydrothermal conditions, and also has experienced considerable 12 

spatiotemporal changes due to climate change and anthropogenic activities. However, the absence of long-term 13 

spatial distribution and cropping intensity of paddy rice hinders effective agricultural and environmental 14 

management. This gap is particularly critical especially in the 21st century, with enhanced impacts from changing 15 

climate, water resources, and food trade pattern. Using all the available Landsat and Sentinel-2 archives, we refined 16 

a phenology-based algorithm to generate 30-m rice maps and cropping intensity across South and Southeast Asia 17 

for the years 1995, 2005, 2015, and 2024. The algorithm overcomes the challenge of detecting rice cropping 18 

intensity in long time-series and comprises three core steps: (1) identifying pixel-level rice phenological peaks 19 

using an enhanced peak detection method, thereby defining potential transplanting windows and minimizing 20 

monsoon-induced cloud and precipitation interference; (2) detecting paddy flooding signals and delineating rice 21 

cultivation areas based on phenological rules derived from the relationship between the Land Surface Water Index 22 

(LSWI) and Enhanced Vegetation Index (EVI); (3) determining rice cropping intensity according to the number 23 

of valid crop peaks and associated flooding signals within a single year. The resulting maps were validated using 24 

23,396 samples collectively derived from a field photo library, visual interpretation of Sentinel-1/2 satellite 25 

imagery, and a sample migration algorithm. Across the four periods, the maps achieved overall accuracies ranging 26 

from 83% to 87%. In addition, the resultant products were compared with existing regional and period-specific 27 

rice datasets (e.g., NESEA-RICE10 and Open-SEA-Rice-10) for further evaluation. The comparisons 28 

demonstrated that the refined approach achieved higher accuracy and robustness in mapping both rice distribution 29 

and cropping intensity, whereas the existing products performed well only in partial environments. When 30 

compared with the FAO official statistics for South and mainland Southeast Asian countries, the derived maps 31 

yielded R² values exceeding 0.9. This dataset holds great potential for applications such as methane emission 32 
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estimation, water resource management, and crop yield monitoring, thereby supporting sustainable agricultural 33 

practices and policy development in the region.  34 
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1. Introduction 35 

Rice is a staple food crop across South and Southeast Asia, underpinning food security in a region characterized 36 

by rapid population growth and escalating food demand (Xiao et al., 2006). This demographic pressure has 37 

inevitably driven the expansion of rice paddies and intensified cultivation practices (Godfray et al., 2010; Foley et 38 

al., 2005). However, the expansion of agricultural land, including rice paddies, exacerbates environmental 39 

challenges, such as freshwater depletion, deforestation, and increased methane emissions, all of which threaten 40 

ecosystem functions (Mehta et al., 2024; Wang et al., 2023; Zeng et al., 2018; Chen et al., 2024). Balancing food 41 

security with the preservation of ecosystem services is thus a critical component of achieving the United Nations’ 42 

2030 Sustainable Development Goals (SDGs) (Persaud and Dagher, 2021). Understanding the spatial extent and 43 

cropping intensification patterns of rice agriculture is essential to provide robust data support for sustainable 44 

development policies (Potapov et al., 2022; Zabel et al., 2019). 45 

Satellite remote sensing has emerged as a powerful tool for accurately mapping rice agriculture over large spatial 46 

scales (Dong and Xiao, 2016; Zhang et al., 2017). Moderate Resolution Imaging Spectroradiometer (MODIS) data, 47 

with its 500-meter spatial resolution, has been effectively utilized to map rice distributions in monsoon Asia, 48 

including South and Southeast Asia (Zhang et al., 2020). However, the coarse resolution of MODIS limits its 49 

ability to capture fragmented rice paddies and introduces errors due to mixed-pixel effects, particularly in detecting 50 

multi-cropping systems (Han et al., 2021). Higher-resolution satellite data, such as those from Landsat (30 m) and 51 

Sentinel (10–20 m), enable more precise identification of rice paddies (Zhao et al., 2024). Current research 52 

employs phenology-based algorithms or machine learning approaches to leverage these higher-resolution datasets 53 

for rice mapping. 54 

Phenology-based rice mapping methods primarily exploit the relationship between the Land Surface Water Index 55 

