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Abstract. Building function is a description of building usage. The accessibility of its information is essential for urban re-

search, including urban morphology, urban environment, and human activity patterns. Existing building function classification

methodologies face two major bottlenecks: (1) poor model interpretability and (2) inadequate multimodal feature fusion. Al-

though large models with strong interpretability and efficient multimodal data fusion capabilities offer promising potential5

for addressing the bottlenecks, they remain limited in processing multimodal spatial datasets. Their performance in building

function classification is therefore also unknown. To the best of our knowledge, there is a lack of multimodal building func-

tion classification datasets, which results in the challenge of effectively performing their performance evaluation. Meanwhile,

prevailing building function categorization schemes remain coarse, which hinders their ability to support finer-grained urban

research in the future. To bridge the gap, we constructed a novel multimodal and fine-grained dataset—BuildingSense—for10

building function classification. Based on BuildingSense, we evaluated the performance of four state-of-the-art large models

from the perspective of classification outcomes and reasoning processes. The results demonstrate that large models can effec-

tively comprehend multimodal spatial data, challenging the conventional concept. Based on that, three directions for future

research can be key: (1) build a categorized inference example database, (2) develop cost-effective classification models, and

(3) quantify the confidence of model outputs. Our findings not only provide insights into the development of subsequent large15

model-based classification methods but also contribute to the advancement of multimodal fusion-based classification methods.

The dataset and code of this paper can be accessed through https://doi.org/10.6084/m9.figshare.30645776.v2 (Su et al., 2025a).

1 Introduction

Buildings, as primary spatial carriers of urban functions, constitute a fundamental component of the urban system, substantially

influencing the cultural, economic, and environmental development of cities (Arribas-Bel and Fleischmann, 2022; Marcus and20

Koch, 2016; Zhou et al., 2023). Building function, as a vital attribute of buildings, refers to the purpose of building usage,

presenting a high-level summary of the possible human activities within a building (The construction wiki contributors, 2021).

1

https://doi.org/10.5194/essd-2025-710
Preprint. Discussion started: 29 January 2026
c© Author(s) 2026. CC BY 4.0 License.



It provides crucial information for research on urban planning, urban heat island effects, and human mobility (Shen et al.,

2021; Choi and Yoon, 2023). Traditionally, the acquisition of building function data primarily relied on field surveys, which

are resource-intensive, resulting in long update cycles (Griffiths and Boehm, 2019; Xu et al., 2022).25

The development of remote sensing technology, information and communication technology (ICT), and the availability of

geo-tagged images have resulted in multimodal data presenting building attributes (Yu and Fang, 2023). For example, building

footprints provide high spatial resolution boundary of buildings, the widely covered street views and very-high-resolution

(VHR) remote sensing imagery captures detailed surface textures of buildings, and point of interest (POI) data offers finer-

grained semantic information about human activities within building spaces (Deng et al., 2022; Hoffmann et al., 2023; Li et al.,30

2025; Ren et al., 2024). These advancements have shifted the paradigm of building function data acquisition from survey-based

to data-driven, significantly reducing the costs and accelerating the data update cycles (Zheng et al., 2024).

Existing data-driven methods for acquiring building function information mostly focus on traditional machine learning and

deep learning methods (Li et al., 2025; Wang et al., 2024). These methods respectively employ feature engineering and con-

volutional operations to construct the embedding feature vectors, subsequently constructing complex mapping relationships35

between these vectors and building functions, and ultimately classifying the building functions. Although breakthroughs have

been made in improving the classification accuracy, they inevitably introduce new challenges, such as interpretability of the

models and comprehensive fusion of multimodal features. These limitations result in poor performance of a trained model

when it is transferred to another study area. Notably, large models, as large-scale Artificial Intelligence (AI) models pretrained

on vast amounts of multimodal data, contain extensive knowledge of human society and possess robust capabilities in multi-40

modal information extraction and understanding (Bommasani et al., 2022; Brown et al., 2020). Recently, with advancements in

the technology of large models, they have evolved human-like reasoning abilities, enabling them to perform logical inferences

based on extracted multimodal information and explicitly output their reasoning processes (Sun et al., 2023). These character-

istics highlight the models’ outstanding interpretability and efficient multimodal data processing capabilities, shedding light on

overcoming these bottlenecks.45

However, previous studies have revealed that large models exhibit limited performance when processing spatial datasets,

such as POI-based urban function classification, street view image–based urban noise intensity classification, and remote sens-

ing image scene classification (Mai et al., 2024; Kun et al., 2024). This limitation indeed raises an uncertainty regarding whether

they can effectively extract building function-related multimodal information and logically infer the building function. There-

fore, it is urgent to systematically evaluate the performance of large models on a multimodal building function classification50

dataset, providing a benchmark for future research on building function classification methods using large models.

To the best of our knowledge, there is a lack of multimodal datasets that explicitly created for building function classifi-

cation. Instead, most existing studies employ coarse-grained function classification schemes, directly using standard land-use

classifications or reclassifying them (Zhang et al., 2023; Kong et al., 2024; Ren et al., 2024). Such approaches cover up the

finer-grained human activity information inherently embedded in buildings, leading to information missing for exploring urban55

issues from a more detailed perspective. The availability of this dataset can be beneficial for benchmarking the capabilities of
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Figure 1. The overview of BuildingSense. The other building function category examples are shown in Supplementary Fig.S1.

large models under increased classification complexity. Therefore, it is imperative to construct a multimodal building function

dataset with finer-grained function classification.

To overcome the dataset limitation, we developed BuildingSense—a novel multimodal dataset for building functions classi-

fication, comprising over 60,000 annotated images, 71,654 POIs, and 34,00 building description texts in 26 distinct categories60

(Detailed definition is shown in Supplementary Table S1). It was collected based on 34,000 building footprints in New York

City (NYC) (Figure 1). To the best of our knowledge, BuildingSense is the first multimodal dataset dedicated to building
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function classification, offering detailed function categories. We subsequently selected four commonly used large models,

including Gemini-2.5-flash (Thinking), Claude-sonnet-4, QVQ-plus, and Deepseek-chat, as baselines to evaluate the perfor-

mance of large models on building function classification. Drawing from this evaluation, we discuss potential future avenues65

for enhancing the ability of large models to classify building function. Our main contributions are summarized as follows:

1. We develop BuildingSense dataset, which is the first multimodal dataset focused on building function classification, fea-

turing a substantial collection of well-aligned VHR images, street view images, and POIs, along with detailed categories

for building functions.

2. We present a systematic evaluation of the large models’ classification decision and inference process. Based on this, we70

found that the best-performing model (Gemini-2.5-flash (Thinking)) can logically infer the building function based on

multimodal spatial data, which challenges the current perspective that large models cannot handle multimodal spatial

data.

3. We discuss three potential ways for improving the performance of large models in building function classification tasks:

(1) constructing an external information database related to building functions, (2) creating small parameter models that75

maintain exceptional inference capabilities, and (3) measuring the confidence levels of the model’s outputs.

2 Literature review

2.1 Building function classification

Cities are hierarchically nested systems, presenting a hierarchical structure. Such a complicated structure is conceived as a

hierarchical soup, containing different ‘stuffs’ such as buildings, roads, etc. These ‘stuffs’ are obvious to see but need to be80

organized into something more coherent (Johnson, 2012). In human activity studies, land use, building function, and POIs can

be analogized as a hierarchical semantic soup. The relationships can be imagined as an inverted pyramid, with land use at

the top and POI at the bottom. At the same time, the building function occupies an intermediate position in the hierarchical

structure, providing more granular semantic information than land use while simultaneously synthesizing and contextualizing

the semantic information of POIs within the building. Thus, building function data is essential for hierarchically understanding85

urban systems.

