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Abstract. High-resolution climate datasets are of critical importance for the 10 

comprehension of spatial and temporal variations in climate and hydrology. However, 11 

their development is significantly influenced by the availability, density, and quality of 12 

observational data. Building on the China global Land Surface Air Temperature 2.0 (C-13 

LSAT 2.0) station data, we collected and integrated nearly 3000 additional station 14 

observations and conducted the quality control and homogenization processing to 15 

complete the update of the C-LSAT 2.1 dataset. The coverage of Tavg, Tmax, and Tmin 16 

in the C-LSAT 2.1 dataset has been significantly enhanced, further improving the 17 

representativeness of global land diurnal temperature range (DTR) data with greater 18 

spatial heterogeneity. Compared to C-LSAT 2.0, C-LSAT 2.1 shows consistent overall 19 

trends, except for a slight post‑2010 increase for the Southern Hemisphere LSAT 20 

anomaly. Furthermore, we employed a "Thin Plate Spline (climatology) + Adjust 21 

Inverse Distance Weighted (anomaly fields)" technical framework to develop a high-22 

resolution (0.5° × 0.5°) LSAT (C-LSAT HRv1) and DTR (C-LDTR HRv1) dataset 23 

covering January 1901–December 2023. Apart from discrepancies in 1901–1950 due 24 

to the limited number of observational stations, the C-LSAT HRv1 and C-LDTR HRv1 25 

datasets effectively capture global and regional variation patterns for subsequent 26 

periods. The C-LSAT 2.1 dataset can be downloaded from 27 

https://doi.org/10.6084/m9.figshare.28255394.v1 (Wei et al., 2025a), while the C-28 

LSAT HRv1 and C-LDTR HRv1 datasets are available at 29 

https://doi.org/10.6084/m9.figshare.28255505.v2 (Wei et al., 2025c) and 30 

https://doi.org/10.6084/m9.figshare.28255568.v2 (Wei et al., 2025b), respectively. 31 

They are also accessible via http://www.gwpu.net (last accessed: July 2025).  32 

https://doi.org/10.6084/m9.figshare.28255394.v1
https://doi.org/10.6084/m9.figshare.28255505.v1
https://doi.org/10.6084/m9.figshare.28255568.v1
http://www.gwpu.net/
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1 Introduction 33 

Global Surface Temperature (GST) is one of the most important indicators in the Earth's 34 

climate system, serving as a key metric for monitoring and understanding climate 35 

change and directly reflects global warming (IPCC, 2007, 2013, 2021). Likewise, Land 36 

Surface Air Temperature (LSAT), which is closely related to GST, is also of critical 37 

importance. Since the onset of global industrialization, the rising emissions of 38 

greenhouse gases, such as carbon dioxide, have driven rapid increases in LSAT, causing 39 

profound consequences for ecosystem stability, human health, and economic 40 

production (Jones et al., 2023; Loucks, 2021). The Intergovernmental Panel on Climate 41 

Change (IPCC) has systematically summarized and assessed climate change research 42 

through its assessment reports. These documents reveal the current state, future change, 43 

impacts, and adaptation measures of climate change, providing the scientific basis for 44 

policy decisions worldwide. According to IPCC AR6 (2021), global land temperature 45 

during 2011–2020 increased by 1.59 °C (1.34–1.83 °C) relative to pre-industrial levels. 46 

The diurnal temperature range (DTR) indicates the difference between day and 47 

night temperatures; it is influenced by factors such as greenhouse gases, aerosols, and 48 

land use changes (Kalnay and Cai, 2003; Stjern et al., 2020). DTR exhibits significant 49 

spatial heterogeneity and seasonal variations. In the latter half of the twentieth century, 50 

observed nighttime warming on land exceeded daytime warming. This trend led to the 51 

narrowing of the global DTR (Zhong et al., 2023). Furthermore, DTR changes are 52 

strongly correlated with the probability of extreme high and low temperature events. 53 

Since 1950, global DTR has been decreasing, with most of the reduction occurring 54 

between 1960 and 1980 (IPCC, 2021). 55 

Meteorological observation stations vary significantly in spatial distribution, 56 

especially in high-altitude or otherwise complex terrain. Moreover, disparities in 57 

temporal coverage and incomplete homogenization affect the accuracy of climate 58 

change analysis (Kumar et al., 2022; Sokol et al., 2021; Viviroli et al., 2011; Zhao et al., 59 

2020). The major representative LSAT benchmark observational datasets worldwide 60 

used in IPCC AR6 include CRUTEM (Osborn et al., 2021), GHCN (Menne et al., 2018), 61 

GISTEMP (Lenssen et al., 2024), Berkeley Earth (Rohde and Hausfather, 2020) and C-62 

LSAT (Q. Li et al., 2021; W. Sun et al., 2021), etc. Global land DTR datasets include 63 

CRU TS (Harris et al., 2020), GHCNDEX (Menne et al., 2018) and the recently released 64 

C-LDTR (Q. Xu et al., 2025), etc. Some datasets provide Tmax and Tmin, enabling the 65 

calculation of DTR, such as Berkeley Earth (Rohde and Hausfather, 2020), HadEX3 66 
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(Dunn et al., 2024), and HadGHCND (Caesar et al., 2006). 67 

Improving spatial resolution is essential for investigating regional climate change, 68 

especially in quantifying the effects of topography and supporting climate research at 69 

medium and small scales, which can provide more accurate support for climate 70 

prediction, regional model refinement, and climate risk evaluation (Beck et al., 2018; 71 

Harris et al., 2014, 2020; Kotlarski et al., 2014; Q. Sun et al., 2018). Global high-72 

resolution LSAT datasets have been continuously developed in recent years. However, 73 

they remain constrained in capturing climate change in some regions (Karger et al., 74 

