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Abstract: China hosts approximately 97% of the world’s water-surface photovoltaics (WPV), 20 

with nearly two-thirds of its national capacity concentrated in the Yangtze River Delta (YRD), 21 

a densely populated economic powerhouse facing intense land-energy trade-offs. Despite this 22 

dominance, no high-resolution, decade-long inventory has existed to track this rapid expansion. 23 

WPV detection using optical RS imagery is severely limited by persistent cloud cover, water 24 

surface reflections, and spectral confusion, compromising long-term consistency over aquatic 25 

environments. Here, we developed a multi-sensor fusion framework integrating all-weather 26 

Sentinel-1 Synthetic Aperture Radar (SAR) and annual composite Sentinel-2 optical imagery. 27 

Key features include six Sentinel-2 bands, spectral indices (NDVI, MNDWI, NDBI, NDPI, and 28 

SAVI), texture metrics, and dual-polarization SAR backscatter. We trained a Random Forest 29 

classifier on 55,849 verified samples to generate annual WPV maps for 2015-2024. Afterwards, 30 

we applied post-processing procedures, including noise removal, patch merging, and area 31 

thresholding, and further validated installation years and eliminated errors through manual 32 

inspection of Google Earth time-series imagery. The well-constructed dataset of the first 10 m-33 

resolution WPV atlas for the YRD maps 401 validated projects with a cumulative area of 145.4 34 

km2 by 2024. It outperforms existing global PV inventories with an overall accuracy of 97.3% 35 

and a Kappa coefficient of 0.94. The results reveal rapid expansion from 17.4 km2 in 2015 to 36 

145.4 km2 in 2024, with 87% deployed on natural lakes, with a marked shift in leadership from 37 

Jiangsu to Anhui, and clear spatial clustering near grid infrastructure and stable water bodies. 38 

This high-fidelity inventory provides a robust foundation for monitoring WPV evolution, 39 

assessing environmental impacts, and informing sustainable energy planning in the world’s 40 

leading floating solar region.  41 

Keywords: Water-surface photovoltaics, Yangtze River Delta, Sentinel-1/2 fusion, Time-series 42 

mapping, Random Forest classification 43 
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1 Introduction 45 

The global shift from carbon-intensive energy systems to carbon-extensive renewables is 46 

accelerating in response to growing electricity demand and the urgent need to mitigate climate 47 

change. Solar photovoltaics (PV) dominates its growth, owing to its continued cost declines, 48 

and accounted for nearly 80% of new capacity additions in 2024 (Anon, 2025; Bogdanov et al., 49 

2021). However, the substantial land footprint required by conventional PV systems 50 

increasingly conflicts with agriculture and other critical land uses (Capellán-Pérez et al., 2017; 51 

van de Ven et al., 2021; Wei et al., 2025). Water-surface photovoltaics (WPV) emerges as a 52 

promising alternative. Deployed on natural lakes, reservoirs, and other water bodies, WPV 53 

alleviates land-use competition while offering additional benefits, such as reduced water 54 

evaporation loss (Forester et al., 2025; Pouran et al., 2022; Jin et al., 2023). China hosts 55 

approximately 97% of global WPV, with nearly two-thirds of its national capacity concentrated 56 

in the water-abundant, energy-intensive Yangtze River Delta (YRD) region (Chen et al., 2024). 57 

For the YRD and similar regions, understanding the spatial dynamics and scalability of WPV 58 

is crucial for optimizing renewable energy strategies that balance energy security, land 59 

stewardship, and ecosystem sustainability. 60 

In recent years, remote sensing combined with machine learning has become prevalent for 61 

extracting photovoltaic installations at regional or global scales (Zhang et al., 2023; Ortiz et al., 62 

2022; Zhang et al., 2022). Among these, classification algorithms such as Random Forest have 63 

demonstrated strong performance and robustness (Belgiu and Drăguţ, 2016). These techniques 64 

typically leveraged spectral, geometric, and textural features from satellite imagery to enable 65 

efficient, large-scale PV detection (Zhang et al., 2021; Chen et al., 2022). Despite these 66 

advances, several challenges persist, particularly for complex aquatic environments and long-67 

term monitoring. Optical imagery, which forms the foundation of most existing methods, is 68 

highly sensitive to weather conditions such as clouds, fog, and overcast skies, and cannot 69 

acquire data at night. Over water bodies, its performance is further constrained by reflections 70 

and shadows. Furthermore, although per-image accuracies can exceed 96% (Kruitwagen et al., 71 

2021; Xia et al., 2022, 2023), small errors accumulate substantially in long-term time-series 72 
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mapping. For instance, mapping with 96% annual accuracy over a decade yields only about 67% 73 

consistency across the full period (0.9610 ≈ 0.67). This compounded uncertainty, effectively 74 

rendering one-third of time-series outcomes unreliable, complicates spatiotemporal 75 

assessments and often results in confusion between photovoltaic installations and water surfaces. 76 

