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Abstract. Dissolved oxygen (DO) serves as an essential indicator of marine ecosystem health. However, sparse and uneven
observations have limited our ability to characterize its full spatiotemporal variability, underscoring the continued need for
long-term, high-resolution, and physically consistent global DO datasets. Here, we present GEOXYGEN, a global dataset of
monthly DO fields at 0.5° x 0.5° resolution spanning 1960-2024 and depths from the surface to 5500 m (Wang et al., 2025,

15 https://doi.org/10.5281/zenodo.17615657). GEOXYGEN is generated with a hierarchical modeling framework that accounts

for regional and vertical heterogeneity. By integrating physical and biogeochemical predictors with an adaptive feature-
selection strategy, GEOXYGEN achieves high predictive accuracy across all depth layers on an independent out-of-time test
(R?>0.92). The reconstructed spatial patterns align closely with the World Ocean Atlas 2023 climatology, and in subsurface
and deep waters, GEOXYGEN demonstrates superior generalization relative to existing data-driven products. A sensitivity

20 analysis further reveals that including coastal data in model training increases basin-wide uncertainty by approximately 7.5%,
underscoring that current observing systems remain insufficient to reliably resolve nearshore DO dynamics. GEOXYGEN
provides a consistent, physically informed baseline for analyzing global and regional variability of DO. It also offers a valuable
benchmark for evaluating and improving the representation of DO in climate and Earth system models and can support future
studies on long-term deoxygenation trends and regional hotspots.
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1 Introduction

Ocean dissolved oxygen (DO) concentration serves as an essential indicator of marine ecosystem health and biogeochemical
status (Robinson, 2019; Grégoire et al., 2023). Beyond its ecological significance, DO plays a critical role in modulating
climate-relevant biogeochemical feedbacks in the global carbon cycle (Gregoire et al., 2021; Oschlies, 2021; Yamaguchi et

30 al., 2024). Observations over recent decades reveal marked spatiotemporal variability in DO, accompanied by a clear trend
toward deoxygenation (Ito et al., 2017), particularly within tropical oxygen minimum zones (OMZs) and in subsurface waters
at mid to high latitudes (Bopp et al., 2013; Li et al., 2020). This loss of oxygen is projected to persist under continued global
warming (Gong et al., 2021; Zhou et al., 2022), with growing consequences for marine habitats, fisheries, and ecosystem
services (Breitburg et al., 2018; Kim et al., 2023; Chen et al., 2024; Humphries et al., 2024).

35 Sparse and heterogeneous observational coverage hampers an accurate estimate of the global oxygen inventory and the
quantification of its long-term changes. A seminal study by Schmidtko et al. (2017) estimates a 2% decline (4.8 + 2.1 Pmol)
in the global ocean oxygen inventory from 1960 to 2009. Yet, the accuracy of such an estimate depends heavily on the
observations used. Historically, DO measurements have been sourced from ship-based campaigns compiled in global databases
such as the World Ocean Database (WOD) and the Global Ocean Data Analysis Project (GLODAP), which exhibit strong

40 spatial and temporal sampling biases (Garcia et al., 1998). The resulting unevenness in data availability across time, space,
and quality standards, especially in coastal waters, complicates robust quantification of deoxygenation rates, particularly in
dynamic and vulnerable systems such as coastal shelves and polar oceans. These limitations underscore the pressing need for
a spatially continuous, long-term, and accurate global DO reconstruction.

Multiple approaches have been developed to address these observational gaps. Earth system models (ESMs) simulate four-

45 dimensional DO fields continuously but often suffer from systematic biases and incomplete representation of multi-scale
processes (Cocco et al., 2013; Oschlies et al., 2018). Limited observational constraints further compound uncertainties in model
evaluation and in projections. Traditional statistical interpolation methods can reproduce mean climatologies but frequently
underestimate trends in data-sparse regions and fail to capture seasonal to interannual variability (Ito et al., 2024b; Gouretski
et al., 2024b). In recent years, data-driven machine learning (ML) has emerged as a promising alternative, leveraging

50  relationships between DO and physical or biogeochemical covariates to reconstruct continuous four-dimensional fields from
sparse in situ measurements (Sharp et al., 2023; Garabaghi et al., 2023; Huang et al., 2023; Wang et al., 2024; Lu et al., 2024).
In principle, ML can recover local variability and identify deoxygenation risk without relying on computationally expensive
coupled simulations.

Despite this potential, several methodological challenges remain. First, many existing ML reconstructions employ a single

55 model trained on global-ocean data, which struggles to represent regional variations in the dominant physical-biogeochemical

controls on DO as well as the spatial heterogeneity of processes across biogeochemical provinces (Garabaghi et al., 2023).
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This global approach tends to blur contrasts between water-mass regimes and degrade skill in dynamically distinct regions
such as oxygen minimum zones and boundary currents. Second, a common workflow is to first reconstruct DO at scattered
profile locations and then interpolate these point estimates onto a regular grid, often using a limited set of predictors such as
60  temperature and salinity (Sharp et al., 2023; Wang et al., 2024; Liu et al., 2025). In data-sparse regions, this two-step procedure
encourages extrapolation, propagates local errors, and can generate spurious fine-scale structure that is not supported by the
underlying observations, particularly near sharp DO gradients and in historically undersampled basins. Third, training models
directly on raw profiles amplifies sampling biases: autonomous platforms such as Argo repeatedly sample specific regions and
depth ranges, whereas historical ship-based surveys are concentrated along cruise tracks (Huang et al., 2023; Lu et al., 2024).
65 Without explicit rebalancing or weighting, ML models place disproportionate emphasis on well-observed areas and generalize
poorly elsewhere, leading to reconstructions that systematically underrepresent variability and trends in data-poor regions.
At the dataset level, available ML-based global DO products, such as GOBAI-O: (Sharp et al., 2023), G4D-DOC (Xue et al.,
2024), and MLA4O: (Ito et al., 2024a), represent important advances, providing monthly gridded DO fields at 1° resolution over
multi-year to multi-decadal periods and resolving much of the upper and intermediate ocean. However, they are generally
70 limited either to the Argo era or to depths shallower than about 1000-2000 m. To our knowledge, there is currently no single
observation-based product that combines pre-Argo coverage from the 1960s, full-depth global fields, and sub-degree horizontal
resolution.
To address these methodological and dataset-level limitations, we generated GEOXYGEN, a monthly global DO dataset at

0.5° x 0.5° resolution on 187 depth levels from 1960 to 2024 (Wang et al., 2025, https://doi.org/10.5281/zenodo.17615657).