(LSWI) and the Enhanced Vegetation Index (EVI) derived from optical imagery to detect the unique flooding 56 

signals of rice paddies (Dong et al., 2015; Xiao et al., 2005). These methods have achieved high accuracy in regions 57 

such as Northeast China, Japan, and South Korea (Dong et al., 2016; Carrasco et al., 2022; Han et al., 2022). 58 

Recent studies have extended phenology-based approaches to Synthetic Aperture Radar (SAR) data, improving 59 

rice mapping in cloud-prone and rainy regions (Xu et al., 2023; Song et al., 2025). Due to their simplicity, 60 

computational efficiency, and robustness, phenology-based methods are particularly well-suited for large-scale 61 

applications and can be readily implemented on cloud-computing platforms, making them the most widely adopted 62 

approach for regional and continental-scale rice mapping studies (Zhao et al., 2025a). 63 
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Machine learning-based rice classification methods have also gained prominence, as they leverage extensive 64 

training samples to achieve high accuracy in mapping paddy rice distribution (Dong and Xiao, 2016). For instance, 65 

several studies have achieved high-precision rice mapping in regions with complex cropping patterns, such as the 66 

crop rotation systems in Northeast China and the multi-season rice planting patterns in the Jianghan Plain, by 67 

integrating rice-specific phenological features with machine learning classifiers, such as One-Class Support Vector 68 

Machines (OC-SVM) and Random Forest (He et al., 2021; Ni et al., 2021). More recently, deep learning techniques, 69 

particularly convolutional neural networks like U-Net and eXplainable Mamba UNet, have been employed to 70 

process time-series Sentinel-1 SAR data, demonstrating remarkable robustness in capturing spatial patterns, even 71 

in cloud-prone regions where optical imagery is limited (Ge et al., 2025; Thorp and Drajat, 2021; Lin et al., 2022). 72 

Despite the achievements of the above two mapping approaches, none has yet provided a method capable of long-73 

term, large-scale analysis with precise extraction of cropping intensity and spatial distribution to elucidate the 74 

spatiotemporal patterns of rice distribution in South and Southeast Asia. Traditional phenology-based rice mapping 75 

methods rely on prior expert knowledge to determine phenological stages, but interpreting phenological periods 76 

from several decades ago introduces considerable uncertainty. Machine learning methods, on the other hand, have 77 

shown potential for global-scale classification, yet the acquisition of large, high-quality historical training datasets 78 

remains time-consuming and resource-intensive (Zhan et al., 2021). Even though a fully automated, sample-free 79 

rice-mapping framework has been developed, its dependence on SAR-derived rice features limits its applicability 80 

to periods beyond the operational lifetime of Sentinel-1 (Gao et al., 2023). 81 

This study addresses this gap by employing a refined phenology-based method that eliminates the need for 82 

extensive training samples while accurately identifying planting intensity and phenological windows. Through 83 

optical imagery fusion and false peak elimination techniques, we aim to precisely identify rice cropping systems 84 

and their spatial distributions, while quantifying changes over the past three decades. This approach provides 85 

critical data to reconcile the conflict between traditional rice cultivation expansion and sustainable development 86 

goals, offering robust support for informed policy-making in South and mainland Southeast Asia. 87 

2. Materials 88 

2.1 Study area 89 

The study area encompasses South and mainland Southeast Asia countries, specifically Vietnam, Thailand, 90 

Cambodia, Myanmar, Laos, Bangladesh, India, and Pakistan (Fig. S1). These eight countries are predominantly 91 
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characterized by a tropical monsoon climate (with the exception of Balochistan Province), featuring distinct wet 92 

and dry seasons. Rice is the predominant crop in this region, with the highest cropping intensity globally. In 2024, 93 

the total rice harvested area in this region accounted for approximately 47% of the global rice harvested area, 94 

making it the world's most critical rice production base. 95 

2.2 Data and preprocessing 96 

2.2.1 Satellite imagery 97 

To develop long-term rice mapping products for South and mainland Southeast Asia, we acquired all available 98 

