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Abstract. High-resolution climate datasets are of critical importance for the 10 

comprehension of spatial and temporal variations in climate and hydrology. However, 11 

their development is significantly influenced by the availability, density, and quality of 12 

observational data. Using the China global Land Surface Air Temperature 2.0 (C-LSAT 13 

2.0) station data as a foundation, we collected and integrated nearly 3000 additional 14 

station observations and conducted the quality control and homogenization processing 15 

to complete the update of the C-LSAT 2.1 dataset. The coverage of Tavg, Tmax, and 16 

Tmin in the C-LSAT 2.1 dataset has been significantly enhanced, further enhancing the 17 

representativeness of global land diurnal temperature range (DTR) data with greater 18 

spatial heterogeneity. Compared to C-LSAT 2.0, C-LSAT 2.1 shows consistent overall 19 

trends, except for a slight increase in LSAT anomaly observed in the Southern 20 

Hemisphere after 2010. Furthermore, we employ a "Thin Plate Spline (climatology) + 21 

Adjust Inverse Distance Weighted (anomaly fields)" technical framework to develop a 22 

high-resolution (0.5° × 0.5°) LSAT (C-LSAT HRv1) and DTR (C-LDTR HRv1) dataset 23 

from January 1901 to December 2023. Except for some differences existing during the 24 

period of 1901–1950 due to the limited number of observational stations, the C-LSAT 25 

HRv1 and C-LDTR HRv1 datasets effectively capture the corresponding variation 26 

patterns at both global and regional scales for the other periods. The C-LSAT 2.1 dataset 27 

can be downloaded from https://doi.org/10.6084/m9.figshare.28255394.v1 (Wei et al., 28 

2025a), while the C-LSAT HRv1 and C-LDTR HRv1 datasets are available at 29 

https://doi.org/10.6084/m9.figshare.28255505.v1 (Wei et al., 2025c) and 30 

https://doi.org/10.6084/m9.figshare.28255568.v1 (Wei et al., 2025b), respectively. 31 

These can also be accessed at http://www.gwpu.net (last accessed: December 2024).  32 
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1 Introduction 33 

Global Surface Temperature (GST) is one of the most important elements in the Earth's 34 

climate system, it serves as a key indicator for monitoring and understanding climate 35 

change and directly reflects global warming (IPCC, 2007, 2013, 2021). Similarly, Land 36 

Surface Air Temperature (LSAT), which is closely related to GST, is also of critical 37 

importance. Since global industrialization, the rising emissions of greenhouse gases, 38 

such as carbon dioxide, have driven a rapid increase in LSAT, causing profound 39 

consequences on ecosystem stability, human health, and economic production (Jones et 40 

al., 2023; Loucks, 2021). The Intergovernmental Panel on Climate Change (IPCC) has 41 

systematically summarized and assessed climate change research through its 42 

assessment reports. These reports reveal the current state, future change, impacts, and 43 

adaptation measures of climate change, providing the scientific foundation for policy-44 

making by governments worldwide. IPCC AR6 (2021) indicates that the global land 45 

temperature during 2011–2020 increased by 1.59 °C (1.34–1.83 °C) relative to pre-46 

industrial levels. 47 

The diurnal temperature range (DTR) indicates the difference between day and 48 

night temperatures, influenced by factors such as greenhouse gases, aerosols, and 49 

changes in land use (Kalnay and Cai, 2003; Stjern et al., 2020). DTR exhibits significant 50 

spatial heterogeneity and seasonal variations. In the latter half of the twentieth century, 51 

the increase in global land surface temperature at night was greater than during the day. 52 

This trend led to the narrowing of the global DTR (Zhong et al., 2023). Furthermore, 53 

the DTR change is strongly correlated with the probability of extreme high and low 54 

temperature events. According to IPCC AR6 (2021), global DTR has been decreasing 55 

since 1950, with the majority of the reduction occurring between 1960 and 1980. 56 

Meteorological observation stations vary significantly in spatial distribution, 57 

particularly in high-altitude mountainous areas or regions with complex terrain. 58 

Additionally, disparities in temporal coverage and incomplete homogenization affect 59 

the accuracy of climate change analysis (Kumar et al., 2022; Sokol et al., 2021; Viviroli 60 

et al., 2011; Zhao et al., 2020). The major representative LSAT benchmark 61 

observational datasets worldwide used in IPCC AR6 include the CRUTEM (Osborn et 62 

al., 2021), GHCN (Menne et al., 2018), GISTEMP (Lenssen et al., 2024), Berkeley 63 

Earth (Rohde and Hausfather, 2020) and C-LSAT (Li et al., 2021; Sun et al., 2021), etc. 64 

Global land DTR datasets comprise CRU TS (Harris et al., 2020), GHCNDEX (Menne 65 

et al., 2018) and the recently released C-LDTR (Xu et al., 2025), etc. Some datasets 66 

https://doi.org/10.5194/essd-2025-70
Preprint. Discussion started: 4 March 2025
c© Author(s) 2025. CC BY 4.0 License.