75 The dataset is generated by combining a global compilation of in situ DO profiles with objectively analyzed temperature—
salinity fields and related sea-surface environmental variables, and by learning their relationships with DO through a regionally
structured, depth-aware, and adaptively constrained machine-learning framework. Our approach explicitly accounts for strong
spatiotemporal heterogeneity by partitioning the ocean into ecogeographical macro-regions and training separate submodels
for different depth layers. Within each region—depth unit, we adaptively select predictive features from a suite of variables

80 including temperature, salinity, oxygen saturation, physical indicators, carbonate-system parameters, and bio-optical properties,
thereby ensuring physical interpretability while minimizing redundancy. To mitigate sampling bias and discontinuities, we
implement inverse-density weighting, year-grouped cross-validation, and cross-boundary fusion techniques. The resulting
GEOXYGEN product provides a consistent, long-term, and spatially complete representation of global DO suitable for
quantifying global and regional deoxygenation, diagnosing underlying drivers, and evaluating Earth system and

85 biogeochemical models.
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2 Data

2.1 In situ oxygen observations

90  To support a data-driven reconstruction of dissolved oxygen (DO), we compiled a global collection of in situ measurements
by integrating six major international data sources: the CLIVAR and Carbon Hydrographic Data Office (CCHDO), the Global
Ocean Data Analysis Project (GLODAP), the GEOTRACES Intermediate Data Product 2021 (IDP2021), Biogeochemical
Argo (BGC-Argo), the World Ocean Database 2023 (WOD23; Mishonov et al., 2024), and the OceanSITES fixed-point
observatory network. This compilation spans the period 1950-2024 and includes millions of DO profiles collected via bottle

95 casts (OSD), Conductivity—Temperature-Depth (CTD) profilers, and Argo floats.
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Figure 1: Global distribution and temporal coverage of DO profiles. (a) Changes in the number of profiles from major data sources

during 1950-2024. (b—c) Spatial distribution of decadal-mean profile counts for 1960-1980 and 2000-2020, computed on a 1° x 1°

grid, showing a transition from predominantly Northern Hemisphere sampling to much denser coverage in the Southern
100 Hemisphere. The color bar indicates the decadal-mean number of profiles per grid cell (log scale).

To ensure dataset consistency, we implemented a multi-stage quality-control (QC) procedure. First, we standardized formats

and units across sources and retained only measurements flagged as “good/probably good.” Second, we removed duplicates

from different sources on the same date and at the same location with vertical separation less than 1 m. Third, we applied a

physiologically plausible DO threshold of 0-600 pumol kg™ to exclude outliers. Although differences in QC protocols and

105 metadata conventions across datasets may introduce cross-source biases (Gregoire et al., 2021), prior assessments have

4
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indicated no significant systematic offsets between Winkler-calibrated high-accuracy data and sensor measurements at the
global scale (Schmidtko et al., 2017). Therefore, we did not apply cross-source corrections. Instead, we focused on local
outlier detection at each standard depth level, whereby within each 0.5° x 0.5° grid cell and a £10-day time window,
observations deviating by more than 3¢ from the local mean were excluded. Across depth levels, removal rates range from 0

110 to 0.105%, with most levels below 0.08%, indicating that only a very small fraction of the quality-controlled observations was
flagged as outliers.

Following QC, the final observational archive for 1950-2024 comprises approximately 1.4 million DO profiles (Fig. 1a). This
full 1950-2024 record is used for model training and evaluation, whereas the reconstructed DO fields are produced over 1960—
2024. The OSD, CTD, and Argo collectively account for ~91.15% of all profiles. Vertical sampling distribution has evolved

115 with technological advances: OSD dominates in surface waters (~80% above 100 m) but declines to less than 10% by 500 m,
whereas Argo represents over half of all profiles below 500 m and is the primary source in the mesopelagic layer. This shift
reflects broader observational trends: discrete bottle sampling prevailed through the 1960s, CTD profiling expanded in the
1970s—1990s through programs such as GLODAP and CCHDO, and autonomous float observations increased by an order of
magnitude after 2005. By 2010, Argo became the dominant platform in the open ocean.

120 Spatial coverage has shifted from a strongly Northern Hemisphere bias to a more Southern Hemisphere focus, but remains
highly uneven (Fig. 1b—c). From 1960 to 1980, sampling was concentrated along ship tracks in the Northern Hemisphere,
with limited data in the Southern Hemisphere and basin interiors. Quantitatively, analysis of our profile dataset shows that the
number of Southern Hemisphere profiles increased from roughly one quarter of the Northern Hemisphere count in 1960-1980
to about 2.4 times the Northern Hemisphere count in 2000-2020, reflecting a pronounced shift of observing effort into the

125 Southern Hemisphere. Since 2000, autonomous platforms have substantially improved coverage across the Southern Ocean
and the open ocean, partly alleviating the historical Southern Hemisphere undersampling. Nevertheless, marginal seas and
high-latitude ice-covered regions remain undersampled. In our reconstruction approach, we mitigate these biases through

regionalized modeling, gridding to standard depth levels, and inverse-density weighting.

2.2 Physical-biogeochemical variables

130 Accurately predicting ocean deoxygenation requires denser, longer DO observations, and drivers that characterize physical
transport and cross-scale biogeochemical processes (Oschlies et al., 2018). To meet this need, we complement objectively
analyzed temperature—salinity fields with a curated suite of sea-surface environmental variables (SSEVs), providing physically
consistent and process-informed predictors for DO reconstruction (Table 1).