2017; Q. Li et al., 2021; B. Li et al., 2024; M. Wang et al., 2024). Accordingly, 75 

systematically integrating additional observational networks is crucial to improve 76 

dataset accuracy and better resolve regional climate change (Haylock et al., 2008; Q. 77 

Li et al., 2017, 2020; Menne et al., 2012; Wu and Gao, 2013; W. Xu et al., 2013). Long-78 

term series datasets are conventionally generated by separately interpolating 79 

climatology and anomaly fields, and then combining them into a complete dataset 80 

(Cheng et al., 2020; Harris et al., 2020; New et al., 1999, 2000; Schamm et al., 2014). 81 

For climatology field interpolation, common methods include Thin Plate Spline (TPS) 82 

(Wahba, 1990), Precipitation-elevation Regressions on Independent Slopes Model 83 

(PRISM) (Daly et al., 1994), and Kriging (Cressie, 1990). When interpolating the 84 

anomaly field, the Inverse Distance Weighted (IDW), Multiple Regression, and Bilinear 85 

Interpolation are frequently employed. Among the above-mentioned datasets, the 86 

Climatic Research Unit (CRU) developed a 0.5° × 0.5° high-resolution global LSAT 87 

dataset by applying TPS for climatology field and Angular Distance Weighting (ADW) 88 

(New et al., 1999, 2000) for anomaly field. The Berkeley Earth team employed Kriging 89 

and IDW to construct a high-resolution global LSAT dataset with a 1° × 1° resolution 90 

(Rohde et al., 2013). Fick et al. (2017) developed a global 1km LSAT dataset using TPS.  91 

The C-LSAT dataset integrates observational datasets from over ten global, 92 

regional, and national sources, continuously improving data completeness and accuracy 93 

(Q. Li et al., 2019; Q. Li et al., 2021; Z. Li et al., 2023, 2024; W. Sun et al., 2021, 2022; 94 

W. Sun and Q. Li, 2021a, b; W. Xu et al., 2018; Q. Xu et al., 2024, 2025; Yun et al., 95 

2019). To date, the C-LSAT team provides only 5° × 5° gridded products (C-LSAT 2.0, 96 

including Tavg, Tmax, and Tmin) (http://www.gwpu.net) and recently released C-97 

LDTR (Q. Xu et al., 2025). This study aims to utilize the recently updated C-LSAT 2.1 98 

station data for updating the C-LSAT 2.1 (5° × 5°) gridded data (Wei et al., 2025a), and 99 

to develop corresponding global high-resolution LSAT (C-LSAT HRv1) and DTR (C-100 

http://www.gwpu.net/


5 

 

LDTR HRv1) datasets at a 0.5° × 0.5° resolution (Wei et al., 2025b, c). Consequently, 101 

this study is organized into seven main sections. Section 2 details the updates and pre-102 

processing of the C-LSAT 2.1 station data. Section 3 presents the updated 5° × 5° C-103 

LSAT 2.1 gridded product. The development and validation of the C-LSAT HRv1 and 104 

C-LDTR HRv1 datasets are presented in Sect. 4. Section 5 analyzes the spatiotemporal 105 

patterns of global and regional LSAT and DTR using high-resolution datasets (0.5° × 106 

0.5°). Section 6 discusses the availability of these datasets. Section 7 concludes with 107 

the key findings of this study. 108 

2 Update and pre‑processing of C-LSAT 2.1 station data 109 

2.1 Data sources and update 110 

2.1.1 Data integration 111 

This study builds on C-LSAT 2.0 station data (W. Xu et al., 2018; Yun et al., 2019), 112 

combined with additional observations integrated from various countries, regions, and 113 

global sources, covering the period from 2013 to 2023. Compared to version 2.0, the 114 

C-LSAT 2.1 station data significantly increased the number of observation stations 115 

(Tavg increased from 15936 to 25085 stations, Tmax from 13648 to 25086 stations, and 116 

Tmin from 13629 to 25083 stations, as shown in Fig. 1 of Q. Xu et al.(2025)). 117 

Various data sources commonly assign different station IDs to the same station. 118 

Therefore, matching the data from various sources with the corresponding stations in 119 

the C-LSAT station data is a problem that requires urgent resolution. Most stations have 120 

a core five-digit ID. For example, the core ID for the “JAN MAYEN” station is “01001”. 121 

In GSOD this appears as “01001099999”, in the CLIMATE Report as “01001”, and in 122 

C-LSAT station data as “601001001000”. For stations lacking a consistent core ID, we 123 

employ the station name or identify nearby stations to locate the corresponding stations 124 

and complete the update. Notably, when the sequence of a station is derived from 125 

multiple data sources, there may be homogenization discrepancies. In such cases, the 126 

application of calibration procedures for the specific station is necessary. 127 

2.1.2 Eliminating Duplicate Stations 128 

When updating data from multiple sources, duplicate stations are inevitable. They 129 

arise either because different data sources assign distinct IDs to the same station or 130 

because iterative updates generate new duplicates. Duplicate stations can affect the 131 

interpolation of both the climatology and anomaly fields, causing deviations in the 132 
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interpolation results. To address this issue, it is essential to eliminate duplicate stations. 133 

Based on same core IDs and similar station names, the C-LSAT 2.1 station data are 134 

filtered to identify and select duplicate stations. Subsequently, time series from each 135 

duplicate and its corresponding update sources or nearby stations are plotted for 136 

comparison. A reference station with the longest and most consistent record is then 137 

chosen. The data from the duplicate stations are selectively merged with the reference 138 

station or retained unmodified, ensuring the retention of a single representative station 139 

for each group of duplicates (Rennie et al., 2014; W. Xu et al., 2018). 140 

2.1.3 Update of Climatology 141 

The Tavg variable contains climatology (1961–1990) in the C-LSAT 2.1 station 142 

data including 13746 stations (Fig. 1). Among these 11975 stations calculate Tavg using 143 

the average of Tmax and Tmin. The remaining 1771 stations, which lack either Tmax 144 

or Tmin, are primarily derived from datasets such as CRUTEM4, HISTALP, and SCAR. 145 

