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Abstract: South and Southeast Asia, a major global hub for paddy rice cultivation, exhibits the highest rice

cropping intensity worldwide due to its favourable hydrothermal conditions, and also has experienced considerable

spatiotemporal changes due to climate change and anthropogenic activities. However, the absence of long-term

spatial distribution and cropping intensity of paddy rice hinders effective agricultural and environmental

management. This gap is particularly critical especially in the 21st century, with enhanced impacts from changing

climate, water resources, and food trade pattern. Using all the available Landsat and Sentinel-2 archives, we refined

a phenology-based algorithm to generate 30-m rice maps and cropping intensity across South and Southeast Asia

for the years 1995, 2005, 2015, and 2024. The algorithm overcomes the challenge of detecting rice cropping

intensity in long time-series and comprises three core steps: (1) identifying pixel-level rice phenological peaks

using an enhanced peak detection method, thereby defining potential transplanting windows and minimizing

monsoon-induced cloud and precipitation interference; (2) detecting paddy flooding signals and delineating rice

cultivation areas based on phenological rules derived from the relationship between the Land Surface Water Index

(LSWI) and Enhanced Vegetation Index (EV1); (3) determining rice cropping intensity according to the number

of valid crop peaks and associated flooding signals within a single year. The resulting maps were validated using

23,396 samples collectively derived from a field photo library, visual interpretation of Sentinel-1/2 satellite

imagery, and a sample migration algorithm. Across the four periods, the maps achieved overall accuracies ranging

from 83% to 87%. In addition, the resultant products were compared with existing regional and period-specific

rice datasets (e.g., NESEA-RICE10 and Open-SEA-Rice-10) for further evaluation. The comparisons

demonstrated that the refined approach achieved higher accuracy and robustness in mapping both rice distribution

and cropping intensity, whereas the existing products performed well only in partial environments. When

compared with the FAO official statistics for South and mainland Southeast Asian countries, the derived maps

yielded R=2values exceeding 0.9. This dataset holds great potential for applications such as methane emission
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33 estimation, water resource management, and crop yield monitoring, thereby supporting sustainable agricultural

34 practices and policy development in the region.
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1. Introduction

Rice is a staple food crop across South and Southeast Asia, underpinning food security in a region characterized
by rapid population growth and escalating food demand (Xiao et al., 2006). This demographic pressure has
inevitably driven the expansion of rice paddies and intensified cultivation practices (Godfray et al., 2010; Foley et
al., 2005). However, the expansion of agricultural land, including rice paddies, exacerbates environmental
challenges, such as freshwater depletion, deforestation, and increased methane emissions, all of which threaten
ecosystem functions (Mehta et al., 2024; Wang et al., 2023; Zeng et al., 2018; Chen et al., 2024). Balancing food
security with the preservation of ecosystem services is thus a critical component of achieving the United Nations’
2030 Sustainable Development Goals (SDGs) (Persaud and Dagher, 2021). Understanding the spatial extent and
cropping intensification patterns of rice agriculture is essential to provide robust data support for sustainable
development policies (Potapov et al., 2022; Zabel et al., 2019).

Satellite remote sensing has emerged as a powerful tool for accurately mapping rice agriculture over large spatial
scales (Dong and Xiao, 2016; Zhang et al., 2017). Moderate Resolution Imaging Spectroradiometer (MODIS) data,
with its 500-meter spatial resolution, has been effectively utilized to map rice distributions in monsoon Asia,
including South and Southeast Asia (Zhang et al., 2020). However, the coarse resolution of MODIS limits its
ability to capture fragmented rice paddies and introduces errors due to mixed-pixel effects, particularly in detecting
multi-cropping systems (Han et al., 2021). Higher-resolution satellite data, such as those from Landsat (30 m) and
Sentinel (10-20 m), enable more precise identification of rice paddies (Zhao et al., 2024). Current research
employs phenology-based algorithms or machine learning approaches to leverage these higher-resolution datasets
for rice mapping.