We derive three-dimensional temperature and salinity fields from the Coriolis Ocean Dataset for Reanalysis (CORA) (Szekely

135 et al., 2025), a CMEMS objective analysis that compiles in situ temperature and salinity using the ISAS objective-mapping

system, integrating observations from ships, Argo floats, and other in situ platforms. This dataset undergoes delayed-mode

5
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quality control to ensure long-term stability and global coherence. Using the TEOS-10 standard, we further calculate oxygen
saturation (O-_sat) from CORA temperature and salinity data (I0C, 2010); its deviation from observed DO reflects biological
respiration and physical mixing.

In parallel, we assemble SSEVs spanning thermodynamic, dynamical, bio-optical, and carbon-chemistry processes, supporting
data-driven reconstruction (Shao et al., 2024; Ma et al., 2025). Wind vectors (zonal and meridional components, U and V) are
taken from NASA’s Cross-Calibrated Multi-Platform (CCMP) product (Mears et al., 2022). Mixed-layer depth (MLD) is
obtained from the CMEMS Multi-Observation Global Ocean 3D product (Guinehut et al., 2012). Dynamical variables include
sea surface height (SSH) and eddy kinetic energy (EKE), both derived from AVISO satellite altimetry (Hauser et al., 2020).
Bio-optical variables comprise photosynthetically active radiation (PAR) and chlorophyll a (Chl-a) from NASA Level-
3/Level-4 ocean-color products (NASA Ocean Biology Processing Group, 2018). Carbon-chemistry variables include
dissolved inorganic carbon (DIC), total alkalinity, pH, sea surface partial pressure of CO:z (pCOz2), and CO: flux, all obtained
from the CMEMS Surface Ocean Carbon Fields product (Chau et al., 2022; Chau et al., 2024). All variables were last accessed
in March 2025.

For consistency across sources, we regridded each variable to a uniform 0.5° x 0.5° grid, aggregated them to a monthly
resolution, and aligned them with both the DO observation locations and the reconstruction grid. This standardization ensures
coherent feature availability during model training and prediction while retaining large-scale physical and biogeochemical
signals essential for reconstructing the deoxygenation trend. To preserve historical information and reduce imputation
uncertainty, we retain all QC-passed DO data, even if some covariates (e.g., SSEVs) are missing. This sampling library

provides standardized inputs for subsequent model training.

Table 1. Details of the Physical-biogeochemical variables

Temporal Temporal
Variable Description Spatial Resolution Data Source
Resolution Coverage
0.25° x 0.25°; 187
Seawater 1960/01 —
Temperature (°C) standard depth levels Monthly
temperature 2024/06
(surface—5500 m)
0.25° x 0.25°; 187
1960/01 — (Szekely et al.,
Salinity standard depth levels Monthly
Seawater salinity 2024/06 2025)
(surface-5500 m)
Seawater oxygen 0.25° x 0.25°; 187
1960/01 —
O2_sat saturation standard depth levels Monthly
2024/06

(calculated) (surface—5500 m)
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U-wind vector

eddy kinetic energy

U(@ms™) component at 10
meters 1993/01 — | (Mears et al.,
0.25° x 0.25° Monthly 02
V-wind vector 023/08 2022)
V(ms?) component at 10
meters
Ocean mixed layer 1993/01 — (Guinehut et
MLD (m) 0.25° x 0.25° Monthly
depth 2022/12 al., 2012)
Surface ocean
DIC (umol kg™') | dissolved inorganic
carbon
Surface pH on total
pH
scale
(Chau et al.,
Surface aqueous 1985/01 —
0.25° x 0.25° Monthly 2022; Chau et
pCO: (natm) partial pressure of 2023/12
al., 2024)
CO,
CO: flux (mol m2 | Surface downward
yr) flux of total CO,
Alkalinity (umol Total alkalinity in
kg™) surface seawater
PAR (mol m &1 Photosynthetically
mol m2d-
available radiation (NASA Ocean
1997/10 — Biology
. 4km/9km Monthly
Mass concentration 2025/2 Processing
Chl-a (mg m™) of chlorophyll in Group, 2018)
surface water
Sea surface height
SSH (m) )
above geoid 1993/01 — (Hauser et al.,
0.25° x 0.25° Monthly
2023/08 2020)
Surface averaged
EKE (cm? s?)

2.3 Depth-dependent relationships between oxygen and drivers

We characterized the depth-dependent relationships between dissolved oxygen (DO) and a suite of environmental variables
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(Fig. 2). Near the surface, DO exhibits a strong negative correlation with temperature, consistent with solubility control, while
160 salinity contributes via the salting-out effect. With increasing depth, the direct influence of solubility declines, yet temperature
and salinity remain valuable as proxies for water-mass identity and ventilation history. For reference, we also show correlations
with TEOS-10 derived oxygen saturation (O:_sat), which serves as a physicochemical baseline reflecting equilibrium
conditions.
Sea-surface environmental variables (SSEVs) display distinct vertical patterns in their coupling with DO. Sea surface height
165 (SSH) maintains a strong and stable correlation through much of the water column, while surface wind components (U, V)
contribute dynamical context related to wind-driven advection and upwelling (Hollitzer et al., 2024). Carbonate system
variables retain explanatory power below the euphotic zone, indicative of remineralization signals and association with specific
water masses. In contrast, Chl-a is mainly informative within the upper tens of metres, reflecting its biogeochemical role in
the sunlit layer. Several SSEVs also display notable nonlinear relations with subsurface DO, which supports their value for
170 reconstructing underwater DO (Ping et al., 2024; Cao et al., 2024).
Overall, these correlation patterns illustrate how surface forcings and water-mass structure jointly shape subsurface oxygen
variability. They provide a theoretical and empirical foundation for subsequent modeling of the often nonlinear relationships

between these variables and DO.
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175 Figure 2: Vertical correlations between DO and physical-biogeochemical variables. Each bubble represents the Pearson correlation

coefficient ((r)) between DO and an environmental variable at a standard depth level. Bubble color encodes the sign and magnitude
(red = positive; blue = negative), and bubble area scales with (|r|). Filled bubbles denote correlations significant at (q<0.05) after

Benjamini—-Hochberg false-discovery-rate control; hollow bubbles indicate non-significant results.
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3 Method

180  Here, we develop a hierarchical modeling framework that resolves regional and vertical heterogeneity by partitioning the ocean
into ecogeographic regions and training depth-stratified, region-specific CatBoost models with adaptive feature selection and

year-grouped cross-validation.

