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Abstract. Dissolved oxygen (DO) serves as an essential indicator of marine ecosystem health. However, sparse and uneven 

observations have limited our ability to characterize its full spatiotemporal variability, underscoring the continued need for 

long-term, high-resolution, and physically consistent global DO datasets. Here, we present GEOXYGEN, a global dataset of 

monthly DO fields at 0.5° × 0.5° resolution spanning 1960–2024 and depths from the surface to 5500 m (Wang et al., 2025, 

https://doi.org/10.5281/zenodo.17615657). GEOXYGEN is generated with a hierarchical modeling framework that accounts 15 

for regional and vertical heterogeneity. By integrating physical and biogeochemical predictors with an adaptive feature-

selection strategy, GEOXYGEN achieves high predictive accuracy across all depth layers on an independent out-of-time test 

(R² > 0.92). The reconstructed spatial patterns align closely with the World Ocean Atlas 2023 climatology, and in subsurface 

and deep waters, GEOXYGEN demonstrates superior generalization relative to existing data-driven products. A sensitivity 

analysis further reveals that including coastal data in model training increases basin-wide uncertainty by approximately 7.5%, 20 

underscoring that current observing systems remain insufficient to reliably resolve nearshore DO dynamics. GEOXYGEN 

provides a consistent, physically informed baseline for analyzing global and regional variability of DO. It also offers a valuable 

benchmark for evaluating and improving the representation of DO in climate and Earth system models and can support future 

studies on long-term deoxygenation trends and regional hotspots. 
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1 Introduction 

Ocean dissolved oxygen (DO) concentration serves as an essential indicator of marine ecosystem health and biogeochemical 

status (Robinson, 2019; Grégoire et al., 2023). Beyond its ecological significance, DO plays a critical role in modulating 

climate-relevant biogeochemical feedbacks in the global carbon cycle (Gregoire et al., 2021; Oschlies, 2021; Yamaguchi et 

al., 2024). Observations over recent decades reveal marked spatiotemporal variability in DO, accompanied by a clear trend 30 

toward deoxygenation (Ito et al., 2017), particularly within tropical oxygen minimum zones (OMZs) and in subsurface waters 

at mid to high latitudes (Bopp et al., 2013; Li et al., 2020). This loss of oxygen is projected to persist under continued global 

warming (Gong et al., 2021; Zhou et al., 2022), with growing consequences for marine habitats, fisheries, and ecosystem 

services (Breitburg et al., 2018; Kim et al., 2023; Chen et al., 2024; Humphries et al., 2024). 

Sparse and heterogeneous observational coverage hampers an accurate estimate of the global oxygen inventory and the 35 

quantification of its long-term changes. A seminal study by Schmidtko et al. (2017) estimates a 2% decline (4.8 ± 2.1 Pmol) 

in the global ocean oxygen inventory from 1960 to 2009. Yet, the accuracy of such an estimate depends heavily on the 

observations used. Historically, DO measurements have been sourced from ship-based campaigns compiled in global databases 

such as the World Ocean Database (WOD) and the Global Ocean Data Analysis Project (GLODAP), which exhibit strong 

spatial and temporal sampling biases (Garcia et al., 1998). The resulting unevenness in data availability across time, space, 40 

and quality standards, especially in coastal waters, complicates robust quantification of deoxygenation rates, particularly in 

dynamic and vulnerable systems such as coastal shelves and polar oceans. These limitations underscore the pressing need for 

a spatially continuous, long-term, and accurate global DO reconstruction. 

Multiple approaches have been developed to address these observational gaps. Earth system models (ESMs) simulate four-

dimensional DO fields continuously but often suffer from systematic biases and incomplete representation of multi-scale 45 

processes (Cocco et al., 2013; Oschlies et al., 2018). Limited observational constraints further compound uncertainties in model 

evaluation and in projections. Traditional statistical interpolation methods can reproduce mean climatologies but frequently 

underestimate trends in data-sparse regions and fail to capture seasonal to interannual variability (Ito et al., 2024b; Gouretski 

et al., 2024b). In recent years, data-driven machine learning (ML) has emerged as a promising alternative, leveraging 

relationships between DO and physical or biogeochemical covariates to reconstruct continuous four-dimensional fields from 50 

sparse in situ measurements (Sharp et al., 2023; Garabaghi et al., 2023; Huang et al., 2023; Wang et al., 2024; Lu et al., 2024). 

In principle, ML can recover local variability and identify deoxygenation risk without relying on computationally expensive 

coupled simulations. 

Despite this potential, several methodological challenges remain. First, many existing ML reconstructions employ a single 

model trained on global-ocean data, which struggles to represent regional variations in the dominant physical–biogeochemical 55 

controls on DO as well as the spatial heterogeneity of processes across biogeochemical provinces (Garabaghi et al., 2023). 
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This global approach tends to blur contrasts between water-mass regimes and degrade skill in dynamically distinct regions 

such as oxygen minimum zones and boundary currents. Second, a common workflow is to first reconstruct DO at scattered 

profile locations and then interpolate these point estimates onto a regular grid, often using a limited set of predictors such as 

temperature and salinity (Sharp et al., 2023; Wang et al., 2024; Liu et al., 2025). In data-sparse regions, this two-step procedure 60 

encourages extrapolation, propagates local errors, and can generate spurious fine-scale structure that is not supported by the 

underlying observations, particularly near sharp DO gradients and in historically undersampled basins. Third, training models 

directly on raw profiles amplifies sampling biases: autonomous platforms such as Argo repeatedly sample specific regions and 

depth ranges, whereas historical ship-based surveys are concentrated along cruise tracks (Huang et al., 2023; Lu et al., 2024). 

Without explicit rebalancing or weighting, ML models place disproportionate emphasis on well-observed areas and generalize 65 

poorly elsewhere, leading to reconstructions that systematically underrepresent variability and trends in data-poor regions. 

At the dataset level, available ML-based global DO products, such as GOBAI-O₂ (Sharp et al., 2023), G4D-DOC (Xue et al., 

2024), and ML4O₂ (Ito et al., 2024a), represent important advances, providing monthly gridded DO fields at 1° resolution over 

multi-year to multi-decadal periods and resolving much of the upper and intermediate ocean. However, they are generally 

limited either to the Argo era or to depths shallower than about 1000–2000 m. To our knowledge, there is currently no single 70 

observation-based product that combines pre-Argo coverage from the 1960s, full-depth global fields, and sub-degree horizontal 

resolution. 

