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Abstract. The Soil Moisture and Ocean Salinity (SMOS) satellite is a valuable tool for monitoring global soil freeze-thaw
dynamics, particularly in high-latitude environments where these processes are important for understanding ecosystem and
carbon cycle dynamics. This paper introduces the updated SMOS Level-3 (L3) Soil Freeze-Thaw (FT) product and details its
threshold-based classification algorithm, which utilizes L band passive microwave measurements to detect soil freeze-thaw

5 transitions; this is possible due to the difference in dielectric properties between frozen and thawed soils at this frequency
band. The algorithm applies gridded brightness temperature data from the SMOS satellite, augmented with ancillary datasets

of air temperature and snow cover, to generate global estimates of freeze-thaw state. A recent update to the algorithm includes
improved noise reduction through temporal filtering. Validation results against in-situ soil moisture and temperature measure-
ments and comparisons to ERA5 Land reanalysis data demonstrate the ability of the product to detect the day of first freezing,

10 an important metric for better understanding greenhouse gas fluxes and ecosystem dynamics, with improved accuracy. How-
ever, limitations remain, particularly in regions affected by radio frequency interference (RFI) and during spring melt periods
when wet snow hinders soil thaw detection. Despite these challenges, the SMOS FT product provides crucial data for carbon

cycle studies, particularly in relation to methane fluxes, as soil freezing affects methane emissions in high-latitude regions.
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15 1 Introduction

More than half of the land in the Northern Hemisphere undergoes seasonal freezing and thawing each year, making it one of
the most widespread environmental processes on Earth (Zhang et al., 2003). Seasonal soil freezing and thawing is not only a
critical environmental phenomenon but also a key indicator of climate change and variability (Frauenfeld and Zhang, 2011;
Peng et al., 2016). Soil freeze-thaw cycles are closely linked to surface temperature fluctuations and snow cover dynamics,

20 playing an important role in regulating the Earth’s energy balance (Sokratov and Barry, 2002).
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Monitoring the freeze-thaw cycle is essential because it directly impacts global ecosystems, hydrology, and climate systems.
As soil freezes and thaws, it drives a range of ecological processes, including carbon and nutrient cycling, soil moisture
dynamics, vegetation growth, and the activity of soil organisms. Thawing periods release stored water, influencing surface
runoff, groundwater recharge, and the emission of greenhouse gases such as carbon dioxide and methane (Song et al., 2017,
Wagner-Riddle et al., 2017; Boswell et al., 2020; Yang and Wang, 2019; Hayashi, 2013; Nikrad et al., 2016). These emissions
are particularly relevant in the context of climate change, as thawing permafrost can release significant amounts of previously
trapped carbon, creating a feedback loop that accelerates global warming (Johnston et al., 2014; Knoblauch et al., 2017). The
freeze-thaw cycle also has substantial implications for infrastructure, as the freezing and thawing of soil can damage buildings,
roads, and pipelines due to frost heave and ground subsidence. Agriculture is similarly affected, with the timing and intensity
of freeze-thaw events influencing soil fertility, crop viability, and water availability (Kreyling et al., 2008; Krogstad et al.,
2022). Therefore, accurate monitoring and prediction of soil freeze-thaw cycles are crucial not only for understanding natural
ecosystems but also for mitigating risks and optimizing land-use practices in affected regions.

Global monitoring of the soil freeze-thaw cycle is vital for advancing our understanding of ecosystem dynamics, refining
climate models, and managing natural resources. High-latitude and high-altitude regions are particularly sensitive to freeze-
thaw cycles, where even minor changes can disproportionately affect local environments and contribute to broader global
changes (Shiklomanov, 2012). L band passive microwave remote sensing is particularly effective for detecting soil freeze-thaw
transitions due to the high contrast in permittivity between liquid water and ice at L band frequencies (1-2 GHz) (Rautiainen
et al., 2014). Compared to higher frequencies, L band allows for deeper penetration into the soil, enabling observations several
centimetres beneath the surface. As measurement frequency increases, the proportion of the signal originating from the soil
decreases, with higher frequency bands interacting more strongly with surface vegetation or snow cover in winter. These
subsurface observations are critical, as the significant difference in the dielectric constant between frozen and thawed soil
results in pronounced changes in soil emissivity that L band radiometers can effectively detect, ensuring high sensitivity to
freeze-thaw dynamics.

Over the past decades, several global data products have been developed to monitor soil freeze-thaw cycles. These include
the Freeze-Thaw Earth System Data Record (FT-ESDR) (Kim et al., 2017), the Soil Moisture and Ocean Salinity Level 3
Soil Freeze-Thaw Product (SMOS L3FT) (ESA, 2023; Rautiainen et al., 2016), and the Soil Moisture Active Passive Freeze-
Thaw Product (SMAP FT) (Derksen et al., 2017). The FT-ESDR combines data from the The Advanced Microwave Scanning
Radiometer (AMSR-E) on NASA’s Aqua satellite and the SSMIS on the Defense Meteorological Satellite Program platforms,
providing a long-term, consistent dataset for global monitoring of freeze-thaw cycles, particularly useful for analyzing inter-
annual variability and long-term trends. However, the FT-ESDR relies on high-frequency (36.5 GHz) radiometer data, which
is primarily sensing the freeze-thaw status at the very surface of the landscape, and is therefore more affected by the vegetation
and snow cover. In contrast, the SMAP FT and SMOS L3FT products are based on low frequency passive L band brightness
temperatures, which are more sensitive to thermal emission originating from the soil. Although the SMAP mission originally

included an active L band radar, the radar instrument unfortunately failed shortly after the mission’s launch.
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This paper describes the updated SMOS L3FT algorithm and introduces the dataset to the community (ESA, 2023). The
SMOS L3FT product has been publicly available since 2018. Developed by the Finnish Meteorological Institute in collabora-
tion with GAMMA Remote Sensing, Switzerland, the product is accessible through the European Space Agency (ESA) SMOS
and the Finnish Meteorological Institue (FMI) dissemination services. In November 2023, the SMOS L3FT product underwent

a major processor update from version 2 to version 3, with all data reprocessed.