Sentinel-2 (S2_HARMONIZED) and Landsat T1_L2 imagery data from the Google Earth Engine (GEE) platform 99 

for specific time periods (Table 1). Invalid observations, including clouds, cloud shadows, and snow cover, were 100 

filtered out using the Sentinel-2 QA60 and Landsat QA_PIXEL bands. However, because imagery from a single 101 

year was insufficient to reliably support rice information extraction across South and mainland Southeast Asia, we 102 

applied a multi-year median compositing approach for the periods 1993–1997, 2003–2007, 2014–2016, and 2023–103 

2025 to mitigate data gaps (see Table 1). Specifically, each year was segmented into half-monthly intervals (e.g., 104 

January 1–15 and January 16–31, with some intervals spanning 14 or 16 days due to monthly variations), and all 105 

valid observations within the selected time periods for each interval were used to generate a single median 106 

composite image. Additionally, linear regression was employed to harmonize the spectral bands of Landsat and 107 

Sentinel-2 data (Yang et al., 2023), resulting in the generation of half-monthly time-series curves. 108 

Table 1: Satellite sensors and composite periods for rice mapping in South and mainland Southeast Asia 109 

Reference Year Satellite Sensors Composite Period 

1995 Landsat-5 1993-1997 

2005 Landsat-5, -7 2003-2007 

2015 Landsat-5, -7, -8 2014-2016 

2022 Sentinel-2, Landsat-8 2023-2025 

 110 

Based on the generated half-monthly time-series curves, we further calculated relevant vegetation indices to 111 

identify the spatial distribution and cropping intensity of paddy rice, including NDVI, LSW, and EVI (Eqs. 1–3). 112 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
(1) 113 

𝐿𝑆𝑊𝐼 =  
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
(2) 114 
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𝐸𝑉𝐼 = 2.5 ×
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 6 × 𝑅𝑒𝑑 − 7.5 × 𝐵𝑙𝑢𝑒 + 1
(3) 115 

 116 

2.2.2 Auxiliary data 117 

Cropland Mask. To investigate changes in rice planting patterns in South and mainland Southeast Asia, a region 118 

that has undergone significant land-use transformations, including cropland expansion and forest loss over recent 119 

decades, we selected high-quality land cover and cropland products aligned with the target mapping years. Four 120 

global products were chosen to mitigate uncertainties in rice mapping arising from cropland expansion. The 121 

specific cropland products selected for each year are detailed in Table 2 (Zhang et al., 2021; Karra et al., 2021; 122 

Potapov et al., 2022) (https://zenodo.org/records/5571936).  123 

Table 2: Cropland Products Used for Cropland Mask in South and mainland Southeast Asia 124 

Reference Year Cropland Products 

1995 GLC_FCS30 (1990, 1995) 

2005 GLC_FCS30 (2005), GLAD 30 (2003) 

2015 GLC_FCS30 (2015), GLAD 30 (2015) 

2024 ESA (2021), GLAD (2019), ESRI (2021) 

 125 

Rice products and statistical data. To evaluate the reliability of our mapping results, we conducted spatial 126 

comparisons with several established rice mapping products, including: (1) the JAXA High-Resolution Land-Use 127 

and Land-Cover Map, including the 2020 Vietnam and 2023 Southeast Asia products 128 

(https://www.eorc.jaxa.jp/ALOS/en/dataset/lulc_e.htm); and (2) Li et al. (2025) and Sun et al. (2023), whose 129 

datasets (NESEA-RICE10 (Han et al., 2021) and OPEN-SEA-RICE10 (Ginting et al., 2025)) focus on regional-130 

scale rice area mapping. The comparisons allowed us to assess the spatial consistency and intensity agreement 131 

across products. In addition, national-level statistical data from the Food and Agriculture Organization (FAO) were 132 

used to validate the mapped rice areas. 133 

 134 
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2.3 Methodology 135 

2.3.1 Identification of valid crop peak dates 136 

To accurately identify multiple rice cropping cycles, we first determined the peak date of each valid crop cycle 137 

(i.e., the number of times a plot is cropped within a year). The specific steps are as follows (Fig. 1): 138 

Data Interpolation and Smoothing. First, using the half-monthly composite imagery and derived vegetation 139 

indices, NDVI outliers were removed based on the mean and three standard deviations. Linear interpolation was 140 

then applied to fill gaps in the time series of LSWI and NDVI. Subsequently, the NDVI time series was smoothed 141 

using the Whittaker smoothing algorithm (Whittaker Smoothing, lambda=300) to generate a smoothed time series. 142 