To address these methodological and dataset-level limitations, we generated GEOXYGEN, a monthly global DO dataset at 

0.5° × 0.5° resolution on 187 depth levels from 1960 to 2024 (Wang et al., 2025, https://doi.org/10.5281/zenodo.17615657). 

The dataset is generated by combining a global compilation of in situ DO profiles with objectively analyzed temperature–75 

salinity fields and related sea-surface environmental variables, and by learning their relationships with DO through a regionally 

structured, depth-aware, and adaptively constrained machine-learning framework. Our approach explicitly accounts for strong 

spatiotemporal heterogeneity by partitioning the ocean into ecogeographical macro-regions and training separate submodels 

for different depth layers. Within each region–depth unit, we adaptively select predictive features from a suite of variables 

including temperature, salinity, oxygen saturation, physical indicators, carbonate-system parameters, and bio-optical properties, 80 

thereby ensuring physical interpretability while minimizing redundancy. To mitigate sampling bias and discontinuities, we 

implement inverse-density weighting, year-grouped cross-validation, and cross-boundary fusion techniques. The resulting 

GEOXYGEN product provides a consistent, long-term, and spatially complete representation of global DO suitable for 

quantifying global and regional deoxygenation, diagnosing underlying drivers, and evaluating Earth system and 

biogeochemical models. 85 
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2 Data  

2.1 In situ oxygen observations 

To support a data-driven reconstruction of dissolved oxygen (DO), we compiled a global collection of in situ measurements 90 

by integrating six major international data sources: the CLIVAR and Carbon Hydrographic Data Office (CCHDO), the Global 

Ocean Data Analysis Project (GLODAP), the GEOTRACES Intermediate Data Product 2021 (IDP2021), Biogeochemical 

Argo (BGC-Argo), the World Ocean Database 2023 (WOD23; Mishonov et al., 2024), and the OceanSITES fixed-point 

observatory network. This compilation spans the period 1950–2024 and includes millions of DO profiles collected via bottle 

casts (OSD), Conductivity–Temperature–Depth (CTD) profilers, and Argo floats. 95 

 

Figure 1: Global distribution and temporal coverage of DO profiles. (a) Changes in the number of profiles from major data sources 

during 1950–2024. (b–c) Spatial distribution of decadal-mean profile counts for 1960–1980 and 2000–2020, computed on a 1° × 1° 

grid, showing a transition from predominantly Northern Hemisphere sampling to much denser coverage in the Southern 

Hemisphere. The color bar indicates the decadal-mean number of profiles per grid cell (log scale). 100 

To ensure dataset consistency, we implemented a multi-stage quality-control (QC) procedure. First, we standardized formats 

and units across sources and retained only measurements flagged as “good/probably good.” Second, we removed duplicates 

from different sources on the same date and at the same location with vertical separation less than 1 m. Third, we applied a 

physiologically plausible DO threshold of 0–600 µmol kg⁻¹ to exclude outliers. Although differences in QC protocols and 

metadata conventions across datasets may introduce cross-source biases (Gregoire et al., 2021), prior assessments have 105 

https://doi.org/10.5194/essd-2025-699
Preprint. Discussion started: 1 December 2025
c© Author(s) 2025. CC BY 4.0 License.



5 
 

indicated no significant systematic offsets between Winkler-calibrated high-accuracy data and sensor measurements at the 

global scale  (Schmidtko et al., 2017). Therefore, we did not apply cross-source corrections. Instead, we focused on local 

outlier detection at each standard depth level, whereby within each 0.5° × 0.5° grid cell and a ±10-day time window, 

observations deviating by more than 3σ from the local mean were excluded. Across depth levels, removal rates range from 0 

to 0.105%, with most levels below 0.08%, indicating that only a very small fraction of the quality-controlled observations was 110 

flagged as outliers. 

Following QC, the final observational archive for 1950–2024 comprises approximately 1.4 million DO profiles (Fig. 1a). This 

full 1950–2024 record is used for model training and evaluation, whereas the reconstructed DO fields are produced over 1960–

2024. The OSD, CTD, and Argo collectively account for ~91.15% of all profiles. Vertical sampling distribution has evolved 

with technological advances: OSD dominates in surface waters (~80% above 100 m) but declines to less than 10% by 500 m, 115 

whereas Argo represents over half of all profiles below 500 m and is the primary source in the mesopelagic layer. This shift 

reflects broader observational trends: discrete bottle sampling prevailed through the 1960s, CTD profiling expanded in the 

1970s–1990s through programs such as GLODAP and CCHDO, and autonomous float observations increased by an order of 

magnitude after 2005. By 2010, Argo became the dominant platform in the open ocean. 

Spatial coverage has shifted from a strongly Northern Hemisphere bias to a more Southern Hemisphere focus, but remains 120 

highly uneven (Fig.  1b–c). From 1960 to 1980, sampling was concentrated along ship tracks in the Northern Hemisphere, 

with limited data in the Southern Hemisphere and basin interiors. Quantitatively, analysis of our profile dataset shows that the 

number of Southern Hemisphere profiles increased from roughly one quarter of the Northern Hemisphere count in 1960–1980 

to about 2.4 times the Northern Hemisphere count in 2000–2020, reflecting a pronounced shift of observing effort into the 

Southern Hemisphere. Since 2000, autonomous platforms have substantially improved coverage across the Southern Ocean 125 

and the open ocean, partly alleviating the historical Southern Hemisphere undersampling. Nevertheless, marginal seas and 

high-latitude ice-covered regions remain undersampled. In our reconstruction approach, we mitigate these biases through 

regionalized modeling, gridding to standard depth levels, and inverse-density weighting. 

2.2 Physical–biogeochemical variables 

Accurately predicting ocean deoxygenation requires denser, longer DO observations, and drivers that characterize physical 130 

transport and cross-scale biogeochemical processes (Oschlies et al., 2018). To meet this need, we complement objectively 

analyzed temperature–salinity fields with a curated suite of sea-surface environmental variables (SSEVs), providing physically 

consistent and process-informed predictors for DO reconstruction (Table 1). 

