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Abstract: Natural and planted forests differ substantially in ecological functions and economic values, with forest age serving 15 

as a key indicator of their developmental and carbon dynamics. However, existing global forest age datasets remain constrained 

by coarse spatial resolution and the lack of explicit forest type distinction. In this study, we developed a 30 m global forest age 

dataset for 1985–2024 by integrating Landsat time-series data with the Continuous Change Detection and Classification 

(CCDC) algorithm on the Google Earth Engine platform, thereby reducing reliance on ground-based forest inventory data. 

Building upon global forest distribution products, forest age was estimated from change points in long-term spectral trajectories, 20 

distinguishing the age of natural and planted forests at a global scale. Validation using 6,100 globally stratified samples 

demonstrated strong agreement with visually interpreted references (overall accuracy = 0.72, RMSE = 5.66 years), with higher 

accuracy for natural forests (0.73) than for planted forests (0.70). Globally, pronounced regional contrasts were observed: old-

growth native forests (NF) dominate in Europe (84.38%), South America (82.61%), and North America (80.62%), whereas 

Australia exhibits a bimodal age distribution driven by both old and regenerating stands. Planted forests (PF), by contrast, are 25 

consistently younger, with the youngest plantations concentrated in Australia (Age1–5: 65.77%) and the most mature in Europe 

(Age36–40: 53.99%). This 30 m global forest age map provides a consistent and high-resolution benchmark for improving 

forest carbon accounting, plantation yield modeling, and conservation strategy development. 

1 Introduction 

Forests represent one of the most vital ecosystems on Earth, covering approximately 31% of the global land surface and 30 

providing habitats for most terrestrial species (FAO 2024). They play a central role in regulating the global carbon cycle, 
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storing nearly 296 billion tons of carbon and contributing to climate stability, hydrological balance, and biodiversity 

conservation (FAO 2024; Murphy et al., 2025; Noss 1999; Thompson et al., 2009). Beyond ecological functions, forests supply 

wood, fiber, fuel, and food, supporting the livelihoods of billions of people worldwide (Oldekop et al., 2020; Steel et al., 2024). 

In the context of accelerating climate change and global sustainability challenges, understanding forest structure and 35 

dynamics—especially forest age—has become indispensable for assessing carbon sequestration potential, guiding restoration 

efforts, and ensuring long-term ecological and social resilience (Erdozain et al., 2024; Leng et al., 2024; Tian et al., 2024; 

Zhang et al., 2023). 

Stand age represents one of the most critical dimensions differentiating NF and PF in terms of growth characteristics and 

carbon sequestration capacity (Köhl et al., 2017; Liang et al., 2022). PF typically exhibit uniform age structures, with 40 

vegetation and soil carbon storage increasing continuously with age. However, their total carbon accumulation is generally 

lower and highly dependent on management regimes (Cao et al., 2025; Zou et al., 2023). In contrast, NF possess longer growth 

cycles and complex age distributions; their carbon sequestration rate tends to stabilize after maturity, resulting in higher total 

carbon stocks and richer ecosystem functions (He et al., 2022; Liang et al., 2022; Liao et al., 2023; Shi et al., 2022). These 

divergent age–carbon relationships introduce significant uncertainties in carbon sink estimation when using models such as 45 

the Integrated Terrestrial Ecosystem C-budget (InTEC) model (Chen et al., 2000). Accurate information on both forest type 

and age is therefore essential for improving carbon accounting precision and guiding evidence-based forest management 

(Cheng et al., 2024; Mo et al., 2024). To fully assess the contribution of both forest types to climate mitigation and biodiversity 

conservation, mapping their age distributions at the global scale is of paramount importance (Aszalós et al., 2022). 

Currently, five primary approaches are employed to estimate forest age using remote sensing: statistical models, image 50 

classification, remote sensing inversion of forest parameters, multi-sensor data fusion and time-series change detection. 