However, our previous review has revealed that building function classification studies are relatively limited compared to

the land use ones (Keywords for paper collection are shown in Supplementary Fig.S2) (Su et al., 2025b). The contradictions

between the relatively scarce research and the importance of the building function data indicate a current neglect of building

functions within the academic community. It is noteworthy that the significant quantitative change observed in studies on90

building function classification (2020–2025) (Keywords for paper collection are shown in Supplementary Fig.S3) shows that

11 papers have been published in less than two years (2023–2025), exceeding the total number of articles from the previous

three years (2020–2023) (Table 1). This striking contrast highlights a growing interest among researchers in the topic of
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building function classification. Accordingly, we review these studies from three dimensions to conclude the main limitation:

(1) classification method and data, (2) building function categories, and (3) data accessibility.95

Table 1. Research on building function classification between 2020 and 2025. Method refers to classification method; POI refers to point of

interest; RSI refers to remote sensing image; SVI refers to street view image; HMD refers to human mobility data; RN refers to road network;

BT refers to building topology; CN refers to category number; DA refers to data accessibility.

Research Method POI RSI SVI HMD RN BT CN DA

Li et al. (2025) Semi-supervised learning ✓ 6

He et al. (2025) LARSE ✓ 10 ✓
He et al. (2024) UB-FineNet ✓ 11

Zheng et al. (2024) XGBoost ✓ ✓ 10

Ren et al. (2024) XGBoost ✓ ✓ 5

Memduhoglu et al. (2024) XGBoost ✓ ✓ 4

Kong et al. (2024) GraphSAGE ✓ ✓ ✓ ✓ 7

Du et al. (2024) Radom forest ✓ ✓ ✓ 5

Chen et al. (2024) OneClassSVM ✓ ✓ 7

Zhang et al. (2023) Geo-aware transformer ✓ ✓ ✓ 12

Hoffmann et al. (2023) CNN ✓ 3

Xu et al. (2022) GraphSAGE ✓ 5

Xiao et al. (2022) Frequency based ✓ 3

Deng et al. (2022) XGBoost ✓ ✓ ✓ ✓ 5

Zhang et al. (2021b) CNN ✓ 4

Zhang et al. (2021a) Tensor decomposition ✓ ✓ 7

First, from the perspective of classification method and data, we reveal that the majority of studies utilize multimodal data

and their methods are dominated by deep learning and traditional machine learning algorithms (Table 1). While the multimodal

data are adopted to classify building functions, demonstrating the advantage of data fusion, they heavily rely on manual feature

engineering, which is unable to guarantee that task-relevant features are fully extracted from each data instance during the

feature construction process, resulting in partial information loss and limited classification performance (Zheng et al., 2024;100

Ren et al., 2024; Memduhoglu et al., 2024; Kong et al., 2024; Du et al., 2024; Chen et al., 2024; Zhang et al., 2023; Xu et al.,

2022; Deng et al., 2022). Recent studies have shown that deep learning methods, which extract deeper data features through

convolutional operations, ensure more comprehensive utilization of information and significantly improve the classification

accuracy (Li et al., 2025; He et al., 2024, 2025; Hoffmann et al., 2023; Zhang et al., 2021b). It should be noticed that their

black-box characteristic substantially limits the interpretability of the models. Additionally, the predominant usage of single-105
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modal data in these studies indicates that the application of multimodal approaches in building function classification remains

an in-depth exploration, under the condition that the multimodal fusion methods have demonstrated superior performance.

Current building function classification algorithms suffer from two major limitations: (1) the lack of interpretability in

models, and (2) the absence of deep feature fusion from multimodal data. These limitations lead to poor model transferability

and excessive reliance on training data. Notably, current technological advances present promising solutions to address these110

limitations. Reasoning-based large models (e.g., GPT-4o, Gemini) offer a competitive approach in deep learning interpretability

and multimodal fusion. However, their multimodal synthesis analysis and reasoning ability remain substantially evaluated in

the context of building function classification (Mai et al., 2024; Kun et al., 2024). Such conditions highlight an imperative

demand for multimodal building function classification datasets.

Second, from the perspective of building function categories, the current building function classification framework em-115

ployed in the Table 1’s research remains coarse-grained, indicating these studies merely mirror the land use category or

straightforwardly reclassify based on the land use category (Zhang et al., 2023) (Table 1). Although this division can facil-

itate bottom-top land use classification, it fundamentally overlooks the intrinsic connection between building function and

fine-grained human activity. Referring to the POI type taxonomy, it employs multi-level taxonomies with detailed terminal

categories that precisely describe the specific human activity. In analogy, land use, situated at the top of the classification hier-120

archy, offers a coarse-grained generalization of human activities at the parcel level. POIs, located at the bottom of the hierarchy,

provide fine-grained descriptions of human activities. Building function, serving as a critical intermediate layer, should ideally

provide deeper semantic information than land use and generalize the semantic information of diverse POIs within the building.

Table 2. Example of typical building function categories. Building function categories 12, 7, 5, and 3 were selected from Table 1 to illustrate

the current mainstream classification of building functions.

Zhang et al. (2023) Kong et al. (2024) Ren et al. (2024) Hoffmann et al. (2023)

Urban village Residential Residential Residential

Urban residential Commercial Commercial Commercial

Business office Urban villages Industrial Other

Big catering Communal facilities Public service

Shopping center Education Landscape

Hotel Warehouse and factories

Recreation & Tourism Mixed function

Company & Factories

Industrial park

Administrative

Education

Medical
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However, the current mainstream building function classification (Table 2) fails to fulfill its intermediary role in bridging

land use and POIs. This limitation represents a fundamental conceptual gap in the existing building function classification125

framework, where the unique position of buildings as spatial containers for diverse human activities remains underexploited.

This drawback highlights the need for more refined building function categories.

Third, from the perspective of building function data accessibility, only one paper shares its building function raw data

(He et al., 2025). This situation leads to a biased comparison of building function classification methodology, restricting the

development of the method. This issue is compounded by the conflict between the shared dataset and the current demand130

for multimodal methodology development. Thus, an open-source and multimodal building function classification dataset is in

pressing need.

In conclusion, building function classification is an emerging research direction. Although the studies of building function

classification are becoming more and more prevalent, there are three limitations: (1) the advantage of multimodal fusion and

the powerful reasoning ability of multimodal large models remains underexplored; (2) the current division of building function135

categories is coarse; (3) an open-source and high-quality building function dataset is in urgent need. Thus, instead of developing

state-of-the-art methods for building function classification, conducting foundational work — building a multimodal and fine-

grained building function classification dataset — is practically indispensable for future building function classification.

2.2 Existing building-related dataset

To further illustrate the necessity of building a multimodal and fine-grained building function classification dataset, we con-140

ducted a comprehensive review of existing building-related datasets (Table 3). We divided the task into three categories, includ-

ing image segmentation (represented by S), object detection (represented by O), and building classification (represented by C).

Additionally, CMAB (A Multi-Attribute Building Dataset of China) is only a product instead of a training dataset(Zhang et al.,

2025). Our analysis reveals two critical limitations in current datasets: (1) the majority of datasets (Cityscapes, SkyScapes, etc)

exclusively contain single-view imagery (either street view image or remote sensing image), which are primarily designed for145

segmentation or object detection; (2) while some multiview (the dataset with street view and remote sensing image in Table

3) datasets (TorontoCity, Wojna, etc) have incorporated basic building information annotations, they remain limited in modal

diversity and semantic depth. Therefore, it can be concluded that existing datasets universally lack multimodal information

and employ coarse building function classifications. An ideal building function classification dataset should incorporate mul-

timodal data related to buildings along with fine-grained functional annotations, thereby supporting the development of both150

unimodal and multimodal building function classification methods. Finally, the classified fine-grained building function data

can be utilized for advanced urban research that requires granular spatial-semantic analysis.

