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Abstract: China hosts approximately 97% of the world’s water-surface photovoltaics (WPV),
with nearly two-thirds of its national capacity concentrated in the Yangtze River Delta (YRD),
a densely populated economic powerhouse facing intense land-energy trade-offs. Despite this
dominance, no high-resolution, decade-long inventory has existed to track this rapid expansion.
WPV detection using optical RS imagery is severely limited by persistent cloud cover, water
surface reflections, and spectral confusion, compromising long-term consistency over aquatic
environments. Here, we developed a multi-sensor fusion framework integrating all-weather
Sentinel-1 Synthetic Aperture Radar (SAR) and annual composite Sentinel-2 optical imagery.
Key features include six Sentinel-2 bands, spectral indices (NDVI, MNDWI, NDBI, NDPI, and
SAVI), texture metrics, and dual-polarization SAR backscatter. We trained a Random Forest
classifier on 55,849 verified samples to generate annual WPV maps for 2015-2024. Afterwards,
we applied post-processing procedures, including noise removal, patch merging, and area
thresholding, and further validated installation years and eliminated errors through manual
inspection of Google Earth time-series imagery. The well-constructed dataset of the first 10 m-
resolution WPV atlas for the YRD maps 401 validated projects with a cumulative area of 145.4
km? by 2024. It outperforms existing global PV inventories with an overall accuracy of 97.3%
and a Kappa coefficient of 0.94. The results reveal rapid expansion from 17.4 km? in 2015 to
145.4 km? in 2024, with 87% deployed on natural lakes, with a marked shift in leadership from
Jiangsu to Anhui, and clear spatial clustering near grid infrastructure and stable water bodies.
This high-fidelity inventory provides a robust foundation for monitoring WPV evolution,
assessing environmental impacts, and informing sustainable energy planning in the world’s

leading floating solar region.

Keywords: Water-surface photovoltaics, Yangtze River Delta, Sentinel-1/2 fusion, Time-series

mapping, Random Forest classification
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1 Introduction

The global shift from carbon-intensive energy systems to carbon-extensive renewables is
accelerating in response to growing electricity demand and the urgent need to mitigate climate
change. Solar photovoltaics (PV) dominates its growth, owing to its continued cost declines,
and accounted for nearly 80% of new capacity additions in 2024 (Anon, 2025; Bogdanov et al.,
2021). However, the substantial land footprint required by conventional PV systems
increasingly conflicts with agriculture and other critical land uses (Capellan-Pérez et al., 2017;
van de Ven et al., 2021; Wei et al., 2025). Water-surface photovoltaics (WPV) emerges as a
promising alternative. Deployed on natural lakes, reservoirs, and other water bodies, WPV
alleviates land-use competition while offering additional benefits, such as reduced water
evaporation loss (Forester et al., 2025; Pouran et al., 2022; Jin et al., 2023). China hosts
approximately 97% of global WPV, with nearly two-thirds of its national capacity concentrated
in the water-abundant, energy-intensive Yangtze River Delta (YRD) region (Chen et al., 2024).
For the YRD and similar regions, understanding the spatial dynamics and scalability of WPV
is crucial for optimizing renewable energy strategies that balance energy security, land

stewardship, and ecosystem sustainability.

In recent years, remote sensing combined with machine learning has become prevalent for
extracting photovoltaic installations at regional or global scales (Zhang et al., 2023; Ortiz et al.,
2022; Zhang et al., 2022). Among these, classification algorithms such as Random Forest have
demonstrated strong performance and robustness (Belgiu and Dragut, 2016). These techniques
typically leveraged spectral, geometric, and textural features from satellite imagery to enable
efficient, large-scale PV detection (Zhang et al., 2021; Chen et al., 2022). Despite these
advances, several challenges persist, particularly for complex aquatic environments and long-
term monitoring. Optical imagery, which forms the foundation of most existing methods, is
highly sensitive to weather conditions such as clouds, fog, and overcast skies, and cannot
acquire data at night. Over water bodies, its performance is further constrained by reflections
and shadows. Furthermore, although per-image accuracies can exceed 96% (Kruitwagen et al.,

2021; Xia et al., 2022, 2023), small errors accumulate substantially in long-term time-series
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mapping. For instance, mapping with 96% annual accuracy over a decade yields only about 67%
consistency across the full period (0.96'° =~ 0.67). This compounded uncertainty, effectively
rendering one-third of time-series outcomes unreliable, complicates spatiotemporal
assessments and often results in confusion between photovoltaic installations and water surfaces.
As a result, ensuring both temporal consistency and high fidelity in long-term water-based PV

mapping remains a key methodological challenge.

To directly address these limitations, this study proposes a robust and multidimensional
feature-fusion framework for WPV extraction in the YRD region. Our approach utilizes annual
composite Sentinel-2 imagery (2015-2024) and incorporates Sentinel-1 SAR observations to
provide all-weather detection and capture strong backscatter signatures of WPV’s metallic
structures. This combination substantially enhances single-period mapping accuracy and
reduces misclassifications. To ensure comprehensive spatial coverage, we first identified
candidate WPV zones through multi-year temporal compositing and water-mask filtering,
thereby constraining detection to likely water-based locations and suppressing non-water
interference. Subsequently, all detected WPV regions underwent rigorous manual inspection
and refinement using high-resolution Google Earth imagery. This step enabled the precise
removal of false positives and the reliable determination of installation years. The resulting
decade-long WPV dataset achieves unprecedented accuracy and temporal consistency,
representing the most reliable long-term inventory of WPV development to date and providing
a robust foundation for understanding spatiotemporal growth dynamics and policy-relevant

deployment patterns.