Statistical models, such as multiple linear regression and machine learning algorithms (e.g., Random Forests and Support 

Vector Machines), estimate forest age based on biophysical variables. However, these models are often constrained by their 

limited ability to capture complex nonlinear relationships. Image classification approaches infer age from spectral reflectance 

and vegetation indices, though their accuracy decreases with finer age stratification or heterogeneous species composition 55 

(Reyes-Palomeque et al., 2021). Remote sensing inversion methods, including K-Nearest Neighbor and Random Forest 

regression, can capture nonlinear relationships but remain vulnerable to overfitting when applied across diverse ecosystems 

(Tang et al., 2020). In addition to optical data, synthetic aperture radar (SAR) and LiDAR observations have demonstrated 

strong potential for forest age estimation. SAR systems, such as ALOS PALSAR and Sentinel-1, are sensitive to canopy 

structure and moisture content, enabling effective forest monitoring under persistent cloud cover and alleviating the spectral 60 

saturation issues commonly observed in optical indices (Champion et al., 2013; Trisasongko et al., 2020). However, SAR 

backscatter tends to saturate in high-biomass forests and is strongly influenced by terrain, soil moisture, and incidence angle, 

which complicates its interpretation. Moreover, the relatively coarse resolution of global SAR products limits their ability to 

detect fine-scale age variations. LiDAR, on the other hand, directly captures the three-dimensional forest structure—such as 

canopy height and vertical distribution—providing critical parameters for calibrating age–height models (Racine et al., 2014). 65 
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Nevertheless, LiDAR data suffer from sparse spatial coverage, high acquisition costs, and poor temporal consistency, which 

restrict their applicability for large-scale or long-term forest age monitoring. More recently,  with the open availability of 

Landsat data, time-series algorithms such as LandTrendr and CCDC have achieved remarkable progress in forest age 

estimation and regional mapping. These approaches analyze temporal trajectories of spectral reflectance or vegetation indices 

to track gradual or abrupt pixel-level changes, identify disturbance and recovery processes, and thereby infer forest 70 

establishment time and subsequent growth stages (Du et al., 2022; Li et al., 2024; Xiao et al., 2023). 

Many forest age products have been developed based on these approaches, yet only a few products provide global-scale 

coverage. Below are key representatives of such global products: The Global Forest Age Dataset (GFAD) describes age 

distributions of plant functional types on a 0.5° grid for the period 2000–2010, derived from inventory data in temperate and 

boreal regions and biomass–age relationships in tropical areas (Poulter et al., 2018). Besnard et al. (2021) produced a circa 75 

2010 global forest age dataset at 1 km resolution by integrating forest inventory, biomass, and climatic data. This product was 

later updated to the Global Age Mapping Integration (GAMI) at a resolution of 100 m (Besnard et al., 2024). More recently, 

Du et al. (2022) created a 30 m-resolution global dataset of planting years of plantation (PYP) based on Landsat time-series 

analysis, offering higher spatial detail but focusing solely on planted forests. 

Despite the respective advantages of these approaches—statistical and inversion models offering local-scale precision, image 80 

classification enabling rapid mapping over small areas, and time-series algorithms providing large-scale temporal continuity—

current forest age products still face major limitations. First, most large-scale datasets lack the spatial resolution needed to 

capture fine-scale age heterogeneity (Smolina et al., 2023). Second, they seldom differentiate between NF and PF, undermining 

the reliability of carbon sequestration estimates given their contrasting age–carbon trajectories (Su et al., 2023; Yu et al., 2024). 

Third, many products remain confined to specific regions or forest types, limiting their global applicability (Besnard et al., 85 

2021; Huang et al., 2023; Lu et al., 2025; Maza et al., 2021). These limitations highlight the urgent need for high-resolution, 

globally consistent forest age mapping that distinguishes between NF and PF. Thus, a comprehensive global forest age dataset 

integrating high spatial resolution, explicit forest type differentiation, and worldwide coverage remains absent. Developing 

such a dataset is crucial for enhancing global carbon stock quantification and improving forest-based climate mitigation 

assessments. 90 

To address this gap, we applied the CCDC algorithm within the Google Earth Engine (GEE) environment to estimate forest 

age for both NF and PF using Landsat 4–8 surface reflectance data from 1985–2024. Based on the Global Natural and Planted 

Forests (GNPF) dataset, NF and PF masks were first generated to delineate the spatial extent of each forest type (Xiao et al., 

2024). Temporal trajectories within these masks were then modeled using CCDC to derive forest age at 30 m resolution. The 

resulting global forest age map—the first to distinguish NF and PF at high spatial resolution—has been made publicly available, 95 

providing a robust foundation for global research on forest dynamics, carbon storage, and sustainable management. 
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2 Datasets and methods  

The workflow of this study includes four main stages (Fig. 1). First, time-series Landsat optical imagery from 1985 to 2024 

was preprocessed and reconstructed using the GEE platform. Second, the CCDC algorithm was applied to extract 

spatiotemporal spectral trajectories and detect forest disturbances and recovery events. Third, the GNPF dataset was used to 100 

delineate natural and planted forest areas. Finally, forest age for each forest type was estimated based on CCDC-derived 

temporal parameters. 