3.1 Partitioning based on heterogeneity

Dissolved oxygen (DO) trends exhibit substantial variability across ocean basins, latitude bands, and depth layers, with
185 dominant controlling mechanisms shifting both regionally and vertically (Ma et al., 2025). To capture regional physical—
biogeochemical coupling while mitigating sampling biases, we implement a modeling framework that is stratified in both the
vertical and horizontal dimensions.
Vertical stratification. Given the depth dependence of processes governing DO distribution, we divide the 0-5500 m water
column into 187 standard depth levels, following the vertical grid of the CORA objective analysis and ISAS17 climatology
190 (Szekely et al., 2019; Kolodziejezyk et al., 2023).  An independent model is trained at each depth, allowing the framework
to resolve depth-varying controls while preserving realistic vertical structure.
Horizontal regionalization. To account for spatial heterogeneity in the physical-biogeochemical controls on DO, we follow
the global ocean biogeochemical province classification of Fay and Mckinley (2014) and refine it using basin boundaries and
the statistical robustness of sample distributions, allowing region-specific submodels to better represent distinct DO—
195 environment relationships. Gaps in the original map are filled by nearest-neighbor interpolation constrained by ocean
connectivity, combined with a KD-tree projection. To avoid local complexities, we exclude enclosed or exchange-limited seas
(e.g., the Mediterranean Sea and the Red Sea) and mask coastal waters shallower than the 200 m isobath. A sensitivity analysis

of this coastal threshold is presented in Sect. 4.3.

Bl Arctic Ocean (AO) m North Pacific (NP) North Atlantic (NA) B South Atlantic (SA)
B Indian Ocean (10) mm South Pacific (SP) Equatorial Atlantic (EA) mm Southern Ocean (SO)

200 Figure 3: Partitioning of the global open ocean into eight macro biogeochemical provinces.
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The open ocean is partitioned into eight macro biogeochemical provinces (Fig. 3): the Arctic Ocean (AO), North Pacific (NP),
South Pacific (SP), North Atlantic (NA), Equatorial Atlantic (EA), South Atlantic (SA), Indian Ocean (I0), and Southern
Ocean (SO). Each province serves as an independent modeling unit, enabling regionally tailored representation of key
205 processes, reducing spurious extrapolation across biogeochemical domains, and introducing structured constraints that enhance

the physical consistency of the reconstructed DO fields.

3.2 Adaptive modeling

Within each modeling unit, we employ the CatBoost gradient-boosting framework—an interpretable decision-tree method—
to learn the functional mapping between sparse dissolved oxygen (DO) observations and their environmental predictors. This
210 method builds ensembles of oblivious trees with ordered boosting, a training scheme that reduces variance and limits target
leakage. The algorithm offers several advantages for our application: it directly accommodates missing covariates without
imputation, incorporates sample weighting to address spatial biases, and employs multiple regularization strategies—including
L2 regularization on leaf values, subsampling, and early stopping—to prevent overfitting.
For historical periods (e.g., 1960-1997) where satellite-derived predictors are unavailable, the model treats missing covariate
215 values as a distinct input state, allowing it to rely primarily on temperature, salinity, oxygen saturation, and spatiotemporal
coordinates. This strategy avoids introducing systematic biases that can arise from statistical imputation and maintains
consistency across the reconstruction period. The CatBoost model uses 19 predictor variables as inputs. They include:
temperature, salinity, O-_sat, year norm, month_sin, month_cos, Latitude, U, V, SSH, EKE, MLD, PAR, Chl-a, DIC, pCO-,
pH, Alkalinity, and CO: flux. The temporal encodings are defined in Eq. (1)-(3), where days_since start denotes the number

220 of days elapsed since 1950-01-01 00:00:00 UTC.

year_norm = diaysgzigczcjmn, 1)
month_sin = sin (%";_1)), )
month_cos = cos (%) ,me{12,..,12}, 3)

To enhance model interpretability and generalization, we implemented a two-stage feature selection procedure for each region—
225 depth submodel, using only training data and a year-grouped cross-validation scheme consistent with our model evaluation
framework. Tree-based models tend to perform better with compact, informative feature sets, as redundant predictors can
dilute predictive accuracy (Garabaghi et al., 2023). First, we estimated permutation importance under five-fold cross-validation
grouped by year and retained an initial subset of features using an adaptive rule K = max (10,2\/5), where p = 19 is the
number of candidate features, discarding predictors with negligible contribution. Second, we perform recursive feature
230 elimination with cross-validation (RFECV) using the same year-grouped folds, iteratively removing the least important feature

and selecting the combination that minimizes validation RMSE. The five independent test years are excluded from both stages.

10
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This design allows feature sets to adapt to regional and vertical regimes—surface models emphasise rapidly varying surface
and biogeochemical terms, mid-depth models highlight meridional gradients and water-mass transition metrics, and deep
models rely primarily on temperature—salinity structure, while avoiding temporal information leakage and reducing overfitting.

235 To mitigate biases arising from heterogeneous spatiotemporal sampling (Fig. 1), we applied inverse-density weighting within
a fixed binning scheme. The sample domain is partitioned on a 5° x 5° latitude—longitude grid and non-overlapping 10-year
time windows in each partition. Sample weights were computed as the inverse of the observational density within each
spatiotemporal bin and standardized at each depth level, thereby reducing the influence of over-sampled regions and periods
during model training.