Peak Detection. Peak detection was achieved by identifying local maxima and minima through iterative analysis 143 

of the smoothed NDVI time-series curves. Specifically, each NDVI value was compared with its preceding value 144 

to determine an increasing or decreasing trend. A point was recorded as a peak (local maximum) when the NDVI 145 

transitioned from an increasing to a decreasing trend. Conversely, a point was recorded as a trough (local minimum) 146 

when the NDVI shifted from a decreasing to an increasing trend. 147 

Elimination of False Peaks. To detect and filter phenological peaks, we employed a method based on LSWI and 148 

NDVI time series that identifies true phenological peaks while excluding false peaks caused by noise or non-149 

vegetation signals, thereby ensuring robust cycle detection. A complete crop growth cycle was decomposed into 150 

one peak and two troughs (Yang et al., 2023). The first criterion required that the NDVI amplitude of the right 151 

trough, relative to the annual maximum amplitude, exceed 35%. Second, the NDVI value at the right trough had 152 

to fall below the NDVI threshold (NDVIthld), calculated according to Eq. 5. In addition, the time span between the 153 

left and right troughs had to exceed 120 days to ensure that the cycle represented a biologically reasonable rice-154 

growing season in South and mainland Southeast Asia. Each growth cycle meeting these criteria was recorded, 155 

including the peak dates (day of year, DOY), while all other signals were discarded as noise. 156 

NDVIthld = NDVImin+(NDVImax − NDVImin) ×0.15 (4) 157 

Where NDVIthld is the NDVI threshold, NDVImin is the minimum NDVI value within the considered period, and 158 

NDVImin is the maximum NDVI value within the considered period. 159 
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 160 

Figure 1. Flowchart of the mapping process for long-term rice spatial distribution and planting intensity in South 161 

and mainland Southeast Asia 162 

2.3.2 Phenology-based approach for identifying rice fields and their cropping intensity 163 

The phenology-based rice mapping method identifies rice by detecting the unique biophysical characteristic of 164 

fields being flooded during the transplanting period. In this study, we first selected imagery data within a 90-day 165 

time window preceding the peak date of each growing season. Subsequently, flood signal detection was performed 166 

on the imagery data within this time window by applying the rule LSWI + 0.05 ≥ EVI. Notably, the LSWI and 167 

EVI used here differ from those employed in crop peak identification, as these vegetation indices (VIs) do not 168 

require smoothing. Additionally, to minimize interference from factors such as precipitation and soil background 169 

value, we applied the rule that, when a flood signal is detected, EVI must be ≤ 0.35 and LSWI must be > 0.05. 170 

Pixels meeting these conditions were classified as rice (pixel value = 1). 171 
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For rice cropping intensity, we integrated multi-season rice data by calculating the number of times a pixel was 172 

classified as rice (value = 1) within a year. This process generated the final rice cropping intensity distribution 173 

map, with values ranging from 1 to 3, representing single-, double-, or triple-season rice, respectively. 174 

2.3.3 Accuracy assessment and comparisons 175 

Sample points for 2024 were primarily collected through visual interpretation using multiple data sources. First, 176 

false-color composites of Sentinel-2 imagery (R/G/B = SWIR1, NIR, RED) representing multiple rice growth 177 

stages were generated, in which rice fields during the flooded transplanting stage appeared dark green. Second, 178 

following the approach of (Sun et al., 2023), we used Sentinel-1 VH time series to compute the maximum, 179 

minimum, and variance values, and composed them as R: VH_max, G: VH_min, and B: VH_variance. In these 180 

composites, flooded rice fields typically appeared purple, which is particularly useful for identifying rice in 181 

persistently cloudy and rainy tropical regions. An example of this visualization approach has been implemented 182 

and is available at the following link: 183 

(https://code.earthengine.google.com/7dd210998c6812da2e79ebebc1536822). Based on these two sets of 184 

composites, rice sample points were manually labeled and further cross-validated using ultra–high-resolution 185 