Thus, we constructed BuildingSense to provide fundamental advances in building function classification. The dataset com-

prises over 34,000 accurately aligned building footprints with multimodal, multiview, and fine-grained functions. Although the

dataset is moderate in size, we applied stratified sampling to ensure a highly representative and less biased sample, enhancing155

its analytical value over larger but potentially skewed alternatives (Table 3). To our knowledge, this is the first multimodal

building-centric dataset to offer fine-grained functional annotations.
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Table 3. Building-related dataset. NB refers to the number of buildings; Balance refers to whether the dataset considers each category sample

of the dataset is balanced or not; POI refers to point of interest; RSI refers to remote sensing image; SVI refers to street view image; RN

refers to road network; H refers to building height; Y refers to building year; roof refers to building roof; F refers to building function; N

refers to the number of function category.

Dataset NB Balance POI RSI SVI RN H Y Roof F N Task

KITTI (2012) - ✓ S

Cityscapes (2016) - ✓ S

EuroCity (2019) - ✓ O

WildPASS (2021) - ✓ S

PASS (2020) - ✓ S

HoliCity (2021) - ✓ S

SkyScapes (2019) - ✓ S

SpaceNet (2019) - ✓ S

Li et al. (2021) - ✓ S

TorontoCity (2017) 400000 ✓ ✓ ✓ S

Wojna (2021) 9674 ✓ ✓ ✓ ✓ 6 C

OmniCity (2023) - ✓ ✓ ✓ ✓ 7 S

CMAB (2025) 31000000 ✓ ✓ ✓ ✓ 6 P

He et al. (2025) 500000 ✓ 10 C

Ours 34458 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 26 C

3 Method

3.1 Building-related annotation and multimodal data collection

As shown in Figure 2, we collect remote sensing images, street view images, and POIs based on each building footprint160

in Figure 2. The data sources are summarized in Table 4. They are either from the government or a licensed commercial

company, except for the road network. The sources of these data ensure the reliability of BuildingSense. The following section

details the annotation and multimodal data collection (Section 3.1.1, 3.1.2, and 3.1.3, 3.1.4).
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Figure 2. Building-related remote sensing image, street view image, and POI data collection. An example of the raw dataset is shown in

Supplementary Fig.S4.

Table 4. Data sources

Data Year Source Acquired via

Building footprint 2024 NYC office NYC open data

Building footprint annotation 2024 NYC office NYC open data

NYC taxi zones 2025 NYC office NYC open data

Remote sensing image 2018 NYC office NYC open data

Street view image 2025 Google Maps Google Maps API

POI 2025 Google Maps Google Maps API

Road networks 2025 OSM OSM website

3.1.1 Building annotation and footprint

The building footprints collected in BuildingSence are sampled from the official building footprint data published by NYC165

Open Data. To avoid the geographical bias and imbalance in the categories of samples, the sampling process adhered strictly to

two principles: (1) the sampled buildings should be spatially evenly distributed, and (2) the distribution of building functional

categories after sampling should be uniform. Based on principle (1), we utilize NYC taxi zones (spatial distribution shown

9

https://doi.org/10.5194/essd-2025-710
Preprint. Discussion started: 29 January 2026
c© Author(s) 2026. CC BY 4.0 License.



in Supplementary Fig.S5) as the spatial sampling units and assign each building to a corresponding zone number via spatial

computations. Regarding principle (2), we reclassify NYC’s building functional categories (details on category mappings170

and definitions are provided in Supplementary Table S1). Considering their inherent long-tail distribution characteristics (as

illustrated in Supplementary Fig.S6), we set a target of 1,000 samples per category. For categories containing fewer than 1,000

buildings, all available buildings are sampled to maintain balance in the distribution of building functions within each category.

Additionally, to explicitly represent the intrinsic long-tail nature of building function distributions, we introduce an extra 16,000

residential buildings, which form the dataset that adheres to realistic distributional properties.175

The building footprint dataset from NYC contains officially annotated information, including building height, constructed

year, function, and location. The functional annotations of BuildingSense originate from the official NYC building classifica-

tions. In BuildingSense, we specifically extract building height, constructed year, location, and function as annotation attributes

for the sampled building footprints.

3.1.2 Street view image180

The street view images of buildings are collected using the method proposed by Kong et al. (2024), which requires road network

data. Therefore, OSM road network data for NYC was collected, and sidewalks and bicycle lanes were removed through

attribute-based filtering to reduce the proportion of indoor images and distorted viewpoints within the collected street view

images. The schematic diagram of this method is illustrated in Figure 3. First, the nearest projection point of each building’s

centroid onto the road network is computed as the sampling point. Next, based on the building height and the corresponding185

projection point, parameters required for crawling street view images, namely Pitch (Equation 1) and Heading (Equation 2),

are calculated. Finally, street view images corresponding to these parameters are retrieved through Google Place API requests.

Figure 3. Street view image sampling schema
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Pitch = acrtan

(
h√

(x2−x1)2 + (y2− y1)2

)
(1)

θ = acrtan

(
y2− y1

x2−x1

)
(2a)

190

Heading =





90− θ, if x2−x1 > 0

270 + θ, if x2−x1 ≤ 0
(2b)

3.1.3 Remote sensing image

The remote sensing imagery is derived from orthophotos published by the NYC government in 2018. Despite the temporal

discrepancy between the orthophotos and building footprints, we deem them compatible due to the relatively limited changes

in NYC’s building infrastructure during the intervening period, which is subsequently confirmed during the data cleaning195

process (Section 3.2). Based on the orthophotos and building footprints, we extract top-down images of building rooftops

and their surrounding 200-foot buffer zones using the masking technique. These images represent rooftop characteristics and

environmental contexts, respectively. Moreover, rooftop images could potentially be re-annotated to facilitate tasks such as

rooftop material classification.

3.1.4 POI200

The POI data of buildings in BuildingSence are collected from Google Maps. Given the constraints imposed by API return

limits, we employed a comprehensive deep-search approach to extract POI information within the boundary of the building

footprint. The detailed procedure for this algorithm is shown in the Supplementary Algorithm S1. The collected POI data

comprises several attributes: place id, name, latitude, longitude, types, primary type, and current opening hours. Specifically,

’types’ and ’primary type’ represent the diverse and primary functions of the POIs, respectively, and ’current opening hours’205

facilitates the future studies of dynamic building functions classification.

3.2 Building annotation and matching errors cleaning

To further verify the data quality, we manually audit the quality of each collected data instance and the results of data matching.

The process is presented in Figure 4. We visualize the integrated data, including building footprints, a top-down buffer image of

the building footprint, street view image, POI, and the collection process of street view images. Based on the visualization, data210

obtained from the aforementioned processes were manually reviewed and cleaned to identify and rectify two types of errors:

(1) matching errors and (2) labeling errors. Matching errors encompassed mismatches between street view images and building

footprints, between buildings and remote sensing images, and between buildings and POI data. Labeling errors specifically refer

11

https://doi.org/10.5194/essd-2025-710
Preprint. Discussion started: 29 January 2026
c© Author(s) 2026. CC BY 4.0 License.



to the origin labeling errors. To ensure annotation quality, annotators are instructed only to modify clearly erroneous category

labels while preserving original official annotations in cases of uncertainty. Different strategies are employed to address these215

errors: labeling errors are resolved through manual re-annotation; street view mismatches are rectified by manually selecting

alternative sampling points; and remote sensing image mismatches are removed from the dataset.

Figure 4. Illustration of data cleaning. Examples of errors are shown in Supplementary Fig.S7.

3.3 Experimental setting for evaluating large model on BuildingSense

The characteristics of large models are highly aligned with the requirements for building function classification tasks, which

can be concluded in three aspects: (1) powerful multimodal data processing capabilities enable the extraction of deep-level220

information from multimodal data, (2) extensive knowledge of human society allows for accurately interpret the extracted mul-

timodal information, and (3) reasoning abilities facilitate logical inference based on both societal knowledge and multimodal

data to classify building functions. Additionally, compared to other multimodal deep learning methods, the output of large

models’ reasoning process offers three distinct advantages: (1) the explicit output of the reasoning process enhances method-

ological transparency, (2) the inference chains can be manually verified and rectified to generate improved training datasets,225
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and (3) corrected outputs enable further model refinement. Therefore, we systematically evaluate the performance of large

models on BuildingSense to verify whether large models can understand multimodal spatial data.