2 Data
2.1 Data used for the soil freeze and thaw detection
2.1.1 SMOS brightness temperatures

The ESA SMOS mission (Kerr et al., 2010), launched in 2010, was the first satellite mission to provide continuous L band
observations covering the whole globe. For the SMOS L3FT product, the primary input data are the CATDS (Centre Aval de
Traitement des Données SMOS) level 3 brightness temperatures (L3TB) dataset, version 331 (Al Bitar et al., 2017; CATDS,
2022). The L3TB data are in the ground polarisation frame, horizontal (H) and vertical (V) linear polarisations, and are provided
in the Equal-Area Scalable Earth 2 (EASE-2) grid (Brodzik et al., 2012) with a polar projection at 25 km x 25 km grid cell
size. On each overpass, SMOS measures an incidence angle profile of the brightness temperature. In the L3TB data the profiles
are averaged into incident angle bins with 5-degree intervals. Daily CATDS files include all swaths observed over the Northern
Hemisphere. The variables used are the H and V polarized brightness temperatures, their standard deviations and radiometric
accuracies, number of views, number of views suspected to be affected by RFI, observation acquisition times, and incidence

angles relative to nadir. The SMOS L3FT algorithm uses only data from the incidence angle bin of 50°- 55°.
2.1.2 Two metre air temperature

Daily air temperature data at 2 metres above ground level are provided by the European Centre for Medium-Range Weather
Forecasts (ECMWF). The operational L3FT processor utilizes the Atmospheric Model High Resolution 10-day Forecast data
from ECMWEF’s real-time forecast system. During reprocessing, the near real-time air temperature data are replaced with the
corresponding air temperature data from the ERAS5-Land reanalysis, which are available with a latency of up to one month
(Muiioz Sabater et al., 2021; Mufioz Sabater, 2019). The most recent reprocessing was performed in October 2023, and all data
after 10 October 2023 have been processed using ECMWF near real-time data. Both the operational 10-day high-resolution
forecasts and the ERA5-Land reanalysis from ECMWF are provided on a grid with a spatial resolution of 0.1° x 0.1° (approx-
imately 11.1 km x 11.1 km at the equator, and 11.1 km x 5.6 km at 60° latitude), offering daily temperature values at 6-hour
intervals (0, 6, 12 and 18 hours). The SMOS L3FT processor calculates the daily mean from these ECMWF air temperatures.
The data are reprojected to the EASE-2 grid and resampled to a spatial resolution of 25 km x 25 km, using the nearest neighbor

interpolation method.
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2.1.3 Snow extent

The SMOS L3FT algorithm uses the global snow extent data produced by the United States National Ice Center (USNIC) using
the Interactive Multisensor Snow and Ice Mapping System (IMS) (U.S. National Ice Center, 2008, updated daily). These IMS
Daily Northern Hemisphere Snow and Ice Analysis data, originally in 4 km resolution with Polar Stereographic projection, are
reprojected to the EASE-2 grid at 25 km x 25 km resolution using the majority interpolation method. Although IMS provides
daily global snow extent, its quality may be affected by persistent cloud cover and polar night conditions, which limit the
availability of optical observations. In such cases, the IMS algorithm relies more on passive microwave inputs and temporal
persistence from previous days’ estimates (U.S. National Ice Center, 2008, updated daily; S. Helfrich, M. Li, C. Kongoli, L.
Nagdimunov and E. Rodriguez, 2019). Given the coarse spatial resolution of the SMOS L3FT product, these limitations are

not considered critical for our application.
2.2 Data used for the validation
2.2.1 Soil moisture and soil temperature

The soil moisture (SM) and soil temperature (ST) data are obtained from the International Soil Moisture Network (ISMN)
(Dorigo et al., 2011, 2021). Data are available from over 70 networks worldwide, seven of which provide near real-time
updates. Here, ISMN data from six different networks are used to validate the SMOS freeze-thaw product. We use only data
from those stations that measure both SM and ST from the top surface layer, at depths of 5 cm and/or 10 cm. These networks
include SNOTEL - Snow Telemetry Network (Leavesley et al., 2008), SCAN - Soil Climate Analysis Network (Schaefer et al.,
2007), USCRN - The U.S. Climate Reference Network (Bell et al., 2013), RISMA - Real-Time In-Situ Soil Monitoring for
Agriculture Network (Ojo et al., 2015), BNZLTER - Bonanza Creek, the Long Term Ecological Research Network, and FMI -

Finnish Meteorological Institute soil moisture and soil temperature observations (Ikonen et al., 2016, 2018).
2.2.2 ERAS5 Land reanalysis data

The ECMWF ERAS Land global atmospheric reanalysis dataset provides a consistent and long-term record of meteorological
parameters over land surfaces (Mufioz Sabater et al., 2021). We used air temperature at 2 metres, soil temperature in layer 1
(0-7 cm depth), and snow depth. The data, provided on a 0.1° x 0.1° latitude—longitude grid, are reprojected to the 25 km x
25 km EASE-2 grid used by the SMOS L3FT product. This is done using the Geospatial Data Abstraction Library (GDAL),

with average resampling applied during resolution matching to ensure consistency with the SMOS grid.
2.2.3 Land cover

The ESA CCI Land Cover time series v2.0.7 (1992 - 2015) data (ESA, 2017), originally provided at 300 m spatial resolution,
are used to define the land cover distribution on the EASE-2 grid. The land cover classes were aggregated from the original 23

classes into 6 classes: agriculture, forest, low vegetation, wetland, open water and other (permanent ice, barren, urban). This
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aggregated land cover information was then regridded to the 25 km EASE-2 grid and used during the validation process to

determine whether the land cover class at each in-situ sensor location represented the larger EASE-2 grid cell.