As a result, ensuring both temporal consistency and high fidelity in long-term water-based PV 77 

mapping remains a key methodological challenge.  78 

To directly address these limitations, this study proposes a robust and multidimensional 79 

feature-fusion framework for WPV extraction in the YRD region. Our approach utilizes annual 80 

composite Sentinel-2 imagery (2015-2024) and incorporates Sentinel-1 SAR observations to 81 

provide all-weather detection and capture strong backscatter signatures of WPV’s metallic 82 

structures. This combination substantially enhances single-period mapping accuracy and 83 

reduces misclassifications. To ensure comprehensive spatial coverage, we first identified 84 

candidate WPV zones through multi-year temporal compositing and water-mask filtering, 85 

thereby constraining detection to likely water-based locations and suppressing non-water 86 

interference. Subsequently, all detected WPV regions underwent rigorous manual inspection 87 

and refinement using high-resolution Google Earth imagery. This step enabled the precise 88 

removal of false positives and the reliable determination of installation years. The resulting 89 

decade-long WPV dataset achieves unprecedented accuracy and temporal consistency, 90 

representing the most reliable long-term inventory of WPV development to date and providing 91 

a robust foundation for understanding spatiotemporal growth dynamics and policy-relevant 92 

deployment patterns.  93 

 94 

2 Datasets and Methods 95 

2.1 Study Area 96 

China leads the world in WPV system development, holding approximately 96.82% of the 97 

global WPV-installed surface area in 2019, as shown in Fig. 1a. Within China, the YRD region 98 

represents a significant WPV hub, accounting for nearly two-thirds of the national total. 99 
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Specifically, Jiangsu (30.21%), Anhui (19.75%), and Zhejiang (9.97%) provinces exhibit the 100 

highest installed WPV capacities (Xia et al., 2022, 2023).  101 

Located in eastern China along the lower reaches of the Yangtze River (Fig. 1b), the YRD 102 

is characterized by abundant water resources, including a dense network of rivers, lakes, and 103 

reservoirs (Fig. 1c). These natural conditions are highly favorable for large-scale WPV 104 

deployment. Moreover, as one of China’s most economically developed and industrially 105 

concentrated areas, the YRD faces substantial electricity demand (Xu et al., 2023). The rapid 106 

growth of WPV in this region not only helps alleviate regional energy pressures but also plays 107 

a vital role in energy restructuring and the transition toward low-carbon development. 108 

Considering its current deployment scale, water resource conditions, and future development 109 

potential, this study focuses on the YRD as its primary research area. 110 

 111 

2.2 Datasets 112 

2.2.1 Satellite Datasets 113 

This study primarily utilizes Sentinel-1 Synthetic Aperture Radar (SAR) and Sentinel-2 114 

Multispectral Instrument (MSI) imagery, both of which are accessible via the Google Earth 115 

Engine (GEE) platform. The selected temporal coverage, from 2015 to 2024, aligns with the 116 

rapid development timeline of WPV installations in China.  117 

Sentinel-1, equipped with a C-band SAR sensor, provides all-weather, day-and-night 118 

imaging capabilities, making it ideal for long-term dynamic monitoring as it's unaffected by 119 

cloud cover, precipitation, or illumination. We utilized the Sentinel-1 Ground Range Detected 120 

product from GEE, which features a 10-meter spatial resolution and a 6–12-day revisit time. To 121 

comprehensively capture radar backscatter characteristics of water bodies and WPV structures, 122 

Vertical Transmit/Vertical Receive (VV) and Vertical Transmit/Horizontal Receive (VH) 123 

polarization channels were selected.  124 

Sentinel-2 provides high-resolution, multispectral optical and near-infrared imagery, well-125 

suited for identifying and classifying WPV regions. We utilized atmospherically corrected 126 
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Level-2A surface reflectance products from the Sentinel-2 MSI sensor, which provides 13 127 

spectral bands. Six key bands sensitive to water bodies and artificial structures were selected: 128 

Bands 2–4 (visible), Band 8 (NIR), and Bands 11–12 (SWIR), all at 10-meter resolution with a 129 

5-day revisit. To reduce cloud interference, a cloud-masking algorithm was applied, and annual 130 

median composites were generated from all available images (Gorelick et al., 2017). To reduce 131 

cloud interference, a cloud-masking algorithm was applied, and annual median composites were 132 

generated from all available images. These composites ensure radiometric consistency and 133 

provide a stable spatial baseline for dynamic WPV detection and temporal analysis. These 134 

composites ensure radiometric consistency and provide a stable spatial baseline for dynamic 135 

WPV detection and temporal analysis.  136 

 137 

2.2.2 Water Body Datasets 138 

A water mask of the Yangtze River Delta (YRD) was constructed to geographically 139 

delineate the study area. It was based on several publicly available global water and reservoir 140 

datasets, including HydroLAKES, GRanD, GOODD, and GeoDar (Lehner et al., 2011; 141 

Messager et al., 2016; Mulligan et al., 2020; Wang et al., 2022). The HydroLAKES dataset 142 

provides spatial boundaries and multiple attributes (e.g., area, storage capacity, and mean depth) 143 

of global natural lakes and some artificial lakes, enabling the identification of small lakes and 144 

potential host water bodies for floating photovoltaics. The GRanD dataset records the locations, 145 

capacities, construction years, and purposes of large reservoirs and dams worldwide, facilitating 146 

the identification of artificial reservoirs. GOODD and GeoDar provide georeferenced dam 147 

locations derived from remote sensing, which further complement GRanD and enable high-148 

precision spatial mapping of reservoirs and dams. 149 

In the data processing procedure, natural lakes were defined as all water bodies excluding 150 

artificial reservoirs, encompassing aquaculture ponds and irrigation ponds. By integrating these 151 

four datasets, a foundational water layer for the study area was generated. This layer provides 152 

a stable spatial reference and serves as a validation framework for identifying water-surface 153 

photovoltaics using Sentinel-1 SAR and Sentinel-2 optical imagery. 154 
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 155 

2.2.3 Training and Validation Samples 156 

The training and validation samples used in this study were derived from the WPV 157 

inventory (Xia et al., 2022), which mapped the distribution of WPV installations in China for 158 