Compared to other datasets, the C-LSAT 2.1 station data demonstrates substantial 146 

improvements in station coverage in multiple regions, especially in East Asia. Figure 1 147 

illustrates the C-LSAT 2.1 station data updates, compared to version 2.0, the number of 148 

stations has significantly increased for Tmax, Tmin, and Tavg, particularly after the 149 

1970s. These additional stations substantially expand spatial coverage, thereby 150 

enhancing the accuracy of data and reducing uncertainty after gridding. For temporal 151 

coverage, the majority of stations provide data for 50–80 years, with a few covering 152 

80–100 years (Table S1).  153 
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 154 

Figure 1. Updates of the C-LSAT 2.1 station data. 155 

2.2 Data pre‑processing 156 

2.2.1 Quality control 157 

Data quality control is a crucial step to ensure the accuracy and reliability of datasets. 158 

By identifying and eliminating outliers, invalid data, and measurement errors, this 159 

process reduces the influence of observational biases, ensuring the consistency and 160 

integrity of the data. 161 

First, when updating station data, if a station has a data record exceeding 15 years, 162 

its new observations are subjected to quality control. Any anomaly: defined as the 163 

difference between the updated data and prior monthly mean—that exceeds five times 164 

the standard deviation is classified as an outlier and set to missing. 165 

Subsequently, quality control is performed on all station data during gridded‑data 166 

generation. This study follow the methods proposed by Lawrimore et al. (2011) and 167 

Menne et al. (2009) to implement the necessary quality control steps for C-LSAT 2.1 168 

station data. Number of data values excluded during the quality control procedure is 169 

shown in Table 1. 170 

1. Climatic outlier check: Stations with monthly records exceeding 10 years 171 

were selected, with the period from 1961 to 1990 as the climatology. The 172 

monthly climatological mean value was subtracted from the selected stations 173 

to calculate anomalies for each station. The standard deviation (STD) for each 174 

month during the climatology period was subsequently calculated. Any 175 
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anomaly exceeding five times the 𝑆𝑇𝐷  for the corresponding month was 176 

flagged as an outlier and excluded. 177 

2. Spatial consistency check: Based on Equation (1), the anomaly data were 178 

evaluated by examining all stations. For each station 𝑖 , all stations located 179 

within a 500 km radius were identified, up to a maximum of 20 neighboring 180 

stations (𝑛  ≤ 20). The mean (𝑋̅ ) and 𝑆𝑇𝐷  of the anomalies for these n+1 181 

stations were calculated. If the absolute value of the difference between the 182 

value at station 𝑖  and 𝑋̅  exceeded three times the 𝑆𝑇𝐷 , this value was 183 

classified as an outlier and removed. 184 

|𝑋𝑖 − 𝑋̅| > 3𝑆𝑇𝐷 (1) 185 

3. Internal consistency check: The Tmax, Tmin, and Tavg of station data were 186 

assessed. If Tavg was larger than Tmax or Tavg was smaller than Tmin, these 187 

values were identified as outliers and removed.  188 

Table 1. Quality control results for C-LSAT 2.1 station data (unit: station month). 189 

Steps 
Results of QC 

Tavg DTR 

First step (check for outliers) 13984 (0.11%) 19293 (0.20%) 

Second step (spatial consistency check) 38090 (0.31%) 12600 (0.13%) 

Third step (internal consistency check) 5061 (0.04%) 0 (0%) 

2.2.2 Homogenization 190 

Data homogenization is crucial for understanding climate change. Although its 191 

influence on a global or large scale may be limited, its impacts on local regions are 192 

often substantial (Peterson et al., 1998; Ribeiro et al., 2016). Homogenization removes 193 

data discontinuities caused by non-climatic factors such as station relocations, 194 

instrument changes, and environmental transformations (e.g., urbanization), ensuring 195 

that the data accurately reflects signals of climate change (Eccel et al., 2012; Jiao et al., 196 

2023). Homogenized data enhances reliability and reduces error propagation. 197 

The homogenization process of C-LSAT station data follows the work of Q. Xu et 198 

al. (2025). Using the method proposed by Peterson and Easterling (1994), a reference 199 

series was constructed by selecting 3–5 neighboring stations with correlation 200 

coefficients greater than 0.8 relative to the target station. Based on the spatial distances 201 

of these stations, a reference LSAT series was generated through a weighted average of 202 

first-order differences. Subsequently, the RHTest V4 software was used to detect and 203 
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correct discontinuities in the target series (X. L. Wang and Feng 2013). The PMTred 204 

algorithm (derived from the Penalized Maximal t-test, PMT) in RHTest V4 served as 205 

the primary algorithm to detect discontinuities in the target station's monthly average 206 

Tmax and Tmin series at a significance level of 5%. For any confirmed breakpoints, the 207 

differences between the target series and the reference series were uniformly allocated 208 

using the mean adjustment (X. L. Wang et al., 2008a, b). According to this procedure, 209 

726 breakpoints (in 420 stations) for the 25086 Tmax stations and 1276 breakpoints (in 210 

754 stations) for the 25083 Tmin stations of the C-LSAT station data were adjusted. 211 

The homogenized Tmax and Tmin data were then combined into the LSAT and DTR 212 

datasets (Table 2). 213 

Table 2. The number of breakpoints adjusted at each step of homogenization. 214 

Breaks Tmax Tmin 

One 244 440 

Two 106 195 

Three 48 67 

Four or more 22 52 

Total breaks 726 1276 

Total adjusted stations 420 754 

Total stations 25086 25083 

3 Update of C-LSAT 2.1 215 

Based on the C-LSAT 2.1 station data, this study applied the Climate Anomaly Method 216 