3 SMOS freeze and thaw (FT) retrieval algorithm
3.1 Algorithm outline

The SMOS FT detection algorithm is based on the physical principle that L band brightness temperatures vary significantly
between frozen and thawed soils due to the distinct differences in their dielectric properties. Thawed soil contains liquid water,
which has a much higher dielectric constant (¢’ ~ 90) at L band than the ice in frozen soil (¢/ ~ 3.2) (Mitzler et al., 2006). This
large dielectric contrast directly influences the soil’s emissivity and, consequently, the brightness temperature detected by the
satellite.

As predicted by Fresnell’s equations as well as by empirical observations Rautiainen et al. (2014), the strong decline of
free liquid water during soil freezing has two effects: First, both horizontal and vertical emissivities are increased, leading
to an increase in the corresponding brightness temperatures. Second, the difference between horizontal and vertical emissiv-
ities is decreased, resulting to a reduction in polarization contrast. In contrast, thawed soils—due to the presence of liquid
water—exhibit lower emissivities and a larger polarization difference. Notably, dry and frozen soils behave similarly from a
dielectric standpoint, causing similar effects on L-band brightness temperatures.

To detect the FT state of the soil, the algorithm computes the Normalized Polarization Ratio (NPR), which we denote by T

and is defined as:

Ty 4T (H
B B

where Tg/ and Tg are the vertically and horizontally polarized brightness temperatures, respectively. NPR reflects both the
absolute level of emissivities and their polarization contrast, making it a sensitive indicator of freeze—thaw transitions. The
conceptual motivation for using NPR can be understood by considering the idealized case of a bare soil surface, for which the

brightness temperature can be expressed as:
T5 = (1= TP T + TP T iy 2)

Omitting the down-welling brightness temperature 73 ¢, and substituting equation (2) into (1) eliminates the effect of soil’s
physical temperature 75,1, leaving only the dielectric effect. Ideally, this insensitivity to physical temperature variations allows
to robustly capture changes in soil moisture and FT transitions without the need for explicit temperature correction. Figure
1 shows the modelled effect of the changing soil permittivity to the NPR at the used observation angle 6 = 52.5°, following

Fresnell’s law for smooth interface.
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Figure 1. Soil’s emissivity 1 — I'*°!(¢) for vertical and horizontal polarizations (solid line; left y-axis) and the corresponding normalized

polarization ratio (dashed line; right y-axis) as a function of the soil’s relative permittivity e.

However, in practice, the idealized assumptions represented by equation (2) and Figure 1 do not fully hold. Surface rough-
ness, vegetation and forest cover, snow, and sub-pixel heterogeneity within the SMOS footprint all act to dampen the sensitivity
of brightness temperature to soil permittivity changes. These factors reduce the interpretability of the polarization-dependent
brightness temperature response and introduce geophysical noise that can be misclassified as freeze or thaw. As a result, the
algorithm must be designed to tolerate such uncertainties while remaining sensitive to actual transitions in soil freeze—thaw
state.

Building on this physical rationale, the algorithm applies a threshold-based classification to determine the soil freeze—thaw
state from the observed NPR values. Each Y is compared to empirically established frozen and thawed soil reference values,
denoted by Y. and Yy, respectively. The resulting soil state estimates are further regularized by air temperature re-analysis
data. The algorithm workflow scheme is shown in Figure 2 and described in details in sections below. As mentioned earlier,
the SMOS FT algorithm primarily relies on CATDS L3 brightness temperature data as its main input. The ascending and

descending orbits are processed separately, resulting in two L3FT estimates for the two orbits.
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Figure 2. The SMOS soil FT detection algorithm workflow

3.2 Data selection and quality filtering

The brightness temperature measurements that are suspected to have reduced quality are filtered out. The SMOS L3FT pro-
cessor uses CATDS L3TB data, which are already averaged within incidence angle bins; hence, the quality flags,including
suspected RFI proportion, are interpreted as summary statistics, and individual brightness temperature measurements are no
longer accessible at this stage. Table 1 summarises the quality filtering criteria. First, the brightness temperature values should
be within the physically meaningful range. In the context of FT detection, values above 300 K can be omitted. Second, it is

required that the incident angle bin contains at least 5 measurements. Third, the ratio

T'g deviati
_ T'p deviation 3)

T’ accuracy

between the sample standard deviation of the measurements and the average radiometric accuracy within the incident angle
bin is expected to be bounded both from above and below with values 2 and 0.1, respectively. Fourth, the proportion of

measurements suspected to be contaminated by RFI within the incident angle bin must be less than 40%.

Table 1. Data filtering criteria in the SMOS L3FT processor

Description Criteria
Realistic brightness temperature values 0K< Tg H < 300K
Sufficient amount of views within the incident angle bin Nyiews = D
Realistic sample deviation compared to radiometric accuracy 0.1<x<2
Low RFI contamination Ngrr1/Nyiews < 0.4
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3.3 Noise removal and temporal averaging

The individual SMOS L3 brightness temperatures, although averaged over the incident angle bin, contain noise that hinders
the FT detection. To remove noise from the NPR time series computed from the L3TB, a temporal filtering is performed. In the
SMOS L3FT processor, a simple Kalman filtering approach is used (Kalman, 1960; Sarkka, 2013). Every grid cell is filtered

independently from every other, and the time series from a given grid cell is modelled as a dynamic linear model, so that