2 Datasets and Methods

2.1 Study Area

China leads the world in WPV system development, holding approximately 96.82% of the
global WPV-installed surface area in 2019, as shown in Fig. 1a. Within China, the YRD region

represents a significant WPV hub, accounting for nearly two-thirds of the national total.
4
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Specifically, Jiangsu (30.21%), Anhui (19.75%), and Zhejiang (9.97%) provinces exhibit the
highest installed WPV capacities (Xia et al., 2022, 2023).

Located in eastern China along the lower reaches of the Yangtze River (Fig. 1b), the YRD
is characterized by abundant water resources, including a dense network of rivers, lakes, and
reservoirs (Fig. 1c). These natural conditions are highly favorable for large-scale WPV
deployment. Moreover, as one of China’s most economically developed and industrially
concentrated areas, the YRD faces substantial electricity demand (Xu et al., 2023). The rapid
growth of WPV in this region not only helps alleviate regional energy pressures but also plays
a vital role in energy restructuring and the transition toward low-carbon development.
Considering its current deployment scale, water resource conditions, and future development

potential, this study focuses on the YRD as its primary research area.

2.2 Datasets

2.2.1 Satellite Datasets

This study primarily utilizes Sentinel-1 Synthetic Aperture Radar (SAR) and Sentinel-2
Multispectral Instrument (MSI) imagery, both of which are accessible via the Google Earth
Engine (GEE) platform. The selected temporal coverage, from 2015 to 2024, aligns with the

rapid development timeline of WPV installations in China.

Sentinel-1, equipped with a C-band SAR sensor, provides all-weather, day-and-night
imaging capabilities, making it ideal for long-term dynamic monitoring as it's unaffected by
cloud cover, precipitation, or illumination. We utilized the Sentinel-1 Ground Range Detected
product from GEE, which features a 10-meter spatial resolution and a 6—12-day revisit time. To
comprehensively capture radar backscatter characteristics of water bodies and WPV structures,
Vertical Transmit/Vertical Receive (VV) and Vertical Transmit/Horizontal Receive (VH)

polarization channels were selected.

Sentinel-2 provides high-resolution, multispectral optical and near-infrared imagery, well-

suited for identifying and classifying WPV regions. We utilized atmospherically corrected
5
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Level-2A surface reflectance products from the Sentinel-2 MSI sensor, which provides 13
spectral bands. Six key bands sensitive to water bodies and artificial structures were selected:
Bands 24 (visible), Band 8 (NIR), and Bands 11-12 (SWIR), all at 10-meter resolution with a
5-day revisit. To reduce cloud interference, a cloud-masking algorithm was applied, and annual
median composites were generated from all available images (Gorelick et al., 2017). To reduce
cloud interference, a cloud-masking algorithm was applied, and annual median composites were
generated from all available images. These composites ensure radiometric consistency and
provide a stable spatial baseline for dynamic WPV detection and temporal analysis. These
composites ensure radiometric consistency and provide a stable spatial baseline for dynamic

WPV detection and temporal analysis.

2.2.2 Water Body Datasets

A water mask of the Yangtze River Delta (YRD) was constructed to geographically
delineate the study area. It was based on several publicly available global water and reservoir
datasets, including HydroLAKES, GRanD, GOODD, and GeoDar (Lehner et al., 2011,
Messager et al., 2016; Mulligan et al., 2020; Wang et al., 2022). The HydroLAKES dataset
provides spatial boundaries and multiple attributes (e.g., area, storage capacity, and mean depth)
of global natural lakes and some artificial lakes, enabling the identification of small lakes and
potential host water bodies for floating photovoltaics. The GRanD dataset records the locations,
capacities, construction years, and purposes of large reservoirs and dams worldwide, facilitating
the identification of artificial reservoirs. GOODD and GeoDar provide georeferenced dam
locations derived from remote sensing, which further complement GRanD and enable high-

precision spatial mapping of reservoirs and dams.

In the data processing procedure, natural lakes were defined as all water bodies excluding
artificial reservoirs, encompassing aquaculture ponds and irrigation ponds. By integrating these
four datasets, a foundational water layer for the study area was generated. This layer provides
a stable spatial reference and serves as a validation framework for identifying water-surface

photovoltaics using Sentinel-1 SAR and Sentinel-2 optical imagery.
6

Open Access

Earth System
Science

Data

suoIssnoasiq



https://doi.org/10.5194/essd-2025-695
Preprint. Discussion started: 20 January 2026
(© Author(s) 2026. CC BY 4.0 License.