(CAM) for gridding, and reconstructed the gridded data with high and low-frequency 217 

component decomposition and empirical orthogonal telecorrelation (EOT) 218 

reconstruction methods (W. Sun et al., 2021), enhance the coverage of early-period grid 219 

data. Subsequently, observational constraints were applied to increase the reliability of 220 

the data, ultimately resulting in a high-coverage, high-accuracy C-LSAT 2.1 dataset (5° 221 

× 5°). 222 

Figure 2 shows a comparison of the LSAT anomaly time series among the updated 223 

C-LSAT 2.1, C-LSAT 2.0, and other LSAT datasets across global, Northern Hemisphere, 224 

and Southern Hemisphere regions. C‑LSAT 2.1 shows strong agreement with other 225 

LSAT datasets in capturing long-term warming trends, particularly the accelerated 226 

warming since the 1970s. The warming rates for C-LSAT 2.0 are 0.133 ± 0.014, 0.145 227 
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± 0.016, and 0.098 ± 0.011 °C decade-1 for the global, Northern Hemisphere, and 228 

Southern Hemisphere, respectively, while those for C-LSAT 2.1 are 0.131 ± 0.015, 229 

0.141 ± 0.017, and 0.101 ± 0.011 °C decade-1. The serial correlation of the time series 230 

has been taken into account in the calculation of trend uncertainties (Q. Li et al., 2021). 231 

In C-LSAT 2.1, the warming rates for the global, Northern Hemisphere, and Southern 232 

Hemisphere present slight changes in comparison to version 2.0. For the global, 233 

Northern Hemisphere, and Southern Hemisphere, C-LSAT 2.1 is higher than C-LSAT 234 

2.0 both before 1950 and after 2000 (particularly pronounced for the Southern 235 

Hemisphere). The increase before 1950 is primarily driven by improved data coverage, 236 

while changes in other periods may stem from the eliminating duplication process and 237 

updates to new data sources. These results suggest that C-LSAT 2.1 provides a more 238 

accurate representation of LSAT trends. 239 
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 240 

Figure 2. Time series of LSAT anomalies of C-LSAT 2.1 and other datasets from 241 

1901 to 2023. 242 

4 Development of C-LSAT HRv1 and C-LDTR HRv1 243 

Building upon Cheng et al. (2020), this study also uses the TPS and Adjusted Inverse 244 

Distance Weighted (AIDW) methods to interpolate the climatology and anomaly fields 245 
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of the C-LSAT 2.1 station data, ultimately generating the C-LSAT HRv1 and C-LDTR 246 

HRv1 datasets with a resolution of 0.5° × 0.5°. 247 

4.1 Interpolation and validation of the climatology field 248 

4.1.1 Interpolation and region division 249 

TPS interpolation was used to generate the climatology fields (1961–1990) of 250 

LSAT and DTR in this study. Originally proposed by Wahba (1990) and later optimized 251 

and improved by Hutchinson et al. (Hutchinson, 1991, 1995, 1998a, b; Hutchinson and 252 

Gessler, 1994), evolving into the partial TPS, which integrates covariate-dependent 253 

interpolation, extending the previous method that was limited to calculations based on 254 

independent variables. Based on the TPS, Hutchinson et al. designed and developed the 255 

software ANUSPLIN, which enables multivariable data interpolation. This software has 256 

been widely adopted for meteorological data interpolation. This study employed 257 

ANUSPLIN for climatology field interpolation. 258 

Due to the strong correlation between temperature and elevation, longitude, 259 

latitude, and elevation were selected as variables for interpolating LSAT and DTR 260 

climatology field. The elevation data used in this study was obtained from the 261 

ETOPO2022 published by NOAA (National Oceanic and Atmospheric Administration) 262 

(available at https://www.ncei.noaa.gov/products/etopo-global-relief-model). This 263 

dataset integrates topography, bathymetry, and coastline data from regional and global 264 

datasets, providing a comprehensive and high-resolution representation of the Earth's 265 

geophysical features. 266 

Because of the Earth's spherical shape, the TPS cannot provide a globally 267 

consistent surface interpolation. Thus, the globe was divided into regions for separate 268 

interpolation. This study refers to the global partitioning scheme from the CRU (New 269 

et al., 1999) and WorldClim2 (Fick and Hijmans, 2017) datasets, dividing the globe into 270 

20 regions for interpolation. The spatial distribution is shown in Fig. 3. In terms of 271 

station density, the highest density is observed around 40°N and 40°S, while the lowest 272 

density occurs at the poles and the equator. After interpolating the data for each region, 273 

the data from the 20 regions are merged into the global dataset. A known limitation of 274 

ANUSPLIN interpolation is the occurrence of larger errors near regional boundaries. 275 

To address this, when interpolating the 20 regions, the boundaries of each region are 276 

extended (by 5° latitudinally and 10° longitudinally). After interpolation, the extended 277 

areas are clipped, and then merged into the global dataset. This approach helps 278 
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minimize boundary-related errors of the dataset. 279 

 280 

Figure 3. Spatial distribution of meteorological observational stations for LSAT (a) 281 

and DTR (b), along with the division of the 20 global interpolation regions. 282 

4.1.2 Validation of the climatology field 283 

Longitude and latitude are typically used as independent variables for 284 

meteorological interpolation. However, whether elevation should be treated as an 285 

independent variable or a covariate demands careful evaluation. There are three main 286 

indicators for evaluating the interpolation accuracy of the climatology field: the square 287 

root of generalized cross-validation (RTGCV), mean square residual (RTMSR), and the 288 

data error variance estimate (RTVAR). RTGCV quantifies the overall error of data 289 

fitting during the cross-validation process, measuring the model's generalization 290 

capability. RTMSR reflects how well the model fits the input data, and RTVAR 291 

evaluates the uncertainty in the data. Another indicator, Signal to Noise Ratio (SNR), 292 

is typically used to indicate the complexity of the fitted surface. It represents the ratio 293 

between the Signal and the Error value in the ANUSPLIN software output file. This 294 

value generally needs to be less than 1 to indicate that the chosen interpolation 295 
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experiment is feasible. 296 