T(tk) :T(tk_l)Jer,
Trsre(te) =7Y(tk)+ Vi,

“)

where T'(¢;) denotes the true physical NPR at time instance ¢, and Y37 (¢x) denotes the noisy NPR that is computed from
the L3 brightness temperatures at time ¢, by equation (1). W, and V), are the observation and model noise terms at time ¢,

which were modelled as Gaussian random variables:

Wi ~N(0,wy)

o)
Vk ~ ./\/'(07 1}]%)
The NPR observation noise variance v and the process noise variance w; were estimated as follows:
0?2 = var Ty (tx)+var T (ty,)
ko v H 2
(TN (t)+TE (1)) (6)
wﬁ :192(tk,1—tk),

where ¢ is a tuning parameter, T3 (¢;) refer to the brightness temperature values at time ¢z, and var(-) refers to the error
variance of the brightness temperatures, which are provided in the data. The Kalman filter provides an optimal estimate of
Y (¢)) from the noisy time series Y1375 (t), balancing the noisy observations with their uncertainties to improve the signal
quality. Figure 3 shows an example of the observed time series before and after applying the Kalman filter. The advantage of
the Kalman filtering approach over e.g., a running mean is that the observations are weighted according to their uncertainty,
and in addition, the filtering parameter ¢ can be estimated from an observed time series by maximizing the likelihood of the
observed time series with respect to ) (see e.g. book by Sérkka (2013)). The estimation is performed for the EASE-2 grid cell
over Sodankyli, Finland, one of the applied validation sites (Ikonen et al., 2016), and the obtained value ¥ = 0.003 is used
globally.
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Figure 3. Time series of the non filtered (computed from the L3TB swath data) and the filtered normalized polarisation ratio from the

EASE2.0 grid cell containing the Sodankyld validation site.

3.4 Frozen and thawed ground references

NPR varies between grid cells due to differences in land cover, soil properties, vegetation cover, and environmental conditions.
As a result, each cell exhibits unique frozen and thaw soil references: Y and Yyy,. To detect the freeze-thaw transitions, we

scale the observed NPR signal:

Ton— T
Yeem 2 7)
Tin— Ve (

where Y. is the scaled NPR. Note that Ty, and Yy, are specific to each grid cell and they are empirically derived from the
L3TB time series in conjunction with two auxiliary datasets: ERAS Land air temperature and IMS snow extent. By scaling the
T values in this way, the algorithm adapts to the local conditions of each cell, enabling accurate determination of the soil state
from the current observations.

The methodology used to define the reference values from the NPR time series is described below. If the daily mean air
temperature was below -3°C and there was snow cover, the data were eligible for the frozen soil reference. Similarly, if the
snow melt off occurred at least 28 days ago and the daily air temperature was above +3°C, the data were eligible for the
thawed soil reference. This decision logic is shown in Figure 4. Reference values were derived from data collected between 1
January 2014 and 4 September 2023, with the end date limited by the availability of ECMWF ERAS Land data at the time of
re-processing. The first years of data were excluded due to higher presence of RFI. From the selected period, all eligible frozen
and thawed reference data were collected, and the 50 most extreme values were identified. The median of these values was

used to define the frozen Yy, and thawed Yy, reference values.
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Figure 4. The logic for selecting the candidate data for the frozen and thawed soil references

3.5 Data classification

The FT class is estimated from the scaled NPR value Y. according to table 2. The thresholds of 50% and 70% have been

acquired in the previous studies by fitting the scaled NPR value to frost tube observations in Finland (Rautiainen et al., 2016).

Table 2. Thresholds for the soil state categories in respect to parameter A and in respect to frozen and thaw soil references.

Category Soil state Condition
1 thaw To. < 50%
2 partially frozen 50% < Y. < 70%
3 frozen 70% < Tye

3.6 Removal of obvious errors and the processing mask

Even after the pre-processing steps for filtering the observational data, the initial freeze-thaw (FT) classification based on the
scaled NPR value may contain errors, in particular over regions where some residual RFI is present, or where the separation
of frozen and thawed references is small. Some of the obviously erroneous ground condition classifications can be mitigated
using the auxiliary data: ECMWF air temperature and IMS snow extent. A processing mask (PM) was generated using these
auxiliary data to estimate the season occurring in each grid cell. Additionally, the previously defined PM state restricted the
selection of the new value. PM contains eight different values for four seasons (two for each).. They are described in Table 3

with the selection criteria and the allowed transitions.

10
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Table 3. The nine values of processing mask PM(t) for time ¢ (day), criteria for their conditions, the respective seasons, and allowed

transitions PM(¢) — PM(t + 1). The variables T,;, and Tair denote the daily mean and 10 day mean air temperatures, respectively.

Allowed transition

PM(t) Definition Season  Definition criteria
PM(t) — PM(t + 1)

0 undetermined, initial value only none 1,3,5,7
1 summer summer Ty;, > 0°C or Tp;, > 0°C 1,2

2 late summer summer Ty, < 0°C 1,2,3
3 freezing period, early phase autumn Ty, < 0°C 2,3,4
4 freezing period, longer evolved — autumn 7,5 < —1°C or Ty;; < 0°C for 10 days 34,5
5 winter winter Toir < —3°C 5,6

6 late winter winter T.ir > 0°C 5,6,7
7 melting period spring Toir > 3°C or Ty, > 3°C 57,8
8 end phase of melting period spring Tair > 3°C or Ty, > 3°C and no snow 1,7,8

PM affects the final estimate according to the following rules: (1) If PM(?) is 3, 4, 7 or 8 (indicating freezing and melting
periods), the mask has no effect. (2) If PM(¢) is 1 or 2 (indicating a summer period), all FT state estimates are forced into
the thawed soil category. (3) During the winter period (when PM(t) is 5 or 6), the mask prevents the soil state from changing

towards the thawed state. However, neither the frozen state nor the partially frozen state is forced.