2021. Because the original dataset contained several misclassified regions, a manual 159 

verification process was conducted to ensure the reliability of the labels. Each WPV polygon 160 

was visually checked using high-resolution satellite imagery, and misidentified areas were 161 

removed. WPV sample points were generated proportionally to the area of each PV polygon to 162 

ensure adequate representation of large installations. Examples from three representative WPV 163 

regions are shown in Figs. 2a–c, demonstrating typical distribution patterns across different 164 

water bodies. Non-WPV samples were randomly selected from water surfaces without PV 165 

coverage to provide balanced class representation. 166 

The spatial distribution of all sample points is illustrated in Fig. 2d, where red points 167 

represent WPV samples and blue points represent non-PV samples. In total, the dataset consists 168 

of 55,849 labeled points (80% for training and 20% for validation), including 28,332 WPV and 169 

27,517 non-WPV samples (Fig. 2e). These well-validated samples formed the foundation for 170 

subsequent annual classifications from 2015 to 2024.  171 

 172 

2.3 WPV Extraction Workflow 173 

2.3.1 WPV Feature Engineering 174 

To reduce data volume and focus on aquatic areas, we first filtered Sentinel-2 MSI imagery 175 

using a water mask, effectively excluding most terrestrial regions. Six spectral bands (Bands 2–176 

4 [visible], Band 8 [NIR], and Bands 11–12 [SWIR]) were selected as key features due to their 177 

sensitivity to water bodies and artificial structures. To minimize the influence of cloud cover 178 

and provide stable annual surface conditions, annual median composites were generated from 179 

all available images within each year. To enhance the distinction between water bodies and 180 

WPV installations, we integrated a comprehensive set of additional features: 181 
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Spectral indices: Normalized Difference Vegetation Index (NDVI), Modified Normalized 182 

Difference Water Index (MNDWI), Normalized Difference Built-up Index (NDBI), Normalized 183 

Difference Photovoltaic Index (NDPI), and Soil-Adjusted Vegetation Index (SAVI), based on 184 

Eqs. (1)–(5). These indices have proven effective in photovoltaic detection (Feng et al., 2024), 185 

with NDVI and MNDWI aiding in the identification of water bodies, NDBI and NDPI 186 

improving the discrimination of WPV, and SAVI reducing interference from vegetation/soil.  187 

𝑁𝐷𝑉𝐼 =
𝜌(𝑁𝐼𝑅) + 𝜌(𝑅𝐸𝐷)

𝜌(𝑁𝐼𝑅) − 𝜌(𝑅𝐸𝐷)
(1) 188 

𝑀𝑁𝐷𝑊𝐼 =
𝜌(𝐺𝑅𝐸𝐸𝑁) + 𝜌(𝑀𝐼𝑅)

𝜌(𝐺𝑅𝐸𝐸𝑁) − 𝜌(𝑀𝐼𝑅)
(2) 189 

𝑁𝐷𝐵𝐼 =
𝜌(𝑆𝑊𝐼𝑅1) + 𝜌(𝑁𝐼𝑅)

𝜌(𝑆𝑊𝐼𝑅1) − 𝜌(𝑁𝐼𝑅)
(3) 190 

𝑁𝐷𝑃𝐼 =
𝜌(𝑁𝐼𝑅) − 𝜌(𝑆𝑊𝐼𝑅2)

𝜌(𝑆𝑊𝐼𝑅1) − 𝜌(𝑁𝐼𝑅)
(4) 191 

𝑆𝐴𝑉𝐼 = 1.5
𝜌(𝑁𝐼𝑅) − 𝜌(𝑅𝐸𝐷)

𝜌(𝑁𝐼𝑅) + 𝜌(𝑅𝐸𝐷) + 0.5
(5) 192 

Texture features: Computed using the Gray Level Co-occurrence Matrix (Haralick et al., 1973), 193 

these features capture the distinct spatial patterns of WPV arrays, which typically exhibit clear, 194 

regular boundaries contrasting with natural water bodies. 195 

SAR-based backscatter data: We incorporated annual mean values from Sentinel-1 SAR VV 196 

and VH polarization bands to provide complementary all-weather backscatter information, 197 

crucial for robust WPV identification, especially over water. 198 

 199 

2.3.2 Annual WPV Classification 200 

Classification was conducted using the Random Forest algorithm implemented within the 201 

Google Earth Engine (GEE) platform, selected for its robustness, computational efficiency, and 202 

demonstrated success in PV mapping tasks (Feng et al., 2024; Zhang et al., 2023). The Random 203 

Forest classifier was trained on a labeled sample dataset derived from both WPV and non-WPV-204 

covered water bodies (Fig. 3a). After model training, the classifier was applied to annual 205 
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imagery to perform classification for each year from 2015 to 2024, producing a decade-long 206 

time series of WPV distribution maps. 207 

 208 

2.3.3 Automated Post-Processing 209 

Following the initial classification, we applied a systematic post-processing methodology 210 

to refine the results, remove non-WPV areas, and consolidate adjacent patches. This process, 211 

consistent with previous work (Hirayama et al., 2019), aimed to improve overall map quality 212 

and reduce the workload for subsequent visual interpretation (Fig. 3b). Given that WPV 213 

installations typically occupy relatively large areas, we first performed noise removal by 214 

identifying and eliminating classified patches with fewer than 10 pixels. Additionally, WPV 215 

arrays located in close proximity within the same water body are often part of the same project 216 

and installed concurrently. To accurately represent this, adjacent patches within a 100-meter 217 

buffer (i.e., less than 200 meters apart) were merged into single units. Finally, recognizing that 218 

larger WPV patches generally correlate with higher classification accuracy, only those with an 219 

area greater than 0.001 km2 were retained in the final results, ensuring the inclusion of reliable 220 

WPV installations.  221 

 222 

2.4 Accuracy Assessment and Manual Refinement 223 

2.4.1 Classification Model Assessment 224 

To support the classification workflow, a stratified random sample comprising 20% of the 225 

total dataset (5,667 WPV points and 5,507 non-WPV) was held out for independent accuracy 226 

assessment. Classification performance was evaluated using four standard metrics: User 227 