Google Earth imagery and the Global Geo-Referenced Field Photo Library (http://www.eomf.ou.edu/photos/). In 186 

total, 4,000 rice samples were collected across the study area. 187 

For the remaining 4,000 non-rice samples, random sampling was first conducted within the study area, and each 188 

point was then visually verified using the same image composites to ensure the absence of rice-related features. 189 

Although the above approach was effective for sample generation, manually labeling samples for periods before 190 

the launch of Sentinel-1 and Sentinel-2 satellites was labor-intensive and constrained by the limited availability of 191 

valid imagery. Therefore, a sample migration algorithm (Huang et al., 2020) was employed to transfer the 8,000 192 

manually labeled samples to other target years. 193 

3. Results 194 

3.1 Validation of the spatial distribution accuracy of rice in South and mainland Southeast Asia 195 

The spatial distribution and cropping intensity of rice across South and mainland Southeast Asia are illustrated in 196 

Fig. 2. The interactive version of this map can also be accessed and visualized using the GEE platform at: https://ee-197 

zhaozizhangcau.projects.earthengine.app/view/rice-planting-intensity--south--southeast-asia. 198 
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Based on validation using 23,396 sample points, the mapping accuracies for different years are summarized in 199 

Table 3, with overall accuracies ranging from 83.74% to 87.60% and F1-scores between 0.7872 and 0.8628. The 200 

2024 results achieved the highest accuracy, primarily because the higher temporal frequency of Sentinel-2 201 

observations enabled more effective detection of flooding signals compared with the earlier Landsat sensors. 202 

Mapping accuracies for other years did not show a declining trend over time, mainly due to the aggregation of 203 

multi-year image archives and the use of biweekly composite imagery, which stabilized rice extraction 204 

performance. Although Landsat-8 data were incorporated for the 2015 (2014–2016) period, residual striping 205 

effects from Landsat-7 imagery slightly degraded the classification accuracy. 206 

 207 

 208 

Figure 2. Long-term spatial distribution and planting intensity of rice in South and mainland Southeast Asia 209 

(1995, 2005, 2015, 2024) 210 

 211 

Table 3 Accuracy assessment of paddy rice mapping results in South and Southeast Asia 212 

Year Overall Accuracy User Accuracy Producer Accuracy F1 Score Sample size 

2024 
0.8760 0.9668 0.7788 0.8628 

8000 

2015 
0.8374 0.9500 0.7129 0.8143 

7821 
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2005 
0.8461 0.9122 0.6936 0.7881 

3814 

1995 
0.8378 0.9011 0.6993 0.7872 

3761 

 213 

 214 

 215 

Figure 3. Comparison of RS-based rice area estimates with FAO statistics for South and mainland Southeast 216 

Asia (1995, 2005, 2015, 2024) 217 

To further evaluate the accuracy of our results, we compared the estimated rice area from our generated rice 218 

product with FAO statistical data (Fig. 2). The results showed that the R² values for all four years exceeded 0.9, 219 

with a multi-year average RMSE of approximately 4.15 million hectares. Based on remote sensing retrievals, the 220 

rice planting area across South and mainland Southeast Asian countries has increased by approximately 22.5 221 

million hectares since the 1990s, with the largest increases observed in India and Bangladesh. Among these, the 222 
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2024 results exhibited the smallest discrepancy with statistical data. In Bangladesh, the remote sensing estimates 223 

were relatively lower, potentially due to the influence of frequent flooding and cloud cover in the region. 224 

3.2 Comparison with other rice maps 225 

We selected typical rice-growing areas within the study region for visual comparison with other rice mapping 226 

product. Specifically, in Vietnam, we compared our results with the land cover product (including rice layer) 227 

released by JAXA. The spatial distributions were highly consistent across multiple years. In the 2005 results for 228 

northern Vietnam, our product reduced some noise through image compositing and phenological identification 229 

(Fig. S2). In the 2024 product for India, our results exhibited spatial distributions comparable to those of Li et al. 230 