4 Validation
4.1 Validation with in-situ data

The soil freeze—thaw (FT) estimates were compared against the ISMN SM and ST data. The scale mismatch between satellite-
based and in-situ observations presents significant challenges when interpreting the comparison results. In-situ sensors measure
the soil state at a single point, whereas SMOS observations represent an area with an effective footprint of 30-50 km, depending
on location within the snapshot scene (McMullan et al., 2008; Kerr et al., 2010).

Temporal uncertainty also affects the comparison because SMOS does not always provide daily observations for a given
location. Due to its orbital configuration and data gaps caused by radio frequency interference (RFI), particularly in Eurasia
(Oliva et al., 2016), the satellite may miss critical transition days. This can delay or obscure the detection of the actual freeze
onset. In contrast, in-situ data are typically available at hourly resolution, allowing precise identification of freezing events.
Although SMOS and in-situ data can be time-matched when observations are available, the discontinuous temporal sampling
of SMOS introduces uncertainty that must be considered in the comparison.

The SMOS FT product estimates the soil state at three levels (Table 2). To compare the SMOS FT estimates against the

in-situ data, a similar parameter indicating the soil state at the sensor location needs to be defined from the in-situ observations.

11
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The soil state at the in-situ sensor locations was quantified using a soil FT-index (SFTI). This index was derived by analyzing
the relationship between the measured soil volumetric liquid water content (LWC) and soil temperature, represented by the soil
freezing characteristic curve (SFCC). A simultaneous decrease in both LWC and temperature indicates soil freezing, while an
increase in both parameters suggests soil thawing. This method is based on the approach developed by Pardo Lara et al. (2020)
and is further elaborated and explained in detail by Cohen et al. (2021). The SFTI is a site-specific metric representing the soil
state, with values ranging from O to 1, where 0 corresponds to thawed soil and 1 to fully frozen soil. For comparison purposes,
we used three SFTI thresholds: 50%, 70%, and 90%. The SFTI time series were then converted into three sets of binary data,
each indicating whether the soil at the sensor locations was classified as either frozen or thawed based on these threshold
values, with higher thresholds reflecting a stronger indication of frozen conditions. These binary datasets were compared with
the SMOS FT estimates. The day of first freezing (DoFF) in autumn was chosen as the comparison parameter because it plays
a critical role in greenhouse gas (GHG) emissions, particularly methane. (Arndt et al., 2019; Tenkanen et al., 2021). Previous
studies have shown that soil FT estimates derived from L band passive microwave data are most accurate during the autumn
and cold winter periods. In the spring, direct observations from the ground, even at L band frequencies, are effectively blocked
by the wet snow layer (Roy et al., 2015; Rautiainen et al., 2016). As a result, the SMOS FT estimates during this period often
reflect the condition of the snowpack (e.g., presence of wet snow) rather than the actual soil thawing. While in-situ sensors
provide accurate information about the soil state itself, the springtime SMOS FT signal cannot be directly interpreted as soil
thaw, which limits its suitability for soil FT validation during this season.

DoFF is defined here as the first day in autumn that is followed by at least 5 consecutive days of frozen soil. For SMOS
data, an additional condition was applied: five consecutive observations must estimate a frozen soil state. Due to SMOS’s orbit
configuration, global coverage is achieved every three days, with combined ascending and descending overpasses enabling
daily observations north of approximately 60°N (Kerr et al., 2010). However, because the SMOS L3FT retrievals are computed
separately for each orbit, near-daily coverage for either ascending or descending observations is only attained at latitudes
above ~65°N. This is also evident in the SMOS observation frequency map shown in Figure 8. Additionally, data quality
filtering, especially due to radio-frequency interference (RFI), further reduces the effective observation frequency, particularly
in Eurasia. As a result, the five observations required to confirm freezing typically span 5-15 days, depending on latitude and
data quality. This limited temporal resolution may delay the DoFF detection relative to the actual onset of soil freezing. To
account for temporal uncertainty due to irregular SMOS sampling, we define the day of first potential freezing (DoFPF) as the
last observation that still indicated a thawed state before the confirmed onset of freezing (DoFF). This ensures that the actual
transition lies between DoFPF and DoFF. The period between these two dates represents the time during which SMOS FT
estimates indicate the onset of soil freezing in autumn. Similarly, DoFF was determined from in-situ SFTI measurements using
the three previously selected thresholds (50%, 70% and 90%) for comparison.

Figure 5 compares the day of first freezing (DoFF) derived from in-situ measurements with SMOS freeze-thaw (FT) product
estimates, showing results for both ascending and descending orbits. The error bars indicate the range of uncertainty for both
the SMOS FT product and the in-sifu measurements in estimating DoFF. For SMOS, the error bars extend from the day
of first potential freezing (DoFPF) to the day of first freezing (DoFF), with the midpoint marker representing the average