We derive three-dimensional temperature and salinity fields from the Coriolis Ocean Dataset for Reanalysis (CORA) (Szekely 

et al., 2025), a CMEMS objective analysis that compiles in situ temperature and salinity using the ISAS objective-mapping 135 

system, integrating observations from ships, Argo floats, and other in situ platforms. This dataset undergoes delayed-mode 
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quality control to ensure long-term stability and global coherence. Using the TEOS-10 standard, we further calculate oxygen 

saturation (O₂_sat) from CORA temperature and salinity data (IOC, 2010); its deviation from observed DO reflects biological 

respiration and physical mixing. 

In parallel, we assemble SSEVs spanning thermodynamic, dynamical, bio-optical, and carbon-chemistry processes, supporting 140 

data-driven reconstruction (Shao et al., 2024; Ma et al., 2025). Wind vectors (zonal and meridional components, U and V) are 

taken from NASA’s Cross-Calibrated Multi-Platform (CCMP) product (Mears et al., 2022). Mixed-layer depth (MLD) is 

obtained from the CMEMS Multi-Observation Global Ocean 3D product (Guinehut et al., 2012). Dynamical variables include 

sea surface height (SSH) and eddy kinetic energy (EKE), both derived from AVISO satellite altimetry (Hauser et al., 2020). 

Bio-optical variables comprise photosynthetically active radiation (PAR) and chlorophyll a (Chl-a) from NASA Level-145 

3/Level-4 ocean-color products (NASA Ocean Biology Processing Group, 2018). Carbon-chemistry variables include 

dissolved inorganic carbon (DIC), total alkalinity, pH, sea surface partial pressure of CO₂ (pCO₂), and CO₂ flux, all obtained 

from the CMEMS Surface Ocean Carbon Fields product (Chau et al., 2022; Chau et al., 2024). All variables were last accessed 

in March 2025. 

For consistency across sources, we regridded each variable to a uniform 0.5° × 0.5° grid, aggregated them to a monthly 150 

resolution, and aligned them with both the DO observation locations and the reconstruction grid. This standardization ensures 

coherent feature availability during model training and prediction while retaining large-scale physical and biogeochemical 

signals essential for reconstructing the deoxygenation trend. To preserve historical information and reduce imputation 

uncertainty, we retain all QC-passed DO data, even if some covariates (e.g., SSEVs) are missing. This sampling library 

provides standardized inputs for subsequent model training. 155 

Table 1. Details of the Physical–biogeochemical variables 

Variable Description Spatial Resolution 
Temporal 

Resolution 

Temporal 

Coverage 
Data Source 

Temperature (°C) 
Seawater 

temperature 

0.25° × 0.25°; 187 

standard depth levels 

(surface–5500 m) 

Monthly 
1960/01 – 

2024/06 

(Szekely et al., 

2025) 
Salinity 

 

Seawater salinity 

0.25° × 0.25°; 187 

standard depth levels 

(surface–5500 m) 

Monthly 
1960/01 – 

2024/06 

O₂_sat 

Seawater oxygen 

saturation 

(calculated) 

0.25° × 0.25°; 187 

standard depth levels 

(surface–5500 m) 

Monthly 
1960/01 – 

2024/06 
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U (m s⁻¹) 

U-wind vector 

component at 10 

meters 

0.25° × 0.25° Monthly 
1993/01 – 

2023/08 

(Mears et al., 

2022) 

V (m s⁻¹) 

V-wind vector 

component at 10 

meters 

MLD (m) 
Ocean mixed layer 

depth 
0.25° × 0.25° Monthly 

1993/01 – 

2022/12 

(Guinehut et 

al., 2012) 

DIC (µmol kg⁻¹) 

Surface ocean 

dissolved inorganic 

carbon 

0.25° × 0.25° Monthly 
1985/01 – 

2023/12 

(Chau et al., 

2022; Chau et 

al., 2024) 

pH 
Surface pH on total 

scale 

pCO₂ (µatm) 

Surface aqueous 

partial pressure of 

CO2 

CO₂ flux (mol m⁻² 

yr⁻¹) 

Surface downward 

flux of total CO2 

Alkalinity (µmol 

kg⁻¹) 

Total alkalinity in 

surface seawater 

PAR (mol m⁻² d⁻¹) 
Photosynthetically 

available radiation 

4 km / 9 km Monthly 
1997/10 – 

2025/2 

(NASA Ocean 

Biology 

Processing 

Group, 2018) Chl-a (mg m-3) 

Mass concentration 

of chlorophyll in 

surface water 

SSH (m) 
Sea surface height 

above geoid 

0.25° × 0.25° Monthly 
1993/01 – 

2023/08 

(Hauser et al., 

2020) 

EKE (cm² s-2) 
Surface averaged 

eddy kinetic energy 

2.3 Depth-dependent relationships between oxygen and drivers 

We characterized the depth-dependent relationships between dissolved oxygen (DO) and a suite of environmental variables 
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(Fig. 2). Near the surface, DO exhibits a strong negative correlation with temperature, consistent with solubility control, while 

salinity contributes via the salting-out effect. With increasing depth, the direct influence of solubility declines, yet temperature 160 

and salinity remain valuable as proxies for water-mass identity and ventilation history. For reference, we also show correlations 

with TEOS-10 derived oxygen saturation (O₂_sat), which serves as a physicochemical baseline reflecting equilibrium 

conditions. 

Sea-surface environmental variables (SSEVs) display distinct vertical patterns in their coupling with DO. Sea surface height 

(SSH) maintains a strong and stable correlation through much of the water column, while surface wind components (U, V) 165 

contribute dynamical context related to wind-driven advection and upwelling (Hollitzer et al., 2024). Carbonate system 

variables retain explanatory power below the euphotic zone, indicative of remineralization signals and association with specific 

water masses. In contrast, Chl-a is mainly informative within the upper tens of metres, reflecting its biogeochemical role in 

the sunlit layer. Several SSEVs also display notable nonlinear relations with subsurface DO, which supports their value for 

reconstructing underwater DO (Ping et al., 2024; Cao et al., 2024). 170 

Overall, these correlation patterns illustrate how surface forcings and water-mass structure jointly shape subsurface oxygen 

variability. They provide a theoretical and empirical foundation for subsequent modeling of the often nonlinear relationships 

between these variables and DO. 