4 

 

provide Tmax and Tmin, enabling the calculation of DTR, such as Berkeley Earth 67 

(Rohde and Hausfather, 2020), HadEX3 (Dunn et al., 2024), and HadGHCND (Caesar 68 

et al., 2006). 69 

Improving spatial resolution is essential for investigating regional climate change, 70 

especially in quantifying the effects of topography and supporting climate research at 71 

medium and small scales, which can provide more accurate support for climate 72 

prediction, regional model refinement, and climate risk evaluation (Beck et al., 2018; 73 

Harris et al., 2014, 2020; Kotlarski et al., 2014; Sun et al., 2018). Global high-resolution 74 

LSAT datasets have been continuously developed in recent years. However, they remain 75 

constrained in capturing climate change in some regions (Karger et al., 2017; Li et al., 76 

2021; Wang et al., 2024; Li B et al., 2024). Therefore, it is essential to systematically 77 

integrate supplementary observational networks to enhance the accuracy of datasets and 78 

their capacity to capture climate change, especially at regional scales (Haylock et al., 79 

2008; Li et al., 2017, 2020; Menne et al., 2012; Wu and Gao, 2013; Xu et al., 2013). 80 

Long-term series datasets are conventionally generated by separately interpolating the 81 

climatology field and the anomaly field, and then combining them into a complete 82 

dataset (Cheng et al., 2020; Harris et al., 2020; New et al., 1999, 2000; Schamm et al., 83 

2014). For climatology field interpolation, common methods include the Thin Plate 84 

Spline (TPS) method (Wahba, 1990), Precipitation-elevation Regressions on 85 

Independent Slopes Model (PRISM) method (Daly et al., 1994), and the Kriging 86 

method (Cressie, 1990). When interpolating the anomaly field, the Inverse Distance 87 

Weighted (IDW) method, Multiple Regression method, and Bilinear Interpolation 88 

method are frequently employed. Among the above mentioned datasets, the Climatic 89 

Research Unit (CRU) developed a 0.5° × 0.5° high-resolution global LSAT dataset by 90 

interpolating the climatology field and anomaly field using the TPS method and 91 

Angular Distance Weighting (ADW) method (New et al., 1999, 2000). The Berkeley 92 

Earth team employed the Kriging method and IDW method to construct a high-93 

resolution global LSAT dataset with a 1° × 1° resolution (Rohde et al., 2013). Fick et 94 

al. (2017) developed a global 1km LSAT dataset through application of the TPS method.  95 

The C-LSAT dataset integrates observational datasets from over ten global, 96 

regional, and national sources, continuously improving data completeness and accuracy 97 

(Li, 2019; Li et al., 2021; Li Z 2023, 2024b; Sun et al., 2021, 2022; Sun and Li, 2021a, 98 

b; Xu et al., 2018; Xu Q 2024, 2025; Yun et al., 2019). Currently, the C-LSAT group 99 

only provides datasets at 5° × 5° resolution (C-LSAT 2.0, including Tavg, Tmax, and 100 
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Tmin) (http://www.gwpu.net) and recently released C-LDTR (Xu et al., 2025). This 101 

study aims to utilize the recently updated C-LSAT 2.1 station data for updating the C-102 

LSAT 2.1 (5° × 5°) gridded data (Wei et al., 2025a), and to develop corresponding 103 

global high-resolution LSAT (C-LSAT HR) and DTR (C-LDTR HR) datasets at a 0.5° 104 

× 0.5° resolution (Wei et al., 2025b, c). Consequently, this study is organized into seven 105 

main sections. Section 2 details the updates and pre-processing of the C-LSAT 2.1 106 

station data. Section 3 introduces the C-LSAT 2.1 update (5° × 5°). The development 107 

and validation of the C-LSAT HRv1 and C-LDTR HRv1 datasets are presented in Sect. 108 

4. Section 5 analyzes the spatiotemporal patterns of global and regional LSAT and DTR 109 

using high-resolution datasets (0.5° × 0.5°). Section 6 discusses the availability of these 110 

datasets. The concluding section summarizes the key findings of the study. 111 

2 Update and pre‑processing of C-LSAT 2.1 station data 112 

2.1 Data sources and update 113 

2.1.1 Data integration 114 

This study utilizes C-LSAT 2.0 station data (Xu et al., 2018; Yun et al., 2019), combined 115 

with additional station data integrated from various countries, regions, and global 116 

sources, covering the period from 2013 to 2023. Compared to the C-LSAT 2.0 station 117 

data, the C-LSAT 2.1 station data significantly increased the number of observation 118 

stations (Tavg increased from 15936 to 25085 stations, Tmax from 13648 to 25086 119 

stations, and Tmin from 13629 to 25083 stations, as shown in Fig. 1 of Xu et al.(2025)). 120 

Various data sources commonly assign different station IDs to the same station. 121 

Therefore, how to match the data from various sources with the corresponding stations 122 

in the C-LSAT station data is a problem that requires urgent resolution. Typically, most 123 

stations have a core five-digit ID. For example, the core ID for the "JAN MAYEN" 124 

station is 01001. In the GSOD, it appears as 01001099999, in the CLIMATE Report as 125 

01001, and in the C-LSAT station data as 601001001000. However, some stations don’t 126 

follow this principle, so we employ the station name or identify nearby stations to locate 127 

the corresponding stations and complete the update. Notably, when the sequence of a 128 

station is derived from multiple data sources, there may be homogenization 129 

discrepancies, which necessitate applying calibration procedures for the specific station. 130 

2.1.2 Eliminating Duplicate Stations 131 

When updating data from multiple sources, duplicate stations are inevitable. They 132 
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primarily originate from different station IDs in the data sources referring to the same 133 

station, or emerge through new duplicates produced during iterative updates of the C-134 

LSAT station data. Duplicate stations can affect the interpolation of both the 135 

climatology field and anomaly field, causing deviations in the interpolation results. To 136 

address this issue, it is essential to eliminate duplicate stations. The process initiates 137 

with filtering the C-LSAT 2.1 station data to identify any duplicate stations. 138 

Subsequently, the corresponding update sources and time series from nearby stations 139 

are plotted for comparison. A reference station is selected based on exhibiting a longer 140 

or more reliable data continuity. The data from the duplicate stations are selectively 141 

merged with the reference station or retained unmodified, ensuring the retention of a 142 

single representative station for each group of duplicates (Rennie et al., 2014; Xu et al., 143 