12
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estimate. The SMOS FT error bar reflects the variability in satellite observation times, which can span multiple days due to the
satellite’s overpass frequency. For in-situ measurements, the error bars reflect the range between the 50% to 90% thresholds,
with the marker also set at the midpoint. The error bars for in-sifu data reflect the variability in defining the exact timing
of freezing based on the SFTTI thresholds. A wider range between the 50% and 90% thresholds suggests more gradual soil
freezing, introducing greater uncertainty into the timing of DoFF. In contrast, narrower error bars indicate a more abrupt freeze
transition and therefore a more certain timing estimate at the sensor location. The bias, Pearson correlation (R), and standard
deviation of difference (SDD) values were calculated for the midpoints. For SMOS, the result represents the effective FT state
within the grid cell. For in-situ, the data may be from only one sensor location, or there may be several locations around the
grid cell. If multiple sensors are included, the SFTI data were averaged considering the land class information of the sensor
locations and the land class distribution of the associated grid cell. Prior to comparison, in-situ data were excluded if they
were not representative of the larger EASE-2 grid cells. Several criteria for representativeness were given: (a) The land cover
similarity check with the aggregated land cover data (Section 2.2.3); the land cover on at least one sensor location had to be
the same as the dominant land cover within the EASE-2 grid cell, the total land cover classes where the sensors were located
had to cover 70% or more of the EASE-2 grid cell, and a maximum allowable fraction of 5% within a grid cell was permitted
for open water, and likewise, the combined fraction of all types in the ’other’ category (permanent ice, barren land, and urban
areas) could not exceed 5%. (b) The Freezing Degree Days (FDD) check; for each EASE-2 grid cell and for each autumn/early
winter period, FDD were calculated using ERAS Land air temperature data. If the FDD was 0°C or more than 500°C (i.e.,
the cumulative sum of daily freezing degree days) at the time when the in-situ sensor indicated frozen ground (at the 70%
threshold), the in-situ sensor was considered unrepresentative of the entire grid cell area. (c) The soil frost depth (SFD) check;
we estimated the expected average soil frost depth for each grid cell using a simple regression model based on ERAS Land
air temperature and snow depth data. The change in soil frost depth (ASFD) was estimated using the regression model from
Gregow et al. (2011)

ASFD = ai +asz - FDDIO +as - dsn0W7 (8)

where snow depth dg, .y 1s in units of centimeters, and the regression coefficients are a; = 0.591 cm, as = 0.079 cm®C~1, and
a3 = —0.161. FDD is the 10-day freezing degree days:

10
FDD,o = ZmaX(O,fTi), )

i=1

and 7Tj; is the daily average temperature on day 7 (in °C). Similarly, if the estimated frost depth was 0 cm or more than 100 cm

when the in-situ sensor indicated soil freezing (70% threshold), the in-situ sensor could not represent the entire grid cell around

it. As a result of the quality checks, the number of data points (N) in the comparison exercise was reduced from 550 to 131.
Tables 4 and 5 present the comparison metrics at various representativeness levels for SMOS DoFF and in-situ SFTI DoFF

using the 50% threshold. The largest reduction in data points occurred during the land class similarity check (criterion a),

which also significantly improved the metrics. The FDD check (criterion b) identified nine additional cases where the in-situ

soil freezing estimates clearly contradicted ERAS Land data, resulting in noticeable improvements in the statistics. The final
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criterion (c¢), which involved comparison against model-based soil frost depth information, excluded 45 more cases and led to

slight further improvements in the results.

Table 4. The comparison result metrics for ascending orbit SMOS DoFF and in-situ SFTI DoFF using the 50% threshold. The representative-
ness checks (LC, FDD, and SFD) were applied cumulatively: for example, the *SFD check (c)’ includes only those data points that passed
both the LC (a) and FDD (b) checks.

Similarity check  Number of data points (N) Biasin days Pearson correlation (R) SDD in days

All data included 550 -14.6 0.33 34.1
LC check (a) 185 -8.1 0.51 26.8
FDD check (b) 176 -6.7 0.65 21.2
SFD check (c) 131 -9.7 0.71 19.4

Table 5. The comparison result metrics for descending orbit SMOS DoFF and in-sifu SFTI DoFF using the 50% threshold. The representa-
tiveness checks (LC, FDD, and SFD) were applied cumulatively.

Similarity check  Number of data points (N) Bias in days Pearson correlation (R) SDD in days

All data included 550 158 0.31 34.0
LC check (a) 185 9.1 0.56 247
FDD check (b) 176 75 0.70 18.9
SFD check (c) 131 -10.6 0.75 17.4

The metrics shown in Figure 5 demonstrate the performance of the SMOS FT product. Note that these metrics are based on
the midpoint values of the uncertainty ranges shown in the figure: for SMOS, the midpoint between the day of first potential
305 freezing (DoFPF) and the day of first freezing (DoFF), and for the in-situ data, the midpoint between the 50% and 90% SFTI
thresholds. This differs from the comparison metrics in Tables 4 and 5, which are computed directly between SMOS DoFF and
the in-situ DoFF derived from the 50% SFTI threshold.
For the descending orbits (Figure 5b), the bias is -6.3 days, with a Pearson correlation of 0.71 and a SDD of 18.6 days.
This indicates that, on average, the SMOS product estimates the day of first freezing later than in-situ measurements. The
310 relatively high correlation reflects a strong agreement between SMOS estimates and in-situ data, suggesting that the product
reliably captures the freeze-thaw transition in autumn, despite the temporal and spatial differences between satellite and in-
situ observations. The SDD highlights the deviation between the two datasets, which is typical considering the challenges of
matching large scale satellite observations to point-based in-situ sensors.
For the ascending orbits (Figure 5a), the bias is -5.0 days, with the same Pearson correlation of 0.71 and a SDD of 19.2 days.
315 This suggests that ascending orbits tend to estimate freezing later than in-situ measurements, but 1.3 days earlier compared

to estimates from the descending orbit. This earlier detection of freezing by ascending orbits aligns with the SMOS satellite’s
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sun-synchronous orbit configuration, where ascending orbits capture morning conditions (6 AM local time), and descending

orbits capture evening conditions (6 PM local time). The colder morning temperatures likely cause soil freeze-thaw transitions

to be detected slightly earlier during ascending passes.
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Figure 5. Comparison of the day of the first freezing (DoFF) between SMOS L3FT and in-situ data. (a) Horizontal axis: DoFF from the
in-situ data with the error bar derived from thresholds 50% to 90%, marker set at the midpoint. Vertical axis: Estimates from the SMOS
ascending orbit data, the lower end of the error bar corresponds to DoFPF (day of first potential freezing) and the higher value corresponds

to DoFF, with the marker set to the centre. (b) Same as (a) but for descending orbit.