3.3.1 Baselines

We benchmark four state-of-the-art large models, Gemini-2.5-flash (Thinking), Claude-sonnet-4, QVQ-plus, and Deepseek-

chat on the balanced BuildingSense (18458 buildings), to comprehensively evaluate the large model. Based on the collected230

data, we designed seven data combination configurations (detailed in Supplementary Table S2): single-modality (text / im-

agery), dual-modality (e.g., text + street view imagery), multi-view (street view imagery + remote sensing imagery), and

dual-modality and multi-view combinations (text + street view imagery + remote sensing imagery). For each data combina-

tion, we design a typical prompt to guide the analysis process of large models (detailed in Supplementary Table S2). Due

to computational constraints, single-modality tests were limited to Deepseek-chat and QVQ-plus, with a primary focus on235

the performance of multimodal / multiview. Notably, we precluded multiview evaluations on QVQ-plus from our benchmark

evaluation due to the image input restriction of QVQ-plus.

3.3.2 Evaluation metric

We assessed model performance based on the category-balanced dataset, using four established classification metrics:

Accuracy =
TP + TN

TP + TN +FP +FN
(3)240

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1-score = 2× Precision×Recall
Precision + Recall

(6)

Where TP = true positives, TN = true negatives, FP = false positives, and FN = false negatives. Equation 3 represents

Accuracy (Acc). Equation 4 represents Precision (Pre). Equation 5 represents the Recall rate. Equation 6 represents the F1-245

score (F1).

3.3.3 Manual evaluation method for the best model

As illustrated in Figure 5, our structured prompt template requires models to generate three components, including the analysis

of the picture modal, the analysis of the text modal, and the final results. The analysis of picture modal includes the interpreta-

tion of the rooftop characteristics and the building’s surrounding context, as well as the building’s ground-level facade and the250
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Figure 5. Reasoning output of large model under the remote sensing image, street view image, and description text input. Detailed reasoning

output is shown in Supplementary Fig.S9.

surrounding environment analysis. Analysis of text modal contains location geocoding, building height and year understanding,

semantic analysis of POIs’ names, and integrated visual-textual reasoning. The final results include the reason for the decision,

building function, and additional notes. The additional notes are designed to evaluate the model’s dialectical reasoning capacity.

Based on the model output, we defined six criteria to assess model performance and detect hallucinations in positive samples(1)

Are remote sensing descriptions accurate? (2) Are street view descriptions accurate? (3) Are text descriptions accurate? (4)255

Is the combination analysis logic? (5) Are there conflicts between results and analysis? (6) Is additional information helpful?

(detailed definition is listed in the Supplementary Section S3). To evaluate the best model (Gemini-flash-2.5 (Thinking)), five

professionals with expertise in geographic information systems are employed to assess the positive sets based on six criteria,

and one large model (Deepseek-chat) is employed to assess criteria 4 to ensure the discrimination is consistent (detailed prompt

designs are provided in Supplementary Section S2). Samples are created by selecting 20% from each category of both negative260

and positive classification outcomes.

For the negative sample set, we hierarchically categorize the error sources to elucidate further large model failure modes,

including three primary errors and six detailed errors. The three primary errors include (1) definition-induced errors, (2) human-

aligned errors, and (3) model errors. The six detailed errors include (1) category ambiguity, (2) origin annotation error, (3)

insufficient evidence, (4) recognition failure, (5) spatial relation errors, and (6) POI semantic misinterpretation (definition265

detailed in Supplementary Section S3). The relationship between the primary errors and detailed errors is shown in Figure.

8. By analyzing the frequency of error causes, we aim to reveal potential directions for improving current large models and

provide insight for future related research.
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4 BuildingSense

Ultimately, based on our data collection and cleaning methods, we construct a multimodal and fine-grained building func-270

tion classification dataset containing 34,458 building samples. In BuildingSense, each sample contains a corresponding ID, a

footprint polygon, a street view imagery, a rooftop remote sensing imagery, a 200-foot buffer zone remote sensing imagery,

POIs, and annotation (including building height, constructed year, location, and function) (Figure 6). As a training dataset,

BuildingSense ensures data quality through three aspects: (1) consideration of sample categories and spatial distribution, (2)

multimodal data matching and annotation verification, and (3) data completeness of individual building samples.275

Figure 6. Data example in BuildingSense

First, the building function annotations in BuildingSense are derived from government annotations, ensuring the reliability

of annotations. Based on this reliability, it can be guaranteed that the sampling results obtained through our spatially and cate-

gorically balanced sampling method are statistically sound, establishing the fundamental quality of our dataset. As illustrated in

Figure 1, the sampled buildings are spatially distributed across NYC, adhering to the principle (1). The categories distribution

is shown in Figure 7. Although the sample distribution is not perfectly uniform, it primarily results from the condition that the280

number of certain categories in NYC is lower than the threshold we set based on the overall category distribution. To some

extent, the outcome already approximates principle (2) as closely as possible under the given city.
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Second, to further ensure the data quality, we have cleaned the errors in BuildingSense. The results of data cleaning are

presented in Table 5. The fewer matching errors in the table indicate that the raw data we collected required less manual adjust-

ment, thereby reducing human-induced errors and ensuring the quality of the dataset. Annotation errors primarily originated285

from insufficiently detailed labeling of interior structures in specific open-area categories, such as parks, which have been

manually corrected.

Table 5. Data cleaning results

Main error type Error type Percentage

Matching errors

Street view and building 4%

Remote sensing and building 0.1%

POI and building 0

Labeling errors Building function errors 11%

Third, Figure 7 presents a data completeness analysis of BuildingSense (residential category statistics scaled by a factor of

10). It can be seen that most of the buildings include remote sensing imagery, street views, and attribute annotations (Figure 7).

However, three functional categories, Entertainment, Public service, and Fundamental infrastructure, exhibit relatively poorer290

data completeness, primarily due to missing street view imagery. This phenomenon stems from the inaccessible areas of these

buildings located beyond the street view vehicles (e.g., secured facilities or locations far from roads).

Overall, BuildingSense demonstrates competitive data quality through its well-integrated multimodal data and granular

building function category taxonomy, while maintaining substantial data completeness across most building function cate-

gories.295

5 Evaluation of large model on BuildingSense

5.1 Baselines comparison

We conducted a comprehensive quantitative evaluation of four state-of-the-art large models across various input modals, as

presented in Table 6. Moreover, we further investigate the performance across two classification schemata —Fine-grained

category (26 categories) and coarse category (14 categories) (Definitions detailed in Supplementary Table S1 and Table S3).300

The evaluation framework examines three critical dimensions of the large models’ results, including (1) effects of granularity

of the categories, (2) efficacy of the combination of modality, and (3) model capability profiling. The three dimensions are

designed to reveal (1) the discrepancy performance of the large model in land use type and fine-grained building function

classification, (2) the effect of each input modal on the performance of the large model, and (3) the advancement of the chosen

large models.305

First, we evaluated performance across different categories of granularity under the ST data combination (Gemini-2.5-flash

(Thinking) and QVQ-plus). The two models are chosen for their superior performance in terms of accuracy and precision. As
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Figure 7. Data completeness of each category. R refers to remote sensing imagery, A refers to annotated building attributes (building height,

location, and constructed year), S refers to street view imagery, and P refers to POI data.

demonstrated in Table 6, the model’s accuracy improved significantly in land use classification, achieving a maximum accuracy

of 0.55. Notably, this result is attained solely through prompt engineering and dual-modal data fusion (without fine-tuning or

external knowledge injection). This performance is striking compared to the 0.6 accuracy reported in remote sensing-only310

studies (albeit with different modalities) (He et al., 2024), underscoring that the large model can comprehend the multimodal

data and make logical inference. The advantage challenges that the large models remain limited in performance when they

encounter multimodal spatial data

Second, two key findings emerge from the analysis of data combination, including (1) multimodal fusion (image and text)

substantially .improved model performance (+0.10 accuracy vs. unimodal baselines, Table 6) and (2) multiview fusion (remote315

detection + street view imagery) showed a marginal improvement (+0.01 accuracy for RST vs. ST and the worse performance

for RS vs. ST). Among unimodal inputs, street-view images yielded the highest accuracy (S), followed by remote sensing (R)

and text (T), suggesting that street-level imagery provides richer semantic cues for building function inference. However, com-

bining remote sensing and street-view data failed to deliver synergistic gains, indicating a limited cross-perspective reasoning

capability in current models.320

Third, while Gemini-2.5-flash (Thinking) achieved overall superior performance across data combinations, QVQ-plus exhib-

ited exceptional precision (0.59 in ST mode vs. Gemini’s 0.53 in RST mode). This reliability, coupled with cost-effectiveness
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Table 6. Performance Comparison of large models. R refers to a remote sensing image, S refers to a street view image, and T refers to a

building text description (Detailed examples are listed in Supplementary Table S4). For instance, RT refers to the combination of remote

sensing image and building text description.