155

156
157
158
159
160
161
162
163
164
165
166

167
168
169
170
171

172
173

174

175
176
177
178
179
180
181

Open Access

2.2.3 Training and Validation Samples

The training and validation samples used in this study were derived from the WPV
inventory (Xia et al., 2022), which mapped the distribution of WPV installations in China for
2021. Because the original dataset contained several misclassified regions, a manual
verification process was conducted to ensure the reliability of the labels. Each WPV polygon
was visually checked using high-resolution satellite imagery, and misidentified areas were
removed. WPV sample points were generated proportionally to the area of each PV polygon to
ensure adequate representation of large installations. Examples from three representative WPV
regions are shown in Figs. 2a—c, demonstrating typical distribution patterns across different
water bodies. Non-WPV samples were randomly selected from water surfaces without PV

coverage to provide balanced class representation.

The spatial distribution of all sample points is illustrated in Fig. 2d, where red points
represent WPV samples and blue points represent non-PV samples. In total, the dataset consists
of 55,849 labeled points (80% for training and 20% for validation), including 28,332 WPV and
27,517 non-WPV samples (Fig. 2e). These well-validated samples formed the foundation for

subsequent annual classifications from 2015 to 2024.

2.3 WPV Extraction Workflow

2.3.1 WPV Feature Engineering

To reduce data volume and focus on aquatic areas, we first filtered Sentinel-2 MSI imagery
using a water mask, effectively excluding most terrestrial regions. Six spectral bands (Bands 2—
4 [visible], Band 8 [NIR], and Bands 11-12 [SWIR]) were selected as key features due to their
sensitivity to water bodies and artificial structures. To minimize the influence of cloud cover
and provide stable annual surface conditions, annual median composites were generated from
all available images within each year. To enhance the distinction between water bodies and
WPYV installations, we integrated a comprehensive set of additional features:

7
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Spectral indices: Normalized Difference Vegetation Index (NDVI), Modified Normalized
Difference Water Index (MNDWI), Normalized Difference Built-up Index (NDBI), Normalized
Difference Photovoltaic Index (NDPI), and Soil-Adjusted Vegetation Index (SAVI), based on
Egs. (1)—(5). These indices have proven effective in photovoltaic detection (Feng et al., 2024),
with NDVI and MNDWTI aiding in the identification of water bodies, NDBI and NDPI

improving the discrimination of WPV, and SAVI reducing interference from vegetation/soil.

_ p(NIR) + p(RED)
NDVI= (NIR) — p(RED) W

GREEN) + p(MIR
MNDWI = p( ) + p(MIR)
p(GREEN) — p(MIR)

_ p(SWIR1) + p(NIR)
NDBI = p(SWIR1) — p(NIR) ®)

_ p(NIR) — p(SWIR2)
NDPI'= p(SWIR1) — p(NIR)
p(NIR) — p(RED)

SAVI =15 0IRY + p(RED) + 0.5 ®)

)

4

Texture features: Computed using the Gray Level Co-occurrence Matrix (Haralick ez al., 1973),
these features capture the distinct spatial patterns of WPV arrays, which typically exhibit clear,

regular boundaries contrasting with natural water bodies.

SAR-based backscatter data: We incorporated annual mean values from Sentinel-1 SAR VV
and VH polarization bands to provide complementary all-weather backscatter information,

crucial for robust WPV identification, especially over water.

2.3.2 Annual WPYV Classification

Classification was conducted using the Random Forest algorithm implemented within the
Google Earth Engine (GEE) platform, selected for its robustness, computational efficiency, and
demonstrated success in PV mapping tasks (Feng et al., 2024; Zhang et al., 2023). The Random
Forest classifier was trained on a labeled sample dataset derived from both WPV and non-WPV-

covered water bodies (Fig. 3a). After model training, the classifier was applied to annual
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imagery to perform classification for each year from 2015 to 2024, producing a decade-long

time series of WPV distribution maps.

2.3.3 Automated Post-Processing

Following the initial classification, we applied a systematic post-processing methodology
to refine the results, remove non-WPV areas, and consolidate adjacent patches. This process,
consistent with previous work (Hirayama et al., 2019), aimed to improve overall map quality
and reduce the workload for subsequent visual interpretation (Fig. 3b). Given that WPV
installations typically occupy relatively large areas, we first performed noise removal by
identifying and eliminating classified patches with fewer than 10 pixels. Additionally, WPV
arrays located in close proximity within the same water body are often part of the same project
and installed concurrently. To accurately represent this, adjacent patches within a 100-meter
buffer (i.e., less than 200 meters apart) were merged into single units. Finally, recognizing that
larger WPV patches generally correlate with higher classification accuracy, only those with an
area greater than 0.001 km? were retained in the final results, ensuring the inclusion of reliable

WPV installations.

2.4 Accuracy Assessment and Manual Refinement

2.4.1 Classification Model Assessment

To support the classification workflow, a stratified random sample comprising 20% of the
total dataset (5,667 WPV points and 5,507 non-WPV) was held out for independent accuracy
assessment. Classification performance was evaluated using four standard metrics: User

Accuracy (UA), Producer Accuracy (PA), Overall Accuracy (OA), and the Kappa coefficient.