 

Figure 2: Vertical correlations between DO and physical–biogeochemical variables. Each bubble represents the Pearson correlation 175 

coefficient ((r)) between DO and an environmental variable at a standard depth level. Bubble color encodes the sign and magnitude 

(red = positive; blue = negative), and bubble area scales with (|r|). Filled bubbles denote correlations significant at (q<0.05) after 

Benjamini–Hochberg false-discovery-rate control; hollow bubbles indicate non-significant results. 
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3 Method 

Here, we develop a hierarchical modeling framework that resolves regional and vertical heterogeneity by partitioning the ocean 180 

into ecogeographic regions and training depth-stratified, region-specific CatBoost models with adaptive feature selection and 

year-grouped cross-validation. 

3.1 Partitioning based on heterogeneity 

Dissolved oxygen (DO) trends exhibit substantial variability across ocean basins, latitude bands, and depth layers, with 

dominant controlling mechanisms shifting both regionally and vertically (Ma et al., 2025). To capture regional physical–185 

biogeochemical coupling while mitigating sampling biases, we implement a modeling framework that is stratified in both the 

vertical and horizontal dimensions. 

Vertical stratification. Given the depth dependence of processes governing DO distribution, we divide the 0–5500 m water 

column into 187 standard depth levels, following the vertical grid of the CORA objective analysis and ISAS17 climatology 

(Szekely et al., 2019; Kolodziejczyk et al., 2023).  An independent model is trained at each depth, allowing the framework 190 

to resolve depth-varying controls while preserving realistic vertical structure. 

Horizontal regionalization. To account for spatial heterogeneity in the physical–biogeochemical controls on DO, we follow 

the global ocean biogeochemical province classification of Fay and Mckinley (2014) and refine it using basin boundaries and 

the statistical robustness of sample distributions, allowing region-specific submodels to better represent distinct DO–

environment relationships. Gaps in the original map are filled by nearest-neighbor interpolation constrained by ocean 195 

connectivity, combined with a KD-tree projection. To avoid local complexities, we exclude enclosed or exchange-limited seas 

(e.g., the Mediterranean Sea and the Red Sea) and mask coastal waters shallower than the 200 m isobath. A sensitivity analysis 

of this coastal threshold is presented in Sect. 4.3. 

 

Figure 3: Partitioning of the global open ocean into eight macro biogeochemical provinces. 200 
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The open ocean is partitioned into eight macro biogeochemical provinces (Fig. 3): the Arctic Ocean (AO), North Pacific (NP), 

South Pacific (SP), North Atlantic (NA), Equatorial Atlantic (EA), South Atlantic (SA), Indian Ocean (IO), and Southern 

Ocean (SO). Each province serves as an independent modeling unit, enabling regionally tailored representation of key 

processes, reducing spurious extrapolation across biogeochemical domains, and introducing structured constraints that enhance 205 

the physical consistency of the reconstructed DO fields. 

3.2 Adaptive modeling 

Within each modeling unit, we employ the CatBoost gradient-boosting framework—an interpretable decision-tree method—

to learn the functional mapping between sparse dissolved oxygen (DO) observations and their environmental predictors. This 

method builds ensembles of oblivious trees with ordered boosting, a training scheme that reduces variance and limits target 210 

leakage. The algorithm offers several advantages for our application: it directly accommodates missing covariates without 

imputation, incorporates sample weighting to address spatial biases, and employs multiple regularization strategies—including 

L2 regularization on leaf values, subsampling, and early stopping—to prevent overfitting.  

For historical periods (e.g., 1960–1997) where satellite-derived predictors are unavailable, the model treats missing covariate 

values as a distinct input state, allowing it to rely primarily on temperature, salinity, oxygen saturation, and spatiotemporal 215 

coordinates. This strategy avoids introducing systematic biases that can arise from statistical imputation and maintains 

consistency across the reconstruction period. The CatBoost model uses 19 predictor variables as inputs. They include: 

temperature, salinity, O₂_sat, year_norm, month_sin, month_cos, Latitude, U, V, SSH, EKE, MLD, PAR, Chl-a, DIC, pCO₂, 

pH, Alkalinity, and CO₂ flux. The temporal encodings are defined in Eq. (1)-(3), where days_since_start denotes the number 

of days elapsed since 1950-01-01 00:00:00 UTC. 220 

year_norm =
days_since_start

365.25
,                  (1) 

month_sin = sin (
2𝜋 (𝑚−1)

12
),                 (2) 

month_cos = cos (
2𝜋 (𝑚−1)

12
) , 𝑚 ∈ {1,2, … ,12},             (3) 

To enhance model interpretability and generalization, we implemented a two-stage feature selection procedure for each region–

depth submodel, using only training data and a year-grouped cross-validation scheme consistent with our model evaluation 225 

framework. Tree-based models tend to perform better with compact, informative feature sets, as redundant predictors can 

dilute predictive accuracy (Garabaghi et al., 2023). First, we estimated permutation importance under five-fold cross-validation 

grouped by year and retained an initial subset of features using an adaptive rule 𝐾 = max (10,2√𝑝), where 𝑝 = 19 is the 

number of candidate features, discarding predictors with negligible contribution. Second, we perform recursive feature 

elimination with cross-validation (RFECV) using the same year-grouped folds, iteratively removing the least important feature 230 

and selecting the combination that minimizes validation RMSE. The five independent test years are excluded from both stages. 
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This design allows feature sets to adapt to regional and vertical regimes—surface models emphasise rapidly varying surface 

and biogeochemical terms, mid-depth models highlight meridional gradients and water-mass transition metrics, and deep 

models rely primarily on temperature–salinity structure, while avoiding temporal information leakage and reducing overfitting. 

To mitigate biases arising from heterogeneous spatiotemporal sampling (Fig. 1), we applied inverse-density weighting within 235 

a fixed binning scheme. The sample domain is partitioned on a 5° × 5° latitude–longitude grid and non-overlapping 10-year 

time windows in each partition. Sample weights were computed as the inverse of the observational density within each 

spatiotemporal bin and standardized at each depth level, thereby reducing the influence of over-sampled regions and periods 

during model training. 