(2025) (Fig. 4). However, in the 1995 mapping of Punjab and other northern Indian provinces, Li’s results were 231 

notably affected by limited observation conditions, which manifested as strip-like artifacts in the output. By 232 

contrast, our approach, which employed multi-year data compositing, effectively mitigated this issue. Differences 233 

observed in the southeastern coastal regions of India further highlight the advantages of multi-year compositing 234 

for rice mapping in the 1990s. 235 

 236 

Figure 4. Comparison of rice distribution maps: Our Results compared to Li et al. (2025) for South Asia 237 

(1995, 2021) 238 

 239 

Notably, Fig. 5 presents a spatial comparison of five rice mapping products across Southeast Asia, including our 240 

results. Among them, products a1, b1, and e1 exhibit relatively similar spatial distributions, whereas the NESEA-241 

Rice10 product captures the smallest rice extent. In contrast, c1 and d1 identified a greater number of rice pixels, 242 

particularly in central–eastern Thailand, where both products detected extensive rice areas. We attribute these 243 

differences mainly to the distinct responses of irrigated (paddy) and rainfed rice systems. The e2 panel, derived 244 

https://doi.org/10.5194/essd-2025-711
Preprint. Discussion started: 21 January 2026
c© Author(s) 2026. CC BY 4.0 License.



 14 / 25 

 

from the JAXA LULC dataset, provides supporting evidence for this interpretation, as it delineates these regions 245 

predominantly as paddy fields (see Section 4.1 for further discussion). 246 

Panels a3–e3 illustrate the rice-growing regions in western Thailand, where three intensity-based products 247 

consistently identified multi-season rice cultivation. However, the c3 product shows clear image boundary artifacts, 248 

likely due to inconsistencies in image mosaicking. Spatially, the b3 product—derived from a single-year dataset—249 

identified a smaller extent of rice cultivation, while the d3 product appears to have overestimated rice coverage. 250 

In contrast, along the moisture-rich coastal areas of Myanmar, all products exhibited relatively consistent spatial 251 

patterns with minimal discrepancies. 252 
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 253 

Figure. 5 Comparative analysis of single and multiple rice field Distribution in Southeast Asia. Panels (a1)-254 

(a4) display results from our proposed method, (b1)-(b4) from NESEA-Rice10, (c1)-(c4) from Open-SEA-Rice-255 

10, and (d1)-(d4) from Sun et al. (2023). Panels (e1)-(e4) show JAXA-LULC data, retaining the original land 256 

cover classifications of Single Paddy Field and Multi Paddy Field. 257 

 258 
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3.3 Spatial patterns and change trends of rice cultivation over the past 30 years 259 

In South and mainland Southeast Asia, rice is predominantly distributed in plains and riverine areas with abundant 260 

freshwater resources. Since 1990, there has been a significant expansion trend in rice planting areas, primarily in 261 

central-western India and Pakistan (Fig. 2). Rice cropping intensity is dominated by double and single rice (this 262 

study’s statistics focus solely on rice cropping intensity, excluding other crops). The Mekong Delta region in 263 

Vietnam is predominantly characterized by triple rice cultivation. 264 

Based on the analysis of Figs. 2 and 6, substantial changes in rice cultivation patterns have occurred across South 265 

and mainland Southeast Asia over the past three decades. In these regions, intensification within existing rice 266 

croplands—manifested as increased planting intensity in stable areas—has become a more prevalent trend than 267 

the expansion of rice-growing areas. For instance, regions previously dominated by single-cropping systems, such 268 

as southern Thailand, have transitioned toward double-cropping regimes. Likewise, northern Pakistan and eastern 269 

India have shown a pronounced increase in rice cropping intensity. In contrast, the Mekong Delta has experienced 270 

a shift from double- to triple-cropping systems. Areas with reduced rice extent are primarily associated with 271 

cropland degradation or conversion to other crops rather than a decline in planting intensity. The most notable 272 

reductions are concentrated in eastern Thailand and the southern Mekong Delta estuary, corresponding 273 

respectively to shifts from irrigated to rainfed systems and a loss of arable land. 274 

As shown in Fig. 6, we further quantified changes in rice cultivation area and mean cropping intensity at the 275 

national scale. Among all countries, India exhibited the most substantial expansion in rice cultivation area, whereas 276 

most Southeast Asian countries experienced a general decline over the past three decades. In terms of cropping 277 

intensity, India showed an average increase of approximately 0.1, while most Southeast Asian countries exhibited 278 

a decrease of less than –0.05, reflecting intensified cultivation in South Asia and widespread contraction in 279 