 

Figure 1: Workflow of estimating forest age for global natural and planted forests. 
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2.1 Global natural and planted forests dataset 105 

The Global Natural and Planted Forests (GNPF) dataset provides the global distribution of natural and planted forests at 30 m 

spatial resolution for 2021 (Xiao et al., 2024). Derived from Landsat time-series imagery (1985–2021), the dataset 

distinguishes forest types based on differences in disturbance frequency, achieving an overall accuracy of 85%. The 

proportions of forest types are consistent with the FAO’s Global Forest Resources Assessment 2020, ensuring high thematic 

reliability. The GNPF dataset was used to generate a forest type mask that separates natural and planted forest pixels. This 110 

mask served as a spatial reference for forest age estimation, enabling independent analysis of temporal dynamics for each 

forest type. 

2.2 Time series construction 

All Tier 1 Level-2 surface reflectance products from Landsat 4–8 (TM, ETM+, and OLI sensors) were utilized for the 1985–

2024 period. Preprocessing followed the LEDAPS and LaSRC algorithms for radiometric calibration and atmospheric 115 

correction (Ju et al., 2012; Vermote et al., 2018). Pixel-level filtering was performed using the QA_PIXEL band to remove 

clouds, cloud shadows, and saturated pixels. Additional filtering based on aerosol optical depth further improved data quality. 

To ensure radiometric consistency across sensors, Landsat 8 reflectance values were normalized to match those of ETM+. 

Several spectral indices were computed for each image, forming a continuous temporal dataset. This stack was analyzed using 

the CCDC algorithm (Zhu et al., 2014) , with the Normalized Burn Ratio (NBR) serving as the primary variable for disturbance 120 

detection and forest age estimation. The final outputs were exported as 30 m raster layers. 

2.3 Vegetation index and parameters selection 

Vegetation indices provide sensitive indicators of canopy condition and ecosystem dynamics. Among them, the Normalized 

Burn Ratio (NBR) was selected for this study due to its high responsiveness to vegetation disturbance and recovery. NBR, 

calculated from the Near-Infrared (NIR) and Shortwave Infrared (SWIR2) bands, effectively captures structural and moisture 125 

changes in vegetation, making it particularly suitable for detecting forest loss and regrowth following disturbances such as fire 

or logging (Bright et al., 2019; Escuin et al., 2008; Ryu et al., 2018). Within the CCDC framework, temporal NBR trajectories 

were analyzed to identify disturbance and recovery events, enabling precise estimation of forest stand age. 

NBR=
NIR-SWIR2

NIR+SWIR2
,   (1)  

 

2.4 Forest age detection 130 

2.4.1 CCDC algorithm 

The CCDC algorithm, implemented on the GEE platform, was used to estimate forest age for both natural and planted forests. 

CCDC continuously monitors land surface dynamics by analyzing dense time-series satellite imagery at the pixel level. The 
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algorithm constructs temporal-spectral models for each pixel and identifies structural changes in reflectance patterns over time. 

In this study, CCDC was applied following three major steps: (1) Model construction: For each pixel, a harmonic regression 135 

model incorporating trend and seasonal terms was fitted using ordinary least squares (OLS), producing a continuous spectral 

trajectory. (2) Change detection: Model predictions were compared with observed values to identify significant deviations. A 

land cover change was confirmed when three consecutive observations deviated beyond a predefined threshold. (3) Model 

updating: Once a change was detected, the model was dynamically recalibrated to represent the new surface condition. The 

main parameters used in the CCDC algorithm are summarized in Table 1. Using the NBR time series from 1985 to 2024 as 140 

input, CCDC generated multiple outputs, including breakpoint characteristics (start time, end time, breakpoint time, number 

of valid observations, and change probability), as well as segment-level parameters (regression coefficients, RMSE, and the 

maximum normalized residual at breakpoints). 