Let 𝑏(𝑖) denote the spatiotemporal bin containing sample 𝑖, and let 𝑛𝑏(𝑖) be the number of samples in that bin. The initial 240 

per-sample weight is the inverse square root of this count (Eq. (4)): 

𝑤̃𝑖 =
1

√𝑛𝑏(𝑖)
 ,                    (4) 

Specifically, each sample weight is set proportional to the inverse square root of the local sample density. To preserve the 

aggregate information content, we then normalize the weights to unit mean (Eq. (5)): 

𝑤𝑖 =
𝑤̃𝑖

1

𝑁
∑ 𝑤̃𝑘

𝑁
𝑘=1

,                       (5) 245 

This strategy increases the influence of observations from sparse regions and earlier periods without altering the aggregate 

sample distribution. 

3.3 Hyperparameter optimization and validation 

To efficiently explore the hyperparameter space and avoid ad hoc manual tuning, hyperparameters for each regional modeling 

unit were optimized independently using Bayesian optimization (Optuna; Table 2) with the objective of minimizing validation 250 

RMSE. We employed a five-fold cross-validation scheme grouped by calendar year, wherein the observational record was 

divided into five non-overlapping temporal blocks. Each block serves as a validation fold (~20%), ensuring that data from the 

same year never appears in both training and validation splits. This design prevents temporal information leakage and avoids 

inflated performance estimates that can arise from autocorrelated observations within narrow time windows (Salazar et al., 

2022). During each fold, an early stopping halts training if validation RMSE fails to improve for 50 consecutive iterations and 255 

determines the optimal boosting rounds. The final model used the median of the optimal iteration counts across folds. Early 

stopping was then disabled, and the model was retrained on the full training set prior to reconstruction. 

To provide a final, unbiased assessment of model performance, we construct an independent out-of-time test set by randomly 

selecting five calendar years—1964, 1972, 1985, 2012, and 2019 (without replacement)—and withholding them entirely from 

training and hyperparameter optimization. Generalization capability was evaluated on this holdout set using RMSE, mean 260 
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absolute error (MAE), and the coefficient of determination (R²), providing robust and interpretable metrics of predictive 

accuracy and strengthening confidence in the reconstruction. These five withheld years are used in Sect. 4.1, 4.2 and 4.5 for 

independent evaluation and product intercomparison. 

Table 2. CatBoost hyperparameters and their Optuna prior search spaces 

Hyperparameter Explanation Search range 

iterations Maximum boosting rounds 100–2000  

learning_rate Learning rate (shrinkage) 0.02–0.10  

depth Tree depth 4–8 

l2_leaf_reg L2 regularization on leaf values 2–10 

bagging_temperature Temperature for Bayesian bootstrap 0.05–1.0  

4 Results and Discussion 265 

4.1 Feature Importance 

Under the adaptive feature-selection framework, each biogeographic region develops depth-specific optimal predictor sets (Fig. 

4). Across all region–depth submodels, the final feature sets typically contain 5-10 predictors. At 10 m, year_norm is the 

dominant control. Among sea-surface environmental variables (SSEVs), sea surface height (SSH) and partial pressure of CO₂ 

(pCO₂) consistently enhance model performance in multiple regions. In the Indian Ocean, for instance, SSH and meridional 270 

wind velocity (V) account for substantial DO variance—a pattern consistent with wind-driven transport and upwelling 

processes that modulate surface oxygen concentrations. Similarly, surface pCO₂ patterns have been shown to closely reflect 

the upwelling of carbon-rich, oxygen-poor waters (Franco et al., 2014), underscoring its utility as a predictor of DO variability 

in upwelling and OMZ regions. 

 At 200 and 1000 m, latitude replaces year_norm as the most influential variable, particularly in the Indian Ocean. This result 275 

suggests that latitude serves as an effective spatial proxy, capturing broad-scale oxygen gradients and the influence of 

unobserved physical or biogeochemical drivers. Under this dominant latitudinal effect, the marginal contributions of most 

SSEVs are generally subdued, though not negligible (Milà et al., 2024). In summary, although SSEVs contribute little on 

average across depth levels, they remain important predictors in specific regions at certain depths. These results demonstrate 

that region and depth jointly shape the effective input space. Adaptive regional modeling preserves key controls and removes 280 

redundancy, improving both accuracy and physical interpretability. Feature subsets are not universal across regions, supporting 

the regionalized approach’s advantage and smaller bias on the independent test. Our feature selection provides mechanistic 

evidence for these findings. 
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Figure 4: Heatmap of relative feature importance across depths and provinces. Colors are on a logarithmic scale. The bar chart on 285 

the right shows each feature’s mean importance computed over the provinces in which that feature is available. 

4.2 Model evaluation 

The reconstructed dissolved oxygen (DO) fields demonstrate high accuracy across depth layers and biogeographic regions. 

Overall model performance was evaluated by aggregating predictions from all regions and comparing them with observed 

values (Fig. 5). The model demonstrates high accuracy in estimating DO concentrations, with the scatter plot closely following 290 

the 1:1 line. At representative depths, the global RMSE/MAE on the independent test set is on the order of 14.6/8.7 µmol kg⁻¹ 

at 10 m, 17.1/11.3 µmol kg⁻¹ at 200 m, and 8.7/5.2 µmol kg⁻¹ at 1000 m. Most R² values are above 0.92, and the R² for deep-

layer DO reconstruction reaches 0.99. A slight positive bias is noted under severely hypoxic conditions, where extremely low 

DO values are marginally overestimated—a known behavior of regularized tree ensembles that tend to smooth outliers toward 

local means. These cases are rare, confined to strongly hypoxic conditions, and have negligible impact on large-scale statistics. 295 

It is also worth noting that some of the lowest recorded DO values may reflect measurement uncertainty. Residuals are 

generally symmetric and centered near zero, indicating that the model produces unbiased estimates with only occasional 

negative outliers. 
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 300 

Figure 5: Model performance for DO predictions across depth layers (independent test set). Top row: hexagon-binned scatterplots 

of predicted vs. observed values; the gray dashed line denotes the 1:1 reference. The color bar indicates sample counts per hexbin. 

Each panel reports the R², RMSE, and MAE. Bottom row: corresponding histograms of residuals (observed − predicted).  