Accuracy (UA), Producer Accuracy (PA), Overall Accuracy (OA), and the Kappa coefficient.  228 

 229 

2.4.2 Manual Refinement and Final Dataset Creation 230 

To achieve the highest accuracy and completeness in our WPV extraction, we integrated 231 
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the annual classified WPV maps (2015–2024) with external WPV datasets (Xia et al., 2022), 232 

creating a comprehensive set of potential WPV regions. Each potential region was then 233 

subjected to rigorous manual interpretation and correction using high-resolution satellite 234 

imagery from Google Earth (Fig. 3c). This critical validation step enabled the precise 235 

identification and removal of misclassified non-WPV areas, thereby significantly enhancing the 236 

reliability of our final dataset. As WPV installations are typically long-lasting, their installation 237 

year was accurately estimated by identifying the first year each site visibly appeared in high-238 

resolution Google Earth imagery sequences. This approach allowed for a more systematic and 239 

accurate understanding of WPV deployment over time. Finally, internal gaps within the 240 

identified WPV patches were filled to ensure spatial completeness, facilitating more precise 241 

calculations of area and surface coverage.  242 

 243 

3 Result 244 

3.1 Accuracy Validation and Comparison of WPV Extraction Results 245 

To comprehensively evaluate the reliability and robustness of our WPV extraction results, 246 

we conducted a multi-level validation and comparison process. This section presents a 247 

systematic assessment of the classification performance from three complementary perspectives. 248 

First, the initial classification outputs were visually inspected and refined to evaluate the 249 

effectiveness of the post-processing procedure. Then, single-year and multi-year merged 250 

datasets were compared to examine the temporal stability of WPV detection results. Finally, our 251 

dataset was compared with existing global PV products, including a global inventory of 252 

photovoltaic solar energy generating units as of the end of 2018 (Kruitwagen et al., 2021) and 253 

Global Renewables Watch in 2024 (Robinson et al., 2025), to assess spatial completeness and 254 

consistency. Both qualitative and quantitative analyses were performed, including confusion-255 

matrix-based accuracy assessment and detailed visual interpretation across representative 256 

regions. Together, these evaluations provide a thorough verification of the accuracy, continuity, 257 

and advantages of our WPV dataset.  258 
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 259 

3.1.1 Evaluation of Initial and Refined WPV Extraction Results 260 

To visually assess the effectiveness of our post-processing workflow, we compared the 261 

initial and refined WPV classification results (Fig. 4). The initial classification results (Figs. 4b, 262 

e, h) contained a certain level of noise and misclassification, including small isolated patches 263 

and fragmented boundaries along water edges. These inaccuracies were mainly caused by 264 

spectral confusion between WPV installations and nearby structures or floating vegetation. 265 

After systematic post-processing and manual correction (Figs. 4c, f, i), the final results exhibited 266 

much cleaner boundaries and more coherent WPV patches. The red outlines clearly delineate 267 

WPV areas, demonstrating improved spatial consistency and a reduction in false positives. This 268 

refinement process substantially enhanced the reliability of the extracted WPV maps, providing 269 

a foundation for subsequent accuracy validation and spatial analysis. 270 

 271 

3.1.2 Comparison Between Single-Year and Multi-Year Merged Results 272 

We compare WPV extraction results obtained from single-year imagery with those derived 273 

from merged multi-year datasets (Figs. 5, 6), providing an assessment of the benefits of 274 

temporal data integration. The results indicate that single-year classifications on both lakes and 275 

reservoirs frequently suffered from incomplete coverage (Figs. 5a–b, d–e, g–h and 6a–b, d–e, 276 

g–h), resulting in fragmented or missing WPV patches due to cloud contamination or partial 277 

image coverage. By contrast, the merged 2015–2024 dataset (Figs. 5c, f, i and 6c, f, i) offered 278 

a more consistent and complete delineation of WPV boundaries, as highlighted by the orange 279 

outlines. These improvements are particularly notable in turbid or seasonally fluctuating water 280 

bodies, where single-year imagery alone may fail to capture stable WPV features. Overall, the 281 

multi-year merging strategy substantially enhanced both classification completeness and spatial 282 

continuity, providing a robust basis for temporal analyses of WPV expansion. 283 

 284 
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3.1.3 Comparison with Existing Global PV Datasets 285 

We compared our WPV dataset with a global inventory of photovoltaic solar energy-286 

generating units and Global Renewables Watch in terms of statistical accuracy. Six 287 

representative locations were selected to assess the performance of our dataset relative to these 288 

global datasets (Figs. 7, 8). Visual inspection indicates that the existing global datasets exhibit 289 

notable limitations in WPV identification, frequently resulting in misclassification or omission, 290 

particularly in small-scale or spatially complex inland water bodies. Fig. 7 highlights instances 291 

of incomplete or erroneous WPV identification, whereas Fig. 8 shows multiple WPV regions 292 

that were entirely missed by the global datasets but were successfully captured in our study. 293 