4.2 Comparison with ERAS Land soil temperature data

We compared the SMOS FT with ERAS Land soil temperature (level 1 representing depth 0-7 cm) product to analyse their
differences and compatibility. From the two products, SMOS is an observation-based product sensitive to the dielectric changes
associated with soil freezing, while the ERAS is a model-based product representing the temperature of the soil. The two
products were compared by deriving a day of the first freezing (DoFF) from each data set for each freezing period between
2010 and 2024.

Figure 6 shows maps of the average DoFF derived from SMOS FT ascending and descending orbits separately, and from
the ERAS soil temperature product. SMOS FT and ERAS show broadly similar DoFF patterns, particularly at high latitudes.
However, discrepancies become more evident at lower latitudes, where SMOS has fewer observations and is more affected by
RFI, especially in Eurasia. Differences also reflect expected latitudinal variation in DoFF dynamics.

To better highlight spatial differences, we introduce DoFF difference maps in Figure 6 (d—f). These show SMOS ascending
minus ERAS5 (d), SMOS descending minus ERAS (e), and SMOS ascending minus descending (f). All maps use a centered
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colour scale to emphasize spatial variability. The SMOS FT product tends to estimate later freezing compared to ERAS,
with median differences of +10.7 and +12.3 days for ascending and descending overpasses, respectively. These differences
are spatially heterogeneous. Notably, larger DoFF differences occur in regions with dense forest cover, particularly in boreal
Eurasia and parts of North America, where increased vegetation canopy attenuates the L-band signal and amplifies NPR
uncertainty; in regions affected by strong RFI, such as Eastern Europe and parts of Russia, where the SMOS observation
density is lower and retrieval quality is reduced; and in mountainous or topographically complex terrain (e.g., Scandinavia,
Alaska), where sub-grid heterogeneity can lead to mismatches between model-based and radiometric observations.

Figure 7 shows scatter plots comparing the mean days of the first freezing between the data sets. The associated statistics
are shown in Table 6. In general, SMOS seems to estimate later freezing that the ERAS soil temperature would indicate (13-14
days on global average). Possible reasons for this difference include: 1) the SMOS observation frequencys; it is possible that
SMOS observes the freezing later simply due to delayed good quality observation with respect to the soil freezing. RFI is a
usual disruption to the SMOS observations. 2) The estimation of the day of the first freezing from the two data sets is slightly
different, as the SMOS observation times have to be accounted for. 3) Systematic errors in the ERAS soil temperature data. In
particular the first freezing is derived by looking at the time when the soil temperature drops below 0°C. This estimate might
be sensitive to errors in the modelled temperature values.

Furthermore, land cover distribution within the SMOS footprint affects the SMOS FT performance. High areal coverage of
forest and water bodies on one hand dampen the observed FT signal, making the freeze-thaw detection more difficult, and on

the other hand create their own contribution to the SMOS observation that are not fully accounted for in the SMOS FT product.
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Figure 6. Average DoFF for the freezing periods between 2010 and 2024, (a) SMOS FT product with ascending orbits, (b) SMOS FT
product with descending orbits, and (c) ERAS Land soil layer 1 temperature derived first freezing. Average values where the freezing day
was successfully estimated from the data for 10 or more years are shown. The ERAS derived mean freezing day is shown only for those
values where also SMOS FT has a successful estimate. Figures (d-f) show the differences, note that the colourbars are centered around the

global median of the differences to highlight the spatial variability of the differences.
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Figure 7. Scatter plots comparing the average DoFF between a) SMOS FT ascending orbit and ERAS Land derived, b) SMOS FT descending
orbit and ERAS Land derived, and c) SMOS FT ascending and descending orbits.

Table 6. Statistics corresponding to Figure 7.

Case Bias (days) | SDD (days) R
ERA-ASC -13.0 14.2 0.81
ERA-DSC -14.3 14.2 0.81
DSC-ASC 14 5.9 0.97

5 Product limitations
5.1 General limitations

The SMOS FT retrieval algorithm detects permittivity changes caused by the phase transition (or change in the aggregate
state) of liquid soil water to ice. In regions with dry soils, this permittivity change is inherently small because the soil already
has a low dielectric constant—even when unfrozen. As a result, the polarization contrast, and consequently the variability
in the Normalized Polarization Ratio (NPR), is limited. This low NPR dynamics reduces the sensitivity of the algorithm to
freeze—thaw transitions in such environments. Also, areas with a very thin or non-existent soil layer (e.g. rocky areas and
mountains) are challenging. At L band, the typical penetration depth ranges from a few centimetres to 10-15 cm, depending
on the amount of free liquid water in the soil. Therefore, the detection of soil conditions based on L band observations is
limited to the near-surface layer, which is still significantly thicker compared to the surface layer detected by higher frequency

radiometers and optical sensors.
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5.2 Spatial and temporal coverage