𝜌(𝑖, 𝑥) = 𝑎0,𝑖 + 𝑎1,𝑖 cos
2𝜋𝑥

𝑇
+ 𝑏1,𝑖 sin

2𝜋𝑥

𝑇
+ 𝑎2,𝑖 cos

2𝜋𝑥

𝑁𝑇
+ 𝑏2,𝑖 sin

2𝜋𝑥

𝑁𝑇
  (2) 

In the Eq. (2), 𝜌(𝑖, 𝑥) represents the predicted value of the i-th band of fitted Julian date x; i represents the i-th spectral band; 

T represents the number of days in each year; 𝑎0,𝑖 represents the total value of the i-th band reflectance; 𝑎1,𝑖 and 𝑏1,𝑖 represent 145 

the coefficient of the intra-annual variation term of the reflectance of the i-th band; a2,i and b2,i represent coefficients for inter-

annual change for the i-th band; N represents number of years. 

Table 1. Parameter settings for CCDC in this study. 

Input Parameters 

breakpointBands 'GREEN', 'RED', 'NIR', 'SWIR1', 'SWIR2','NBR' 

tmaskBands 'GREEN', 'SWIR2' 

minObservations 6 

chiSquareProbability 0.99 

minNumOfYearsScaler 1.33 

dateFormat 1 

lambda 0.002 

maxIterations 10000 

 

2.4.2 Forest age identification based on breakpoints 150 

The CCDC-derived pixel-level temporal trajectories were used to identify and quantify forest growth cycles. Each fitted time 

series was decomposed into discrete temporal segments bounded by breakpoints, which correspond to abrupt land cover 

transitions such as afforestation, harvesting, or disturbance events (Fig. 2). To estimate current forest age, the latest stable 

segment—representing the most recent undisturbed growth phase—was extracted for each pixel. The starting year of this final 

segment was defined as the onset of the current forest growth period, while the study year (2024) was used as the reference 155 
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endpoint. Forest age was then calculated as the time interval between these two points. This approach effectively captures 

forest stand age by quantifying the duration since the last major disturbance or establishment event. 

 

Figure 2: Forest age determination based on time-series breakpoints. This figure illustrates the time-series fitting results for a single 

pixel and the corresponding remote sensing images for each fitted segment. Among these segments, the last segment (labeled as 160 
“fit5”) is identified as the target segment, as it represents the latest growth stage following the most recent disturbance. The time 

span of this target segment (i.e., the duration from the start year to the end year of fit5) directly corresponds to the forest age. 

2.4.3 Adaptive grid partitioning across global continents 

To ensure computational efficiency and facilitate large-scale processing, an adaptive grid partitioning scheme was developed 

based on the Large Scale International Boundary (LSIB) dataset from the U.S. Department of State's Office of the Geographer 165 

and Global Positioning Systems (2017). The dataset, which integrates and simplifies global administrative boundaries while 

maintaining essential regional distinctions, provides sufficient spatial precision for continental-scale analysis. Using the 

“Continental Region” layer of the LSIB, the global landmass was divided into spatial units for independent CCDC processing. 
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As the GNPF dataset did not predict any forest cover in the South Atlantic, Antarctica, and Greenland (within the North 

American region), these areas were excluded from subsequent analyses. This exclusion reduced computational redundancy 170 

and prevented interference from invalid grids, thereby enhancing global processing efficiency. 

2.5 Validation samples generation using GNPF and high-resolution imagery 

To rigorously evaluate the accuracy of forest age estimates derived from the CCDC algorithm, we established a validation 

framework based on three key principles: (1) consistency with benchmark datasets, (2) spatial representativeness of validation 

samples, and (3) verification using high-resolution imagery (Fig. 3). First, to ensure alignment with the spatial scale of the 175 

GNPF product, the global land surface was divided into 57,559 independent 0.5° × 0.5° grid cells. This partitioning provided 

a uniform spatial framework for sample selection and validation. Second, within each grid, stratified random sampling was 

performed based on the GNPF-derived forest type classification (“natural forest” and “planted forest”). For each forest type, 

five samples were randomly selected per grid, while grids lacking forest cover were excluded. This grid-based, forest type–

stratified sampling strategy ensured balanced representation between natural and planted forests and avoided spatial clustering 180 

of validation samples, thereby achieving global spatial uniformity. Finally, reference forest ages were determined through 

manual interpretation of historical high-resolution imagery available in Google Earth. The initial establishment or regeneration 

year of each forest stand was visually identified by examining multi-temporal image sequences, which marks the onset of the 

forest’s current growth cycle. These visually interpreted reference ages were then compared with the CCDC-derived estimates 

on a per-sample basis to assess the algorithm’s performance for both NF and PF.  185 
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Figure 3: Workflow for generating validation samples using global grid-based stratified sampling. 