240 Let b(i) denote the spatiotemporal bin containing sample i, and let n,; be the number of samples in that bin. The initial
per-sample weight is the inverse square root of this count (Eq. (4)):

1
W, = , 4
Wi = e 4)

Specifically, each sample weight is set proportional to the inverse square root of the local sample density. To preserve the

aggregate information content, we then normalize the weights to unit mean (Eq. (5)):

245wy =—d ©)

SN Wy
This strategy increases the influence of observations from sparse regions and earlier periods without altering the aggregate

sample distribution.
3.3 Hyperparameter optimization and validation

To efficiently explore the hyperparameter space and avoid ad hoc manual tuning, hyperparameters for each regional modeling
250  unit were optimized independently using Bayesian optimization (Optuna; Table 2) with the objective of minimizing validation
RMSE. We employed a five-fold cross-validation scheme grouped by calendar year, wherein the observational record was
divided into five non-overlapping temporal blocks. Each block serves as a validation fold (~20%), ensuring that data from the
same year never appears in both training and validation splits. This design prevents temporal information leakage and avoids
inflated performance estimates that can arise from autocorrelated observations within narrow time windows (Salazar et al.,
255 2022). During each fold, an early stopping halts training if validation RMSE fails to improve for 50 consecutive iterations and
determines the optimal boosting rounds. The final model used the median of the optimal iteration counts across folds. Early
stopping was then disabled, and the model was retrained on the full training set prior to reconstruction.
To provide a final, unbiased assessment of model performance, we construct an independent out-of-time test set by randomly
selecting five calendar years—1964, 1972, 1985, 2012, and 2019 (without replacement)—and withholding them entirely from
260  training and hyperparameter optimization. Generalization capability was evaluated on this holdout set using RMSE, mean

11
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absolute error (MAE), and the coefficient of determination (R?), providing robust and interpretable metrics of predictive
accuracy and strengthening confidence in the reconstruction. These five withheld years are used in Sect. 4.1, 4.2 and 4.5 for

independent evaluation and product intercomparison.

Table 2. CatBoost hyperparameters and their Optuna prior search spaces

Hyperparameter Explanation Search range
iterations Maximum boosting rounds 100-2000
learning_rate Learning rate (shrinkage) 0.02-0.10
depth Tree depth 4-8

12 leaf reg L2 regularization on leaf values 2-10

bagging temperature Temperature for Bayesian bootstrap 0.05-1.0

265 4 Results and Discussion

4.1 Feature Importance

Under the adaptive feature-selection framework, each biogeographic region develops depth-specific optimal predictor sets (Fig.
4). Across all region—depth submodels, the final feature sets typically contain 5-10 predictors. At 10 m, year norm is the
dominant control. Among sea-surface environmental variables (SSEVs), sea surface height (SSH) and partial pressure of CO2

270 (pCO:2) consistently enhance model performance in multiple regions. In the Indian Ocean, for instance, SSH and meridional
wind velocity (V) account for substantial DO variance—a pattern consistent with wind-driven transport and upwelling
processes that modulate surface oxygen concentrations. Similarly, surface pCO: patterns have been shown to closely reflect
the upwelling of carbon-rich, oxygen-poor waters (Franco et al., 2014), underscoring its utility as a predictor of DO variability
in upwelling and OMZ regions.

275 At 200 and 1000 m, latitude replaces year norm as the most influential variable, particularly in the Indian Ocean. This result
suggests that latitude serves as an effective spatial proxy, capturing broad-scale oxygen gradients and the influence of
unobserved physical or biogeochemical drivers. Under this dominant latitudinal effect, the marginal contributions of most
SSEVs are generally subdued, though not negligible (Mila et al., 2024). In summary, although SSEVs contribute little on
average across depth levels, they remain important predictors in specific regions at certain depths. These results demonstrate

280  that region and depth jointly shape the effective input space. Adaptive regional modeling preserves key controls and removes
redundancy, improving both accuracy and physical interpretability. Feature subsets are not universal across regions, supporting
the regionalized approach’s advantage and smaller bias on the independent test. Our feature selection provides mechanistic

evidence for these findings.

suoIssnoasiq



https://doi.org/10.5194/essd-2025-699
Preprint. Discussion started: 1 December 2025
(© Author(s) 2025. CC BY 4.0 License.

(b) 200 m

(a) 10 m
0.19
0.10
0.12

0.06
0.08
017

Temperature 0.35
Salinity
02_sat
Latitude
year_norm
month_cos

0.06 Temperature
5 Salinity
02 sat-
Latitude
year_norm
month_cos -

0.05

month_sin month_sin -
MLD - MLD -
< SSH - EERY 00 004 004

2 u- U-
@ V- V-
Chla - Chla -
PAR - PAR -
EKE - EKE -
pcoz - 0.04 pCco2 -
DIC - 0.04 DIC -
pH - pH-
€O2_flux - CO2_flux -

Alkalinity - ) ) , ) ) s : Alkalinity - ) s

hO NP SP NA EA SA o] so 0.0 0.2 04 AO NP SP NA
Zone Mean importance Zone
(c) 500 m (d) 1000 m
Temperature 0.26 0.07 Temperature EI6:34
Salinity [F) 0.10 Salinity

0.12

0.19

month_cos -

month_sin - month_sin -
MLD - MLD -
= SSH - SSH -
E]
2 u- u-
£ V- v
Chla - Chla -
PAR - PAR -
EKE - EKE -
PCO2 - pCO2 -
DIC DIC

€02 _flux -

‘ Aiaiinity I
AO NP NA

Zone

pH
€02 flux
Alkalinity

B

AO NP SP NA SP

EA
Zone

SO 00 02 04
Mean importance

285

EA

00 02 04
Mean importance

. 0.04  0.05

SO 00 02 04

Mean importance

10

the right shows each feature’s mean importance computed over the provinces in which that feature is available.

4.2 Model evaluation
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Figure 4: Heatmap of relative feature importance across depths and provinces. Colors are on a logarithmic scale. The bar chart on

The reconstructed dissolved oxygen (DO) fields demonstrate high accuracy across depth layers and biogeographic regions.

Overall model performance was evaluated by aggregating predictions from all regions and comparing them with observed

290

values (Fig. 5). The model demonstrates high accuracy in estimating DO concentrations, with the scatter plot closely following

the 1:1 line. At representative depths, the global RMSE/MAE on the independent test set is on the order of 14.6/8.7 pmol kg™

at 10 m, 17.1/11.3 pmol kg™' at 200 m, and 8.7/5.2 umol kg™' at 1000 m. Most R? values are above 0.92, and the R? for deep-

layer DO reconstruction reaches 0.99. A slight positive bias is noted under severely hypoxic conditions, where extremely low

DO values are marginally overestimated—a known behavior of regularized tree ensembles that tend to smooth outliers toward

295

local means. These cases are rare, confined to strongly hypoxic conditions, and have negligible impact on large-scale statistics.