Phenology-based rice mapping methods primarily exploit the relationship between the Land Surface Water Index
(LSWI) and the Enhanced Vegetation Index (EVI) derived from optical imagery to detect the unique flooding
signals of rice paddies (Dong et al., 2015; Xiao et al., 2005). These methods have achieved high accuracy in regions
such as Northeast China, Japan, and South Korea (Dong et al., 2016; Carrasco et al., 2022; Han et al., 2022).
Recent studies have extended phenology-based approaches to Synthetic Aperture Radar (SAR) data, improving
rice mapping in cloud-prone and rainy regions (Xu et al., 2023; Song et al., 2025). Due to their simplicity,
computational efficiency, and robustness, phenology-based methods are particularly well-suited for large-scale
applications and can be readily implemented on cloud-computing platforms, making them the most widely adopted

approach for regional and continental-scale rice mapping studies (Zhao et al., 2025a).
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Machine learning-based rice classification methods have also gained prominence, as they leverage extensive
training samples to achieve high accuracy in mapping paddy rice distribution (Dong and Xiao, 2016). For instance,
several studies have achieved high-precision rice mapping in regions with complex cropping patterns, such as the
crop rotation systems in Northeast China and the multi-season rice planting patterns in the Jianghan Plain, by
integrating rice-specific phenological features with machine learning classifiers, such as One-Class Support Vector
Machines (OC-SVM) and Random Forest (He et al., 2021; Ni et al., 2021). More recently, deep learning techniques,
particularly convolutional neural networks like U-Net and eXplainable Mamba UNet, have been employed to
process time-series Sentinel-1 SAR data, demonstrating remarkable robustness in capturing spatial patterns, even
in cloud-prone regions where optical imagery is limited (Ge et al., 2025; Thorp and Drajat, 2021; Lin et al., 2022).
Despite the achievements of the above two mapping approaches, none has yet provided a method capable of long-
term, large-scale analysis with precise extraction of cropping intensity and spatial distribution to elucidate the
spatiotemporal patterns of rice distribution in South and Southeast Asia. Traditional phenology-based rice mapping
methods rely on prior expert knowledge to determine phenological stages, but interpreting phenological periods
from several decades ago introduces considerable uncertainty. Machine learning methods, on the other hand, have
shown potential for global-scale classification, yet the acquisition of large, high-quality historical training datasets
remains time-consuming and resource-intensive (Zhan et al., 2021). Even though a fully automated, sample-free
rice-mapping framework has been developed, its dependence on SAR-derived rice features limits its applicability
to periods beyond the operational lifetime of Sentinel-1 (Gao et al., 2023).

This study addresses this gap by employing a refined phenology-based method that eliminates the need for
extensive training samples while accurately identifying planting intensity and phenological windows. Through
optical imagery fusion and false peak elimination techniques, we aim to precisely identify rice cropping systems
and their spatial distributions, while quantifying changes over the past three decades. This approach provides
critical data to reconcile the conflict between traditional rice cultivation expansion and sustainable development

goals, offering robust support for informed policy-making in South and mainland Southeast Asia.

2. Materials

2.1 Study area

The study area encompasses South and mainland Southeast Asia countries, specifically Vietnam, Thailand,

Cambodia, Myanmar, Laos, Bangladesh, India, and Pakistan (Fig. S1). These eight countries are predominantly
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characterized by a tropical monsoon climate (with the exception of Balochistan Province), featuring distinct wet
and dry seasons. Rice is the predominant crop in this region, with the highest cropping intensity globally. In 2024,
the total rice harvested area in this region accounted for approximately 47% of the global rice harvested area,

making it the world's most critical rice production base.

2.2 Data and preprocessing

2.2.1 Satellite imagery

To develop long-term rice mapping products for South and mainland Southeast Asia, we acquired all available
Sentinel-2 (S2_HARMONIZED) and Landsat T1_L2 imagery data from the Google Earth Engine (GEE) platform
for specific time periods (Table 1). Invalid observations, including clouds, cloud shadows, and snow cover, were
filtered out using the Sentinel-2 QA60 and Landsat QA_PIXEL bands. However, because imagery from a single
year was insufficient to reliably support rice information extraction across South and mainland Southeast Asia, we
applied a multi-year median compositing approach for the periods 1993-1997, 2003-2007, 2014-2016, and 2023—
2025 to mitigate data gaps (see Table 1). Specifically, each year was segmented into half-monthly intervals (e.g.,
January 1-15 and January 16-31, with some intervals spanning 14 or 16 days due to monthly variations), and all
valid observations within the selected time periods for each interval were used to generate a single median
composite image. Additionally, linear regression was employed to harmonize the spectral bands of Landsat and
Sentinel-2 data (Yang et al., 2023), resulting in the generation of half-monthly time-series curves.