Category Large model Data combination Acc Pre Recall F1

26

Deepseek-chat T 0.08 0.21 0.08 0.09

QVQ-plus

R 0.12 0.37 0.12 0.15

RT 0.29 0.49 0.29 0.30

S 0.24 0.47 0.24 0.27

ST 0.34 0.59 0.34 0.36

Claude-sonnet-4

ST 0.38 0.50 0.38 0.39

RS 0.27 0.42 0.27 0.30

RST 0.39 0.49 0.39 0.40

Gemini-2.5-flash (Thinking)

ST 0.42 0.53 0.42 0.43

RS 0.35 0.51 0.35 0.37

RST 0.43 0.53 0.43 0.44

14
Gemini-2.5-flash (Thinking) ST 0.55 0.63 0.55 0.56

QVQ-plus ST 0.40 0.65 0.40 0.43

and open-source availability of its series product, positions the qwen-series as a viable large model for developing affordable,

high-performance building function classification models. More importantly, techniques such as retrieval-augmented genera-

tion (RAG) and low-rank adaptation (LoRA) will enable substantial reductions in development costs for enhancing large model325

performance.

Overall, our findings remarkably indicate that large models can transform conventional building function classification

paradigms through (1) extensive human society knowledge, (2) transparent, interpretable reasoning processes, (3) robust mul-

timodal processing capacity, and (4) efficient, lightweight model development.

5.2 Cost analysis330

To compare the cost-effectiveness of large models, we calculated the experimental expenses under different data combinations

in this study (official token costs for each model are provided in Supplementary Table S5), as shown in Table 7. A price com-

parison revealed that Gemini-2.5-flash (Thinking), as the optimal model, does not incur the highest cost—under identical data

combination inputs, its expense is only one-third that of Claude-Sonnet-4. Notably, the most affordable multimodal reasoning

model is the QVQ-plus model, whose cost under the same data conditions is merely one-tenth that of Gemini-2.5-flash (Think-335

ing). Furthermore, its excellent prediction precision ensures the correctness of model outputs, making it the most cost-effective

model.
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Table 7. Cost comparison of large models

Large model Data combination Total cost (USD)

Deepseek-chat T 2.65

Claude-sonnet-4

RS 180

ST 217

RST 372

Gemini-2.5-flash (Thinking)

ST 52.8

RS 88.8

RST 107

QVQ-plus

R 10.1

S 8.2

ST 12.9

RT 14.7

5.3 Results of manual evaluation

Large models often encounter the hallucination challenge. We evaluated the Gemini-2.5-flash (Thinking) model manually to

check for hallucinations and understand misjudgments. Key findings include: (1) it shows minimal hallucination in building340

function inference, with most judgments (positive samples) having traceable logic; (2) it has limitations in capturing seman-

tic information from remote sensing, synthesizing multiview data for analyzing complex spatial relationships in functional

building classifications, and understanding POI names; (3) it can be a detailed auxiliary tool for building function labeling.

5.3.1 Reasoning abilities and hallucination

Table 8. Analysis of the positive sample

Criteria 1 Criteria 2 Criteria 3 Criteria 4 Criteria 5 Criteria 6

Ture analysis 0.99 0.98 1.00 0.99 0.00 0.76

The percentage of Criteria 4 in Table 8 reveals that Gemini-2.5-flash (Thinking) demonstrates logically consistent informa-345

tion synthesis, with strong agreement to the large model assessment (Cohen’s Kappa = 0.86, p < 0.001). All discrimination

results align with their combinatorial analyses, and over half of the positive samples include valuable supplementary reasoning.

Given the results, it can be concluded that the model exhibits negligible hallucination, strong multimodal processing, effective

data integration, and reliable reasoning, highlighting its potential for fine-grained auxiliary annotation of building functions.
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5.3.2 Error sources of the best-performance model350

To analyze Gemini-2.5-flash (Thinking) errors, we categorized them statistically and visualized the results in Figure 8. Model-

induced errors account for only a small share, with spatial relation errors and POI semantic misinterpretation being the most

common. Representative cases are shown in Figure 9, with causes highlighted in blue.

Figure 8. Error distribution of large model

The highlighted characters in the spatial relation errors picture (Figure 9) demonstrate that the model is unable to infer that

the building is part of a railway trunk line based on the synthesis of the remote sensing image and the street view image.355

The inference process is dominated by the semantic information derived from the street view image. Meanwhile, the model is

unable to locate the building in the street view image accurately. This phenomenon highlights the model’s limitation in synthe-

sizing multiview information. Additionally, the POI semantic misinterpretation cases (highlighted in blue) reveal the model’s

limitations in understanding the semantic meaning of POI names (Figure 9). It can be found that the model interprets the POI

as a resident function. However, based on a search in Chat-GPT, it appears that the ’Woodruff Family’ is an organization that360

assists vulnerable groups and primarily provides non-profit accommodation environments, which is aligned with the annotated

building function (Public service for poor). Such mistakes reflect that the semantic understanding ability of large models for

some irregular POI names is vital for building function classification.

To our surprise, the primary source of errors in the model stems from category ambiguity. Our prompt template failed to

provide detailed definitions for each category, leading to the misclassification examples shown in Figure 9. The composite anal-365

ysis part of category ambiguity error presented in Figure 9 effectively characterizes both the building’s spatial configuration

and the associated POI semantic attributes. However, in the building classification of NYC, the building is categorized as Q3

(outdoor pool). According to the predefined mapping relationship, it should properly be classified under the ’Sports’ category.

In contrast, Gemini-2.5-flash (Thinking) assigned it to the ’Entertainment’ instead. From the perspective of semantic represen-

tation, this classification result cannot be considered entirely incorrect; rather, it reflects a systematic discrepancy between the370

classification rules understood by the large model and those we have formally established.
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More surprisingly, a considerable proportion of "Human-aligned errors" were identified in the negative samples. These refer

to cases where, given the same building information, human evaluators and the model produced highly consistent judgments

despite both being technically incorrect according to our ground truth (see Figure 9 for concrete examples). The model demon-

strates robust and comprehensive analysis capabilities, with its outputs representing optimal conclusions that can be achieved375

given the available information. This error distribution pattern strongly suggests that Gemini-2.5-flash (Thinking) has attained

competent performance in comprehending multimodal spatial data.
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Figure 9. Example of each error
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5.3.3 Ablation study of category definition