2018). 144 

2.1.3 Update of Climatology 145 

The Tavg variable contains climatology (1961–1990) in the C-LSAT 2.1 station 146 

data including 13756 stations. Among these 11907 stations calculate Tavg using the 147 

average of Tmax and Tmin. The remaining 1849 stations, which lacking Tmax or Tmin 148 

data, are primarily derived from datasets such as CRUTEM4, HISTALP, and SCAR. 149 

Compared to other datasets, the C-LSAT 2.1 station data demonstrates substantial 150 

improvements in station coverage in multiple regions, especially in East Asia. Figure 1 151 

illustrates the C-LSAT 2.1 station data updates, compared to C-LSAT 2.0 station data, 152 

the number of stations has significantly increased for Tmax, Tmin, and Tavg, 153 

particularly after the 1970s. These additional stations substantially expand spatial 154 

coverage, thereby enhancing the accuracy of data and reducing uncertainty after 155 

gridding. 156 
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 157 

Figure 1. The update of C-LSAT 2.1 station data. 158 

2.2 Data pre‑processing 159 

2.2.1 Quality control 160 

Data quality control is a crucial step to ensure the accuracy and reliability of datasets. 161 

By identifying and eliminating outliers, invalid data, and measurement errors, this 162 

process reduces the influence of observational biases, ensuring the consistency and 163 

integrity of the data. 164 

First, when updating station data, if a station has a data record exceeding 15 years, 165 

the newly updated data is subjected to this quality control process. Any anomaly—166 

defined as the difference between the updated data and the previously averaged monthly 167 

data—that exceeds five times the standard deviation is classified as an outlier and will 168 

be treated as missing data. 169 

Subsequently, when generating gridded data, we should do quality control on all 170 

station data. We follow the methods proposed by Lawrimore et al. (2011) and Menne et 171 

al. (2009) to implement the necessary quality control steps for the C-LSAT 2.1 station 172 

data. The results of the quality control process are shown in Table 1. 173 

1. Climatic outlier check: Stations with monthly records exceeding 10 years 174 

were selected, with the period from 1961 to 1990 as the climatology. The 175 
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climatological mean value was subtracted from the selected stations to calculate 176 

anomalies for each station. The standard deviation (STD) for each month 177 

during the climatology period was subsequently calculated. Any data that 178 

exceeded five times the STD for the corresponding month was flagged as an 179 

outlier and excluded. 180 

2. Spatial consistency check: Based on Equation (1), the anomaly data were 181 

evaluated by examining all stations. For each station i, all stations located 182 

within a 500 km radius were identified, up to a maximum of 20 neighboring 183 

stations (n≤20). The mean (�̅�) and standard deviation (𝜎) of the anomalies for 184 

these n+1 stations were calculated. If the absolute value of the difference 185 

between the value at station i and �̅� exceeded three times the 𝜎, this value 186 

was classified as an outlier and removed. 187 

|𝑋𝑖 − �̅�| > 3𝜎 (1) 188 

3. Internal consistency check: The Tmax, Tmin, and Tavg of station data were 189 

assessed. If Tavg was larger than Tmax or Tavg was smaller than Tmin, these 190 

values were identified as outliers and removed.  191 

Table 1. Quality control results for C-LSAT 2.1 station data (unit: station month). 192 

Steps 
Results of QC 

Tavg DTR 

First step (check for outliers) 19046(0.15%) 19671(0.21%) 

Second step (spatial consistency check) 161753(1.31%) 94022(0.99%) 

Third step (internal consistency check) 6469(0.05%) 0(0%) 

2.2.2 Homogenization 193 

Data homogenization is crucial for understanding climate change. Although its 194 

influence on a global or large scale may be limited, its impacts on local regions are 195 

often substantial (Peterson et al., 1998; Ribeiro et al., 2016). It removes data 196 

discontinuities caused by non-climatic factors such as station relocations, instrument 197 

changes, and environmental transformations (e.g., urbanization), ensuring that the data 198 

accurately reflects signals of climate change (Eccel et al., 2012; Jiao et al., 2023). 199 

Homogenized data enhances reliability and reduces the influence of errors. 200 

The homogenization process of C-LSAT station data follows the work of Xu et al. 201 

(2025). Using the method proposed by Peterson and Easterling (1994), a reference 202 

series was constructed by selecting 3–5 neighboring stations with correlation 203 
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coefficients greater than 0.8 relative to the target station. Based on the spatial distances 204 

of these stations, a reference LSAT series was generated through a weighted average of 205 

first-order differences. Subsequently, the RHTest V4 software was used to detect and 206 

correct discontinuities in the target series (Wang and Feng, 2010). The PMTred 207 

algorithm (derived from the Penalized Maximal t-test, PMT) in RHTest V4 served as 208 

the primary algorithm to detect discontinuities in the target station's monthly average 209 

Tmax and Tmin series at a significance level of 5%. For any confirmed breakpoints, the 210 

differences between the target series and the reference series were uniformly allocated 211 

using the mean adjustment (Wang, 2008a, b). According to this procedure, we adjusted 212 

726 breakpoints (in 420 stations) for the 25086 Tmax stations and 1276 breakpoints (in 213 

754 stations) for the 25083 Tmin stations of the C-LSAT station data. The homogenized 214 

Tmax and Tmin data were then combined into the LSAT and DTR datasets (Table 2). 215 

Table 2. The number of breakpoints adjusted at each step of homogenization. 216 

Breaks Tmax Tmin 

One 244 440 

Two 106 195 

Three 48 67 

Four or more 22 52 

Total breaks 726 1276 

Total adjusted stations 420 754 

Total stations 25086 25083 

3 Update of C-LSAT 2.1 217 

Based on the C-LSAT 2.1 station data, we first applied the Climate Anomaly Method 218 