SMOS observations cover the entire globe twice in three days. The northernmost land areas have daily overflights due to
the orbit configuration. Prior to the SMOS mission, passive L band microwave observations were only made in space during
the Skylab 3 mission in 1973 (T. J. Jackson and Eagleman, 2004). The revelation of strong presence of man-made RFI in
the protected frequency band (1400 - 1427 MHz) following the SMOS launch was a surprise (Oliva et al., 2012, 2016).
As a consequence of the RFI level, spatial coverage over the Eurasian continent is severely hampered, moreover increasing
significantly over Eastern Europe after 2022. Figure 8 shows the average observation interval (in days) of the SMOS FT
product for the period 1 June 2010 - 31 December 2021 for ascending and descending orbits. The more frequent observations
towards the north due to the orbit configuration is clearly visible. The presence of RFI increases towards the south on the
Eurasian continent and primarily affects the descending orbit observations due to the forward tilt of the instrument. The North
American continent is much less affected by RFI contamination, except for the first years of SMOS operations. Figure 9 shows
the average observation interval (in days) for the period 1 January 2022 to 1 June 2024. The increased RFI contamination
over Europe is clearly visible hampering the SMOS FT product over a considerable area. While SMOS has provided valuable
L-band observations since 2010, RFI, particularly over parts of Eurasia, remains a significant challenge for data continuity. The
Soil Moisture Active Passive (SMAP) mission, launched in 2015, also operates in the L-band and incorporates onboard RFI
detection and mitigation techniques that help reduce the impact of radio interference in some regions (Piepmeier et al., 2014).
As such, SMAP can serve as a complementary source of L-band brightness temperature data for freeze—thaw applications,
particularly in areas where SMOS data quality is frequently compromised.

An important feature of the SMOS FT product is that it contains data indicating the date of the last acquired observation
for each location. This information is crucial for interpreting the data accurately, as it allows users to assess the timeliness of
the observations. If the last observation was acquired several days before the release of the current product, there may be a
significant gap in the data. During this period, changes in the soil state, such as a transition from thawed to frozen conditions,
could have occurred at any point between the latest observation and the current product date. Users must be aware that large
gaps in observation frequency can introduce uncertainty in the soil state estimates, making it essential to consult the last

observation date when analyzing the product data.

19



Average SMOS L3FT At in days Average SMOS L3FT At in days
Ascending orbit oo | Descending orbit 00

Figure 8. Average observation interval of the SMOS FT product measured in days. The average is computed between 1 June 2010 and 31

Dec 2021 for (a) ascending and (b) descending orbits.
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Figure 9. Same as Figure 8 but for the time period 1 Jan 2022 to 1 June 2024.
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5.3 Wet snow

The presence of wet snow hampers the ability of SMOS L-band observations to detect soil conditions, particularly during
spring. As snow begins to melt, its high liquid water content attenuates the microwave signal from the underlying soil and
strongly affects the observed brightness temperatures, especially in horizontal polarization (Pellarin et al., 2016). This leads to
increased polarization contrast and elevated values of the Normalized Polarization Ratio (NPR), similar to those observed for
thawed, moist soils. While snow melt and soil thaw often occur concurrently in spring, the timing can vary, and the L-band
signal cannot unambiguously distinguish between wet snow and actual thawed soil. Consequently, the SMOS FT algorithm
may misinterpret the presence of wet snow as an early soil thaw, introducing uncertainty in the retrieval during the spring
melt period. Variations in L band brightness temperature in spring should thus rather be interpreted as information about the
presence of liquid water in snow (Rautiainen and Holmberg, 2023). However, due to partial penetration of L. band microwave
radiation even in wet snow, the interpretation of the signal is less straightforward than at higher frequencies. On the other hand,
this carries the potential to retrieve the liquid water content of snow (Houtz et al., 2021) and also density of snow (Schwank

et al., 2015; Lemmetyinen et al., 2016; Naderpour et al., 2017).

6 Conclusions

The SMOS FT product provides daily monitoring of the freeze-thaw (FT) state of Northern Hemisphere land surfaces at a
spatial resolution of 25 km. The first operational SMOS FT product, made public in 2018, was developed from the prototype
algorithm presented by Rautiainen et al. (2016). The updated SMOS FT product (version 3.01), presented here, offers a tool for
monitoring seasonal freeze-thaw cycles, particularly across high-latitude regions. The L band passive microwave observations
used in this product are effective in detecting soil FT transitions due to the sensitivity of L band brightness temperatures to
changes in soil permittivity between frozen and thawed states.

The updated SMOS FT algorithm incorporates several improvements. These include enhanced noise removal through tem-
poral filtering of the SMOS signal, which has improved the accuracy and reliability of the freeze-thaw detection. The validation
of the SMOS FT estimates against in-situ SM and ST data from international soil moisture network, along with comparisons
to the ERAS Land reanalysis soil temperature data, demonstrate the product’s robustness in identifying the day of the first
freezing in autumn, a critical parameter for greenhouse gas emissions studies.

However, certain limitations do remain. The SMOS FT product is less effective in regions with dry soils, thin soil layers,
dense forested regions, or areas with significant radio frequency interference (RFI), particularly in Eurasia. Additionally, the
presence of wet snow in spring can obscure soil thawing detection, and variations in L band signals during spring should be
interpreted as an indication of wet snow rather than soil conditions; however, unambiguous detection of wet snow from L band
is itself also more challenging than at higher frequencies, due to partial penetration in wet snow. Furthermore, after the spring
of 2022, the exceptionally strong presence of RFI over Eastern Europe hinders the SMOS FT product over large areas.

In conclusion, while the SMOS FT product shows strong performance in high-latitude environments, future work should

focus on addressing the limitations posed by RFI and wet snow layers. Continued refinement of the algorithm and further
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validation in different environmental conditions will enhance the product’s utility for climate change studies, ecosystem moni-
toring, and land-use management.

Additionally, SMOS FT data have been utilized in the CarbonTracker Europe inverse modeling system at the Finnish Me-
teorological Institute to improve methane flux estimates at high latitudes. By aiding in the characterization of cold-season
emissions, the integration of SMOS FT data has demonstrated its value in reducing uncertainties and supporting studies of

methane dynamics in northern ecosystems (Erkkild et al., 2023; Tenkanen et al., 2021).

Data availability. The operational SMOS L3FT data record DOI is https://doi.org/10.57780/sm1-fbf89e0 (ESA, 2023). Data are available
from ESA SMOS online dissemination service: https://doi.org/10.57780/sm1-fbf89e0 and from the FMI dissemination service: https://litdb.
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