Southeast Asia. 280 

 281 
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 282 

Figure 6. Spatial Distribution and Planting Intensity Changes of Paddy Rice in South and mainland 283 

Southeast Asia (1995–2024). Orange represents pixels with decreased paddy rice area in 2024 compared to 1995 284 

(contraction), green indicates increased areas (expansion), and gray-white denotes stable areas (paddy rice 285 

present in both periods). Rice cropping intensity changes are shown for stable areas, with red indicating 286 

increases (+1 for one additional season, +2 for two additional seasons) and blue indicating decreases (-1 for one 287 

season less, -2 for two seasons less). 288 

4. Discussion 289 

4.1 Differences between Rainfed and Irrigated Rice 290 

In the results, substantial discrepancies among rice mapping products were observed in central–western Thailand. 291 

To investigate the underlying causes, we analyzed the time-series profiles of selected sample points over three 292 

consecutive years using the JAXA land-cover product, our phenology-based rice maps, and the Open-SEA-Rice-293 

10 dataset (Fig. 8). 294 

From the optical time series, it is evident that rainfed rice fields do not maintain stable surface water coverage 295 

during the “transplanting” stage. Consequently, they often fail to produce sufficiently low SWIR reflectance 296 

relative to the RED band, which is required for satisfying the condition LSWI ≥ NDVI—the key indicator of 297 

flooding used in phenology-based optical algorithms such as NESEA-Rice10. This explains why our optical-based 298 
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approach and other similar methods tend to identify fewer rice pixels compared with radar-based products shown 299 

in Fig. 5. 300 

By contrast, radar observations capture a distinct VH backscatter trough, indicating an increase in soil moisture 301 

that alters the soil dielectric constant. As crop growth progresses, VH backscatter gradually rises, resulting in large 302 

VH time series variations. This enables radar-based methods to detect rainfed rice, even in areas without persistent 303 

standing water. Moreover, these VH minima typically coincide with the onset of the monsoon season, marking the 304 

beginning of the rice growth cycle (Fig. 7). 305 

For Irrigated rice, each valid cropping cycle is accompanied by a strong flooding signal that can be effectively 306 

identified by all water-related optical indices (e.g., combinations of SWIR, RED, or GREEN bands; Zhao et al. 307 

(2025)). In radar observations, paddy fields exhibit deeper VH troughs than rainfed fields, and the subsequent 308 

increase after the trough (rice growing stage) reflects higher canopy water content (VWC) and a stronger dielectric 309 

response, which amplifies VH time series variations. Unlike rainfed rice, the timing of Irrigated rice cultivation is 310 

typically decoupled from monsoon onset, owing to irrigation management. 311 

However, we also note a potential source of misclassification when relying solely on Sentinel-1 VH backscatter 312 

for rice mapping, especially in temperate regions outside tropical zones. Although radar-based algorithms perform 313 

well in persistently cloudy and humid environments, our previous findings—and those of other studies—indicate 314 

that several non-rice crops (both rainfed and irrigated, such as maize and soybean) can exhibit amplitude variations 315 

comparable to those of paddy rice (Zhao et al., 2024). Consequently, such V-shaped radar signatures are not unique 316 

to rainfed or paddy rice, but rather represent a general biophysical response to canopy development and surface 317 

moisture dynamics. 318 
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 319 

Figure 7. Spatial comparison and time-series analysis of vegetation indices, VH backscatter, and total 320 

precipitation between rainfed and irrigated (paddy) rice in Thailand. (a) JAXA land-cover product, where pink 321 

represents non-paddy croplands and blue indicates paddy fields. (b) Comparison between the Open-SEA-Rice-10 322 

https://doi.org/10.5194/essd-2025-711
Preprint. Discussion started: 21 January 2026
c© Author(s) 2026. CC BY 4.0 License.