Quantitative accuracy assessment (Table 1) further confirms the superior performance of 294 

our dataset. Specifically, our WPV dataset achieved an Overall Accuracy (OA) and Kappa 295 

coefficient exceeding 0.9, while the corresponding metrics for the two global datasets were 296 

generally lower (OA: 0.825–0.818, Kappa: 0.651–0.637). These results demonstrate that our 297 

dataset significantly outperforms existing global datasets in terms of both classification 298 

accuracy and spatial completeness, validating that the integration of multi-temporal imagery 299 

with regionally representative sample training can substantially enhance the accuracy and 300 

reliability of WPV extraction.  301 

 302 

3.2 WPV Spatiotemporal Distribution and Growth Trends 303 

WPV projects in the study area exhibit distinct spatiotemporal distribution and growth 304 

trends. Spatially, current WPV projects are primarily concentrated in Anhui and Jiangsu 305 

provinces, which provide suitable hydrological and land-use conditions for large-scale 306 

deployment (Fig. 9a). By 2024, a total of 401 WPV projects have been identified in the YRD, 307 

covering a cumulative area of 145.5 km2. Among these, Anhui Province hosts the largest share 308 

(68.7 km2), accounting for 47% of the total WPV area, followed by Jiangsu (64.8 km2) and 309 

Zhejiang (12 km2). Based on the five largest WPV projects in each province (Table 2), Jiangsu 310 

generally exhibits a larger overall project scale, with most large WPV installations located on 311 
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lakes. 312 

From a temporal perspective, WPV installations have expanded markedly between 2015 313 

and 2024, with the total area increasing by 128 km2 (Fig. 9b). This expansion was most 314 

pronounced during the early phase (2015–2019), which contributed approximately 59.2% of 315 

the total increase, followed by a relative slowdown during 2019–2024. At the provincial level, 316 

Anhui experienced the greatest increase in WPV area over the decade, adding 66.9 km2, 317 

followed by Jiangsu (49.1 km2), while Zhejiang’s growth remained modest, with a total addition 318 

of only 12 km2. Notably, the spatial evolution trajectories of WPV deployment differ 319 

significantly among the three provinces. In Jiangsu, WPV development began in the northern 320 

region and gradually expanded southward and toward the coastal areas during the early years. 321 

In contrast, early WPV projects in Anhui were also concentrated in the north, but from 2022 322 

onward, installations rapidly expanded along the Yangtze River corridor, forming a more 323 

continuous, belt-shaped distribution. Zhejiang Province, by comparison, saw only limited WPV 324 

deployment, characterized by a short burst of growth between 2017 and 2020, with most 325 

projects clustered in its northern and western regions. 326 

In addition to the overall spatial and temporal patterns in the YRD, WPV projects of 327 

different sizes exhibit distinct trends in quantity and growth, providing additional insights into 328 

the structural characteristics of PV development in the region(Fig. 9b). Large-scale projects (> 329 

1.0 km2) are relatively few, experiencing rapid growth primarily between 2015 and 2018, then 330 

stabilizing. Conversely, medium-scale (0.1–1.0 km2) and small-scale (<0.1 km2) projects far 331 

outnumber large ones and have grown rapidly overall. In general, WPV development has 332 

evolved from localized concentrations to broader regional deployment, and from predominantly 333 

large-scale projects to a more diversified mix of small-scale and medium-scale systems.  334 

 335 

3.3 WPV Deployment on Lakes and Reservoirs 336 

Different types of water bodies exhibit varying levels of adaptability to WPV deployment, 337 

which directly affects the estimation of potential installed capacity and informs rational spatial 338 
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planning(Bai et al., 2024; Château et al., 2019). Within the study area, WPV installations are 339 

predominantly located on lakes, with only a minor proportion situated on reservoirs (Fig. 10a). 340 

Lakes host the vast majority of total capacity—exceeding 126.8 km2 by 2024, or 87.2% of the 341 

cumulative WPV area. In contrast, reservoirs account for 12.8% (18.6 km2) of total WPV 342 

deployment. However, the distribution across waterbody types differs considerably among 343 

provinces. Jiangsu exhibits the most pronounced disparity, with approximately 98.1% of its 344 

WPV systems deployed on lakes and only 1.9% on reservoirs. Anhui and Zhejiang demonstrate 345 

higher shares of reservoir-based WPV, at 28.9% and 20.2%, respectively. The temporal 346 

evolution of WPV deployment also reveals distinct trajectories for lakes and reservoirs (Fig. 347 

10b). Lake-based WPV installations expanded steadily between 2015 and 2024, with a total 348 

increase of 109.4 km2. In contrast, the development of reservoir-based WPV proceeded more 349 

slowly. Its expansion was limited between 2015 and 2019 (14.9 km2), and following the 350 

introduction of policy restrictions in 2019, reservoir-based WPV installations declined sharply, 351 

with the total area remaining below 20 km2. These trends underscore the growing dominance 352 

of lakes as preferred sites for WPV deployment, while reservoirs have become increasingly 353 

constrained due to operational sensitivities, fluctuating water levels, and tightening 354 

environmental regulations (General Office of MWR, 2020).  355 

The impact of WPV systems on water bodies is multifaceted, influencing various physical 356 

properties and ecological dynamics, with the extent of WPV coverage exerting differential 357 

effects based on water body characteristics (Exley et al., 2021). By integrating WPV 358 

distribution data with surface water datasets, WPV coverage was calculated for 385 water 359 

bodies across the study area (Figs. 11a, b). Coverage rates varied substantially among different 360 

size classes. In smaller water bodies (0–4 km2), WPV coverage exhibited high variability, 361 

ranging from 0% to 100%. However, as water body size increased, WPV coverage declined 362 

sharply, falling below 50% in medium-sized water bodies and below 10% in large ones (>100 363 

km2). Most reservoirs covered by WPV installations are relatively small (< 4 km2), and their 364 

overall WPV coverage is slightly lower than that of lakes of comparable size. 365 

 366 
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3.4 WPV Spatial Clustering and Driving Factors 367 

At the regional scale (Fig. 12a), WPV projects exhibit a clear pattern of localized clustering 368 

across the study area. These projects are primarily distributed along major rivers and lakes, with 369 

project sizes varying considerably, from less than 0.1 km2 to over 3 km2. Notably, several large, 370 

high-density clusters are observed in parts of Jiangsu and Anhui provinces (Fig. 12b-12d).  371 