(CAM) for gridding, and reconstructed the gridded data with high and low-frequency 219 

component decomposition and empirical orthogonal telecorrelation (EOT) 220 

reconstruction methods (Sun et al., 2021), which significantly enhancing the coverage 221 

of early-period grid data. Subsequently, observational constraints were applied to 222 

increase the reliability of the data, ultimately resulting in a high-coverage, high-223 

accuracy C-LSAT 2.1 dataset (5° × 5°). 224 

Figure 2 shows a comparison of the LSAT anomaly time series among the updated 225 

C-LSAT 2.1, C-LSAT 2.0, and other LSAT datasets, covering the global, Northern 226 

Hemisphere, and Southern Hemisphere regions. C-LSAT 2.1 exhibits strong 227 
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consistency with other LSAT datasets in the long-term trend, with all showing a 228 

significant warming trend, especially the accelerated warming since the 1970s. The 229 

warming rates of C-LSAT 2.0 are 0.133±0.014, 0.145±0.016, and 0.098±0.011 °C 230 

decade-1 for the global, Northern Hemisphere, and Southern Hemisphere, respectively, 231 

whereas C-LSAT 2.1 shows rates of 0.131±0.015, 0.141±0.017, and 0.101±0.011 °C 232 

decade-1. In C-LSAT 2.1, the warming rates in the global, Northern Hemisphere, and 233 

Southern Hemisphere present slight changes. C-LSAT 2.1 has made optimization 234 

adjustments over version 2.0. For the global, Northern Hemisphere, and Southern 235 

Hemisphere, C-LSAT 2.1 is higher than C-LSAT 2.0 both before 1950 and after 2000 236 

(particularly pronounced in the Southern Hemisphere). The increase before 1950 is 237 

primarily driven by improved data coverage, while changes in other periods may stem 238 

from our eliminating duplication process and updates to new data sources. These results 239 

suggest that C-LSAT 2.1 more accurately reflects the trends in LSAT changes. 240 
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 241 

Figure 2. LSAT anomaly of C-LSAT 2.1 and other datasets from 1901 to 2023. 242 
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4 Development of C-LSAT HRv1 and C-LDTR HRv1 243 

Building upon Cheng et al. (2020), this study also uses the TPS and Adjusted Inverse 244 

Distance Weighted (AIDW) methods to interpolate the climatology field and anomaly 245 

field of the C-LSAT 2.1 station data, ultimately generating the C-LSAT HRv1 and C-246 

LDTR HRv1 datasets with a resolution of 0.5° × 0.5°. 247 

4.1 Interpolation and validation of the climatology field 248 

4.1.1 Interpolation and region division 249 

This study employs the TPS method to interpolate the climatology field (1961–250 

1990) of LSAT and DTR. The TPS method was initially proposed by Wahba (1990) and 251 

later optimized and improved by Hutchinson et al. (Hutchinson, 1998a, 1991, 1995, 252 

1998b; Hutchinson and Gessler, 1994), evolving into the partial TPS method, which 253 

integrates covariate-dependent interpolation, extending the previous method that was 254 

limited to calculations based on independent variables. Based on the TPS method, 255 

Hutchinson et al. designed and developed the software ANUSPLIN, which enables 256 

multivariable data interpolation. This software has been widely adopted for 257 

meteorological data interpolation. The interpolation conducted in this study relies on it. 258 

Due to the strong correlation between temperature and elevation, we selected 259 

longitude, latitude, and elevation as variables for interpolating LSAT and DTR. The 260 

elevation data used in this study was obtained from the ETOPO2022 published by 261 

NOAA (National Oceanic and Atmospheric Administration) (available at 262 

https://www.ncei.noaa.gov/products/etopo-global-relief-model). This dataset integrates 263 

topography, bathymetry, and coastline data from regional and global datasets, providing 264 

a comprehensive and high-resolution representation of the Earth's geophysical features. 265 

Due to the Earth's spherical shape, the TPS method is unable to achieve a unified 266 

fit for the entire globe. Therefore, we must divide the globe into regions for separate 267 

interpolation. This study draws on the global partitioning scheme from the CRU (New 268 

et al., 1999) and WorldClim2 (Fick and Hijmans, 2017) datasets, dividing the globe into 269 

20 regions for interpolation. The spatial distribution is shown in Fig. 3. In terms of 270 

station density, the highest density is observed around 40° N and 40° S, while the lowest 271 

density occurs at the poles and the equator. After interpolating the data for each region, 272 

the data from the 20 regions are merged into the global dataset. Nevertheless, one issue 273 

encountered is that when using ANUSPLIN to interpolate each region, the errors at the 274 

boundaries are typically larger. To address this, when interpolating the 20 regions, the 275 
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boundaries of each region are extended (by 5° latitudinally and 10° longitudinally). 276 

After interpolation, the extended areas are clipped, and the data are then merged into 277 

the global dataset. This approach effectively minimizes errors in the dataset. 278 

 279 

Figure 3. Spatial distribution of global LSAT (a), DTR (b) meteorological 280 

observational stations and the division of 20 global regions. 281 

4.1.2 Validation of the climatology field 282 

When interpolating meteorological variables, we typically set longitude and 283 

latitude as independent variables. However, whether elevation should be treated as an 284 

independent variable or a covariate demands careful evaluation. There are three main 285 

indicators for evaluating the interpolation accuracy of the climatology field: the square 286 

root of generalized cross-validation (RTGCV), mean square residual (RTMSR), and the 287 

data error variance estimate (RTVAR). RTGCV quantifies the overall error of data 288 

fitting during the cross-validation process, measuring the model's generalization 289 

capability. RTMSR reflects how well the model fits the input data, and RTVAR 290 

evaluates the uncertainty in the data. Another indicator, Signal to Noise Ratio (SNR), 291 

is typically used to indicate the complexity of the fitted surface. It represents the ratio 292 
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between the Signal and the Error value in the ANUSPLIN software output file. This 293 

value generally needs to be less than 1 to indicate that the chosen interpolation scheme 294 

is feasible.  295 

The parameter schemes are detailed in Table 3, and the results are illustrated in Fig. 296 