It is also worth noting that some of the lowest recorded DO values may reflect measurement uncertainty. Residuals are

generally symmetric and centered near zero, indicating that the model produces unbiased estimates with only occasional

negative outliers.
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Figure 5: Model performance for DO predictions across depth layers (independent test set). Top row: hexagon-binned scatterplots
of predicted vs. observed values; the gray dashed line denotes the 1:1 reference. The color bar indicates sample counts per hexbin.
Each panel reports the R, RMSE, and MAE. Bottom row: corresponding histograms of residuals (observed — predicted).
Vertical error structure exhibits consistent stratification across regions (Fig. 6): RMSE is highest in the surface and thermocline
305 layers, decreasing with depth, consistent with a strong vertical gradient in the thermocline and the relative stability of
intermediate to deep water masses. This pattern underscores the role of water mass stratification in shaping the estimation
uncertainty of DO. Regional differences are primarily reflected in the position and amplitude of mid-layer peaks. Regarding
error profile patterns, stable regions (e.g., SP-10, NA-SA) show consistently high R?, except at the surface, with RMSE
monotonically or nearly monotonically decreasing with depth. In mid-layer-sensitive regions (e.g., NP), an RMSE peak is
310 observed around 100-600 m, although R? remains relatively high. Lower surface R? values in the South Pacific, Equatorial
Atlantic, and Indian Ocean arise primarily from limited DO variance in those layers rather than increased absolute error.
Deep layers, constrained by water masses, show a consistent pattern of low errors and high correlations. In the thermocline
and OMZs, water properties and boundary positions are more sensitive to rapid seasonal and mesoscale—submesoscale
fluctuations (Bettencourt et al., 2015). Together with limitations in historical coverage and resolution, this increases
315 reconstruction uncertainty in these regions. Performance differences among regional models further confirm the pronounced
spatial heterogeneity of DO. In summary, the regionalized modeling framework generalizes effectively, capturing the large-

scale DO distribution with high overall skill. Errors are primarily concentrated in regions and depths where oxygen gradients
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Figure 6: Depth profiles of model performance across provinces.

4.3 Coastal uncertainty

To assess the influence of nearshore regions on basin-wide reconstruction accuracy, we performed a depth-threshold sensitivity
analysis. This involved progressively excluding coastal and marginal seas by increasing the bathymetric cutoff from 0 to 400
m, then evaluating model performance over the remaining open-ocean basin (Fig. 7). The results indicate that nearshore
shallow waters are a major source of uncertainty. Increasing the threshold from 0 to 200 m yields a marked reduction in
domain-mean error (7.5% relative to no exclusion; Fig. 7d—e). Further increasing the exclusion threshold to 250-300 m yields
only marginal improvements, while a 400 m cutoff increases error—likely due to the loss of representative slope waters and a
substantial decline in training sample size. In practice, the 200 m isobath offers a pragmatic coastal-exclusion standard when
nearshore processes such as terrestrial inputs, eutrophication, fine-scale stratification, and benthic-pelagic coupling are not
fully captured by our predictor set.

These findings are consistent with the physical and ecological characteristics of nearshore environments. Nearshore oxygen
variability is driven by high-frequency, localized processes including phytoplankton bloom pulses, riverine discharge, tidal
mixing, and anthropogenic effects, leading to strong diel and seasonal fluctuations that are poorly represented in existing open-
ocean focused predictors (Gilbert et al., 2010; Regier et al., 2023; Giomi et al., 2023; Liu et al., 2024). Such nonlinear, rapidly
varying processes produce error statistics that differ systematically from the open ocean. As a result, the model has limited
ability to generalize features across regions (Valera et al., 2020). Statistically, shallow shelf systems are not representative of
the large-scale oceanic DO background; their inclusion during model training and evaluation artificially elevates domain-
integrated error and obscures broad-scale oxygen patterns. Consequently, GEOXYGEN provides DO fields only for open-

ocean grid cells deeper than 200 m, with shallower coastal grid cells flagged as missing values.
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Figure 7: Mean absolute error of the test set at the ocean surface (panel a). Blue shading indicates shallow coastal and marginal sea
regions shallower than 200 m, and red boxes mark two representative high-error coastal areas. Panels (b) and (c) show zoomed
views of the Sea of Okhotsk shelf and the Patagonian Shelf, respectively. Panels (d) and (e) show RMSE and MAE as functions of

the coastal exclusion threshold, quantifying how model performance changes with the chosen depth cutoff.

4.4 Long-term dataset

The trained models, forced by external physical analysis fields, generate spatially and temporally consistent monthly dissolved
oxygen (DO) reconstructions. We use the CORA ocean analysis from CMEMS to provide temperature and salinity, together
with the SSEVs, as large-scale physical and biogeochemical predictors on the target grid. Using these objectively analyzed
gridded fields instead of interpolating from sparse in situ profiles avoids an extra interpolation step and the associated
secondary uncertainties. At each standard depth, the corresponding feature fields are evaluated by the matching regional model
to generate monthly DO predictions, yielding 0.5° x 0.5° fields from the surface to 5500 m that are aligned with the CMEMS
grid and calendar, but with coastal waters shallower than the 200 m isobath masked out. Because CORA analyses undergo
delayed-mode objective mapping and rigorous quality control, they provide long-term consistency, global continuity and full
traceability. Compared to methods that interpolate sparse in situ temperature and salinity observations, this approach reduces
uncertainties associated with secondary statistical interpolation.

To mitigate potential discontinuities at the boundaries between biogeochemical provinces—often termed a "step-effect"—we
implement boundary fusion within the transition zones (Wagstaff and Bean, 2022). Let x be the prediction location, §;(x)
the prediction of the i regional model at x,and d; the minimum great-circle distance from X to the boundary of that region.