This spatial aggregation is shaped by a combination of natural and socio-economic factors. 372 

Natural conditions provide fundamental support for WPV deployment, with large water bodies 373 

having minimal fluctuations in water level and stable water quality being particularly suitable 374 

(Woolway et al., 2024). For example, Sanlihe Reservoir (Fig. 12e), Gaoyou Lake (Fig. 12f), 375 

and Xizi Lake (Fig. 12g) possess stable, expansive water surfaces and favorable hydrological 376 

conditions, supporting extensive WPV arrays. Grid accessibility is another key driver 377 

influencing the spatial distribution of WPV systems (Essak and Ghosh, 2022). In both Gaoyou 378 

Lake and Xizi Lake, WPV installations are located near urban settlements and existing power 379 

infrastructure, which facilitates grid connection and reduces energy transmission losses and 380 

associated costs. This locational advantage has made such water bodies prime targets for large-381 

scale WPV deployment.  382 

4 Discussion 383 

4.1 Major Findings and Contributions 384 

This study constructs a high-precision, decade-long (2015–2024) WPV dataset for the 385 

YRD region, thereby significantly advancing remote sensing-based WPV mapping. We 386 

specifically address key limitations in existing time-series mapping approaches, namely the 387 

constraints of optical imagery (e.g., cloud cover and water surface reflection) and the substantial 388 

error accumulation in long-term mapping (e.g., per-period accuracy of ~0.96 may degrade to 389 

~0.67 over ten years). Our robust solution—fusing Sentinel-1 SAR data with multi-temporal 390 

Sentinel-2 imagery—effectively leverages SAR’s all-weather imaging capability and the strong 391 

backscatter signals uniquely associated with the metallic structure of WPV panels, thereby 392 

significantly enhancing single-period mapping accuracy and reducing misclassification. In 393 
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addition, through probabilistic filtering and meticulous manual verification using high-394 

resolution Google Earth imagery over potential WPV regions, we achieved unprecedented 395 

accuracy and temporal consistency for this long-term dataset. 396 

Based on this reliable dataset, we conducted the first systematic and fine-scale decadal 397 

analysis of the spatial-temporal distribution and growth trends of WPV in the YRD. We revealed 398 

that the total WPV area expanded rapidly from 17.4 km2 in 2015 to 145.4 km2 in 2024, along 399 

with a shift in the leading province of development from Jiangsu to Anhui. The results also 400 

detail the diverse growth trajectories of large-, medium-, and small-scale WPV projects, 401 

demonstrating an evolution from localized concentration to broader regional deployment. 402 

 403 

4.2 Implications and Potential Applications  404 

This high-precision, decade-long WPV dataset constructed in this study holds significant 405 

theoretical and practical value. It strengthens the scientific foundation for WPV deployment, 406 

improves the accuracy of environmental impact assessments, and informs more effective 407 

policy-making. A primary contribution of the dataset lies in its utility for WPV energy planning 408 

and spatial optimization. By quantifying the surface coverage and spatial distribution of WPV 409 

installations, and distinguishing their suitability across various water body types (e.g., high-410 

coverage potential under “fishing-solar complementarity” schemes), the dataset enables the 411 

identification of optimal deployment zones. This facilitates a balance between rapid WPV 412 

expansion and aquatic ecosystem protection, enhancing the efficiency of resource allocation 413 

and supporting data-driven site selection and planning (Bai et al., 2024; Château et al., 2019). 414 

In addition, the dataset provides a reliable basis for evaluating the environmental impacts 415 

of WPV systems. It supports the assessment of both physical and biological effects on water 416 

bodies, including alterations in evaporation rates, thermal dynamics, and impacts on aquatic 417 

ecosystems such as algal photosynthesis. This is particularly valuable in identifying potential 418 

ecological risks associated with high-coverage installations in small water bodies, thereby 419 

promoting more ecologically responsible deployment strategies (Sahu et al., 2016; Armstrong 420 
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et al., 2020; Nobre et al., 2023; Ma and Liu, 2022). Furthermore, the dataset enhances the 421 

effectiveness of field validation efforts. By addressing limitations of outdated and spatially 422 

sparse datasets, it facilitates the targeted selection of representative WPV sites for in-situ 423 

investigation, significantly improving the efficiency and accuracy of ground-truthing and data 424 

collection. 425 

 426 

4.3 Limitations and Future Research 427 

Despite constructing a high-precision dataset, this study has several limitations. First, 428 

uncertainties in the underlying waterbody datasets remain a challenge; small water bodies (e.g., 429 

ponds) may be omitted, while imprecise boundaries and spectral confusion with nearby 430 

buildings or bare soil can cause both omissions and misclassifications at water edges (Valerio 431 

et al., 2024; Wang et al., 2022). Second, the diversity in WPV installation methods and 432 

structural designs introduces variations in spectral and textural characteristics, posing 433 

challenges for consistent extraction (Shi et al., 2023). Finally, the area threshold applied during 434 

post-processing to eliminate noise likely leads to an underestimation of the total WPV area, 435 

particularly by excluding small-scale systems on rural ponds or aquaculture facilities (Iqra et 436 

al., 2024). 437 

In light of these limitations, future research can focus on three key directions. 438 

Methodologically, the integration of deep learning methods (e.g., U-Net, DeepLabV3+) holds 439 

promise for enhancing accuracy, particularly in delineating complex boundaries and detecting 440 

morphologically diverse or small-scale targets (Chen et al., 2018; Ronneberger et al., 2015). 441 