Parameter schemes (Table 3) and their corresponding results (Table 4, Fig. 4–5) are 297 

presented below. Overall, DTR interpolation errors exceed those for LSAT, and 298 

interpolation errors (not included in the Table 4) increase markedly at spline order 4 299 

compared to orders 2 and 3. As a result, all order 4 experiments (A3 and B3) are 300 

excluded. For the Antarctic (region 20), the four error metrics of LSAT demonstrated 301 

substantial increases, indicating high uncertainty in this area. This is attributed to the 302 

notably low and uneven station distributed for the Antarctic. Considering the increased 303 

error mentioned before, both LSAT and DTR for the Antarctic are excluded from this 304 

study. Thus, the subsequent contents of this study exclude the Antarctic (region 20). 305 

After excluding region 20, SNR, RTGCV, RTMSR, and RTVAR are compared across 306 

the remaining 19 regions. For LSAT, Experiment B2 demonstrates optimal performance; 307 

however, with respect to the DTR, although experiment B2 achieves the highest overall 308 

effectiveness, it produces negative values in some regions and is therefore excluded, 309 

leading to the adoption of experiment B1 (Table 4). 310 

Table 3. Interpolation schemes for climatology field (Lat: latitude; Lon: longitude; 311 

Ele: elevation). 312 

Experiments Independent spline variables Covariates Order of spline 

A1 Lat, Lon Ele 2 

A2 Lat, Lon Ele 3 

A3 Lat, Lon Ele 4 

B1 Lat, Lon, Ele / 2 

B2 Lat, Lon, Ele / 3 

B3 Lat, Lon, Ele / 4 

313 



15 

 

Table 4. Performance metrics for climatology interpolation schemes 314 

Variables Experiments SNR RTGCV RTMSR RTVAR 

LSAT 

A1 0.41 0.98 0.70 0.83 

A2 0.28 1.00 0.79 0.89 

A3 0.19 1.06 0.90 0.97 

B1 0.27 0.98 0.77 0.87 

B2 0.37 0.91 0.68 0.78 

B3 0.34 0.91 0.68 0.78 

DTR 

A1 0.37 1.65 1.23 1.42 

A2 0.31 1.68 1.31 1.48 

A3 0.23 1.72 1.43 1.56 

B1 0.42 1.65 1.21 1.41 

B2 0.36 1.62 1.22 1.40 

B3 0.34 1.63 1.24 1.42 

 315 

Figure 4. Cross-validation results for LSAT climatology field. 316 
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 317 

Figure 5. Cross-validation results for DTR climatology field. 318 

Based on the cross-validation results, Mean Absolute Error (MAE), Root Mean 319 

Squared Error (RMSE), and distance between indices of simulation and observation 320 

(DISO) are computed for C-LSAT HRv1 and C-LDTR HRv1 climatology fields 321 

evaluation (Fig. 6). DISO is a comprehensive performance evaluating index that 322 

combines the correlation coefficient (r), absolute error (AE), and RMSE, and the closer 323 

its value is to 0, the better the agreement between the simulation and observation (Hu 324 

et al., 2019, 2022; Zhou et al., 2021). For C-LSAT HRv1, MAE, RMSE and DISO for 325 

the Southern Hemisphere fall below the global means, whereas Northern Hemisphere 326 

values exceed the global means. In contrast, C‑LDTR HRv1 MAE and RMSE are 327 

higher for the Southern Hemisphere than globally. However, the comprehensive index 328 

DISO confirms that the Southern Hemispheric overall performance still surpasses that 329 

of both the Northern Hemisphere and the global average. For high‑altitude and complex 330 

terrain regions, the Tibetan Plateau is selected for validation. The results indicate that 331 

all LSAT indices in this region surpass their global and hemispheric levels, whereas 332 

DTR performance remains consistent (Fig. S1). This discrepancy can be attributed to a 333 

combination of factors, including a limited observational network, significant 334 

topographic variations, land use and so on. To improve data reliability, future work 335 

should refine spatial resolution and optimize variable selection. 336 
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 337 

Figure 6. MAE, RMSE, and DISO validation results of the climatology fields for C-338 

LSAT HRv1 (a–c) and C-LDTR HRv1 (d–f). 339 

4.2 Interpolation and validation of the anomaly field 340 

In this study, AIDW (Cheng et al., 2020) was employed for spatial interpolation of 341 

the monthly anomalies from 1901 to 2023. 342 

IDW assumes that spatially neighboring data points exhibit higher spatial 343 

autocorrelation, and the closer a sample point is to the prediction point, the greater its 344 

influence on the predicted value. It assigns weights to sample points based on the 345 

inverse of the distance and then calculates the weighted average of the values from each 346 

sample point. The equation is as follows: 347 

 𝑇 = ∑ 𝑊𝑖𝑇𝑖

𝑛

𝑖=1
(2) 348 

𝑊𝑖 =  
𝑑𝑖

−𝛼

∑ 𝑑𝑖
−𝛼𝑛

𝑖=1

 (3) 349 

 𝑇 represents the value at the prediction point, 𝑇𝑖 is the value at a given sample 350 

point, 𝑊𝑖 is the weight of the sample point, 𝑛 is the number of selected sample points, 351 

𝑑𝑖 is the distance from the sample point to the prediction point, and 𝛼 is the parameter 352 

that controls how the weight decays with distance. When using traditional IDW 353 

interpolation, the weight exhibits rapid increase, even reaching infinity, as the distance 354 

between two points approaches zero. This leads to the sample point having an 355 

excessively high weight, which distorts the final estimated value. Building upon the 356 