Table 1: Satellite sensors and composite periods for rice mapping in South and mainland Southeast Asia

Reference Year Satellite Sensors Composite Period
1995 Landsat-5 1993-1997
2005 Landsat-5, -7 2003-2007
2015 Landsat-5, -7, -8 2014-2016
2022 Sentinel-2, Landsat-8 2023-2025

Based on the generated half-monthly time-series curves, we further calculated relevant vegetation indices to

identify the spatial distribution and cropping intensity of paddy rice, including NDVI, LSW, and EVI (Egs. 1-3).

NIR — Red

NDVI = NIR T Fed @
NIR — SWIR

LSWI= SR v swir @
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VI = X

2.2.2 Auxiliary data

Cropland Mask. To investigate changes in rice planting patterns in South and mainland Southeast Asia, a region
that has undergone significant land-use transformations, including cropland expansion and forest loss over recent
decades, we selected high-quality land cover and cropland products aligned with the target mapping years. Four
global products were chosen to mitigate uncertainties in rice mapping arising from cropland expansion. The
specific cropland products selected for each year are detailed in Table 2 (Zhang et al., 2021; Karra et al., 2021;
Potapov et al., 2022) (https://zenodo.org/records/5571936).

Table 2: Cropland Products Used for Cropland Mask in South and mainland Southeast Asia

Reference Year Cropland Products

1995 GLC_FCS30 (1990, 1995)

2005 GLC_FCS30 (2005), GLAD 30 (2003)
2015 GLC_FCS30 (2015), GLAD 30 (2015)
2024 ESA (2021), GLAD (2019), ESRI (2021)

Rice products and statistical data. To evaluate the reliability of our mapping results, we conducted spatial
comparisons with several established rice mapping products, including: (1) the JAXA High-Resolution Land-Use
and Land-Cover Map, including the 2020 Vietham and 2023 Southeast Asia products

(https://www.eorc.jaxa.jp/ALOS/en/dataset/lulc_e.htm); and (2) Li et al. (2025) and Sun et al. (2023), whose

datasets (NESEA-RICE10 (Han et al., 2021) and OPEN-SEA-RICE10 (Ginting et al., 2025)) focus on regional-
scale rice area mapping. The comparisons allowed us to assess the spatial consistency and intensity agreement
across products. In addition, national-level statistical data from the Food and Agriculture Organization (FAO) were

used to validate the mapped rice areas.
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2.3 Methodology

2.3.1 Identification of valid crop peak dates

To accurately identify multiple rice cropping cycles, we first determined the peak date of each valid crop cycle
(i.e., the number of times a plot is cropped within a year). The specific steps are as follows (Fig. 1):
Data Interpolation and Smoothing. First, using the half-monthly composite imagery and derived vegetation
indices, NDVI outliers were removed based on the mean and three standard deviations. Linear interpolation was
then applied to fill gaps in the time series of LSWI and NDV1. Subsequently, the NDVI time series was smoothed
using the Whittaker smoothing algorithm (Whittaker Smoothing, lambda=300) to generate a smoothed time series.
Peak Detection. Peak detection was achieved by identifying local maxima and minima through iterative analysis
of the smoothed NDVI time-series curves. Specifically, each NDVI value was compared with its preceding value
to determine an increasing or decreasing trend. A point was recorded as a peak (local maximum) when the NDVI
transitioned from an increasing to a decreasing trend. Conversely, a point was recorded as a trough (local minimum)
when the NDV1 shifted from a decreasing to an increasing trend.
Elimination of False Peaks. To detect and filter phenological peaks, we employed a method based on LSWI and
NDVI time series that identifies true phenological peaks while excluding false peaks caused by noise or non-
vegetation signals, thereby ensuring robust cycle detection. A complete crop growth cycle was decomposed into
one peak and two troughs (Yang et al., 2023). The first criterion required that the NDVI amplitude of the right
trough, relative to the annual maximum amplitude, exceed 35%. Second, the NDVI value at the right trough had
to fall below the NDVI threshold (NDV lig), calculated according to Eq. 5. In addition, the time span between the
left and right troughs had to exceed 120 days to ensure that the cycle represented a biologically reasonable rice-
growing season in South and mainland Southeast Asia. Each growth cycle meeting these criteria was recorded,
including the peak dates (day of year, DOY), while all other signals were discarded as noise.