Vertical error structure exhibits consistent stratification across regions (Fig. 6): RMSE is highest in the surface and thermocline 

layers, decreasing with depth, consistent with a strong vertical gradient in the thermocline and the relative stability of 305 

intermediate to deep water masses. This pattern underscores the role of water mass stratification in shaping the estimation 

uncertainty of DO. Regional differences are primarily reflected in the position and amplitude of mid-layer peaks. Regarding 

error profile patterns, stable regions (e.g., SP–IO, NA–SA) show consistently high R², except at the surface, with RMSE 

monotonically or nearly monotonically decreasing with depth. In mid-layer-sensitive regions (e.g., NP), an RMSE peak is 

observed around 100–600 m, although R² remains relatively high. Lower surface R² values in the South Pacific, Equatorial 310 

Atlantic, and Indian Ocean arise primarily from limited DO variance in those layers rather than increased absolute error. 

Deep layers, constrained by water masses, show a consistent pattern of low errors and high correlations. In the thermocline 

and OMZs, water properties and boundary positions are more sensitive to rapid seasonal and mesoscale–submesoscale 

fluctuations (Bettencourt et al., 2015). Together with limitations in historical coverage and resolution, this increases 

reconstruction uncertainty in these regions. Performance differences among regional models further confirm the pronounced 315 

spatial heterogeneity of DO. In summary, the regionalized modeling framework generalizes effectively, capturing the large-

scale DO distribution with high overall skill. Errors are primarily concentrated in regions and depths where oxygen gradients 
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are strongest, aligning with expected patterns of physical and biogeochemical complexity. 

Figure 6: Depth profiles of model performance across provinces. 320 

4.3 Coastal uncertainty 

To assess the influence of nearshore regions on basin-wide reconstruction accuracy, we performed a depth-threshold sensitivity 

analysis. This involved progressively excluding coastal and marginal seas by increasing the bathymetric cutoff from 0 to 400 

m, then evaluating model performance over the remaining open-ocean basin (Fig. 7). The results indicate that nearshore 

shallow waters are a major source of uncertainty. Increasing the threshold from 0 to 200 m yields a marked reduction in 325 

domain-mean error (7.5% relative to no exclusion; Fig. 7d–e). Further increasing the exclusion threshold to 250–300 m yields 

only marginal improvements, while a 400 m cutoff increases error—likely due to the loss of representative slope waters and a 

substantial decline in training sample size. In practice, the 200 m isobath offers a pragmatic coastal-exclusion standard when 

nearshore processes such as terrestrial inputs, eutrophication, fine-scale stratification, and benthic-pelagic coupling are not 

fully captured by our predictor set. 330 

These findings are consistent with the physical and ecological characteristics of nearshore environments. Nearshore oxygen 

variability is driven by high-frequency, localized processes including phytoplankton bloom pulses, riverine discharge, tidal 

mixing, and anthropogenic effects, leading to strong diel and seasonal fluctuations that are poorly represented in existing open-

ocean focused predictors (Gilbert et al., 2010; Regier et al., 2023; Giomi et al., 2023; Liu et al., 2024). Such nonlinear, rapidly 

varying processes produce error statistics that differ systematically from the open ocean. As a result, the model has limited 335 

ability to generalize features across regions (Valera et al., 2020). Statistically, shallow shelf systems are not representative of 

the large-scale oceanic DO background; their inclusion during model training and evaluation artificially elevates domain-

integrated error and obscures broad-scale oxygen patterns. Consequently, GEOXYGEN provides DO fields only for open-

ocean grid cells deeper than 200 m, with shallower coastal grid cells flagged as missing values. 
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 340 

Figure 7: Mean absolute error of the test set at the ocean surface (panel a). Blue shading indicates shallow coastal and marginal sea 

regions shallower than 200 m, and red boxes mark two representative high-error coastal areas. Panels (b) and (c) show zoomed 

views of the Sea of Okhotsk shelf and the Patagonian Shelf, respectively. Panels (d) and (e) show RMSE and MAE as functions of 

the coastal exclusion threshold, quantifying how model performance changes with the chosen depth cutoff. 

4.4 Long-term dataset 345 

The trained models, forced by external physical analysis fields, generate spatially and temporally consistent monthly dissolved 

oxygen (DO) reconstructions. We use the CORA ocean analysis from CMEMS to provide temperature and salinity, together 

with the SSEVs, as large-scale physical and biogeochemical predictors on the target grid. Using these objectively analyzed 

gridded fields instead of interpolating from sparse in situ profiles avoids an extra interpolation step and the associated 

secondary uncertainties. At each standard depth, the corresponding feature fields are evaluated by the matching regional model 350 

to generate monthly DO predictions, yielding 0.5° × 0.5° fields from the surface to 5500 m that are aligned with the CMEMS 

grid and calendar, but with coastal waters shallower than the 200 m isobath masked out. Because CORA analyses undergo 

delayed-mode objective mapping and rigorous quality control, they provide long-term consistency, global continuity and full 

traceability. Compared to methods that interpolate sparse in situ temperature and salinity observations, this approach reduces 

uncertainties associated with secondary statistical interpolation. 355 

To mitigate potential discontinuities at the boundaries between biogeochemical provinces—often termed a "step-effect"—we 

implement boundary fusion within the transition zones (Wagstaff and Bean, 2022). Let 𝐱 be the prediction location, 𝑦̂𝑖(𝐱) 

the prediction of the 𝑖 regional model at 𝐱, and 𝑑𝑖 the minimum great-circle distance from 𝐱 to the boundary of that region. 

Let the smoothing bandwidth be defined as 𝑆 = 300  km. The fused estimate is then defined as: 

https://doi.org/10.5194/essd-2025-699
Preprint. Discussion started: 1 December 2025
c© Author(s) 2025. CC BY 4.0 License.



17 
 

𝑦̂′(𝒙) =
∑ 𝑤𝑖 (𝑑𝑖∣𝑆)𝑦̂𝑖(𝒙)

∑ 𝑤𝑖 (𝑑𝑖∣𝑆)
,      𝑤(𝑑𝑖 ∣ 𝑆) = {(

(𝑆−𝑑𝑖)

𝑆
)

2

, 𝑑𝑖 ≤ 𝑆

0, 𝑑𝑖 > 𝑆
,           (6) 360 

Thus, far from a boundary (𝑑 > 𝑆), only the local provincial model contributes; within 𝑆 of a boundary, predictions from 

adjacent provinces are blended smoothly in proportion to their distance from the edge. This preserves continuity across 

boundaries without excessive smoothing.  