3 Results 

3.1 Forest age accuracy 

3.1.1 Validation using independently interpreted samples 190 

To comprehensively evaluate the accuracy of forest age estimation, a total of 6,100 globally stratified validation samples were 

collected, including 3,065 from PF and 3,035 from NF (Fig. 4a). Model-predicted forest ages were compared with visually 

interpreted reference ages. As shown in Figure 4b, the observed and predicted forest ages exhibited a strong linear relationship, 

indicating that the model effectively captured the temporal variation in forest age. The root mean square error (RMSE = 5.66) 

suggests that the average deviation between predicted and observed values was within an acceptable range. Figure 4c further 195 

compares the prediction accuracy of NF, PF, and the combined dataset (ALL) under different error tolerance thresholds. 
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Overall, under the strictest evaluation criterion (0-year tolerance), the model achieved an accuracy of 0.73 for NF, 0.70 for PF, 

and 0.72 overall, indicating strong agreement even under exact matching conditions. When the tolerance expanded to ±5 years, 

accuracies increased markedly to 0.95 for NF, 0.87 for PF, and 0.91 overall (Fig. 4c). The consistently higher performance for 

NF highlights the model’s superior capability in capturing the temporal dynamics of NF. These results confirm that the CCDC-200 

based approach provides reliable forest age estimates globally, with particularly high robustness under reasonable tolerance 

thresholds. 
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Figure 4: Validation sample distribution and accuracy verification of forest age prediction model. (a) The global distribution of 

validation samples. (b) Scatter plot and fitting relationship between observed and predicted forest ages. (c) Comparison of forest age 205 
prediction accuracy among different forest types under various error tolerance ranges. NF represents natural forest, PF represents 

planted forest, and ALL represents the combination of the two types of forests. 

3.1.2 Comparison with existing products 

To assess the reliability of the forest age estimates, we compared our product—the Global 30m Forest Age Map (Natural vs. 

Planted) (GFAM-N/P)—with a 30 m-resolution forest age product (FAP) developed by Xiao et al. for China (2023). The 210 

reference dataset identifies forest establishment years from 1990 to 2020, whereas our study extends the temporal coverage to 

1985–2024. Despite this difference, both datasets exhibited strong agreement in forest age estimation within the overlapping 

period. 

To ensure fair comparison, we performed stratified random sampling within the overlapping forested area based on China’s 

climatic regionalization (Fig. 5a). Specifically, 100 samples were selected from each of the tropical monsoon, temperate 215 

continental, and alpine plateau climatic zones, and 200 samples from each of the subtropical monsoon and temperate monsoon 

zones, resulting in 700 uniformly distributed samples across the country (Fig. 5b). Differences in forest age between the two 

datasets were analyzed using both a difference histogram and Bland–Altman consistency analysis (Bunce 2009). The results 

showed that the age differences were narrowly distributed and symmetrically centered around 0 (Fig. 5c). The kernel density 

estimation (KDE) curve displayed a sharp and narrow peak (Terrell et al., 1992), indicating that most samples had minimal 220 

deviations in forest age. In the Bland–Altman plot, the mean difference (red dashed line) was close to 0, and 95% of the 

samples fell within the consistency limits, with only a few isolated outliers (Fig. 5d). These findings demonstrate a high level 

of consistency between the two products, suggesting that despite differences in temporal span, both share similar 

methodological logic in forest age extraction and produce comparable results during the overlapping period.  
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 225 

Figure 5: Sample generation, distribution and accuracy assessment. (a) Sample generation. (b) Spatial distribution of samples across 

climatic zones in China. (c) Distribution of forest age differences between the GFAM-N/P and the FAP (difference = GFAM-N/P − 

FAP). (d) Bland–Altman plot showing the agreement between the two datasets; the central red line represents the mean difference 

(bias), and the gray dashed lines indicate the ± 1.96 × standard deviation range (95% limits of agreement). 

We conducted a visual comparison between the GFAM-N/P and the GAMI dataset developed by Besnard et al., (2024) , which 230 

has a spatial resolution of 100 m. Figure 6 presents three representative comparison sites that highlight differences in spatial 

detail and data quality. At Site 1, the GFAM-N/P revealed finer and more continuous gradients in forest age. In contrast, the 

coarser 100 m resolution of GAMI limited its ability to capture small and fragmented forest patches, leading to partial or 

missing age information. At Site 2, where forests dominated the landscape, GAMI failed to delineate forest age in large areas. 