NDVlyq = NDVI,;,+(NDVI,,,, — NDVI,,;,,) x0.15 4)
Where NDVI,q isthe NDVI threshold, NDVI,;, isthe minimum NDVI value within the considered period, and

NDVI,,,;, is the maximum NDVI value within the considered period.
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Multi-year 15-day or 10-day composite data for Landsat-5, Landsat-7, Landsat-8, and Sentinel-2
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Figure 1. Flowchart of the mapping process for long-term rice spatial distribution and planting intensity in South

1 = H

B

and mainland Southeast Asia

2.3.2 Phenology-based approach for identifying rice fields and their cropping intensity

The phenology-based rice mapping method identifies rice by detecting the unique biophysical characteristic of
fields being flooded during the transplanting period. In this study, we first selected imagery data within a 90-day
time window preceding the peak date of each growing season. Subsequently, flood signal detection was performed
on the imagery data within this time window by applying the rule LSWI + 0.05 > EVI. Notably, the LSWI and
EVI used here differ from those employed in crop peak identification, as these vegetation indices (VIs) do not
require smoothing. Additionally, to minimize interference from factors such as precipitation and soil background
value, we applied the rule that, when a flood signal is detected, EVI must be < 0.35 and LSWI must be > 0.05.

Pixels meeting these conditions were classified as rice (pixel value = 1).
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For rice cropping intensity, we integrated multi-season rice data by calculating the number of times a pixel was
classified as rice (value = 1) within a year. This process generated the final rice cropping intensity distribution

map, with values ranging from 1 to 3, representing single-, double-, or triple-season rice, respectively.

2.3.3 Accuracy assessment and comparisons

Sample points for 2024 were primarily collected through visual interpretation using multiple data sources. First,
false-color composites of Sentinel-2 imagery (R/G/B = SWIR1, NIR, RED) representing multiple rice growth
stages were generated, in which rice fields during the flooded transplanting stage appeared dark green. Second,
following the approach of (Sun et al., 2023), we used Sentinel-1 VVH time series to compute the maximum,
minimum, and variance values, and composed them as R: VH_max, G: VH_min, and B: VH_variance. In these
composites, flooded rice fields typically appeared purple, which is particularly useful for identifying rice in
persistently cloudy and rainy tropical regions. An example of this visualization approach has been implemented
and is available at the following link:

(https://code.earthengine.google.com/7dd210998c6812da2e79ebebc1536822). Based on these two sets of

composites, rice sample points were manually labeled and further cross-validated using ultra—high-resolution

Google Earth imagery and the Global Geo-Referenced Field Photo Library (http://www.eomf.ou.edu/photos/). In
total, 4,000 rice samples were collected across the study area.

For the remaining 4,000 non-rice samples, random sampling was first conducted within the study area, and each
point was then visually verified using the same image composites to ensure the absence of rice-related features.
Although the above approach was effective for sample generation, manually labeling samples for periods before
the launch of Sentinel-1 and Sentinel-2 satellites was labor-intensive and constrained by the limited availability of
valid imagery. Therefore, a sample migration algorithm (Huang et al., 2020) was employed to transfer the 8,000

manually labeled samples to other target years.

3. Results
3.1 Validation of the spatial distribution accuracy of rice in South and mainland Southeast Asia
The spatial distribution and cropping intensity of rice across South and mainland Southeast Asia are illustrated in

Fig. 2. The interactive version of this map can also be accessed and visualized using the GEE platform at: https://ee-

zhaozizhangcau.projects.earthengine.app/view/rice-planting-intensity--south--southeast-asia.
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Based on validation using 23,396 sample points, the mapping accuracies for different years are summarized in

Table 3, with overall accuracies ranging from 83.74% to 87.60% and F1-scores between 0.7872 and 0.8628. The

2024 results achieved the highest accuracy, primarily because the higher temporal frequency of Sentinel-2

observations enabled more effective detection of flooding signals compared with the earlier Landsat sensors.