 20 / 25 

 

dataset (orange) and this study’s paddy rice product (blue; overlaid on orange). The lower two panels present the 323 

corresponding time-series curves for rainfed and paddy rice, respectively. 324 

4.2 Advantages of the proposed product 325 

Recent advances in remote sensing have produced numerous high-accuracy rice mapping algorithms (Deng et al., 326 

2025). However, their application to long-term, large-scale mapping remains constrained by data availability and 327 

computational demands. For instance, although SAR can effectively improve mapping accuracy (Adrian et al., 328 

2021), its use is limited in earlier periods due to the absence of Sentinel-1 observations. In addition, the 329 

computational complexity of large-scale mapping remains a considerable challenge, even when implemented on 330 

cloud-based platforms such as Google Earth Engine. 331 

To overcome these challenges, this study employs a streamlined and phenology-based rice mapping framework 332 

specifically optimized for the biophysical and climatic conditions of South and Southeast Asia. Instead of 333 

extracting detailed phenological phases (e.g., tillering or harvest), the method focuses on detecting key 334 

phenological peaks, providing a robust solution under conditions of high cropping intensity, short intervals 335 

between multiple rice cycles, and persistent monsoon-related cloud cover. For instance, in the Mekong Delta, the 336 

interval between two consecutive rice seasons is perhaps shorter than 15 days (Fig. S3), meaning that even a slight 337 

temporal offset in detecting the flooded transplanting stage could miss the short-lived flooding signal. Thus, 338 

identifying phenological peaks offers a more reliable and practical strategy than full-season tracking using Landsat 339 

imagery.  340 

 341 

4.2 Uncertainty Assessment 342 

The primary source of uncertainty or error in the products generated by this study stems from the observation 343 

quality and the number of valid observations from the optical imagery data used. Specifically, the striping issue in 344 

Landsat-7 data led to omission errors in some rice fields. Despite using all available imagery over a five-year 345 

period for compositing, striped gaps persisted in certain areas, resulting in the failure to effectively identify rice 346 

fields, particularly in the results for 2005 and 2015.  347 

Additionally, validation based on sample points revealed omission errors in northern India, due to limitations in 348 

valid optical observations. Based on the extracted rice phenological peaks, this region is characterized by a rice–349 

wheat double-cropping system, with rice transplanting typically occurring between June and July. However, as 350 
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shown in Fig. S4, many pixels in this region have very few valid observations during this period because of 351 

persistent cloud cover. Consequently, optical imagery often fails to capture the flooding signals of rice, leading to 352 

underestimation of rice extent and reduced accuracy in northern India. 353 

To address this issue, we re-mapped the 2024 rice intensity and spatial distribution for northern India using our 354 

previously developed Rice-Sentinel algorithm, which effectively integrates Sentinel-1 radar observations to 355 

compensate for missing optical data. Nevertheless, the original optical-based results are also retained and provided 356 

for comparison and reference by other researchers. 357 

 358 

5. Data availability 359 

The Spatial distribution and cropping intensity maps of rice in South and mainland Southeast Asia can be accessed 360 

in the Zenodo data set from the following DOI: https://doi.org/10.5281/zenodo.17615341 (Zhao et al., 2025b). We 361 

welcome other researchers to validate these products and collaborate in improving the accuracy of rice mapping 362 

in this region. 363 

6. Code availability 364 

The code independently developed of this study is available at the following link:  365 

https://code.earthengine.google.com/d410ce31604e93518ef9281097e71cc5. 366 

7. Conclusions 367 

This study employed an improved phenology-based rice mapping algorithm, leveraging the full archive of Landsat 368 

series and Sentinel-2 satellite data, to generate high-resolution maps of rice planting areas and cropping intensity 369 

across South and mainland Southeast Asia for the years 1995, 2005, 2015, and 2024. By applying optical image 370 

compositing and a fake-peak filtering technique, the challenges of extracting long-term rice cropping intensity in 371 

tropical regions were effectively addressed, yielding relatively reliable results. The resulting products achieved 372 

overall accuracies ranging from 83.74% to 87.60% across the four periods, validated against 23,396 independent 373 

samples, and exhibited R² values exceeding 0.9 when compared with FAO statistical data for South and mainland 374 

Southeast Asian countries. In conclusion, this study fills a critical gap in high-resolution, long-term rice mapping, 375 
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providing a robust foundation for sustainable agricultural practices and policy development in South and Southeast 376 

Asia, with broader implications for global food security and environmental sustainability. 377 
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