This omission can be attributed not only to its lower spatial resolution but also to its data fusion approach, which likely removed 235 

pixels with low inter-source consistency, thereby reducing fine-scale structural details. At Site 3, GAMI depicted only 
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fragmentary forest age patterns, again reflecting limitations associated with its empirical modeling framework. Because the 

GAMI dataset estimates forest age from the empirical relationship between biomass and stand age, its accuracy is inherently 

constrained by input data quality and model assumptions. In contrast, the GFAM-N/P captures spatiotemporal variations in 

both planted and natural forests at a finer spatial resolution, providing enhanced insights into forest growth dynamics and 240 

carbon sequestration potential. This improvement underscores the value of our dataset for precision forest management and 

carbon cycle monitoring at regional and global scales. 

 

Figure 6: Comparison between the GFAM-N/P and the 100 m-resolution GAMI 2.1 product across three representative sites. White 

pixels in the forest age maps represent non-forest areas. 245 

3.2 Global forest age spatial distribution characteristics 

Globally, forest age exhibits distinct spatial patterns between NF and PF (Fig. 7). NF are broadly distributed across tropical, 

subtropical, and boreal regions, with older stands concentrated in the Amazon Basin, Central Africa, and northern Eurasia. 

These mature forests largely correspond to areas with minimal anthropogenic disturbance and long-term ecological stability. 

In contrast, PF are mainly distributed in the mid-latitudes, including East Asia, Europe, Australia, and southeastern South 250 

America, reflecting intensive forest management and large-scale reforestation efforts over recent decades (Bennett 2015). The 

global map reveals a clear latitudinal gradient: younger forests dominate economically developed and actively managed 
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regions (e.g., East Asia, Europe, and parts of North America), while older stands prevail in equatorial and high-latitude zones. 

Compared with NF, PF exhibit a markedly younger age structure worldwide. Most PF areas fall within the 1–15-year range, 

particularly in China, Brazil, and the southeastern United States, where short-rotation plantation systems are common. In 255 

contrast, NF contain a substantially higher proportion of mature stands (>30 years), especially in remote tropical and boreal 

zones dominated by natural succession. These spatial contrasts primarily stem from differences in forest management intensity, 

reforestation policies, and disturbance regimes. Younger PF ages in subtropical and temperate regions correspond to large-

scale plantation rotations, whereas older NF ages in tropical and boreal areas reflect long-term ecological continuity. Compared 

with existing coarse-resolution products such as GAMI (100 m), the 30 m forest age map developed in this study provides a 260 

more detailed representation of spatial heterogeneity and better captures fine-scale age gradients across fragmented landscapes. 

 

 

Figure 7: The distribution of global forest age. Natural forests (left) and planted forests (right). (a) presents the global spatial pattern 

of NF ages, with zoomed-in views of key regions including North America (b), South America (c), Asia (d), Australia (e), Europe (f), 265 
and Africa (g); (h) displays the global distribution of PF ages, complemented by zoomed-in views of North America (i), South 

America (j), Asia (k), Australia (l), Europe (m), and Africa (n).

https://doi.org/10.5194/essd-2025-674
Preprint. Discussion started: 8 January 2026
c© Author(s) 2026. CC BY 4.0 License.



15 
 

 

3.3 Regional variations in age structure between planted and natural forests 

Building upon the global spatial distribution patterns, we further quantified regional variations in the age structure of NF and 270 

PF across six continents—Africa, Asia, Australia, Europe, North America, and South America—to reveal their distinct 

developmental characteristics and management contexts. 

The age structures of NF and PF exhibit pronounced regional contrasts (Fig. 8). For NF, Europe (84.38%), South America 

(82.61%), and North America (80.62%) show a predominance of the oldest age class (Age36–40), each typically exceeding 

80%. Africa (66.46%) and Asia (48.61%) follow this pattern, whereas Australia exhibits a notable bimodal pattern, with both 275 

young (Age1–5: 31.36%) and old (Age36–40: 35.64%) stands contributing substantially. Except for Australia, young NF 

(Age1–10) occupy less than 8% across all other continents. Notably, Asia contains a relatively high proportion of middle-aged 

forests (Age21–25: 21.95%), suggesting more active regeneration and a balanced age composition. PF, in contrast, are 

markedly younger across all continents. In Australia, PF are highly concentrated in the youngest class (Age1–5: 65.77%), with 

only 8.12% in the oldest (Age36–40). The young age structure is likely associated with the dominance of short-rotation species 280 

widely used in Australian plantations (Strandgard et al., 2021). Both Africa and South America exhibit a “young-and-old dual 

peak” structure—Africa (Age1–5: 31.09%; Age36–40: 36.60%) and South America (Age1–5: 31.11%; Age36–40: 32.59%). 