Spatially, expanding the study to national or global scales would reveal macro-level deployment 442 

trends driven by policy and market dynamics, offering valuable guidance for macro-level 443 

energy planning. Thematically, future work should place greater emphasis on evaluating the 444 

ecological impacts of WPY systems by integrating remote sensing retrievals with in-situ 445 

monitoring data, thereby promoting a coordinated approach to renewable energy development 446 

and ecosystem conservation. 447 
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 448 

5 Conclusion 449 

This study precisely mapped the spatiotemporal distribution of Water-surface photovoltaic 450 

(WPV) systems in China's Yangtze River Delta from 2015 to 2024. Using a robust framework 451 

that integrated multi-temporal Sentinel-1 SAR and Sentinel-2 optical imagery with Random 452 

Forest classification, refined by post-processing and manual verification, we generated a high-453 

resolution, decade-long dataset that overcomes optical imagery limitations and cumulative 454 

errors in long-term monitoring. Our findings reveal WPV's significant expansion (17.4 km2 in 455 

2015 to 145.4 km2 in 2024), with deployment shifting towards Anhui. Most projects are now 456 

small- to medium-scale, primarily on lakes, exhibiting clear spatial clustering influenced by 457 

water conditions and grid access. This comprehensive WPV mapping serves as a critical data 458 

source for assessing development potential, guiding renewable energy planning, and evaluating 459 

ecological impacts. Its generalizable methodology offers a strong foundation for broader WPV 460 

monitoring and future research integrating advanced remote sensing and ecological analysis. 461 

 462 

  463 
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 630 

Figure 1. WPV distribution and overview of the study area. a: Proportions of WPV area in 631 

the study area relative to China, with specific contributions from Jiangsu, Anhui, and Zhejiang 632 

provinces; b: Location of the study area within China; c: Spatial distribution of reservoirs, lakes, 633 

and rivers in the study area. Basemap: © Esri, TomTom, FAO, NOAA, USGS. Powered by Esri. 634 

https://doi.org/10.5194/essd-2025-695
Preprint. Discussion started: 20 January 2026
c© Author(s) 2026. CC BY 4.0 License.



26 

 

 635 

Figure 2. Distribution and examples of samples. a: Spatial distribution of WPV and Non-636 

WPV samples across the study area; b: Proportions of different sample categories; c–e: 637 

Examples of typical sample regions, where red points indicate WPV samples and blue points 638 

indicate Non-WPV samples. Basemap: © Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, 639 

USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community. 640 

Powered by Esri. 641 
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 643 

Figure 3. Flowchart of the method for extracting WPV from satellite imagery. a: WPV 644 

extraction process based on Sentinel-2 MSI and Sentinel-1 SAR data, including water masking, 645 

feature extraction (spectral indices, texture features, SAR bands), and classification using a 646 

Random Forest model; b: Post-processing of classification results: i: removing noise patches 647 

smaller than 10 pixels, and ii: merging patches within 200 meters of each other and retaining 648 

those with an area greater than 0.0001 km2; c: Accuracy improvement strategies: i: determining 649 

the year of installation using annual union and visual interpretation, and ii: filling small holes 650 

in classified patches. The final dataset covers the period from 2015 to 2024. Basemap: © Esri, 651 

DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, 652 

swisstopo, and the GIS User Community. Powered by Esri. 653 

 654 
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 655 

Figure 4. Examples of WPV extraction results. Panels a–c, d–f, and g–i show three 656 

representative areas. a, d, g: The satellite images; b, e, h: The initial extraction results; c, f, i: 657 

The final results after manual correction. Red outlines indicate the boundaries of WPV areas. 658 

The three areas are located at a–c: 30°51′40.54″N, 120°44′30.47″E; d–f: 32°06′03.69″N, 659 

117°33′00.10″E; g–i: 32°58′06.10″N, 119°37′09.47″E. Basemap: © Esri, DigitalGlobe, GeoEye, 660 

i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS 661 

User Community. Powered by Esri. 662 
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 665 

Figure 5. Comparison between single-year and merged multi-year data for WPV 666 

extraction on lakes. Panels a–c, d–f, and g–i are three representative areas. a, d, g, and b, e, h: 667 

WPV extraction results from single-year images of different years, outlined in green; c, f, i: The 668 

extraction results based on the merged 2015–2024 dataset, outlined in orange. The three areas 669 

are located at a–c: 30°22′19.59″N, 116°21′50.00″E; d–f: 30°36′26.69″N, 117°17′45.92″E; and 670 

g–i: 30°44′55.34″N, 116°57′05.93″E. Basemap: © Esri, DigitalGlobe, GeoEye, i-cubed, USDA 671 

FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community. 672 

Powered by Esri. 673 
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 675 

Figure 6. Comparison between single-year and merged multi-year data for WPV 676 

extraction on reservoirs. Panels a–c, d–f, and g–i are three representative areas. a, d, g, and b, 677 

e, h: WPV extraction results from single-year images of different years, outlined in green; c, f, 678 

i: The extraction results based on the merged 2015–2024 dataset, outlined in red. The three areas 679 

are located at a–c: 32°43′54.10″N, 117°41′35.43″E; d–f: 32°33′04.04″N, 116°55′38.40″E; and 680 

g–i: 32°11′46.56″N, 117°02′51.31″E. Basemap: © Esri, DigitalGlobe, GeoEye, i-cubed, USDA 681 

FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community. 682 

Powered by Esri. 683 
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 685 

Figure 7. Comparison of our FPV extraction results with two global PV datasets 686 