2.4.2 Manual Refinement and Final Dataset Creation

To achieve the highest accuracy and completeness in our WPV extraction, we integrated
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the annual classified WPV maps (2015-2024) with external WPV datasets (Xia et al., 2022),
creating a comprehensive set of potential WPV regions. Each potential region was then
subjected to rigorous manual interpretation and correction using high-resolution satellite
imagery from Google Earth (Fig. 3c). This critical validation step enabled the precise
identification and removal of misclassified non-WPV areas, thereby significantly enhancing the
reliability of our final dataset. As WPV installations are typically long-lasting, their installation
year was accurately estimated by identifying the first year each site visibly appeared in high-
resolution Google Earth imagery sequences. This approach allowed for a more systematic and
accurate understanding of WPV deployment over time. Finally, internal gaps within the
identified WPV patches were filled to ensure spatial completeness, facilitating more precise

calculations of area and surface coverage.

3 Result

3.1 Accuracy Validation and Comparison of WPV Extraction Results

To comprehensively evaluate the reliability and robustness of our WPV extraction results,
we conducted a multi-level validation and comparison process. This section presents a
systematic assessment of the classification performance from three complementary perspectives.
First, the initial classification outputs were visually inspected and refined to evaluate the
effectiveness of the post-processing procedure. Then, single-year and multi-year merged
datasets were compared to examine the temporal stability of WPV detection results. Finally, our
dataset was compared with existing global PV products, including a global inventory of
photovoltaic solar energy generating units as of the end of 2018 (Kruitwagen et al., 2021) and
Global Renewables Watch in 2024 (Robinson et al., 2025), to assess spatial completeness and
consistency. Both qualitative and quantitative analyses were performed, including confusion-
matrix-based accuracy assessment and detailed visual interpretation across representative
regions. Together, these evaluations provide a thorough verification of the accuracy, continuity,

and advantages of our WPV dataset.
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3.1.1 Evaluation of Initial and Refined WPV Extraction Results

To visually assess the effectiveness of our post-processing workflow, we compared the
initial and refined WPV classification results (Fig. 4). The initial classification results (Figs. 4b,
e, h) contained a certain level of noise and misclassification, including small isolated patches
and fragmented boundaries along water edges. These inaccuracies were mainly caused by
spectral confusion between WPV installations and nearby structures or floating vegetation.
After systematic post-processing and manual correction (Figs. 4c, f, 1), the final results exhibited
much cleaner boundaries and more coherent WPV patches. The red outlines clearly delineate
WPV areas, demonstrating improved spatial consistency and a reduction in false positives. This
refinement process substantially enhanced the reliability of the extracted WPV maps, providing

a foundation for subsequent accuracy validation and spatial analysis.

3.1.2 Comparison Between Single-Year and Multi-Year Merged Results

We compare WPV extraction results obtained from single-year imagery with those derived
from merged multi-year datasets (Figs. 5, 6), providing an assessment of the benefits of
temporal data integration. The results indicate that single-year classifications on both lakes and
reservoirs frequently suffered from incomplete coverage (Figs. Sa—b, d—e, g-h and 6a-b, d—e,
g-h), resulting in fragmented or missing WPV patches due to cloud contamination or partial
image coverage. By contrast, the merged 2015-2024 dataset (Figs. 5c, f, i and 6c, f, i) offered
a more consistent and complete delineation of WPV boundaries, as highlighted by the orange
outlines. These improvements are particularly notable in turbid or seasonally fluctuating water
bodies, where single-year imagery alone may fail to capture stable WPV features. Overall, the
multi-year merging strategy substantially enhanced both classification completeness and spatial

continuity, providing a robust basis for temporal analyses of WPV expansion.
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3.1.3 Comparison with Existing Global PV Datasets

We compared our WPV dataset with a global inventory of photovoltaic solar energy-
generating units and Global Renewables Watch in terms of statistical accuracy. Six
representative locations were selected to assess the performance of our dataset relative to these
global datasets (Figs. 7, 8). Visual inspection indicates that the existing global datasets exhibit
notable limitations in WPV identification, frequently resulting in misclassification or omission,
particularly in small-scale or spatially complex inland water bodies. Fig. 7 highlights instances
of incomplete or erroneous WPV identification, whereas Fig. 8 shows multiple WPV regions

that were entirely missed by the global datasets but were successfully captured in our study.

Quantitative accuracy assessment (Table 1) further confirms the superior performance of
our dataset. Specifically, our WPV dataset achieved an Overall Accuracy (OA) and Kappa
coefficient exceeding 0.9, while the corresponding metrics for the two global datasets were
generally lower (OA: 0.825-0.818, Kappa: 0.651-0.637). These results demonstrate that our
dataset significantly outperforms existing global datasets in terms of both classification
accuracy and spatial completeness, validating that the integration of multi-temporal imagery
with regionally representative sample training can substantially enhance the accuracy and

reliability of WPV extraction.