ADW method (New et al., 2000), this study modifies the weight calculation method of 357 
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the original IDW. The equation is as follows: 358 

𝑊𝑖 =  
(𝑒𝑑𝑖 𝑑0⁄ )

−𝛼

∑ (𝑒𝑑𝑖 𝑑0⁄ )−𝛼𝑛
𝑖=1

(4) 359 

 𝑑0 is the decay distance. Following the CRU05 (New et al., 2000), we adopted 360 

values of 1200 km for LSAT interpolation and 750 km for DTR interpolation. Empirical 361 

testing revealed that the optimal results were achieved when 𝑛 = 6 and 𝛼 = 4 (Cheng 362 

et al., 2020). The AIDW method introduces an exponential decay relationship between 363 

distance and weight, ensuring that the maximum weight does not exceed 1. The decay 364 

curve is moderated, leading to a more reasonable distribution of weights. 365 

 Figure 7 demonstrates that the trends of LSAT and DTR exhibit strong coherence, 366 

both showing initial declines, reaching a minimum during the 1960–1990 period, and 367 

rebounding thereafter. This is correlated with the number of stations, and their trends 368 

are essentially opposite. The trend for the Northern Hemisphere is largely consistent 369 

with the global trend. For LSAT, the indices in Southern Hemisphere are lower than the 370 

Northern Hemisphere and global values from 1901 to 1960, but become slightly higher 371 

after 1960. Regarding DTR, the variability of MAE and RMSE for the Southern 372 

Hemisphere are significantly higher than those for the Northern Hemisphere and globe. 373 

During the 1901–1960 period, the global and hemispheric levels are almost identical, 374 

but after 1960, the MAE and RMSE for the Southern Hemisphere remain consistently 375 

higher than those for the Northern Hemisphere and globe. Furthermore, according to 376 

DISO, the Southern Hemisphere outperforms both the global and Northern 377 

Hemispheric averages. Over the Tibetan Plateau, the LSAT and DTR validation results 378 

are essentially comparable to global and hemispheric values (Fig. S2).379 
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 380 

Figure 7. MAE, RMSE, and DISO validation results of the anomaly fields for C-381 

LSAT HRv1 (a–c) and C-LDTR HRv1 (d–f). 382 

5 Spatiotemporal analysis of global LSAT and DTR 383 

5.1 C-LSAT HRv1 climatology field 384 

Performance of the C‑LSAT HRv1 climatology field is evaluated for the global, 385 

Northern Hemisphere, and Southern Hemisphere areas. The highest LSAT values for 386 

the global and Northern Hemisphere means are observed in July, reaching 20.3 °C and 387 

21.3 °C, respectively, while the lowest are recorded in January at 5.3 °C and -1.4 °C. 388 

For the Southern Hemisphere, LSAT peaks in January (24.6 °C) and reaches a minimum 389 

in July (17.4 °C) (Fig. 8). Excluding Antarctic data reduces Southern Hemisphere land 390 

area, thereby reducing its contribution to the global LSAT average. Spatially, LSAT 391 

shows a dependency on both latitude and elevation, with significantly lower in high-392 

latitude regions (such as Northern North America and Northern Asia) and high-393 

elevation areas (e.g., the Tibetan Plateau and the Andes) compared to other regions (Fig. 394 

9). 395 
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 396 

Figure 8. The LSAT for C-LSAT HRv1 climatology field. 397 

 398 

Figure 9. Spatial distribution of the LSAT for C-LSAT HRv1 climatology field. 399 

5.2 C-LSAT HRv1 anomaly field 400 

5.2.1 Global and hemispheric scales 401 

The LSAT anomaly variations of C-LSAT HRv1 and C-LSAT 2.1 from 1901 to 402 

2023 for the globe, Northern Hemisphere, and Southern Hemisphere are presented in 403 

Fig. 10. The anomaly trends obtained in C-LSAT HRv1 are largely consistent with C-404 
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LSAT 2.1, with warming rates of 0.132 ± 0.015, 0.140 ± 0.017, and 0.106 ± 0.011 °C 405 

decade-1 for the globe, Northern Hemisphere, and Southern Hemisphere, respectively. 406 

The LSAT change trends for the globe and Northern Hemisphere demonstrate 407 

comparable patterns, with warming predominantly concentrated in two periods: the 408 

1900–1930s and the 1970–2020s, with accelerated warming in the latter period. A slight 409 

cooling trend occurs in the middle period, from the 1940s to the 1960s. The warming 410 

for the Southern Hemisphere is relatively slower and continues throughout the entire 411 

1901–2023 period without experiencing the cooling trend observed for the global and 412 

Northern Hemisphere during the 1940–1960s. Its warming rate also undergoes a 413 

pronounced acceleration after the 1970s. 414 

Annual warming rates for C‑LSAT HRv1 (Table 5) are lowest for 1901–1950, rise 415 

sharply after 1951 to peak in 1979, and then decline moderately by 1998. This 416 

slowdown corresponds to the 1998–2014 warming hiatus, although no cooling is 417 

detected, the warming rate is reduced. 418 

Spatially, LSAT change trend indicates continuous warming globally from 1901 to 419 

2023, with the fastest warming occurring in regions such as Northern North America, 420 

Eastern South America, Eastern Europe, and Eastern Asia (Fig. 11). Regarding different 421 

periods, the fastest warming was observed between 1998–2023 (particularly in areas 422 

north of 60° N), while the slowest warming occurred during 1901–1950 (Fig. 12). 423 
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 424 

Figure 10. The LSAT anomalies for the globe (a), Northern Hemisphere (b), and 425 

Southern Hemisphere (c) from 1901 to 2023 for C-LSAT HRv1 and C-LSAT 2.1. 426 
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 427 