(Kruitwagen et al., 2021; Robinson et al., 2025): examples of incomplete and incorrect 687 

identification. Panels a–c, d–f, and g–i are three representative areas. a, d, g: A global inventory 688 

of PV Kruitwagen et al., 2021, outlined in yellow; b, e, h: Global Renewables Watch, 2023, 689 

outlined in blue; c, f, i: Our extraction results, outlined in red. The three areas are located at a–690 

c: 31°07′51.26″N, 119°02′42.41″E; d–f: 32°36′34.53″N, 116°34′24.75″E; g–i: 31°35′19.28″N, 691 

117°06′36.42″E. Basemap: © Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, 692 

Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community. Powered by Esri. 693 
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 695 

Figure 8. Comparison of our FPV extraction results with two global PV datasets 696 

(Kruitwagen et al., 2021; Robinson et al., 2025): examples of undetected FPV installations. 697 

Panels a–c, d–f, and g–i are three representative areas. a, d, g: A global inventory of PV 698 

Kruitwagen et al., 2021, outlined in yellow; b, e, h: Global Renewables Watch, 2023, outlined 699 

in blue; c, f, i: Our extraction results, outlined in red. The three representative lake areas are 700 

located at a–c: 32°49′16.10″N, 116°49′57.69″E; d–f: 32°20′36.04″N, 117°21′11.29″E; g–i: 701 

32°34′46.60″N, 119°58′03.91″E. Basemap: © Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, 702 

USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community. 703 

Powered by Esri. 704 
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 706 

Figure 9. Spatiotemporal evolution of WPV installations from 2015 to 2024. a: Spatial 707 

distribution of WPV installations from 2015 to 2024 in Jiangsu, Anhui, and Zhejiang provinces, 708 

colored by year; b: Temporal evolution of WPV area and count during 2015–2024, where the 709 

stacked bars represent WPV area contributions from each province, and the lines indicate the 710 

count of WPV installations classified by size (≤0.1 km2, 0.1–1.0 km2, ≥1.0 km2). Dashed and 711 

solid lines represent the fitting trends for 2015–2019 and 2019–2024, respectively. Basemap: © 712 

Esri, TomTom, FAO, NOAA, USGS. Powered by Esri. 713 
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 717 

Figure 10. Spatial and temporal characteristics of WPV systems on different water body 718 

types in the Yangtze River Delta. a: Spatial distribution of WPVs on lakes (blue circles) and 719 

reservoirs (red squares), with pie charts indicating the proportion of WPV area on each water 720 

type in Jiangsu (top right), Zhejiang (bottom right), and Anhui (left); b: Annual WPV area 721 

increments on lakes and reservoirs from 2015 to 2024. Bars represent yearly increments, and 722 

lines represent cumulative area on each water type. Basemap: © Esri, TomTom, FAO, NOAA, 723 

USGS. Powered by Esri. 724 
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 726 

Figure 11. Relationship between water area and WPV percentage cover across lakes and 727 

reservoirs. a: Distribution of WPV percentage cover (%) against water body area (km2), with 728 

circle size representing the WPV area; b: Enlarged view of the 0–10 km2 water area range to 729 

highlight clustering patterns. Blue and red colors represent lakes and reservoirs, respectively, 730 

and circle size denotes WPV area. 731 
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 733 

Figure 12. Spatial Clustering and Local Layouts of WPV Installations. a: Distribution of 734 

WPV systems across Jiangsu, Anhui, and Zhejiang provinces. The size of the red circles 735 

represents the area of each WPV system; b–d: Enlarged views of typical clustered regions 736 

highlighted in a; e–g: Satellite images showing detailed layouts of selected WPV systems 737 

corresponding to the locations indicated in b–d, with WPV boundaries outlined in red. Basemap: 738 

© Esri, TomTom, FAO, NOAA, USGS, DigitalGlobe, GeoEye, i-cubed, USDA FSA, AEX, 739 

Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community. Powered by Esri. 740 
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Table 1. Validation of the accuracy of the classification results. 742 

Dataset 
A global inventory 

of PV 

Global Renewables 

Watch 
Our dataset 

User Accuracy (%) 73.8 73.1 96.9 

Producer Accuracy 

(%) 
65.6 64.5 97.0 

Overall Accuracy 

(%) 
82.5 81.8 97.5 

Kappa Coefficient 0.651 0.637 0.949 
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Table 2. The top 5 largest WPV areas in each province. 745 

Province City Year Type Area 

(km2) 

Water Area 

(km2) 

Coordinates 

Anhui Fuyang 2022 Lake 3.53 4.21 32°48′N, 116°14′E 

 Huainan 2017 Lake 2.29 61.67 32°41′N, 117°07′E 

 Lu'an 2016 Lake 1.97 238.35 32°08′N, 116°46′E 

 Chuzhou 2018 Lake 1.95 960.42 32°48′N, 119°07′E 

 Anqing 2021 Lake 1.93 2.99 30°47′N, 117°31′E 

Jiangsu Lianyungang 2024 Lake 5.76 14.69 34°42′N, 119°09′E 

 Xuzhou 2022 Lake 2.60 3.33 34°54′N, 116°50′E 

 Suqian 2018 Lake 2.55 37.58 33°15′N, 117°57′E 

 Yangzhou 2019 Lake 2.22 121.18 33°17′N, 119°41′E 

 Huaian 2015 Lake 2.12 960.42 32°56′N, 119°14′E 

Zhejiang Ningbo 2017 Lake 2.40 6.17 30°17′N, 121°06′E 

 Ningbo 2018 Reservoir 2.18 9.00 30°01′N, 121°37′E 

 Jiaxing 2017 Lake 1.35 3.18 30°56′N, 120°48′E 

 Huzhou 2017 Lake 0.96 3.51 30°40′N, 120°08′E 

 Huzhou 2017 Reservoir 0.60 1.59 30°49′N, 119°43′E 
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