3.2 WPV Spatiotemporal Distribution and Growth Trends

WPV projects in the study area exhibit distinct spatiotemporal distribution and growth
trends. Spatially, current WPV projects are primarily concentrated in Anhui and Jiangsu
provinces, which provide suitable hydrological and land-use conditions for large-scale
deployment (Fig. 9a). By 2024, a total of 401 WPV projects have been identified in the YRD,
covering a cumulative area of 145.5 km?. Among these, Anhui Province hosts the largest share
(68.7 km?), accounting for 47% of the total WPV area, followed by Jiangsu (64.8 km?) and
Zhejiang (12 km?). Based on the five largest WPV projects in each province (Table 2), Jiangsu

generally exhibits a larger overall project scale, with most large WPV installations located on
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lakes.

From a temporal perspective, WPV installations have expanded markedly between 2015
and 2024, with the total area increasing by 128 km? (Fig. 9b). This expansion was most
pronounced during the early phase (2015-2019), which contributed approximately 59.2% of
the total increase, followed by a relative slowdown during 2019-2024. At the provincial level,
Anhui experienced the greatest increase in WPV area over the decade, adding 66.9 km?,
followed by Jiangsu (49.1 km?), while Zhejiang’s growth remained modest, with a total addition
of only 12 km?. Notably, the spatial evolution trajectories of WPV deployment differ
significantly among the three provinces. In Jiangsu, WPV development began in the northern
region and gradually expanded southward and toward the coastal areas during the early years.
In contrast, early WPV projects in Anhui were also concentrated in the north, but from 2022
onward, installations rapidly expanded along the Yangtze River corridor, forming a more
continuous, belt-shaped distribution. Zhejiang Province, by comparison, saw only limited WPV
deployment, characterized by a short burst of growth between 2017 and 2020, with most

projects clustered in its northern and western regions.

In addition to the overall spatial and temporal patterns in the YRD, WPV projects of
different sizes exhibit distinct trends in quantity and growth, providing additional insights into
the structural characteristics of PV development in the region(Fig. 9b). Large-scale projects (>
1.0 km?) are relatively few, experiencing rapid growth primarily between 2015 and 2018, then
stabilizing. Conversely, medium-scale (0.1-1.0 km?) and small-scale (<0.1 km?) projects far
outnumber large ones and have grown rapidly overall. In general, WPV development has
evolved from localized concentrations to broader regional deployment, and from predominantly

large-scale projects to a more diversified mix of small-scale and medium-scale systems.

3.3 WPV Deployment on Lakes and Reservoirs

Different types of water bodies exhibit varying levels of adaptability to WPV deployment,

which directly affects the estimation of potential installed capacity and informs rational spatial
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planning(Bai et al., 2024; Chateau et al., 2019). Within the study area, WPV installations are
predominantly located on lakes, with only a minor proportion situated on reservoirs (Fig. 10a).
Lakes host the vast majority of total capacity—exceeding 126.8 km? by 2024, or 87.2% of the
cumulative WPV area. In contrast, reservoirs account for 12.8% (18.6 km?) of total WPV
deployment. However, the distribution across waterbody types differs considerably among
provinces. Jiangsu exhibits the most pronounced disparity, with approximately 98.1% of its
WPV systems deployed on lakes and only 1.9% on reservoirs. Anhui and Zhejiang demonstrate
higher shares of reservoir-based WPV, at 28.9% and 20.2%, respectively. The temporal
evolution of WPV deployment also reveals distinct trajectories for lakes and reservoirs (Fig.
10b). Lake-based WPV installations expanded steadily between 2015 and 2024, with a total
increase of 109.4 km?. In contrast, the development of reservoir-based WPV proceeded more
slowly. Its expansion was limited between 2015 and 2019 (14.9 km?), and following the
introduction of policy restrictions in 2019, reservoir-based WPV installations declined sharply,
with the total area remaining below 20 km?. These trends underscore the growing dominance
of lakes as preferred sites for WPV deployment, while reservoirs have become increasingly
constrained due to operational sensitivities, fluctuating water levels, and tightening

environmental regulations (General Office of MWR, 2020).

The impact of WPV systems on water bodies is multifaceted, influencing various physical
properties and ecological dynamics, with the extent of WPV coverage exerting differential
effects based on water body characteristics (Exley et al, 2021). By integrating WPV
distribution data with surface water datasets, WPV coverage was calculated for 385 water
bodies across the study area (Figs. 11a, b). Coverage rates varied substantially among different
size classes. In smaller water bodies (0-4 km?), WPV coverage exhibited high variability,
ranging from 0% to 100%. However, as water body size increased, WPV coverage declined
sharply, falling below 50% in medium-sized water bodies and below 10% in large ones (>100
km?). Most reservoirs covered by WPV installations are relatively small (< 4 km?), and their

overall WPV coverage is slightly lower than that of lakes of comparable size.
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3.4 WPV Spatial Clustering and Driving Factors

At the regional scale (Fig. 12a), WPV projects exhibit a clear pattern of localized clustering
across the study area. These projects are primarily distributed along major rivers and lakes, with
project sizes varying considerably, from less than 0.1 km? to over 3 km?. Notably, several large,

high-density clusters are observed in parts of Jiangsu and Anhui provinces (Fig. 12b-12d).