Mapping accuracies for other years did not show a declining trend over time, mainly due to the aggregation of

multi-year image archives and the use of biweekly composite imagery, which stabilized rice extraction

performance. Although Landsat-8 data were incorporated for the 2015 (2014-2016) period, residual striping

effects from Landsat-7 imagery slightly degraded the classification accuracy.
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Figure 2. Long-term spatial distribution and planting intensity of rice in South and mainland Southeast Asia

(1995, 2005, 2015, 2024)

Table 3 Accuracy assessment of paddy rice mapping results in South and Southeast Asia
Year Overall Accuracy User Accuracy Producer Accuracy F1 Score Sample size
2024 0.8760 0.9668 0.7788 0.8628 8000
2015 0.8374 0.9500 0.7129 0.8143 7821
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218 To further evaluate the accuracy of our results, we compared the estimated rice area from our generated rice
219 product with FAO statistical data (Fig. 2). The results showed that the R=values for all four years exceeded 0.9,
220  with a multi-year average RMSE of approximately 4.15 million hectares. Based on remote sensing retrievals, the
221 rice planting area across South and mainland Southeast Asian countries has increased by approximately 22.5
222 million hectares since the 1990s, with the largest increases observed in India and Bangladesh. Among these, the
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2024 results exhibited the smallest discrepancy with statistical data. In Bangladesh, the remote sensing estimates

were relatively lower, potentially due to the influence of frequent flooding and cloud cover in the region.

3.2 Comparison with other rice maps

We selected typical rice-growing areas within the study region for visual comparison with other rice mapping
product. Specifically, in Vietnam, we compared our results with the land cover product (including rice layer)
released by JAXA. The spatial distributions were highly consistent across multiple years. In the 2005 results for
northern Vietnam, our product reduced some noise through image compositing and phenological identification
(Fig. S2). In the 2024 product for India, our results exhibited spatial distributions comparable to those of Li et al.
(2025) (Fig. 4). However, in the 1995 mapping of Punjab and other northern Indian provinces, Li’s results were
notably affected by limited observation conditions, which manifested as strip-like artifacts in the output. By
contrast, our approach, which employed multi-year data compositing, effectively mitigated this issue. Differences
observed in the southeastern coastal regions of India further highlight the advantages of multi-year compositing

for rice mapping in the 1990s.

Our results 1995/ [Our results

‘\,‘,;v ‘(;gat,zozs,) X

Figure 4. Comparison of rice distribution maps: Our Results compared to Li et al. (2025) for South Asia

(1995, 2021)

Notably, Fig. 5 presents a spatial comparison of five rice mapping products across Southeast Asia, including our
results. Among them, products al, b1, and el exhibit relatively similar spatial distributions, whereas the NESEA-
Ricel0 product captures the smallest rice extent. In contrast, c1 and d1 identified a greater number of rice pixels,
particularly in central—eastern Thailand, where both products detected extensive rice areas. We attribute these

differences mainly to the distinct responses of irrigated (paddy) and rainfed rice systems. The e2 panel, derived
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from the JAXA LULC dataset, provides supporting evidence for this interpretation, as it delineates these regions
predominantly as paddy fields (see Section 4.1 for further discussion).

Panels a3-e3 illustrate the rice-growing regions in western Thailand, where three intensity-based products
consistently identified multi-season rice cultivation. However, the ¢3 product shows clear image boundary artifacts,
likely due to inconsistencies in image mosaicking. Spatially, the b3 product—derived from a single-year dataset—
identified a smaller extent of rice cultivation, while the d3 product appears to have overestimated rice coverage.
In contrast, along the moisture-rich coastal areas of Myanmar, all products exhibited relatively consistent spatial

patterns with minimal discrepancies.
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Figure. 5 Comparative analysis of single and multiple rice field Distribution in Southeast Asia. Panels (al)-

(a4) display results from our proposed method, (b1)-(b4) from NESEA-Ricel0, (c1)-(c4) from Open-SEA-Rice-
10, and (d1)-(d4) from Sun et al. (2023). Panels (el)-(e4) show JAXA-LULC data, retaining the original land

cover classifications of Single Paddy Field and Multi Paddy Field.
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3.3 Spatial patterns and change trends of rice cultivation over the past 30 years

In South and mainland Southeast Asia, rice is predominantly distributed in plains and riverine areas with abundant
freshwater resources. Since 1990, there has been a significant expansion trend in rice planting areas, primarily in
central-western India and Pakistan (Fig. 2). Rice cropping intensity is dominated by double and single rice (this
study’s statistics focus solely on rice cropping intensity, excluding other crops). The Mekong Delta region in
Vietnam is predominantly characterized by triple rice cultivation.