Finally, we obtained GEOXYGEN, a global DO dataset that provides monthly fields on a 0.5° × 0.5° latitude–longitude grid 

at 187 standard depth levels from the surface to 5500 m, spanning 1960–2024. GEOXYGEN is distributed as CF-compliant 365 

NetCDF files, with one file per month (GEOXYGEN_DO_YYYYMM_0p5deg_v1.nc) containing a four-dimensional DO 

variable (time × depth × lat × lon) and the corresponding coordinate variables (time, depth, latitude, longitude). Time is 

encoded as days since 1950-01-01 00:00:00 UTC using a Gregorian calendar and represents monthly means, and missing 

values are flagged with a large sentinel value. An accompanying biogeochemical province mask, which also serves as a valid-

ocean mask (open-ocean grid cells deeper than 200 m), is provided in a separate NetCDF file. All data files are openly available 370 

at https://doi.org/10.5281/zenodo.17615657 (Wang et al., 2025). 

4.5 Comparison with other products 

We compare GEOXYGEN against four existing dissolved oxygen (DO) products (Table 3) with the independent test dataset.  

Performance is evaluated using spatiotemporally co-located samples from the five withheld years, analyzed separately for the 

early (1960–1980) and recent (2000–2020) periods (Table 4). Only grid-month-depth points with concurrent observations 375 

across all products are included. 

Table 3. Summary of our product and other DO products 

Product Time coverage Vertical levels Temporal resolution Horizontal resolution 

Our product 

(GEOXYGEN） 
1960-01 – 2024-06 

0–5500 m (187 

levels) 
Monthly 0.5° × 0.5° 

ML4O2 1965-01 – 2020-12 
6–1000 m (20 

levels) 
Monthly 1° × 1° 

GOBAI-O₂ 2004-01 – 2023-12 
2.5–1975 m (58 

levels) 
Monthly 1° × 1° 

G4D-DOC 2005-01 – 2022-12 
10–1995 m (26 

levels) 
Monthly 1° × 1° 

IAP Oxygen 

(Gouretski et al., 

2024a) 

1960-01 – 2022-12 
0–6000 m (119 

levels) 
Monthly 1° × 1° 

 

 

 380 
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Table 4. Accuracy by depth for each product relative to observations 

Product Depth 
1960-1980 2000-2020 

RMSE Bias R2 RMSE Bias R2 

Our product 

(GEOXYGEN) 

10 

15 0.1 0.92 8.2 -0.5 0.96 

IAP Oxygen 17.1 1.1 0.9 9.5 1.3 0.94 

ML4O2 17.3 0.7 0.89 10.5 1.7 0.93 

GOBAI-O2 NA NA NA 10 1.1 0.93 

G4D-DOC NA NA NA 7.4 0.2 0.96 

Our product 

(GEOXYGEN) 

50 

20 -0.3 0.9 13.5 -0.1 0.94 

IAP Oxygen 21.1 1.4 0.89 17.2 2.5 0.9 

ML4O2 21.3 0 0.89 16.1 0.6 0.91 

GOBAI-O2 NA NA NA 16.9 2.1 0.9 

G4D-DOC NA NA NA 13.6 0 0.93 

Our product 

(GEOXYGEN) 

100 

20.3 -0.2 0.93 15.3 0 0.95 

IAP Oxygen 20.6 1.5 0.93 19.4 1.8 0.93 

ML4O2 20.8 1 0.93 18.6 -0.1 0.93 

GOBAI-O2 NA NA NA 18 0.7 0.94 

G4D-DOC NA NA NA 18 0.7 0.94 

Our product 

(GEOXYGEN) 

200 

19.3 -0.1 0.93 12.7 0 0.97 

IAP Oxygen 20.2 -0.3 0.92 16.9 1.4 0.95 

ML4O2 19.8 -0.1 0.93 20 -1.7 0.94 

GOBAI-O2 NA NA NA 21 -1.6 0.93 

G4D-DOC NA NA NA 16.4 1 0.96 

Our product 

(GEOXYGEN) 

500 

21.2 -3.6 0.93 14.2 -0.3 0.97 

IAP Oxygen 18.6 -2.9 0.94 23.5 -2.2 0.92 

ML4O2 19.6 -6.1 0.94 26 -4 0.91 

GOBAI-O2 NA NA NA 28.4 -5.3 0.9 

G4D-DOC NA NA NA 16.1 0.1 0.96 

Our product 

(GEOXYGEN) 

1000 

13.1 -0.9 0.97 6.5 0.2 0.99 

IAP Oxygen 14.5 1.6 0.96 8.2 3 0.99 

ML4O2 14.6 -0.3 0.96 8.1 0.5 0.99 

GOBAI-O2 NA NA NA 7.1 1.4 0.99 

G4D-DOC NA NA NA 7.7 -0.5 0.99 

The comparison highlights three main features. First, during the data-sparse early period (1960–1980), GEOXYGEN matches 

or exceeds the performance of IAP and ML4O₂ at 10–200 m depth, exhibiting lower RMSE and near-zero mean bias, and 

achieves the best performance at 1000 m. Although errors are marginally higher at 500 m, the high R² (>0.9) confirms that 

https://doi.org/10.5194/essd-2025-699
Preprint. Discussion started: 1 December 2025
c© Author(s) 2025. CC BY 4.0 License.



19 
 

large-scale oxygen structure is well reproduced even under limited observational constraints. Second, in the recent, data-rich 385 

period (2000–2020), GEOXYGEN systematically reduces RMSE and bias at 50–200 m relative to all reference products, while 

maintaining R2 ≥ 0.94. In this depth range, several existing products exhibit persistent positive or negative biases, whereas 

GEOXYGEN remains close to unbiased, consistent with the benefits of regionalized modeling, inverse-density weighting, and 

the inclusion of physically informed predictors. Third, at 1000 m, all products perform well, reflecting the stability of deep 

water masses, yet GEOXYGEN ranks among the top performers, with RMSE values that are slightly lower or comparable to 390 

the best alternatives. Overall, the out-of-time, co-located comparison indicates that GEOXYGEN provides reconstruction skill 

that exceeds existing products, particularly at mid-depths where deoxygenation signals and model spread are most pronounced. 