This spatial aggregation is shaped by a combination of natural and socio-economic factors.
Natural conditions provide fundamental support for WPV deployment, with large water bodies
having minimal fluctuations in water level and stable water quality being particularly suitable
(Woolway et al., 2024). For example, Sanlihe Reservoir (Fig. 12¢), Gaoyou Lake (Fig. 12f),
and Xizi Lake (Fig. 12g) possess stable, expansive water surfaces and favorable hydrological
conditions, supporting extensive WPV arrays. Grid accessibility is another key driver
influencing the spatial distribution of WPV systems (Essak and Ghosh, 2022). In both Gaoyou
Lake and Xizi Lake, WPV installations are located near urban settlements and existing power
infrastructure, which facilitates grid connection and reduces energy transmission losses and
associated costs. This locational advantage has made such water bodies prime targets for large-

scale WPV deployment.

4 Discussion

4.1 Major Findings and Contributions

This study constructs a high-precision, decade-long (2015-2024) WPV dataset for the
YRD region, thereby significantly advancing remote sensing-based WPV mapping. We
specifically address key limitations in existing time-series mapping approaches, namely the
constraints of optical imagery (e.g., cloud cover and water surface reflection) and the substantial
error accumulation in long-term mapping (e.g., per-period accuracy of ~0.96 may degrade to
~0.67 over ten years). Our robust solution—fusing Sentinel-1 SAR data with multi-temporal
Sentinel-2 imagery—effectively leverages SAR’s all-weather imaging capability and the strong
backscatter signals uniquely associated with the metallic structure of WPV panels, thereby

significantly enhancing single-period mapping accuracy and reducing misclassification. In
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addition, through probabilistic filtering and meticulous manual verification using high-
resolution Google Earth imagery over potential WPV regions, we achieved unprecedented

accuracy and temporal consistency for this long-term dataset.

Based on this reliable dataset, we conducted the first systematic and fine-scale decadal
analysis of the spatial-temporal distribution and growth trends of WPV in the YRD. We revealed
that the total WPV area expanded rapidly from 17.4 km? in 2015 to 145.4 km? in 2024, along
with a shift in the leading province of development from Jiangsu to Anhui. The results also
detail the diverse growth trajectories of large-, medium-, and small-scale WPV projects,

demonstrating an evolution from localized concentration to broader regional deployment.

4.2 Implications and Potential Applications

This high-precision, decade-long WPV dataset constructed in this study holds significant
theoretical and practical value. It strengthens the scientific foundation for WPV deployment,
improves the accuracy of environmental impact assessments, and informs more effective
policy-making. A primary contribution of the dataset lies in its utility for WPV energy planning
and spatial optimization. By quantifying the surface coverage and spatial distribution of WPV
installations, and distinguishing their suitability across various water body types (e.g., high-
coverage potential under “fishing-solar complementarity” schemes), the dataset enables the
identification of optimal deployment zones. This facilitates a balance between rapid WPV
expansion and aquatic ecosystem protection, enhancing the efficiency of resource allocation

and supporting data-driven site selection and planning (Bai et al., 2024; Chateau et al., 2019).

In addition, the dataset provides a reliable basis for evaluating the environmental impacts
of WPV systems. It supports the assessment of both physical and biological effects on water
bodies, including alterations in evaporation rates, thermal dynamics, and impacts on aquatic
ecosystems such as algal photosynthesis. This is particularly valuable in identifying potential
ecological risks associated with high-coverage installations in small water bodies, thereby

promoting more ecologically responsible deployment strategies (Sahu et al., 2016; Armstrong
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et al., 2020; Nobre et al., 2023; Ma and Liu, 2022). Furthermore, the dataset enhances the
effectiveness of field validation efforts. By addressing limitations of outdated and spatially
sparse datasets, it facilitates the targeted selection of representative WPV sites for in-situ
investigation, significantly improving the efficiency and accuracy of ground-truthing and data

collection.

4.3 Limitations and Future Research

Despite constructing a high-precision dataset, this study has several limitations. First,
uncertainties in the underlying waterbody datasets remain a challenge; small water bodies (e.g.,
ponds) may be omitted, while imprecise boundaries and spectral confusion with nearby
buildings or bare soil can cause both omissions and misclassifications at water edges (Valerio
et al., 2024; Wang et al., 2022). Second, the diversity in WPV installation methods and
structural designs introduces variations in spectral and textural characteristics, posing
challenges for consistent extraction (Shi ef al., 2023). Finally, the area threshold applied during
post-processing to eliminate noise likely leads to an underestimation of the total WPV area,
particularly by excluding small-scale systems on rural ponds or aquaculture facilities (Iqra et

al., 2024).