Figure 11. Spatial distribution of the LSAT change rate for C-LSAT HRv1 anomaly 428 

field from 1901 to 2023. 429 

 430 

Figure 12. Spatial distribution of the LSAT change rates for C-LSAT HRv1 anomaly 431 

field during 1901–1950 (a), 1951–2023 (b), 1979–2023 (c), and 1998–2023 (d). 432 
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Table 5. The LSAT change rates and their 95% confidence intervals (“*”) for C-LSAT 433 

HRv1 over five periods for the globe, Northern Hemisphere, and Southern 434 

Hemisphere (°C decade-1). 435 

 1901–1950 1901–2023 1951–2023 1979–2023 1998–2023 

Global 0.098 ± 0.033* 0.132 ± 0.015* 0.243 ± 0.026* 0.330 ± 0.041* 0.307 ± 0.086* 

Northern 

Hemisphere 
0.110 ± 0.037* 0.140 ± 0.017* 0.266 ± 0.030* 0.373 ± 0.047* 0.335 ± 0.091* 

Southern 

Hemisphere 
0.064 ± 0.034* 0.106 ± 0.011* 0.178 ± 0.022* 0.207 ± 0.041* 0.226 ± 0.110* 

5.2.2 Continental scale 436 

At the continental scale, both C-LSAT HRv1 and C-LSAT 2.1 show a warming 437 

trend across all six continental domains since the early 20th century, with this trend 438 

intensified after the 1970s and manifesting regional differences (Fig. 13). The warming 439 

is pronounced in Asia, Europe, and North America, whereas it remains comparatively 440 

moderated in South America, Africa, and Oceania, reflecting the different responses of 441 

the climate system to global warming. Both datasets are consistent in their long-term 442 

trends; however, differences in short-term fluctuations may stem from variations in 443 

spatial resolution and processing methods. 444 

 445 

Figure 13. The LSAT anomalies for C-LSAT HRv1 and C-LSAT 2.1 in different 446 

continents from 1901 to 2023. 447 
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5.3 C-LDTR HRv1 climatology field 448 

Figure 14 shows that the monthly average DTR of the C-LDTR HRv1 climatology 449 

field undergoes a seasonal inflection in May for the global mean, Northern Hemisphere, 450 

and Southern Hemisphere. The global DTR reaches a maximum in April (11.9 °C) and 451 

a minimum in December (10.9 °C). For the Northern Hemisphere, the DTR peaks in 452 

March (12.2 °C) and reaches its minimum in November (10.7 °C), while for the 453 

Southern Hemisphere, the peak occurs in August (13.0 °C) and the minimum in 454 

February (11.0 °C). The Southern Hemisphere shows the largest DTR variation, 455 

significantly larger than that of the global mean and Northern Hemispheres, primarily 456 

attributed to its smaller land area, resulting in higher sensitivity. This difference reflects 457 

the combined impact of solar radiation, surface characteristics, and seasonal changes 458 

on the climate system. Spatially, DTR is influenced by elevation, land use, and land 459 

cover. DTR is elevated over high‑elevation regions (mountains and plateaus), and in 460 

arid areas such as deserts (Fig. 15). 461 

 462 

Figure 14. The DTR for C-LDTR HRv1 climatology field. 463 
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 464 

Figure 15. Spatial distribution of the DTR for C-LDTR HRv1 climatology field. 465 

5.4 C-LDTR HRv1 anomaly field 466 

5.4.1 Global and hemispheric scales 467 

The DTR anomaly changes of C-LDTR HRv1 for the global mean, Northern 468 

Hemisphere, and Southern Hemisphere from 1901 to 2023 are presented in Fig. 16. 469 

During 1950–2010, C-LDTR HRv1 remains highly consistent with C-LDTR, with 470 

change rates of -0.031 ± 0.006, -0.038 ± 0.006, and -0.011 ± 0.011 °C decade-1 for the 471 

globe, Northern Hemisphere, and Southern Hemisphere, respectively. However, there 472 

are notable discrepancies before 1950 and after 2010. From 1901 to 1950, the station 473 

number is limited, which resulted in greater uncertainty. Consequently, the differences 474 

between the two datasets are more pronounced. This is particularly apparent for the 475 

Southern Hemisphere, where the DTR fluctuations and the differences between the two 476 

datasets are significantly larger than those for the globe and Northern Hemisphere. After 477 

2010, the reduction in DTR (or Tmax and Tmin) station data lead to the differences 478 

between C-LDTR HRv1 and C-LDTR, which is further reflected in other DTR datasets 479 

(Q. Xu et al., 2025). The DTR is stable during the 1900–1940s and 1980–1990s, 480 

declines during the 1950–1970s, and shows a slight increase after the 2000s. 481 

Table 6 shows the DTR change rates of C-LDTR HRv1 for different periods. The 482 

change rate is stable from 1901 to 1950, then initiates a decline in 1951, stabilizes again 483 

in 1979, and peaks at 1998. The DTR change rates for the Southern Hemisphere are 484 

more pronounced than these for the globe and Northern Hemisphere after 1979. 485 
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It is noteworthy that there is no obvious spatial pattern in the changes in DTR. 486 

During the period of most significant change: 1998–2023, the regions with the most 487 

rapid DTR increases are North America, Europe, and Oceania, whereas other regions, 488 

including Northeast Africa, South Asia, and the Middle East, demonstrate a pronounced 489 

downward trend (Fig. 17–18). 490 

 491 

Figure 16. The DTR anomalies for the globe (a), Northern Hemisphere (b), and 492 
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Southern Hemisphere (c) from 1901 to 2023 for C-LDTR HRv1 and C-LDTR. 493 