PF in North America (Age1–5: 17.66%) and Asia (Age1–5: 18.58%) are generally skewed toward younger stands, though 

older classes still represent 34.36% and 30.09%, respectively. Europe is the only region where old PF dominate (Age36–40: 

53.99%), while young PF remain below 20%. Regionally, PF in Australia, Asia, and North America are dominated by younger 285 

stands, Africa and South America exhibit mixed age compositions, and Europe is characterized by relatively mature plantation 

structures.   
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Figure 8: Regional age-class distributions of planted and natural forests across six continents. The first column shows the six global 

regions. The second and third columns depict the proportional distributions of NF and PF, respectively, across eight age classes (1–290 
5 to 36–40 years, in 5-year intervals). The fourth column summarizes the total proportions of NF and PF within each region. 
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4 Discussion 

4.1 Advances in existing forest age products 

Current global forest age products—such as GFAD, GAMI and PYP —face inherent limitations in spatial resolution, regional 

adaptability, and the differentiation of NF and PF. Most existing datasets operate at coarse spatial resolutions (≥100 m) or 295 

limited regional scales and typically do not distinguish forest origin, leading to mixed and often biased age estimates that 

obscure management-driven differences in forest dynamics. The 30 m GFAM-N/P developed in this study addresses these 

challenges by offering spatially explicit and origin-specific age estimates for NF and PF. This fine spatial detail enables the 

detection of subtle regional variations in age structure, particularly across heterogeneous landscapes in Asia and South America 

where natural and planted forests are closely interwoven. These technical advances are pivotal because they resolve the long-300 

standing inability of coarse-resolution products to capture the fine-scale dynamics of forest age—dynamics that underpin 

critical processes like carbon sequestration and biodiversity maintenance. Comparative analyses with existing products (Fig. 

9) highlight these improvements: our dataset captures fine-scale gradients absent from coarser products such as GAMI and 

PYP, while the latter shows data gaps across regions like South America and Europe due to limited plantation records. Forest 

origin classification in this study was derived from the GNPF 2022 dataset, with minimal conversion assumed between 2022 305 

and 2024. Nevertheless, post-2022 disturbances—such as harvesting or deforestation—may introduce localized 

inconsistencies in age estimation. 
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Figure 9: Comparison of global forest age products and demonstration of spatial improvements achieved in this study. (a) Global 

distribution of three representative validation sites used for product comparison. (b) Local comparisons among the GFAM-N/P, the 310 
GAMI 2.1 product, the planting year of plantations (PYP) dataset, and high-resolution Google Earth Imagery (GEI). The three sites 

represent heterogeneous forest landscapes across South America (Site 1), Europe (Site 2), and Southeast Asia (Site 3). Blank regions 

in the PYP column indicate areas with no available data. 

4.2 Regional differences and management implications 

Regionally, the age structures of NF and PF exhibit pronounced spatial contrasts that reflect the interplay of historical legacies, 315 

ecological constraints, and socioeconomic drivers (Fig. 10). On average, PF are significantly younger than NF across all 

regions, with mean ages generally below 30 years, compared with 30–36 years for NF in temperate zones. This divergence 

highlights the differential impacts of forest management intensity, disturbance frequency, and policy orientation among regions. 

In Europe, both NF and PF display relatively mature age profiles (35.86 years and 28.46 years, respectively), reflecting long-

term forest governance, stable land tenure, and well-established silvicultural practices. In contrast, PF in tropical and 320 

subtropical regions, such as Southeast Asia (21.14 years) and Africa (21.66 years), are notably younger, consistent with rapid 

plantation expansion and short-rotation management for timber or agroforestry production. Australia represents an extreme 

case, where PF average only 9.44 years, underscoring the dominance of fast-growing exotic species under intensive cultivation 

systems. For NF, regional variability is less pronounced. The oldest stands occur in Europe (35.86 years) and South America 