4–5. The overall error for DTR is higher than for LSAT. Experimental results revealed 297 

that the interpolation error exhibited a marked increase when the spline order was set 298 

to 4, compared with orders of 2 and 3. As a result, schemes A3 and B3 were excluded. 299 

In the Antarctic (region 20), the 4 indicators of LSAT demonstrated substantial 300 

increases, indicating that our data exhibit a large error in this area. Moreover, during 301 

interpolation in the Antarctic, we found that the station density is notably low and 302 

unevenly distributed. Considering the increased error mentioned before, both LSAT and 303 

DTR for the Antarctic were excluded from this study. Future research will conduct a 304 

more detailed and comprehensive investigation of the data in the Antarctic. Thus, the 305 

subsequent contents of this study exclude the Antarctic (region 20). Following the 306 

exclusion of the Antarctic, we compared the SNR, RTGCV, RTMSR, and RTVAR for 307 

the remaining 19 regions. It was found that both LSAT and DTR attained the best results 308 

with scheme B2 (Table 4). We adopted this scheme for interpolating the climatology 309 

fields of LSAT and DTR. 310 

Table 3. Climatology field interpolation schemes. 311 

Experiments Independent spline variables Covariates Order of spline 

A1 Lat, Lon Ele 2 

A2 Lat, Lon Ele 3 

A3 Lat, Lon Ele 4 

B1 Lat, Lon, Ele / 2 

B2 Lat, Lon, Ele / 3 

B3 Lat, Lon, Ele / 4 

312 

https://doi.org/10.5194/essd-2025-70
Preprint. Discussion started: 4 March 2025
c© Author(s) 2025. CC BY 4.0 License.



15 

 

Table 4. Results of the climatology field interpolation schemes. 313 

Variables Experiments SNR RTGCV RTMSR RTVAR 

LSAT 

A1 0.41  0.98  0.70  0.82  

A2 0.28  1.00  0.79  0.89  

A3 0.21  1.05  0.88  0.96  

B1 0.27  0.98  0.77  0.87  

B2 0.36  0.91  0.68  0.78  

B3 0.35  0.91  0.68  0.78  

DTR 

A1 0.37  1.65  1.23  1.42  

A2 0.33  1.67  1.28  1.45  

A3 0.23  1.72  1.43  1.57  

B1 0.42  1.65  1.21  1.41  

B2 0.36  1.62  1.22  1.40  

B3 0.34  1.63  1.24  1.42  

 314 

Figure 4. Cross-validation results of LSAT climatology field. 315 
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 316 

Figure 5. Cross-validation results of DTR climatology field. 317 

Based on the cross-validation results, we evaluate the Mean Absolute Error (MAE) 318 

and Root Mean Squared Error (RMSE) of the climatology fields for the C-LSAT HRv1 319 

and C-LDTR HRv1 datasets (Fig. 6). For C-LSAT HRv1, the MAE and RMSE in the 320 

Southern Hemisphere are smaller than the global average, whereas in the Northern 321 

Hemisphere are greater than that in the global. In contrast to C-LSAT HRv1, the MAE 322 

and RMSE of the C-LDTR HRv1 dataset show an opposite trend. The MAE and RMSE 323 

reveal more significant asymmetries in both seasonal and regional performance, with 324 

larger variability. 325 
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 326 

Figure 6. MAE and RMSE validation results of the climatology fields for C-LSAT 327 

HRv1 (a–b) and C-LDTR HRv1 (c–d). 328 

4.2 Interpolation and validation of the anomaly field 329 

In this study, the Adjusted Inverse Distance Weighting (AIDW) method (Cheng et 330 

al., 2020) was employed for spatial interpolation of the monthly anomalies from 1901 331 

to 2023. 332 

IDW assumes that spatially neighboring data points exhibit higher spatial 333 

autocorrelation, and the closer a sample point is to the prediction point, the greater its 334 

influence on the predicted value. The IDW method assigns weights to sample points 335 

based on the inverse of the distance and then calculates the weighted average of the 336 

values from each sample point. The equation is as follows: 337 

 𝑇 = ∑ 𝑊𝑖𝑇𝑖

𝑛

𝑖=1
(2) 338 

 339 

𝑊𝑖 =  
𝑑𝑖

−𝛼

∑ 𝑑𝑖
−𝛼𝑛

𝑖=1

 (3) 340 

 T represents the value at the prediction point, 𝑇𝑖 is the value at a given sample 341 

point, 𝑊𝑖 is the weight of the sample point, n is the number of selected sample points, 342 

𝑑𝑖 is the distance from the sample point to the prediction point, and 𝛼 is the parameter 343 

that controls how the weight decays with distance. When using traditional IDW 344 
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interpolation, the weight exhibits rapid increase, even reaching infinity, as the distance 345 

between two points approaches zero. This leads to the sample point having an 346 

excessively high weight, which distorts the final estimated value. Building upon the 347 

ADW method (New et al., 2000), this study modifies the weight calculation method of 348 

the original IDW. The equation is as follows: 349 

𝑊𝑖 =  
(𝑒𝑑𝑖 𝑑0⁄ )