Considering the systematic discrepancy between the classification rules understood by the large model and our predefined

classification framework, we conducted an ablation experiment. By incorporating simplified definitions of our classification380

categories through prompt engineering, we compared the modified model with the original version. The results demonstrate

that introducing functional definitions comprehensively improved the model’s prediction performance, although the enhance-

ment remains limited. Quantitative analysis reveals that while this approach cannot completely resolve all errors caused by

definition ambiguity, its effectiveness surpasses that of supplementing remote sensing image information alone (as evidenced

by comparative results in Table 6 and Table 9).385

Table 9. Comparison between the original prompt and the definition given prompt

Category Large model Data combination Acc Pre Recall F1

26 Gemini-2.5-flash (Thinking) RST(Definition) 0.47 0.55 0.47 0.48

26 Gemini-2.5-flash (Thinking) RST 0.43 0.53 0.43 0.44

To better analyze errors from definitional discrepancies, we constructed a confusion matrix (Figure 10), which shows that

refined definitions improve the model’s performance for most categories, as seen by the prevalence of blue cells along the

diagonal. However, specific categories, such as office mix and office/medicine, warehouse and factory/garage, and sport and

entertainment/entertainment mix, still show ambiguity. This suggests that even with enhanced definitions, the model’s classifi-

cation logic diverges from our classification framework, as human evaluators apply their own rules to these ambiguous cases.390

Instead of refining definitions, creating a reasoning-example database would help the model learn latent classification rules,

better aligning it with the predefined classification framework.
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Figure 10. Confusion matrix of the original results, the definition given results, and their comparison

6 Discussion

6.1 Future directions for large model developments in building function classification

Based on the experimental results in this study, we found that, under zero-shot conditions, even though the overall quantitative395

metrics are not satisfactory, the current state-of-the-art large models are capable of effectively utilizing multimodal data to

classify the building functions. The results challenge the conventional belief that large models struggle to comprehend mul-

timodal spatial data. Although our conclusions may be subject to urban bias (the variations in model performance and error

distributions across data from different cities), the evaluation based on NYC has already demonstrated the feasibility of using
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large models for building function classification. We argue that, in the future research, three directions can be explored to com-400

prehensively improve model performance and reduce inference costs, ultimately achieving low-cost auxiliary or automated

annotation for building function, including (1) constructing an external information database for building function classifica-

tion, (2) developing small parameter models with excellent inference performance, and (3) quantifying the confidence of model

outputs.

First, based on the experimental results in this study, the main errors in the large model’s building function classification405

result from category ambiguity, which can be attributed to the system diversity between the classification rules of the large

model and the predefined definition. Despite providing relatively detailed classification definitions, we did not achieve a break-

through in model performance. Therefore, rather than offering a complete definition, it may be more effective to construct a

database of inference examples for different building function categories. Using RAG technology, the model can match the

most similar inference examples to each input, allowing it to learn similar reasoning processes. Additionally, POI and location410

knowledge bases should be developed to provide sufficient semantic information for the model’s building function inference.

The first direction will not only enhance the model’s inference capabilities but can also be combined with the second direction

to reduce inference costs significantly.

Second, based on the experimental costs in this study, the optimal model, Gemini-2.5-flash (Thinking), has an inference cost

of $107 for 16,043 buildings in RST combinations. Such costs are prohibitively expensive for a city-level building function415

inference project—approximately $6000 for NYC. In contrast, QVQ-plus only costs around $12.9 for the same number of

buildings. Although its inference accuracy under zero-shot conditions is relatively low, we can still see its potential in building

function classification. In the future, the performance of the large models can be improved by fine-tuning the open-source

multimodal models such as qwen-VL, and using RAG technology to retrieve semantic information from the building function

inference knowledge base proposed in the first direction. Ultimately, it will lead to the development of a cost-effective building420

function classification model for data production and auxiliary annotation.

Third, quantifying the confidence of model outputs facilitates a quick assessment of classification results quality. Results with

low confidence can be flagged for human correction, thereby assisting with the annotation process. However, there are limited

methods for quantifying the confidence of building function classification results, especially for large models. Consequently,

developing a confidence quantification method is important for constructing a low-cost building function classification model.425

6.2 Applications of BuildingSense

Except for evaluating large model performance and providing insights for large model-based classification methods devel-

opment, BuildingSense, as the first multimodal and fine-grained building function dataset, offers advantages for supporting

algorithm development in two aspects: its multimodal and fine-grained characteristics facilitate advancements in multimodal

fusion-based classification algorithms. At the same time, its rich building-related annotations make it applicable for algorithm430

development of building height and constructed year inversion.
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First, from the perspective of multimodal-based function classification methods development, there are two critical issues:

(1) how to extract deep semantic features from POI and building-related descriptive texts, and (2) how to align multiview and

multimodal data features.

Our evaluation of large models reveals that they can effectively extract the background semantic information about human435

activity solely from the POI name. This capability results from its extensive knowledge of human society. Similarly, the model

shows the same ability in understanding the deep semantics of building-related descriptive texts. In contrast, multimodal-based

methods lack such advantages. Typically, the embedding feature vectors of POIs rely on predefined POI categories, resulting in

an inadequate capture of the spatial and semantic relationships among POIs within buildings. Thus, extracting deep semantic

features from POIs and building-related texts remains a significant bottleneck.440

Large models exhibit limited performance in comprehensively interpreting the semantics of remote sensing and street view

imagery, indicating that the multi-view features of remote sensing and street view imagery are poorly aligned. Although sig-

nificant progress has been made in image-text alignment methods, methods for aligning multi-view images with texts remain

underexplored (Li and Tang, 2024).

Second, from the perspective of BuildingSense‘s task diversity, building height and constructed year, as two critical building445

attributes, are widely used in urban research (Zhao et al., 2023; Wang et al., 2024). Consequently, the inversion of these

parameters has become two important research directions. Existing studies have demonstrated that street-view imagery can be

utilized for inferring building height and constructed year (Wang et al., 2024; Xu et al., 2023), while remote sensing imagery

can be employed for building height estimation (Zhao et al., 2023). Notably, both the data and relevant annotations for these

tasks are included in BuildingSense. Therefore, BuildingSense extends far beyond building function classification and can also450

support research on height and constructed year inversion.

In summary, in addition to supporting research on building function classification methods, BuildingSense can also be

applied to estimate other building parameters, providing a foundational platform for the development of current building

parameter estimation methods.

7 Conclusion455

Building function classification, as a primary method for obtaining building functions, remains two major challenges: (1) inter-

pretability of models and (2) comprehensive fusion of multimodal features. The limitations have led to unreliable classification

results and suboptimal classification accuracy. Large models, benefiting from extensive knowledge of human society, powerful

multimodal data fusion capabilities, and advanced reasoning ability, provide a promising approach to address the issues. How-

ever, their current limited performance in handling multimodal spatial data raises a need for a systematic evaluation of their460

capabilities in building function classification task. Yet, the absence of a multimodal building function dataset, coupled with the

coarse-grained classifications in most existing studies, obscures the deep semantic information that building functions convey

about human activities. Therefore, we aim to construct a multimodal fine-grained building function classification dataset and

benchmark the performance of large models on it to provide insights for future large model-based algorithms.
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The main contributions of this study are twofold: (1) the creation of the first multimodal fine-grained building function465

classification dataset, and (2) a systematic evaluation of both the outcomes and reasoning processes of existing large mod-

els. Quantitative analysis of model classification results reveals that: (1) multimodal fusion improves classification accuracy,

(2) multi-view fusion (street-view and remote sensing) has limitations in semantic understanding, and (3) building function

classification models based on open-source large models require further investigation. Meanwhile, a manual evaluation of the

reasoning processes shows that: (1) large models perform well when category distinctions are clear but struggle with insuffi-470

cient or ambiguous data, with errors stemming from a lack of domain knowledge rather than modality misunderstanding—the

Gemini-2.5-flash (Thinking) model demonstrates potential as an assistant in building function annotation; (2) improvements

are needed in multi-view understanding for spatially complex buildings; and (3) utilizing RAG technology in the future could

enhance performance, but quantifying model confidence deserves further exploration.

Overall, this study not only provides a multimodal fine-grained dataset for building function classification training but475

also demonstrates that current large models can handle multimodal spatial data, challenging the prevailing concept about their

limitations in handling multimodal spatial data. In the future work, we will update the dataset, incorporate multimodal inference

chains, and expand the regional coverage of BuildingSense.