(35.18 years), where extensive old-growth and late-successional forests persist under conservation-oriented frameworks. By 325 

contrast, younger NF in South Asia (28.57 years) and Oceania (32.48 years) likely reflect stronger disturbance regimes, 

ongoing regeneration, or transitional successional dynamics. This regional divergence is not merely a descriptive pattern but 

a manifestation of the global trade-off between economic development and ecological resilience: mature forests in Europe 

exemplify long-term stewardship, while young plantations in the tropics reflect urgent resource demands in developing 

economies. Overall, these spatial patterns suggest that forest age is governed less by biophysical constraints than by 330 

management intensity and policy legacies. Promoting extended rotation cycles and adaptive, ecosystem-based management—

particularly in tropical Africa, Asia, and Oceania—will be essential for enhancing carbon stability and long-term resilience 

under accelerating global change. 
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 335 

Figure 10: Regional comparison of mean forest age for natural and planted forests. Regional comparison of mean forest age for NF 

and PF across 15 major biogeographic regions. Bars indicate mean forest age (years), and error bars represent one standard 

deviation. 

4.3 Limitations and scaling potential 

Despite the advantages of high-resolution, Landsat-based time-series analysis, several sources of uncertainty remain. Persistent 340 

cloud contamination in tropical and humid regions—particularly in Southeast Asia, Central Africa, and the Amazon Basin—

can degrade temporal signal quality and obscure subtle disturbance–recovery dynamics. Moreover, radiometric inconsistencies 

caused by striping artifacts inherent to Landsat imagery may locally distort spectral trajectories, introducing biases in forest 

age estimation. This issue occurs in African regions, where image banding effects occasionally disrupt the stability of time 

signals and lead to uncertainty in local estimates. In future work, integrating Sentinel-1 synthetic aperture radar (SAR) time-345 

series data into large-scale forest age estimation frameworks offers a promising pathway to mitigate these limitations by 

enhancing temporal continuity and improving signal reliability under persistently cloudy conditions. Radar observations are 

unaffected by cloud cover and capable of capturing canopy structure dynamics, providing complementary information to 

optical data. The integration of optical and SAR observations will improve temporal continuity, enhance forest change 

detection accuracy, and strengthen forest age estimation in persistently cloudy tropical regions. For instance, SAR 350 

interferometry can quantify canopy height changes, which, when integrated with Landsat-derived leaf area index dynamics, 

will refine age estimation for young plantations (rotation cycles < 10 years) in cloudy tropical regions. Beyond data-related 

constraints, the pronounced spatial heterogeneity in forest age structures underscores the necessity of region-specific 
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management strategies. In short-rotation regions (e.g., Australia, Africa, and parts of Southeast Asia), extending rotation cycles 

and promoting mixed-species plantations can enhance ecological resilience and long-term carbon sequestration. Conversely, 355 

in regions dominated by mature NF (e.g., Europe and North America), management should focus on maintaining natural 

regeneration, structural diversity, and habitat continuity to sustain biodiversity and carbon stability. Asia, with its relatively 

balanced forest age composition, represents a transitional system where both protection-oriented and productivity-driven 

strategies can coexist. Ultimately, the global differentiation of NF and PF age structures revealed in this study provides robust 

empirical evidence for optimizing forest management and informing policy decisions that reconcile climate mitigation, 360 

biodiversity conservation, and socio-economic development. As forests continue to underpin global ecological and human 

systems, high-resolution, origin-specific forest age information will be indispensable for guiding sustainable development and 

enhancing the world’s adaptive capacity in an era of accelerating environmental change.  

5 Conclusion 

Accurate mapping of forest ages is critical to advancing global carbon neutrality, as it underpins two core pillars of climate 365 

mitigation: carbon sink quantification and targeted forest management. Traditional approaches—reliant on labor-intensive 

ground inventories—and existing coarse-resolution global forest age products fail to distinguish between PF and NF, severely 

limiting precise regional carbon accounting and evidence-based climate governance. To address this critical gap, we developed 

a 30 m resolution global forest age dataset by integrating the CCDC model with Landsat time-series imagery on the GEE 

platform, eliminating the need for ground survey data. This dataset achieved an overall accuracy of 0.72, with class-specific 370 

accuracies of 0.73 for NF and 0.70 for PF, demonstrating robust performance across forest types. By delivering high-resolution, 

forest-type-specific age estimates, this product fills a key niche in global ecosystem research, providing actionable data to 

advance ecosystem service assessment and carbon cycle modeling. More importantly, it establishes a robust technical 

framework for regionally tailored forest management, enabling the refined implementation of global carbon neutrality 

commitments. 375 
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