−𝛼

∑ (𝑒𝑑𝑖 𝑑0⁄ )−𝛼𝑛
𝑖=1

(4) 350 

 𝑑0 is the decay distance. Following the CRU05 (New et al., 2000), we adopted 351 

values of 1200 km for LSAT interpolation and 750 km for DTR interpolation. Empirical 352 

testing revealed that the optimal results were achieved when n = 6 and 𝛼 = 4 (Cheng 353 

et al., 2020). The AIDW method introduces an exponential decay relationship between 354 

distance and weight, ensuring that the maximum weight does not exceed 1. The decay 355 

curve is moderated, leading to a more reasonable distribution of weights. 356 

 After interpolating the anomaly fields of LSAT and DTR data, we analyze their 357 

MAE and RMSE (Fig. 7). The results demonstrate that the trends of LSAT and DTR 358 

exhibit strong coherence, both showing initial declines, reaching a minimum during the 359 

1960–1990 period, and rebounding thereafter. This is strongly correlated with the 360 

number of stations, and their trends are essentially opposite. The trend in the Northern 361 

Hemisphere is largely consistent with the global trend. For LSAT, the Southern 362 

Hemisphere is lower than the Northern Hemisphere and globe from 1901 to 1960, but 363 

become slightly higher after 1960. Regarding DTR, the variability in MAE and RMSE 364 

in the Southern Hemisphere are significantly higher than those in the Northern 365 

Hemisphere and globe. During the 1901–1960 period, the three series are almost 366 

identical, but after 1960, the MAE and RMSE in the Southern Hemisphere remain 367 

consistently higher than those in the Northern Hemisphere and globe. 368 
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 369 

Figure 7. MAE and RMSE validation results of the anomaly fields for C-LSAT HRv1 370 

(a–b) and C-LDTR HRv1 (c–d). 371 

5 Spatiotemporal analysis of global LSAT and DTR 372 

5.1 C-LSAT HRv1 climatology field 373 

After interpolating the C-LSAT HRv1 climatology field, we assessed its performance 374 

across the globe, Northern Hemisphere, and Southern Hemisphere. The highest LSAT 375 

for the globe and Northern Hemisphere are observed in July, reaching 20.3 °C and 376 

21.3 °C, respectively, while the lowest are recorded in January at 5.3 °C and -1.4 °C, 377 

respectively. The Southern Hemisphere exhibits the opposite pattern, with the highest 378 

and lowest LSAT observed in January (24.6 °C) and July (17.4 °C), respectively (Fig. 379 

8). After excluding the Antarctic data, the Southern Hemisphere contains a smaller land 380 

area, thus resulting in less influence on the global LSAT weight. As for the spatial 381 

distribution, LSAT shows a dependency on both latitude and elevation, with 382 

significantly lower in high-latitude regions (such as Northern North America and 383 

Northern Asia) and high-elevation areas (such as the Tibetan Plateau and the Andes) 384 

compared to other regions (Fig. 9). 385 
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 386 

Figure 8. The LSAT for the C-LSAT HRv1 climatology field. 387 

 388 

Figure 9. Spatial distribution of the LSAT for the C-LSAT HRv1 climatology field. 389 

5.2 C-LSAT HRv1 anomaly field 390 

5.2.1 Global and hemispheric scales 391 

The LSAT anomaly variations of C-LSAT HRv1 and C-LSAT 2.1 from 1901 to 392 

2023 for the globe, Northern Hemisphere, and Southern Hemisphere are presented in 393 

Fig. 10. The anomaly trends obtained in C-LSAT HRv1 are largely consistent with C-394 
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LSAT 2.1, with warming rates of 0.131 ± 0.015, 0.140 ± 0.017, and 0.107 ± 0.012 °C 395 

decade-1 for the globe, Northern Hemisphere, and Southern Hemisphere, respectively. 396 

The LSAT change trends for the globe and Northern Hemisphere demonstrate 397 

comparable patterns, with warming predominantly concentrated in two periods: the 398 

1900–1930s and the 1970–2020s, with accelerated warming in the latter period. A slight 399 

cooling trend emerges in the middle period, from the 1940s to the 1960s. The warming 400 

in the Southern Hemisphere is relatively slower and continues throughout the entire 401 

1901–2023 period without experiencing the cooling trend observed in the global and 402 

Northern Hemisphere during the 1940–1960s. Its warming rate also undergoes a 403 

pronounced acceleration after the 1970s. 404 

Table 5 presents the annual warming rates of the C-LSAT HRv1 for different 405 

periods. The change is most gradual during 1901–1950, but after 1951, the warming 406 

rate sharply increase, peaking in 1979, followed by a moderate decline in 1998. This 407 

suggests that during the 1998–2014 hiatus, although no cooling is detected, the warming 408 

rate is reduced. 409 

Spatially, the LSAT across the globe, northern, and southern hemispheres show a 410 

steady upward trend from 1901 to 2023, with recent years frequently establishing new 411 

highest records for LSAT (with the Southern Hemisphere exhibiting a more gradual 412 

increase). The LSAT change trend indicates continuous warming globally from 1901 to 413 

2023, with the fastest warming occurring in regions such as Northern North America, 414 

Eastern South America, Eastern Europe, and Eastern Asia (Fig. 11). Regarding different 415 

periods, the fastest warming was observed between 1998–2023 (particularly in areas 416 

north of 60° N), while the slowest warming occurred during 1901–1950 (Fig. 12). 417 

https://doi.org/10.5194/essd-2025-70
Preprint. Discussion started: 4 March 2025
c© Author(s) 2025. CC BY 4.0 License.