In light of these limitations, future research can focus on three key directions.
Methodologically, the integration of deep learning methods (e.g., U-Net, DeepLabV3+) holds
promise for enhancing accuracy, particularly in delineating complex boundaries and detecting
morphologically diverse or small-scale targets (Chen ef al., 2018; Ronneberger et al., 2015).
Spatially, expanding the study to national or global scales would reveal macro-level deployment
trends driven by policy and market dynamics, offering valuable guidance for macro-level
energy planning. Thematically, future work should place greater emphasis on evaluating the
ecological impacts of WPY systems by integrating remote sensing retrievals with in-situ
monitoring data, thereby promoting a coordinated approach to renewable energy development

and ecosystem conservation.
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5 Conclusion

This study precisely mapped the spatiotemporal distribution of Water-surface photovoltaic
(WPV) systems in China's Yangtze River Delta from 2015 to 2024. Using a robust framework
that integrated multi-temporal Sentinel-1 SAR and Sentinel-2 optical imagery with Random
Forest classification, refined by post-processing and manual verification, we generated a high-
resolution, decade-long dataset that overcomes optical imagery limitations and cumulative
errors in long-term monitoring. Our findings reveal WPV's significant expansion (17.4 km? in
2015 to 145.4 km? in 2024), with deployment shifting towards Anhui. Most projects are now
small- to medium-scale, primarily on lakes, exhibiting clear spatial clustering influenced by
water conditions and grid access. This comprehensive WPV mapping serves as a critical data
source for assessing development potential, guiding renewable energy planning, and evaluating
ecological impacts. Its generalizable methodology offers a strong foundation for broader WPV

monitoring and future research integrating advanced remote sensing and ecological analysis.
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Figure 1. WPV distribution and overview of the study area. a: Proportions of WPV area in
the study area relative to China, with specific contributions from Jiangsu, Anhui, and Zhejiang
provinces; b: Location of the study area within China; c: Spatial distribution of reservoirs, lakes,

and rivers in the study area. Basemap: © Esri, TomTom, FAO, NOAA, USGS. Powered by Esri.
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636  Figure 2. Distribution and examples of samples. a: Spatial distribution of WPV and Non-

637 WPV samples across the study area; b: Proportions of different sample categories; c—e:

638  Examples of typical sample regions, where red points indicate WPV samples and blue points

639 indicate Non-WPV samples. Basemap: © Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA,

640 USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community.

641  Powered by Esri.
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Figure 3. Flowchart of the method for extracting WPV from satellite imagery. a: WPV

extraction process based on Sentinel-2 MSI and Sentinel-1 SAR data, including water masking,

feature extraction (spectral indices, texture features, SAR bands), and classification using a

Random Forest model; b: Post-processing of classification results: i: removing noise patches

smaller than 10 pixels, and ii: merging patches within 200 meters of each other and retaining

those with an area greater than 0.0001 km?; c: Accuracy improvement strategies: i: determining

the year of installation using annual union and visual interpretation, and ii: filling small holes

in classified patches. The final dataset covers the period from 2015 to 2024. Basemap: © Esri,

DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP,

swisstopo, and the GIS User Community. Powered by Esri.
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Figure 4. Examples of WPV extraction results. Panels a—c, d—f, and g—i show three
representative areas. a, d, g: The satellite images; b, e, h: The initial extraction results; c, f, i:
The final results after manual correction. Red outlines indicate the boundaries of WPV areas.
The three areas are located at a—c: 30°51'40.54"N, 120°44'30.47"E; d—f: 32°06'03.69"N,
117°33'00.10"E; g—i: 32°58'06.10"N, 119°37'09.47"E. Basemap: © Esri, DigitalGlobe, GeoEye,
i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS

User Community. Powered by Esri.
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Single-year data Merged 2015-2024 data

Figure 5. Comparison between single-year and merged multi-year data for WPV
extraction on lakes. Panels a—c, d—f, and g-i are three representative areas. a, d, g, and b, e, h:
WPV extraction results from single-year images of different years, outlined in green; c, f, i: The
extraction results based on the merged 2015-2024 dataset, outlined in orange. The three areas
are located at a—c: 30°22'19.59"N, 116°21'50.00"E; d—f: 30°36'26.69"N, 117°17'45.92"E; and
g—1: 30°44'55.34"N, 116°57'05.93"E. Basemap: © Esri, DigitalGlobe, GeoEye, i-cubed, USDA
FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community.

Powered by Esri.

29

Open Access

Earth System
Science

Data

suoIssnosIq



https://doi.org/10.5194/essd-2025-695
Preprint. Discussion started: 20 January 2026
(© Author(s) 2026. CC BY 4.0 License.

675
676
677
678
679
680
681
682
683

684

Single-year data Merged 2015-2024 data

Figure 6. Comparison between single-year and merged multi-year data for WPV
extraction on reservoirs. Panels a—c, d—f, and g-i are three representative areas. a, d, g, and b,
e, h: WPV extraction results from single-year images of different years, outlined in green; c, f,
i: The extraction results based on the merged 2015-2024 dataset, outlined in red. The three areas
are located at a—c: 32°43'54.10"N, 117°41'35.43"E; d—f: 32°33'04.04"N, 116°55'38.40"E; and
g—1:32°11'46.56"N, 117°02'51.31"E. Basemap: © Esri, DigitalGlobe, GeoEye, i-cubed, USDA
FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community.