 494 

Figure 17. Spatial distribution of the DTR change rate for C-LDTR HRv1 anomaly 495 

field from 1901 to 2023. 496 

 497 

Figure 18. Spatial distribution of the DTR change rates for C-LDTR HRv1 anomaly 498 

field during 1901–1950 (a), 1951–2023 (b), 1979–2023 (c), and 1998–2023 (d). 499 
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Table 6. The DTR change rates and their 95% confidence intervals (“*”) for C-LDTR 500 

HRv1 over five periods for the globe, Northern Hemisphere, and Southern 501 

Hemisphere (°C decade-1). 502 

 1901–1950 1901–2023 1951–2023 1979–2023 1998–2023 

Global 0.005 ± 0.022 -0.031 ± 0.006* -0.022 ± 0.013* 0.045 ± 0.018* 0.097 ± 0.032* 

Northern 

Hemisphere 
0.008 ± 0.021 -0.038 ± 0.006* -0.031 ± 0.013* 0.032 ± 0.020* 0.087 ± 0.035* 

Southern 

Hemisphere 
-0.003 ± 0.049 -0.011 ± 0.011 0.001 ± 0.022 0.081 ± 0.034* 0.125 ± 0.085* 

5.4.2 Continental scale 503 

Based on the C-LDTR HRv1 and C-LDTR datasets, Fig. 19 illustrates the complex 504 

variation characteristics and significant regional differences of DTR across six 505 

continents between 1901 and 2023. DTR anomalies in Asia, Africa, and South America 506 

show the downward trend, whereas the changes in Europe, North America, and Oceania 507 

remain relatively stable. Europe demonstrates a general upward trend throughout the 508 

entire 1901–2023 period, while DTR in the remaining five continents declines before 509 

the 1970s but rebounds after 2010. 510 

 511 

Figure 19. The DTR anomalies for C-LDTR HRv1 and C-LDTR in different 512 

continents from 1901 to 2023. 513 
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6 Data availability 514 

The C-LSAT 2.1 dataset is publicly available on the website at 515 

https://doi.org/10.6084/m9.figshare.28255394.v1 (Wei et al., 2025a). The C-LSAT 516 

HRv1 can be downloaded at https://doi.org/10.6084/m9.figshare.28255505.v2 (Wei et 517 

al., 2025c). The C-LDTR HRv1 can be downloaded at 518 

https://doi.org/10.6084/m9.figshare.28255568.v2 (Wei et al., 2025b). They can also be 519 

accessed at http://www.gwpu.net (last accessed: July 2025) for free. 520 

7 Conclusions 521 

This study provides a comprehensive overview of the updates made to the C-LSAT 2.1 522 

station data and grid data (5° × 5°). On this basis, the high-resolution (0.5° × 0.5°) LSAT 523 

(C-LSAT HRv1) and DTR (C-LDTR HRv1) datasets are developed. The key 524 

characteristics of the C-LSAT 2.1 station data, C-LSAT 2.1, C-LSAT HRv1, and C-525 

LDTR HRv1 datasets are summarized below: 526 

 1. C-LSAT 2.1 station data supplemented and integrated meteorological 527 

observational data from various sources, resulting in a substantial enhancement in 528 

global station coverage. After filtering based on the reference period (1961–1990), the 529 

number of stations for LSAT and DTR is 13746 and 11900, respectively. The number 530 

of stations peaks in the 1970–1980s, followed by a slight decline. 531 

 2. The updated station data was utilized for gridded interpolation and EOT 532 

reconstruction (C-LSAT 2.1). Compared to the 2.0 version, the LSAT change trends at 533 

global and hemispheric scales exhibit no significant change in C-LSAT 2.1. 534 

 3. Comparative analysis of C-LSAT HRv1 with other LSAT datasets. The results 535 

show minor discrepancies in the period from 1901 to 1950, but the trends thereafter 536 

demonstrate strong coherence. During the climatology period (1961–1990), the highest 537 

LSAT in C-LSAT HRv1 are 20.3 °C (July) for globe, 21.3 °C (July) for Northern 538 

Hemisphere, and 24.6 °C (January) for Southern Hemisphere. The lowest LSAT are 539 

5.3 °C (January), -1.4 °C (January) , and 17.4 °C (July) for globe, Northern Hemisphere, 540 

and Southern Hemisphere. The 1901–2023 warming rates for C-LSAT HRv1 are 0.132 541 

± 0.015 °C decade-1 globally, 0.140 ± 0.017 °C decade-1 for the Northern Hemisphere, 542 

and 0.106 ± 0.011 °C decade-1 for the Southern Hemisphere. 543 

 4. The C-LDTR HRv1 dataset differs from other DTR datasets before 1950 and 544 

after 2010, especially for the Southern Hemisphere. The monthly variation of the DTR 545 

https://doi.org/10.6084/m9.figshare.28255394.v1
https://doi.org/10.6084/m9.figshare.28255505.v1
https://doi.org/10.6084/m9.figshare.28255568.v1
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during the climatology period differs significantly from LSAT, with the highest DTR 546 

reaching 11.9 °C (April) globally, 12.2 °C (March) for the Northern Hemisphere, and 547 

13.0 °C (August) for the Southern Hemisphere. Whereas the lowest values are 10.9 °C 548 

(December) globally, 10.7 °C (November) for the Northern Hemisphere, and 11.0 °C 549 

(February) for the Southern Hemisphere. Over 1901–2023, the C-LDTR HRv1 shows 550 

the change rates of -0.031 ± 0.006 °C decade-1 globally, -0.038 ± 0.006 °C decade-1 for 551 

the Northern Hemisphere, and -0.011 ± 0.011 °C decade-1 for the Southern Hemisphere. 552 

 Overall, C-LSAT HRv1 exhibits high consistency with established LSAT datasets. 553 

In contrast, the differences observed in C-LDTR HRv1 are primarily due to limited 554 

station availability in the early period and a reduction in Tmax/Tmin data in recent years. 555 
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