Let the smoothing bandwidth be defined as S = 300 km. The fused estimate is then defined as:
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Thus, far from a boundary (d > S), only the local provincial model contributes; within S of a boundary, predictions from
adjacent provinces are blended smoothly in proportion to their distance from the edge. This preserves continuity across
boundaries without excessive smoothing.
Finally, we obtained GEOXYGEN, a global DO dataset that provides monthly fields on a 0.5° x 0.5° latitude—longitude grid
365 at 187 standard depth levels from the surface to 5500 m, spanning 1960-2024. GEOXYGEN is distributed as CF-compliant
NetCDF files, with one file per month (GEOXYGEN_DO_YYYYMM Op5deg_v1.nc) containing a four-dimensional DO
variable (time x depth X lat x lon) and the corresponding coordinate variables (time, depth, latitude, longitude). Time is
encoded as days since 1950-01-01 00:00:00 UTC using a Gregorian calendar and represents monthly means, and missing
values are flagged with a large sentinel value. An accompanying biogeochemical province mask, which also serves as a valid-
370 ocean mask (open-ocean grid cells deeper than 200 m), is provided in a separate NetCDF file. All data files are openly available

at https://doi.org/10.5281/zenodo.17615657 (Wang et al., 2025).

4.5 Comparison with other products

We compare GEOXYGEN against four existing dissolved oxygen (DO) products (Table 3) with the independent test dataset.
Performance is evaluated using spatiotemporally co-located samples from the five withheld years, analyzed separately for the
375 early (1960-1980) and recent (2000-2020) periods (Table 4). Only grid-month-depth points with concurrent observations

across all products are included.

Table 3. Summary of our product and other DO products

Product Time coverage Vertical levels Temporal resolution  Horizontal resolution
Our product 0-5500 m (187
1960-01 —2024-06 Monthly 0.5° x 0.5°
(GEOXYGEN) levels)
6-1000 m (20
ML4O, 1965-01 —2020-12 Monthly 1°x 1°
levels)
2.5-1975 m (58
GOBAI-O: 2004-01 —2023-12 Monthly 1°x 1°
levels)
10-1995 m (26
G4D-DOC 2005-01 —2022-12 Monthly 1°x 1°
levels)
IAP Oxygen
. 0-6000 m (119
(Gouretski et al.,  1960-01 —2022-12 Monthly 1°x1°

levels)
2024a)

380
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Table 4. Accuracy by depth for each product relative to observations
1960-1980 2000-2020
Product Depth
RMSE Bias R? RMSE Bias R?
Our product
15 0.1 0.92 8.2 -0.5 0.96
(GEOXYGEN)
IAP Oxygen 17.1 1.1 0.9 9.5 1.3 0.94
10
ML,0, 17.3 0.7 0.89 10.5 1.7 0.93
GOBAI-0O; NA NA NA 10 1.1 0.93
G4D-DOC NA NA NA 7.4 0.2 0.96
Our product
20 -0.3 0.9 13.5 -0.1 0.94
(GEOXYGEN)
IAP Oxygen 21.1 1.4 0.89 17.2 2.5 0.9
50
ML,0> 21.3 0 0.89 16.1 0.6 0.91
GOBAI-0O; NA NA NA 16.9 2.1 0.9
G4D-DOC NA NA NA 13.6 0 0.93
Our product
20.3 -0.2 0.93 153 0 0.95
(GEOXYGEN)
IAP Oxygen 20.6 1.5 0.93 19.4 1.8 0.93
100
ML;0, 20.8 1 0.93 18.6 -0.1 0.93
GOBAI-O; NA NA NA 18 0.7 0.94
G4D-DOC NA NA NA 18 0.7 0.94
Our product
19.3 -0.1 0.93 12.7 0 0.97
(GEOXYGEN)
IAP Oxygen 20.2 -0.3 0.92 16.9 1.4 0.95
200
ML40> 19.8 -0.1 0.93 20 -1.7 0.94
GOBAI-0O; NA NA NA 21 -1.6 0.93
G4D-DOC NA NA NA 16.4 1 0.96
Our product
21.2 -3.6 0.93 14.2 -0.3 0.97
(GEOXYGEN)
IAP Oxygen 18.6 -2.9 0.94 235 2.2 0.92
500
ML,0, 19.6 -6.1 0.94 26 -4 0.91
GOBAI-O; NA NA NA 28.4 -5.3 0.9
G4D-DOC NA NA NA 16.1 0.1 0.96
Our product
13.1 -0.9 0.97 6.5 0.2 0.99
(GEOXYGEN)
IAP Oxygen 14.5 1.6 0.96 8.2 3 0.99
1000
ML4O, 14.6 -0.3 0.96 8.1 0.5 0.99
GOBAI-O; NA NA NA 7.1 1.4 0.99
G4D-DOC NA NA NA 7.7 -0.5 0.99

The comparison highlights three main features. First, during the data-sparse early period (1960-1980), GEOXYGEN matches

or exceeds the performance of IAP and ML40O: at 10-200 m depth, exhibiting lower RMSE and near-zero mean bias,

and

achieves the best performance at 1000 m. Although errors are marginally higher at 500 m, the high R? (>0.9) confirms that
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385 large-scale oxygen structure is well reproduced even under limited observational constraints. Second, in the recent, data-rich
period (2000-2020), GEOXYGEN systematically reduces RMSE and bias at 50-200 m relative to all reference products, while
maintaining R? > 0.94. In this depth range, several existing products exhibit persistent positive or negative biases, whereas
GEOXYGEN remains close to unbiased, consistent with the benefits of regionalized modeling, inverse-density weighting, and
the inclusion of physically informed predictors. Third, at 1000 m, all products perform well, reflecting the stability of deep

390 water masses, yet GEOXYGEN ranks among the top performers, with RMSE values that are slightly lower or comparable to
the best alternatives. Overall, the out-of-time, co-located comparison indicates that GEOXYGEN provides reconstruction skill
that exceeds existing products, particularly at mid-depths where deoxygenation signals and model spread are most pronounced.
These outcomes align with our methodological strategy: the use of a long observational archive (1960-2024) enables training
across diverse climate states; CORA temperature—salinity fields, process-relevant SSEVs, regionally adapted models, adaptive

395 feature selection, inverse-density weighting, and boundary fusion collectively reduce bias, most notably between 50—500 m.
GEOXYGEN agrees with existing products at the surface and in the deep ocean and achieves systematically lower or
comparable RMSE and bias at key mid-depths. Taken together, it provides a high-resolution, broad-coverage, and accurate

DO dataset that supports more comprehensive analyses of deoxygenation trends and their driving mechanisms.