These outcomes align with our methodological strategy: the use of a long observational archive (1960–2024) enables training 

across diverse climate states; CORA temperature–salinity fields, process-relevant SSEVs, regionally adapted models, adaptive 

feature selection, inverse-density weighting, and boundary fusion collectively reduce bias, most notably between 50–500 m.  395 

GEOXYGEN agrees with existing products at the surface and in the deep ocean and achieves systematically lower or 

comparable RMSE and bias at key mid-depths. Taken together, it provides a high-resolution, broad-coverage, and accurate 

DO dataset that supports more comprehensive analyses of deoxygenation trends and their driving mechanisms. 

4.6 Comparison with WOA23  

To evaluate the large-scale credibility and multi-year stability of our reconstructed dissolved oxygen (DO) fields, we compare 400 

our product’s annual-mean DO climatology with the World Ocean Atlas 2023 (WOA23; Garcia et al., 2024) and examine 

vertical structure using representative profiles from three major basins (Fig. 8). 

In the upper ocean (0–300 m, depth-averaged), both products capture consistent basin-scale spatial patterns. The subtropical 

gyres exhibit relatively high DO concentrations, while the equatorial region and eastern boundary upwelling systems form 

distinct oxygen-deficient belts. The spatial extent and location of these structures are in close agreement between the two 405 

climatologies. GEOXYGEN reproduces these banded structures continuously, with cross-frontal gradients in transition zones 

closely matching those in WOA23 (Fig. 8, top row). 

In the vertical, our product accurately depicts the largest hypoxic zone in climatology, which is mainly located in the 

intermediate depth, ranging from 300 to 1,300 m. Meridional sections across the Pacific, Atlantic, and Indian Oceans show 

broad consistency between GEOXYGEN and WOA23 in the alignment and closure of key oxygen isopleths, as well as in the 410 

positioning of high-gradient transition layers. This structural agreement underscores the physical consistency of our product 

across depth and region. 
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Figure 8: Climatological comparison between WOA23 and our product (GEOXYGEN). Row 1 shows the global-mean DO 

distribution averaged over 0–300 m. Colored dashed lines mark the locations of three sections: 65°E (red), 180° (purple), and 30°W 415 

(green). Rows 2–4 show cross-sectional DO along these three sections. 

Most global DO products are distributed on a 1° grid; in contrast, GEOXYGEN adopts a 0.5° horizontal grid, chosen to match 

the resolution of the external analysis fields used as predictors. Within each ecogeographic region, the model learns 

relationships between DO and objectively analyzed physical and biogeochemical fields and then applies these relationships 

across the grid. Consequently, the reconstruction is not merely a reflection of where DO observations are dense; it also resolves 420 

regional gradients and delineates the geometry of OMZs more clearly. Although performance is ultimately bounded by the 

quality of the underlying observations and external analysis products, comparisons with 1° products show that the 0.5° 

configuration yields consistently lower—or comparable—errors at key depths and can accurately resolve regions of strong DO 

gradients. We therefore regard 0.5° as an appropriate operating resolution that exploits available information without over-

interpreting sparsely sampled areas. 425 
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5 Conclusion 

We introduce GEOXYGEN, a monthly, four-dimensional global ocean dissolved oxygen (DO) product spanning 1960–2024 430 

at 0.5° × 0.5° resolution, developed to address long-standing challenges of data sparsity and spatiotemporal heterogeneity in 

historical DO observations. Evaluated on an independent out-of-time test composed of withheld years, the reconstruction 

demonstrates consistently high skill across all depth layers (typically R² > 0.92), confirming its robustness under conservative 

validation protocols. 

In comparison with other existing global DO products, GEOXYGEN reproduces observed spatial variability and attains 435 

superior overall performance at mid-depths (50–200 m) and in the deep ocean while offering a higher spatial resolution (0.5° 

vs. 1°). Our approach is distinguished by three principal innovations: 

• Heterogeneity-aware hierarchical modeling. By combining vertical stratification with biogeographic provincialization, 

we train CatBoost regressors within each region–depth unit. This design directly addresses the limitations of single global 

ML models, which struggle to represent the spatially varying physical–biogeochemical controls on DO. In combination 440 

with adaptive feature selection, inverse-density weighting, year-grouped cross-validation, and cross-boundary fusion, the 

framework enhances robustness in undersampled regions, minimizes temporal leakage and boundary artefacts, and yields 

parsimonious, interpretable submodels. The same hierarchical strategy can be readily applied to other biogeochemical 

tracers or observing systems that exhibit strong regional and vertical heterogeneity. 

• Adaptive multi-source feature selection. Starting from a rich set of physical, biogeochemical, and spatiotemporal 445 

predictors, we employ a two-stage feature-selection procedure within each region–depth unit to retain only variables that 

add independent skill. This adaptive, region- and depth-aware integration of multi-source environmental predictors 

strengthens the representation of upper-ocean processes and water-mass transitions while suppressing noise and 

redundancy, providing physically interpretable feature sets. 

• A physically consistent, long-record, high-resolution product. GEOXYGEN delivers global monthly DO fields from 450 

1960 to 2024 on a consistent 0.5° × 0.5° horizontal grid, spanning depths from the surface to 5500 m. Its high skill and 

climatological consistency support robust estimates of deoxygenation trends and decadal variability, providing a stringent 

benchmark for assessing and constraining Earth system models. 

Nonetheless, GEOXYGEN is subject to certain limitations inherent in observational coverage and methodological assumptions. 

It is also noted that uncertainty is elevated in early decades, ice-covered high latitudes, data-sparse deep basins, and unresolved 455 

nearshore regions. Extremely low DO values in severely hypoxic environments may be conservatively biased upward, and the 

product's sensitivity to uncertainties in external physical drivers merits further assessment. Future efforts will focus on cross-

platform calibration, dynamically refined regionalization, and inclusion of additional subsurface constraints. Despite these 

limitations, it provides a long-term, internally consistent, and process-informed foundation for detecting, attributing, and 
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interpreting global ocean deoxygenation. The GEOXYGEN, together with basic usage examples, is available at Zenodo (Wang 460 

et al., 2025, https://doi.org/10.5281/zenodo.17615657). Future updates will be versioned at the same DOI. 

Code and data availability 

The dissolved oxygen (DO) dataset generated in this study, together with the biogeochemical province mask used for 

regionalization and coastal exclusion, is openly available at https://doi.org/10.5281/zenodo.17615657 (Wang et al., 2025), 

where details of the data files and metadata are documented. The codes used to train models and generate the data product in 465 

this paper are openly available at https://github.com/layne1202/GEOXYGEN-code. 
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