22 

 

 418 

Figure 10. The LSAT anomaly in the globe (a), Northern Hemisphere (b), and 419 

Southern Hemisphere (c) from 1901 to 2023 for both C-LSAT HRv1 and C-LSAT 2.1. 420 
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 421 

Figure 11. Spatial distribution of the LSAT change rate for the C-LSAT HRv1 422 

anomaly field from 1901 to 2023. 423 

 424 

Figure 12. Spatial distribution of the LSAT change rates for the C-LSAT HRv1 425 

anomaly field during 1901–1950 (a), 1951–2023 (b), 1979–2023 (c), and 1998–2023 426 

(d). 427 
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Table 5. The LSAT change rates and their 95% confidence intervals for C-LSAT 428 

HRv1 in the globe, Northern Hemisphere, and Southern Hemisphere over five 429 

different periods (°C decade-1). 430 

 1901–1950 1901–2023 1951–2023 1979–2023 1998–2023 

Globe 0.096 ± 0.033* 0.131 ± 0.015* 0.243 ± 0.026* 0.329 ± 0.041* 0.303 ± 0.086* 

Northern 

Hemisphere 
0.108 ± 0.037* 0.140 ± 0.017* 0.265 ± 0.030* 0.371 ± 0.047* 0.330 ± 0.091* 

Southern 

Hemisphere 
0.063 ± 0.034* 0.107 ± 0.012* 0.179 ± 0.022* 0.208 ± 0.041* 0.228 ± 0.110* 

5.2.2 Continental scale 431 

At the continental scale, both C-LSAT HRv1 and C-LSAT 2.1 show a warming 432 

trend across all six continental domains since the early 20th century, with this trend 433 

intensified after the 1970s and manifesting regional differences (Fig. 13). The warming 434 

is pronounced in Asia, Europe, and North America, whereas it remains comparatively 435 

moderated in South America, Africa, and Oceania, reflecting the different responses of 436 

the climate system to global warming. Both datasets are consistent in their long-term 437 

trends; however, differences in short-term fluctuations may stem from variations in 438 

spatial resolution and processing methods. 439 
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 440 

Figure 13. The LSAT anomaly for C-LSAT HRv1 and C-LSAT 2.1 in different 441 

continents from 1901 to 2023. 442 

5.3 C-LDTR HRv1 climatology field 443 

Figure 14 shows that the monthly average DTR of the C-LDTR HRv1 climatology 444 

field reverse in May for the globe, Northern Hemisphere, and Southern Hemisphere. 445 

The global DTR reaches its maximum in April (11.8 °C) and attains its minimum in 446 

December (10.8 °C). In the Northern Hemisphere, the DTR peaks in April (12.0 °C) 447 

and reaches its minimum in November (10.6 °C), while in the Southern Hemisphere, 448 

the peak occurs in August (13.2 °C) and the minimum in February (11.0 °C). The 449 

Southern Hemisphere shows the largest DTR variation, significantly larger than that of 450 

the global and Northern Hemispheres, primarily attributed to the smaller land area in 451 

the Southern Hemisphere, resulting in higher sensitivity. This difference reflects the 452 

combined impact of solar radiation, surface characteristics, and seasonal changes on the 453 

climate system. Spatially, DTR depends not only on elevation but also is influenced by 454 
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land use and land cover in the region. DTR is higher in mountainous, plateau areas, and 455 

deserts (Fig. 15). 456 

 457 

Figure 14. The DTR for the C-LDTR HRv1 climatology field. 458 

 459 

Figure 15. Spatial distribution of the DTR for the C-LDTR HRv1 climatology field. 460 

5.4 C-LDTR HRv1 anomaly field 461 

5.4.1 Global and hemispheric scales 462 

The DTR anomaly changes of C-LDTR HRv1 for the globe, Northern Hemisphere, 463 
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and Southern Hemisphere from 1901 to 2023 are presented in Fig. 16. During 1950–464 

2010, C-LDTR HRv1 remains highly consistent with the C-LDTR, with change rates 465 

of -0.031 ± 0.006, -0.038 ± 0.006, and -0.011 ± 0.011 °C decade-1 for the globe, 466 

Northern Hemisphere, and Southern Hemisphere, respectively. However, there are 467 

notable discrepancies before 1950 and after 2010. From 1901 to 1950, the station 468 

number is limited, leading to greater uncertainty, which is why the differences between 469 

the two datasets are more pronounced. This is particularly apparent in the Southern 470 

Hemisphere, where the DTR fluctuations and the differences between the two datasets 471 

are significantly larger than those in the globe and Northern Hemisphere. After 2010, 472 

the reduction in DTR (or Tmax and Tmin) station data lead to the differences between 473 

C-LDTR HRv1 and C-LDTR, which is further reflected in other DTR datasets (Xu et 474 

al., 2025). The DTR is stable during the 1900–1940s and 1980–1990s, declines during 475 

the 1950–1970s, and shows a slight increase after the 2000s. 476 

Table 6 shows the DTR change rates of C-LDTR HRv1 for different periods. The 477 

change rate is stable from 1901 to 1950, then initiates a decline in 1951, stabilizes again 478 

in 1979, and peaks at 1998. The DTR change rate in the Southern Hemisphere is more 479 

pronounced than that in the globe and Northern Hemisphere. 480 

It is noteworthy that there is no obvious spatial pattern in the changes in the DTR. 481 

During the period of most significant change: 1998–2023, the regions with the most 482 

rapid DTR increases are North America, Europe, and Oceania, whereas other regions, 483 

including Africa, East Asia, South Asia, and the Middle East, demonstrate a pronounced 484 

downward trend (Fig. 17–18). 485 
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 486 

Figure 16. The DTR anomaly in the globe (a), Northern Hemisphere (b), and 487 

Southern Hemisphere (c) from 1901 to 2023 for both C-LDTR HRv1 and C-LDTR. 488 
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 489 

Figure 17. Spatial distribution of the DTR change rate for the C-LDTR HRv1 490 

anomaly field from 1901 to 2023. 491 

 492 

Figure 18. Spatial distribution of the DTR change rates for the C-LDTR HRv1 493 

anomaly field during 1901–1950 (a), 1951–2023 (b), 1979–2023 (c), and 1998–2023 494 