4.6 Comparison with WOA23

400 To evaluate the large-scale credibility and multi-year stability of our reconstructed dissolved oxygen (DO) fields, we compare
our product’s annual-mean DO climatology with the World Ocean Atlas 2023 (WOA23; Garcia et al., 2024) and examine
vertical structure using representative profiles from three major basins (Fig. 8).

In the upper ocean (0-300 m, depth-averaged), both products capture consistent basin-scale spatial patterns. The subtropical
gyres exhibit relatively high DO concentrations, while the equatorial region and eastern boundary upwelling systems form

405 distinct oxygen-deficient belts. The spatial extent and location of these structures are in close agreement between the two
climatologies. GEOXYGEN reproduces these banded structures continuously, with cross-frontal gradients in transition zones
closely matching those in WOA23 (Fig. 8, top row).

In the vertical, our product accurately depicts the largest hypoxic zone in climatology, which is mainly located in the
intermediate depth, ranging from 300 to 1,300 m. Meridional sections across the Pacific, Atlantic, and Indian Oceans show

410  broad consistency between GEOXYGEN and WOA23 in the alignment and closure of key oxygen isopleths, as well as in the
positioning of high-gradient transition layers. This structural agreement underscores the physical consistency of our product

across depth and region.
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Figure 8: Climatological comparison between WOA23 and our product (GEOXYGEN). Row 1 shows the global-mean DO
415 distribution averaged over 0-300 m. Colored dashed lines mark the locations of three sections: 65°E (red), 180° (purple), and 30°W

(green). Rows 2—4 show cross-sectional DO along these three sections.

Most global DO products are distributed on a 1° grid; in contrast, GEOXYGEN adopts a 0.5° horizontal grid, chosen to match
the resolution of the external analysis fields used as predictors. Within each ecogeographic region, the model learns
relationships between DO and objectively analyzed physical and biogeochemical fields and then applies these relationships
420 across the grid. Consequently, the reconstruction is not merely a reflection of where DO observations are dense; it also resolves
regional gradients and delineates the geometry of OMZs more clearly. Although performance is ultimately bounded by the
quality of the underlying observations and external analysis products, comparisons with 1° products show that the 0.5°
configuration yields consistently lower—or comparable—errors at key depths and can accurately resolve regions of strong DO
gradients. We therefore regard 0.5° as an appropriate operating resolution that exploits available information without over-

425 interpreting sparsely sampled areas.
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5 Conclusion

430  We introduce GEOXYGEN, a monthly, four-dimensional global ocean dissolved oxygen (DO) product spanning 1960-2024
at 0.5° x 0.5° resolution, developed to address long-standing challenges of data sparsity and spatiotemporal heterogeneity in
historical DO observations. Evaluated on an independent out-of-time test composed of withheld years, the reconstruction
demonstrates consistently high skill across all depth layers (typically R? > 0.92), confirming its robustness under conservative
validation protocols.

435 In comparison with other existing global DO products, GEOXYGEN reproduces observed spatial variability and attains
superior overall performance at mid-depths (50-200 m) and in the deep ocean while offering a higher spatial resolution (0.5°
vs. 1°). Our approach is distinguished by three principal innovations:

e Heterogeneity-aware hierarchical modeling. By combining vertical stratification with biogeographic provincialization,
we train CatBoost regressors within each region—depth unit. This design directly addresses the limitations of single global

440 ML models, which struggle to represent the spatially varying physical-biogeochemical controls on DO. In combination
with adaptive feature selection, inverse-density weighting, year-grouped cross-validation, and cross-boundary fusion, the
framework enhances robustness in undersampled regions, minimizes temporal leakage and boundary artefacts, and yields
parsimonious, interpretable submodels. The same hierarchical strategy can be readily applied to other biogeochemical
tracers or observing systems that exhibit strong regional and vertical heterogeneity.

445 e Adaptive multi-source feature selection. Starting from a rich set of physical, biogeochemical, and spatiotemporal
predictors, we employ a two-stage feature-selection procedure within each region—depth unit to retain only variables that
add independent skill. This adaptive, region- and depth-aware integration of multi-source environmental predictors
strengthens the representation of upper-ocean processes and water-mass transitions while suppressing noise and
redundancy, providing physically interpretable feature sets.

450 e A physically consistent, long-record, high-resolution product. GEOXYGEN delivers global monthly DO fields from
1960 to 2024 on a consistent 0.5° x 0.5° horizontal grid, spanning depths from the surface to 5500 m. Its high skill and
climatological consistency support robust estimates of deoxygenation trends and decadal variability, providing a stringent
benchmark for assessing and constraining Earth system models.

Nonetheless, GEOXYGEN is subject to certain limitations inherent in observational coverage and methodological assumptions.

455 It is also noted that uncertainty is elevated in early decades, ice-covered high latitudes, data-sparse deep basins, and unresolved
nearshore regions. Extremely low DO values in severely hypoxic environments may be conservatively biased upward, and the
product's sensitivity to uncertainties in external physical drivers merits further assessment. Future efforts will focus on cross-
platform calibration, dynamically refined regionalization, and inclusion of additional subsurface constraints. Despite these

limitations, it provides a long-term, internally consistent, and process-informed foundation for detecting, attributing, and
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460 interpreting global ocean deoxygenation. The GEOXYGEN, together with basic usage examples, is available at Zenodo (Wang

et al., 2025, https://doi.org/10.5281/zenodo.17615657). Future updates will be versioned at the same DOIL.

Code and data availability

The dissolved oxygen (DO) dataset generated in this study, together with the biogeochemical province mask used for

regionalization and coastal exclusion, is openly available at https://doi.org/10.5281/zenodo.17615657 (Wang et al., 2025),

465 where details of the data files and metadata are documented. The codes used to train models and generate the data product in

this paper are openly available at https://github.com/layne1202/GEOXY GEN-code.
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