Based on the analysis of Figs. 2 and 6, substantial changes in rice cultivation patterns have occurred across South
and mainland Southeast Asia over the past three decades. In these regions, intensification within existing rice
croplands—manifested as increased planting intensity in stable areas—has become a more prevalent trend than
the expansion of rice-growing areas. For instance, regions previously dominated by single-cropping systems, such
as southern Thailand, have transitioned toward double-cropping regimes. Likewise, northern Pakistan and eastern
India have shown a pronounced increase in rice cropping intensity. In contrast, the Mekong Delta has experienced
a shift from double- to triple-cropping systems. Areas with reduced rice extent are primarily associated with
cropland degradation or conversion to other crops rather than a decline in planting intensity. The most notable
reductions are concentrated in eastern Thailand and the southern Mekong Delta estuary, corresponding
respectively to shifts from irrigated to rainfed systems and a loss of arable land.

As shown in Fig. 6, we further quantified changes in rice cultivation area and mean cropping intensity at the
national scale. Among all countries, India exhibited the most substantial expansion in rice cultivation area, whereas
most Southeast Asian countries experienced a general decline over the past three decades. In terms of cropping
intensity, India showed an average increase of approximately 0.1, while most Southeast Asian countries exhibited
a decrease of less than —0.05, reflecting intensified cultivation in South Asia and widespread contraction in

Southeast Asia.
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Figure 6. Spatial Distribution and Planting Intensity Changes of Paddy Rice in South and mainland
Southeast Asia (1995-2024). Orange represents pixels with decreased paddy rice area in 2024 compared to 1995
(contraction), green indicates increased areas (expansion), and gray-white denotes stable areas (paddy rice
present in both periods). Rice cropping intensity changes are shown for stable areas, with red indicating
increases (+1 for one additional season, +2 for two additional seasons) and blue indicating decreases (-1 for one

season less, -2 for two seasons less).

4. Discussion

4.1 Differences between Rainfed and Irrigated Rice

In the results, substantial discrepancies among rice mapping products were observed in central-western Thailand.
To investigate the underlying causes, we analyzed the time-series profiles of selected sample points over three
consecutive years using the JAXA land-cover product, our phenology-based rice maps, and the Open-SEA-Rice-
10 dataset (Fig. 8).

From the optical time series, it is evident that rainfed rice fields do not maintain stable surface water coverage
during the “transplanting” stage. Consequently, they often fail to produce sufficiently low SWIR reflectance
relative to the RED band, which is required for satisfying the condition LSWI = NDVI—the key indicator of

flooding used in phenology-based optical algorithms such as NESEA-Rice10. This explains why our optical-based
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approach and other similar methods tend to identify fewer rice pixels compared with radar-based products shown
in Fig. 5.

By contrast, radar observations capture a distinct VH backscatter trough, indicating an increase in soil moisture
that alters the soil dielectric constant. As crop growth progresses, VH backscatter gradually rises, resulting in large
VH time series variations. This enables radar-based methods to detect rainfed rice, even in areas without persistent
standing water. Moreover, these VH minima typically coincide with the onset of the monsoon season, marking the
beginning of the rice growth cycle (Fig. 7).

For Irrigated rice, each valid cropping cycle is accompanied by a strong flooding signal that can be effectively
identified by all water-related optical indices (e.g., combinations of SWIR, RED, or GREEN bands; Zhao et al.
(2025)). In radar observations, paddy fields exhibit deeper VH troughs than rainfed fields, and the subsequent
increase after the trough (rice growing stage) reflects higher canopy water content (VWC) and a stronger dielectric
response, which amplifies VH time series variations. Unlike rainfed rice, the timing of Irrigated rice cultivation is
typically decoupled from monsoon onset, owing to irrigation management.

However, we also note a potential source of misclassification when relying solely on Sentinel-1 VVH backscatter
for rice mapping, especially in temperate regions outside tropical zones. Although radar-based algorithms perform
well in persistently cloudy and humid environments, our previous findings—and those of other studies—indicate
that several non-rice crops (both rainfed and irrigated, such as maize and soybean) can exhibit amplitude variations
comparable to those of paddy rice (Zhao et al., 2024). Consequently, such V-shaped radar signatures are not unique
to rainfed or paddy rice, but rather represent a general biophysical response to canopy development and surface

moisture dynamics.
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Figure 7. Spatial comparison and time-series analysis of vegetation indices, VH backscatter, and total

precipitation between rainfed and irrigated (paddy) rice in Thailand. (a) JAXA land-cover product, where pink

represents non-paddy croplands and blue indicates paddy fields. (b) Comparison between the Open-SEA-Rice-10
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dataset (orange) and this study’s paddy rice product (blue; overlaid on orange). The lower two panels present the

corresponding time-series curves for rainfed and paddy rice, respectively.