8 Data availability
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9 Code availability

The code can be accessed through https://doi.org/10.6084/m9.figshare.30645776.v2 (Su et al., 2025a)

Author contributions. The dataset was conceptualized by Pengxiang Su and Ruifei Chen, constructed by Pengxiang Su, Ruifei Chen, Heng

Xu, and Xinling Deng. Pengxiang Su contributed to project administration. Pengxiang Su, Ruifei Chen, and Heng Xu, prepared the original

draft, and all others revised it.485

Competing interests. There are no competing interests

Acknowledgements. This work was supported by the General Program of the National Natural Science Foundation of China (Grant No.

42171452).Besides, we extend our sincere gratitude to Huan Weihua and Yan Tang for their professional advice on the language, structure,

and logic of the paper.

33

https://doi.org/10.5194/essd-2025-710
Preprint. Discussion started: 29 January 2026
c© Author(s) 2026. CC BY 4.0 License.



References490

Arribas-Bel, D. and Fleischmann, M.: Spatial Signatures - Understanding (urban) spaces through form and function, Habitat International,

128, https://doi.org/10.1016/j.habitatint.2022.102641, 2022.

Azimi, S. M., Henry, C., Sommer, L. W., Schumann, A., and Vig, E.: SkyScapes Fine-Grained Semantic Understanding of Aerial

Scenes, 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 7392–7402, https://api.semanticscholar.org/CorpusID:

207998372, 2019.495

Bommasani, R., Hudson, D. A., and Ehsan Adeli, e. a.: On the Opportunities and Risks of Foundation Models, https://arxiv.org/abs/2108.

07258, 2022.

Braun, M., Krebs, S., Flohr, F., and Gavrila, D. M.: EuroCity Persons: A Novel Benchmark for Person Detection in Traffic Scenes, IEEE

Transactions on Pattern Analysis and Machine Intelligence, 41, 1844–1861, https://doi.org/10.1109/TPAMI.2019.2897684, 2019.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S.,500

Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E.,

Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., and Amodei, D.: Language models are

few-shot learners, in: Proceedings of the 34th International Conference on Neural Information Processing Systems, NIPS ’20, Curran

Associates Inc., Red Hook, NY, USA, ISBN 9781713829546, 2020.

Chen, W., Zhou, Y., Stokes, E. C., and Zhang, X.: Large-scale urban building function mapping by integrating multi-source web-based505

geospatial data, Geo-Spatial Information Science, 27, 1785–1799, https://doi.org/10.1080/10095020.2023.2264342, 2024.

Choi, S. and Yoon, S.: Energy signature-based clustering using open data for urban building energy analysis toward carbon neutrality: A case

study on electricity change under COVID-19, Sustainable Cities and Society, 92, https://doi.org/10.1016/j.scs.2023.104471, 2023.

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., and Schiele, B.: The Cityscapes Dataset for

Semantic Urban Scene Understanding, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3213–3223,510

ISBN 1063-6919, https://doi.org/10.1109/CVPR.2016.350, 2016.

Deng, Y., Chen, R., Yang, J., Li, Y., Jiang, H., Liao, W., and Sun, M.: Identify urban building functions with multi-

source data: a case study in Guangzhou, China, International Journal of Geographical Information Science, 36, 2060–2085,

https://doi.org/10.1080/13658816.2022.2046756, 2022.

Du, S., Zheng, M., Guo, L., Wu, Y., Li, Z., and Liu, P.: Urban building function classification based on multisource geospatial data: a two-stage515

method combining unsupervised and supervised algorithms, Earth Science Informatics, 17, 1179–1201, https://doi.org/10.1007/s12145-

024-01250-5, 2024.

Geiger, A., Lenz, P., and Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite, in: 2012 IEEE Conference

on Computer Vision and Pattern Recognition, pp. 3354–3361, ISBN 1063-6919, https://doi.org/10.1109/CVPR.2012.6248074, 2012.

Griffiths, D. and Boehm, J.: Improving public data for building segmentation from Convolutional Neural Networks (CNNs) for520

fused airborne lidar and image data using active contours, ISPRS Journal of Photogrammetry and Remote Sensing, 154, 70–83,

https://doi.org/10.1016/j.isprsjprs.2019.05.013, 2019.

He, D., Liu, X., Shi, Q., and Zheng, Y.: Visual-language reasoning segmentation (LARSE) of function-level building footprint across Yangtze

River Economic Belt of China, Sustainable Cities and Society, 127, https://doi.org/10.1016/j.scs.2025.106439, 2025.

He, Z., Yao, W., Shao, J., and Wang, P.: UB-FineNet: Urban building fine-grained classification network for open-access satellite images,525

ISPRS Journal of Photogrammetry and Remote Sensing, 217, 76–90, https://doi.org/10.1016/j.isprsjprs.2024.08.008, 2024.

34

https://doi.org/10.5194/essd-2025-710
Preprint. Discussion started: 29 January 2026
c© Author(s) 2026. CC BY 4.0 License.



Hoffmann, E. J., Abdulahhad, K., and Zhu, X. X.: Using social media images for building function classification, Cities, 133,

https://doi.org/10.1016/j.cities.2022.104107, 2023.

Johnson, J.: Cities: Systems of Systems of Systems, in: Complexity Theories of Cities Have Come of Age: An Overview with Implications to

Urban Planning and Design, edited by Portugali, J., Meyer, H., Stolk, E., and Tan, E., chap. 153–172, Springer Berlin Heidelberg, Berlin,530

Heidelberg, ISBN 978-3-642-24544-2, https://doi.org/10.1007/978-3-642-24544-2_9, 2012.

Kong, B., Ai, T., Zou, X., Yan, X., and Yang, M.: A graph-based neural network approach to integrate multi-

source data for urban building function classification, Computers, Environment and Urban Systems, 110, 102 094,

https://doi.org/https://doi.org/10.1016/j.compenvurbsys.2024.102094, 2024.

Kun, F., Wanxuan, L., Xiaoyu, L., Chubo, D., Hongfeng, Y., and Xian, S.: A comprehensive survey and assumption of remote sensing535

foundation modal, National Remote Sensing Bulletin, 28, 1667–1680, https://doi.org/10.11834/jrs.20233313, 2024.

Li, S. and Tang, H.: Multimodal Alignment and Fusion: A Survey, https://arxiv.org/abs/2411.17040, 2024.

Li, W., Meng, L., Wang, J., He, C., Xia, G. S., and Lin, D.: 3D Building Reconstruction from Monocular Remote Sens-

ing Images, in: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 12 528–12 537, ISBN 2380-7504,

https://doi.org/10.1109/ICCV48922.2021.01232, 2021.540

Li, W., Lai, Y., Xu, L., Xiangli, Y., Yu, J., He, C., Xia, G. S., and Lin, D.: OmniCity: Omnipotent City Understanding with Multi-Level

and Multi-View Images, in: 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17 397–17 407, ISBN

2575-7075, https://doi.org/10.1109/CVPR52729.2023.01669, 2023.

Li, W., Yu, J., Chen, D., Lin, Y., Dong, R., Zhang, X., He, C., and Fu, H.: Fine-grained building function recognition with street-view images

and GIS map data via geometry-aware semi-supervised learning, International Journal of Applied Earth Observation and Geoinformation,545

137, https://doi.org/10.1016/j.jag.2025.104386, 2025.

Ma, Y. Z., Huang, J., Dai, X., Liu, S., Luo, L., Chen, Z., and Yi: HoliCity: A City-Scale Data Platform for Learning Holistic 3D Structures,

arXiv, 2008.03286, 2021.

Mai, G., Huang, W., Sun, J., Song, S., Mishra, D., Liu, N., Gao, S., Liu, T., Cong, G., Hu, Y., Cundy, C., Li, Z., Zhu, R., and Lao,

N.: On the Opportunities and Challenges of Foundation Models for GeoAI (Vision Paper), ACM Trans. Spatial Algorithms Syst., 10,550

https://doi.org/10.1145/3653070, 2024.