Powered by Esri.
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A global inventory of Global Renewables Our dataset
PV Watch - Solar

Figure 7. Comparison of our FPV extraction results with two global PV datasets
(Kruitwagen et al., 2021; Robinson et al., 2025): examples of incomplete and incorrect
identification. Panels a—c, d—f, and g—i are three representative areas. a, d, g: A global inventory
of PV Kruitwagen et al., 2021, outlined in yellow; b, e, h: Global Renewables Watch, 2023,
outlined in blue; c, f, i: Our extraction results, outlined in red. The three areas are located at a—
c: 31°07'51.26"N, 119°02'42.41"E; d—f: 32°36'34.53"N, 116°34'24.75"E; g—i: 31°35'19.28"N,
117°06'36.42"E. Basemap: © Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX,

Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community. Powered by Esri.
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A global inventory of Global Renewables Our dataset
PV Watch - Solar

Figure 8. Comparison of our FPV extraction results with two global PV datasets
(Kruitwagen et al., 2021; Robinson et al., 2025): examples of undetected FPV installations.
Panels a—c, d-f, and g-i are three representative areas. a, d, g: A global inventory of PV
Kruitwagen et al., 2021, outlined in yellow; b, e, h: Global Renewables Watch, 2023, outlined
in blue; c, f, i: Our extraction results, outlined in red. The three representative lake areas are
located at a—c: 32°49'16.10"N, 116°49'57.69"E; d—f: 32°20'36.04"N, 117°21'11.29"E; g—i:
32°34'46.60"N, 119°58'03.91"E. Basemap: © Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA,
USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community.

Powered by Esri.
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distribution of WPV installations from 2015 to 2024 in Jiangsu, Anhui, and Zhejiang provinces,
colored by year; b: Temporal evolution of WPV area and count during 2015-2024, where the
stacked bars represent WPV area contributions from each province, and the lines indicate the
count of WPV installations classified by size (<0.1 km?, 0.1-1.0 km?, >1.0 km?). Dashed and
solid lines represent the fitting trends for 2015-2019 and 2019-2024, respectively. Basemap: ©
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Figure 10. Spatial and temporal characteristics of WPV systems on different water body
types in the Yangtze River Delta. a: Spatial distribution of WPVs on lakes (blue circles) and
reservoirs (red squares), with pie charts indicating the proportion of WPV area on each water
type in Jiangsu (top right), Zhejiang (bottom right), and Anhui (left); b: Annual WPV area
increments on lakes and reservoirs from 2015 to 2024. Bars represent yearly increments, and
lines represent cumulative area on each water type. Basemap: © Esri, TomTom, FAO, NOAA,

USGS. Powered by Esri.
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Figure 11. Relationship between water area and WPV percentage cover across lakes and

reservoirs. a: Distribution of WPV percentage cover (%) against water body area (km?), with

circle size representing the WPV area; b: Enlarged view of the 0-10 km? water area range to

highlight clustering patterns. Blue and red colors represent lakes and reservoirs, respectively,

and circle size denotes WPV area.
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Figure 12. Spatial Clustering and Local Layouts of WPV Installations. a: Distribution of

WPV systems across Jiangsu, Anhui, and Zhejiang provinces. The size of the red circles

represents the area of each WPV system; b—d: Enlarged views of typical clustered regions

highlighted in a; e—g: Satellite images showing detailed layouts of selected WPV systems

corresponding to the locations indicated in b—d, with WPV boundaries outlined in red. Basemap:

© Esri, TomTom, FAO, NOAA, USGS, DigitalGlobe, GeoEye, i-cubed, USDA FSA, AEX,

Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community. Powered by Esri.
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742  Table 1. Validation of the accuracy of the classification results.

Open Access

A global inventory

Global Renewables

Dataset Our dataset
of PV Watch
User Accuracy (%) 73.8 73.1 96.9
Producer Accuracy
65.6 64.5 97.0
(%)
Overall Accuracy
82.5 81.8 97.5
(%)
Kappa Coefficient 0.651 0.637 0.949
743
744
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(@]
745  Table 2. The top 5 largest WPV areas in each province.
Province City Year Type Area  Water Area Coordinates
(km?) (km?)
Anhui Fuyang 2022 Lake 3.53 421 32°48'N, 116°14'E
Huainan 2017 Lake 2.29 61.67 32°41'N, 117°07'E

Lu'an 2016 Lake 1.97 238.35 32°08'N, 116°46'E
Chuzhou 2018 Lake 1.95 960.42 32°48'N, 119°07'E

Anqing 2021 Lake 1.93 2.99 30°47'N, 117°31'E
Jiangsu  Lianyungang 2024 Lake 5.76 14.69 34°42'N, 119°09'E
Xuzhou 2022 Lake 2.60 3.33 34°54'N, 116°50'E
Sugian 2018 Lake 2.55 37.58 33°15'N, 117°57'E

Yangzhou 2019 Lake 222 121.18 33°17'N, 119°41'E
Huaian 2015 Lake 2.12 960.42 32°56'N, 119°14'E

Zhejiang Ningbo 2017 Lake 2.40 6.17 30°17'N, 121°06'E
Ningbo 2018 Reservoir  2.18 9.00 30°01'N, 121°37'E
Jiaxing 2017 Lake 1.35 3.18 30°56'N, 120°48'E
Huzhou 2017 Lake 0.96 3.51 30°40'N, 120°08'E
Huzhou 2017 Reservoir 0.60 1.59 30°49'N, 119°43'E
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