(d). 495 
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Table 6. The DTR change rates and their 95% confidence intervals for C-LDTR 496 

HRv1 in the globe, Northern Hemisphere, and Southern Hemisphere over five 497 

different periods (°C decade-1). 498 

 1901–1950 1901–2023 1951–2023 1979–2023 1998–2023 

Globe 0.007 ± 0.022 -0.031 ± 0.006* -0.023 ± 0.013* 0.044 ± 0.018* 0.097 ± 0.032* 

Northern 

Hemisphere 
0.011 ± 0.020 -0.038 ± 0.006* -0.031 ± 0.013* 0.032 ± 0.020* 0.088 ± 0.035* 

Southern 

Hemisphere 
-0.004 ± 0.050 -0.011 ± 0.011 0.001 ± 0.022 0.081 ± 0.034* 0.124 ± 0.085* 

5.4.2 Continental scale 499 

Based on the C-LDTR HRv1 and C-LDTR datasets, Fig. 19 illustrates the complex 500 

variation characteristics and significant regional differences of DTR across six 501 

continents between 1901 and 2023. DTR in Asia, Africa, and South America shows a 502 

downward trend, whereas the changes in Europe, North America, and Oceania remain 503 

relatively stable. Europe demonstrates a general upward trend throughout the entire 504 

1901–2023 period, while DTR in the remaining five continents declines before the 505 

1970s but rebounds after 2010. 506 
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 507 

Figure 19. The DTR anomaly for C-LDTR HRv1 and C-LDTR in different continents 508 

from 1901 to 2023. 509 

6 Data availability 510 

The C-LSAT 2.1 dataset is publicly available on the website at 511 

https://doi.org/10.6084/m9.figshare.28255394.v1 (Wei et al., 2025a). The C-LSAT 512 

HRv1 can be downloaded at https://doi.org/10.6084/m9.figshare.28255505.v1 (Wei et 513 

al., 2025c). The C-LDTR HRv1 can be downloaded at 514 

https://doi.org/10.6084/m9.figshare.28255568.v1 (Wei et al., 2025b). They can also be 515 

accessed at http://www.gwpu.net (last accessed: December 2024) for free. 516 

7 Conclusions 517 

This study provides a comprehensive overview of the updates made to the C-LSAT 2.1 518 

station data and grid data (5° × 5°). On this basis, the high-resolution (0.5° × 0.5°) LSAT 519 
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(C-LSAT HRv1) and DTR (C-LDTR HRv1) datasets are developed. The key 520 

characteristics of the C-LSAT 2.1 station data, C-LSAT 2.1, C-LSAT HRv1, and C-521 

LDTR HRv1 datasets are summarized below: 522 

 1. C-LSAT 2.1 station data supplemented and integrated meteorological 523 

observational data from various sources, resulting in a substantial enhancement in 524 

global station coverage. After filtering based on the reference period (1961–1990), the 525 

number of stations for LSAT and DTR is 13756 and 11907, respectively. The number 526 

of stations peaks in the 1970–1980s, followed by a slight decline. 527 

 2. The updated station data was utilized for gridded interpolation and EOT 528 

reconstruction (C-LSAT 2.1). Compared to C-LSAT 2.0, the LSAT change trends at the 529 

global and hemispheric scales exhibit no significant change in C-LSAT 2.1. 530 

 3. Comparative analysis of C-LSAT HRv1 with other LSAT datasets. The results 531 

show minor discrepancies in the period from 1901 to 1950, but the trends thereafter 532 

demonstrate strong coherence. During the climatology period (1961–1990), the highest 533 

LSAT in C-LSAT HRv1 are 20.3 °C (July) for the globe, 21.3 °C (July) for the Northern 534 

Hemisphere, and 24.6 °C (January) for the Southern Hemisphere. The lowest LSAT are 535 

5.3 °C (January) globally, -1.4 °C (January) in the Northern Hemisphere, and 17.4 °C 536 

(July) in the Southern Hemisphere. The 1901–2023 warming rates for C-LSAT HRv1 537 

are 0.131 ± 0.015 °C decade-1 globally, 0.140 ± 0.017 °C decade-1 for the Northern 538 

Hemisphere, and 0.107 ± 0.012 °C decade-1 for the Southern Hemisphere. 539 

 4. By comparing C-LDTR HRv1 with other DTR datasets, we find differences 540 

between the datasets before 1950 and after 2010, with the former showing pronounced 541 

discrepancies, especially in the Southern Hemisphere. Notably, strong consistency is 542 

observed in other periods. The monthly variation of the DTR during the climatology 543 

period differs significantly from LSAT, with the highest DTR reaching 11.8 °C (April) 544 

globally, 12.0 °C (April) in the Northern Hemisphere, and 13.2 °C (August) in the 545 

Southern Hemisphere. Whereas the lowest values are 10.8 °C (December) globally, 546 

10.6 °C (November) in the Northern Hemisphere, and 11.0 °C (February) in the 547 

Southern Hemisphere. Over the 1901–2023 period, the C-LDTR HRv1 shows the 548 

change rates of -0.031 ± 0.006 °C decade-1 globally, -0.038 ± 0.006 °C decade-1 for the 549 

Northern Hemisphere, and -0.011 ± 0.011 °C decade-1 for the Southern Hemisphere. 550 

 In summary, C-LSAT HRv1 maintains high consistency with other LSAT datasets. 551 

In contrast, there are some differences between C-LDTR HRv1 and various DTR 552 

datasets. Early-period discrepancies are primarily attributable to the limited number of 553 
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stations. The reduction in DTR (or Tmax and Tmin) station data lead to differences 554 

between C-LDTR HRv1 and other DTR datasets in later periods. 555 
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