4.2 Advantages of the proposed product

Recent advances in remote sensing have produced numerous high-accuracy rice mapping algorithms (Deng et al.,
2025). However, their application to long-term, large-scale mapping remains constrained by data availability and
computational demands. For instance, although SAR can effectively improve mapping accuracy (Adrian et al.,
2021), its use is limited in earlier periods due to the absence of Sentinel-1 observations. In addition, the
computational complexity of large-scale mapping remains a considerable challenge, even when implemented on
cloud-based platforms such as Google Earth Engine.

To overcome these challenges, this study employs a streamlined and phenology-based rice mapping framework
specifically optimized for the biophysical and climatic conditions of South and Southeast Asia. Instead of
extracting detailed phenological phases (e.g., tillering or harvest), the method focuses on detecting key
phenological peaks, providing a robust solution under conditions of high cropping intensity, short intervals
between multiple rice cycles, and persistent monsoon-related cloud cover. For instance, in the Mekong Delta, the
interval between two consecutive rice seasons is perhaps shorter than 15 days (Fig. S3), meaning that even a slight
temporal offset in detecting the flooded transplanting stage could miss the short-lived flooding signal. Thus,
identifying phenological peaks offers a more reliable and practical strategy than full-season tracking using Landsat

imagery.

4.2 Uncertainty Assessment

The primary source of uncertainty or error in the products generated by this study stems from the observation
quality and the number of valid observations from the optical imagery data used. Specifically, the striping issue in
Landsat-7 data led to omission errors in some rice fields. Despite using all available imagery over a five-year
period for compositing, striped gaps persisted in certain areas, resulting in the failure to effectively identify rice
fields, particularly in the results for 2005 and 2015.

Additionally, validation based on sample points revealed omission errors in northern India, due to limitations in
valid optical observations. Based on the extracted rice phenological peaks, this region is characterized by a rice—

wheat double-cropping system, with rice transplanting typically occurring between June and July. However, as
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shown in Fig. S4, many pixels in this region have very few valid observations during this period because of
persistent cloud cover. Consequently, optical imagery often fails to capture the flooding signals of rice, leading to
underestimation of rice extent and reduced accuracy in northern India.

To address this issue, we re-mapped the 2024 rice intensity and spatial distribution for northern India using our
previously developed Rice-Sentinel algorithm, which effectively integrates Sentinel-1 radar observations to
compensate for missing optical data. Nevertheless, the original optical-based results are also retained and provided

for comparison and reference by other researchers.

5. Data availability

The Spatial distribution and cropping intensity maps of rice in South and mainland Southeast Asia can be accessed

in the Zenodo data set from the following DOI: https://doi.org/10.5281/zenodo.17615341 (Zhao et al., 2025b). We
welcome other researchers to validate these products and collaborate in improving the accuracy of rice mapping

in this region.

6. Code availability

The code independently developed of this study is available at the following link:

https://code.earthengine.google.com/d410ce31604e93518ef9281097e71cc5.

7. Conclusions

This study employed an improved phenology-based rice mapping algorithm, leveraging the full archive of Landsat
series and Sentinel-2 satellite data, to generate high-resolution maps of rice planting areas and cropping intensity
across South and mainland Southeast Asia for the years 1995, 2005, 2015, and 2024. By applying optical image
compositing and a fake-peak filtering technique, the challenges of extracting long-term rice cropping intensity in
tropical regions were effectively addressed, yielding relatively reliable results. The resulting products achieved
overall accuracies ranging from 83.74% to 87.60% across the four periods, validated against 23,396 independent
samples, and exhibited R=values exceeding 0.9 when compared with FAO statistical data for South and mainland

Southeast Asian countries. In conclusion, this study fills a critical gap in high-resolution, long-term rice mapping,
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providing a robust foundation for sustainable agricultural practices and policy development in South and Southeast

Asia, with broader implications for global food security and environmental sustainability.
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