Marcus, and Koch, : Cities as implements or facilities – The need for a spatial morphology in smart city systems, Environment and Planning

B: Urban Analytics and City Science, 44, 204–226, https://doi.org/10.1177/0265813516685565, doi: 10.1177/0265813516685565, 2016.

Memduhoglu, A., Fulman, N., and Zipf, A.: Enriching building function classification using Large Language Model embeddings of Open-

StreetMap Tags, Earth Science Informatics, 17, 5403–5418, https://doi.org/10.1007/s12145-024-01463-8, 2024.555

Ren, D., Qiu, X., and An, Z.: A Multi-Source Data-Driven Analysis of Building Functional Classification and Its Relationship with Population

Distribution, Remote Sensing, 16, https://doi.org/10.3390/rs16234492, 2024.

Shen, P., Liu, J., and Wang, M.: Fast generation of microclimate weather data for building simulation under heat island using map capturing

and clustering technique, Sustainable Cities and Society, 71, https://doi.org/10.1016/j.scs.2021.102954, 2021.

Su, P., Chen, R., Xu, H., Huang, W., Deng, X., Yan, W., et al.: BuildingSense-A multimodal building function classification dataset,560

https://doi.org/10.6084/m9.figshare.30645776.v2, 2025a.

Su, P., Yan, Y., Li, H., Wu, H., Liu, C., and Huang, W.: Images and deep learning in human and urban infrastructure interactions pertinent to

sustainable urban studies: Review and perspective, International Journal of Applied Earth Observation and Geoinformation, 136, 104 352,

https://doi.org/https://doi.org/10.1016/j.jag.2024.104352, 2025b.

35

https://doi.org/10.5194/essd-2025-710
Preprint. Discussion started: 29 January 2026
c© Author(s) 2026. CC BY 4.0 License.



Sun, J., Zheng, C., Xie, E., Liu, Z., Chu, R., Qiu, J., Xu, J., Ding, M., Li, H., Geng, M., Wu, Y., Wang, W., Chen, J., Yin, Z., Ren, X.,565

Fu, J., He, J., Yuan, W., Liu, Q., Liu, X., Li, Y., Dong, H., Cheng, Y., Zhang, M., Heng, P.-A., Dai, J., Luo, P., Wang, J., Wen, J.-R.,

Qiu, X., Guo, Y.-C., Xiong, H., Liu, Q., and Li, Z.: A Survey of Reasoning with Foundation Models, ArXiv, abs/2312.11562, https:

//api.semanticscholar.org/CorpusID:280322523, 2023.

The construction wiki contributors: Function, https://www.designingbuildings.co.uk/wiki/Function, [Online; accessed 12-September-2025],

2021.570

Wang, S., Bai, M., Mattyus, G., Chu, H., Luo, W., Yang, B., Liang, J., Cheverie, J., Fidler, S., and Urtasun, R.: TorontoCity: Seeing the

World with a Million Eyes, in: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 3028–3036, ISBN 2380-7504,

https://doi.org/10.1109/ICCV.2017.327, 2017.

Wang, Y., Zhang, Y., Dong, Q., Guo, H., Tao, Y., and Zhang, F.: A multi-view graph neural network for building age prediction, ISPRS

Journal of Photogrammetry and Remote Sensing, 218, 294–311, https://doi.org/10.1016/j.isprsjprs.2024.10.011, 2024.575

Weir, N., Lindenbaum, D., Bastidas, A., Etten, A., Kumar, V., Mcpherson, S., Shermeyer, J., and Tang, H.: SpaceNet MVOI: A Multi-View

Overhead Imagery Dataset, in: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 992–1001, ISBN 2380-7504,

https://doi.org/10.1109/ICCV.2019.00108, 2019.

Wojna, Z., Maziarz, K., Jocz, L., Paluba, R., Kozikowski, R., and Kokkinos, I.: Holistic Multi-View Building Analysis in the Wild with

Projection Pooling, 2021.580

Xiao, B., Jia, X., Yang, D., Sun, L., Shi, F., Wang, Q., and Jia, Y.: Research on Classification Method of Building Function Oriented to Urban

Building Stock Management, Sustainability, 14, https://doi.org/10.3390/su14105871, 2022.

Xu, Y., He, Z., Xie, X., Xie, Z., Luo, J., and Xie, H.: Building function classification in Nanjing, China, using deep learning, Transactions In

GIS, 26, 2145–2165, https://doi.org/10.1111/tgis.12934, 2022.

Xu, Z., Zhang, F., Wu, Y., Yang, Y., and Wu, Y.: Building height calculation for an urban area based on street view images and deep learning,585

Computer-Aided Civil and Infrastructure Engineering, 38, 892–906, https://doi.org/10.1111/mice.12930, 2023.

Yang, K., Hu, X., Bergasa, L. M., Romera, E., and Wang, K.: PASS: Panoramic Annular Semantic Segmentation, IEEE Transactions on

Intelligent Transportation Systems, 21, 4171–4185, https://doi.org/10.1109/TITS.2019.2938965, 2020.

Yang, K., Hu, X., and Stiefelhagen, R.: Is Context-Aware CNN Ready for the Surroundings? Panoramic Semantic Segmentation in the Wild,

IEEE Transactions on Image Processing, 30, 1866–1881, https://doi.org/10.1109/TIP.2020.3048682, 2021.590

Yu, D. and Fang, C.: Urban remote sensing with spatial big data: A review and renewed perspective of urban studies in recent decades,

Remote Sensing, 15, 1307, https://doi.org/10.3390/rs15051307, 2023.

Zhang, C., Shi, Q., Zhuo, L., Wang, F., and Tao, H.: Inferring Mixed Use of Buildings with Multisource Data Based on Tensor Decomposition,

ISPRS International Journal of Geo-Information, 10, https://doi.org/10.3390/ijgi10030185, 2021a.

Zhang, J., Fukuda, T., and Yabuki, N.: Development of a City-Scale Approach for Facade Color Measurement with Building595

Functional Classification Using Deep Learning and Street View Images, ISPRS International Journal of Geo-Information, 10,

https://doi.org/10.3390/ijgi10080551, 2021b.

Zhang, X., Liu, X., Chen, K., Guan, F., Luo, M., and Huang, H.: Inferring building function: A novel geo-aware neural network supporting

building-level function classification, Sustainable Cities and Society, 89, https://doi.org/10.1016/j.scs.2022.104349, 2023.

Zhang, Y., Zhao, H., and Long, Y.: CMAB: A Multi-Attribute Building Dataset of China, Scientific Data, 12, 430,600

https://doi.org/10.1038/s41597-025-04730-5, 2025.

36

https://doi.org/10.5194/essd-2025-710
Preprint. Discussion started: 29 January 2026
c© Author(s) 2026. CC BY 4.0 License.



Zhao, Y., Wu, B., Li, Q., Yang, L., Fan, H., Wu, J., and Yu, B.: Combining ICESat-2 photons and Google Earth Satellite images for building

height extraction, International Journal of Applied Earth Observation and Geoinformation, 117, https://doi.org/10.1016/j.jag.2023.103213,

2023.

Zheng, Y., Zhang, X., Ou, J., and Liu, X.: Identifying building function using multisource data: A case study of China’s three major urban605

agglomerations, Sustainable Cities and Society, 108, https://doi.org/10.1016/j.scs.2024.105498, 2024.

Zhou, W., Persello, C., Li, M., and Stein, A.: Building use and mixed-use classification with a transformer-based network fusing satellite

images and geospatial textual information, Remote Sensing of Environment, 297, https://doi.org/10.1016/j.rse.2023.113767, 2023.

37

https://doi.org/10.5194/essd-2025-710
Preprint. Discussion started: 29 January 2026
c© Author(s) 2026. CC BY 4.0 License.


