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Abstract. Lake salinity is an important parameter to characterize physical and biogeochemical processes and a fundamental 10 

indicator to evaluate lake water quality. However, its estimation in inland waters has been challenging because passive 

microwave salinity satellites lack sufficient spatial resolution, and optical satellites cannot directly measure it. To address it, 

we constructed a framework for estimating lake salinity by combining Synthetic Aperture Radar (SAR) and Multi-Spectral 

Instrument (MSI) data. It can be summarized in step 1: construct a salinity mechanism model based on SAR data using the 

Elfouhaily spectrum, dielectric constant, and small perturbation method (SPM) models; step 2: develop four machine 15 

learning (ML) salinity algorithms using quasi-synchronous salinity and MSI with SAR imagery; and step 3: build an 

ensemble model to estimate salinity by coupling the mechanism and ML models via a generalized additive model. The 

proposed integrated algorithm (N = 84, RMSE = 0.60 ppt, and MAPE = 2.3%) outperformed single-satellite microwave 

mechanistic or ML models across all eleven lakes in the Inner Mongolia Xinjiang Lake zone. On this basis, we reconstructed 

the lake salinity dataset for 2016–2024 and conducted independent validation (N = 65, R2 = 0.97, and RMSE = 0.89 ppt) and 20 

pixel-level histogram validation confirmed dataset quality, with no significant systematic bias across lake types. The 

reconstruction revealed a spatial pattern of smooth transition from the nearshore to the center and trends with significant 

increases in Lake Daihai and Lake Dalinor. The dataset and its development framework will facilitate exploration of salinity 

status and trends in inland lakes, providing scientific evidence and methodological support for salinization prevention and 

global lake salinity budget research. The dataset (10 m spatial resolution, TIF format) is publicly available via Zenodo 25 

(https://doi.org/10.5281/zenodo.18371515, Deng et al., 2026) and includes annual/seasonal salinity rasters and statistical 

files. 

1 Introduction 

Lakes are important reservoirs of surface water resources and can serve as indicators and regulators of the global water cycle 

and regional climate (Williamson et al., 2009; Gleeson et al., 2020). Salinity (total dissolved salt concentration) as a critical 30 
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parameter characterizing the physicochemical properties of lake water controls biological, physical, and chemical processes 

within lake ecosystems (Zhao and Temimi, 2016; Wurtsbaugh et al., 2017), including microbial community structure, 

species abundance, vertical mixing of water masses, water resource utilization, and nitrogen transformation (Liu et al., 2023a; 

Florencia Gutierrez et al., 2018; Ladwig et al., 2023; Kaushal et al., 2021; Jiang et al., 2023). Recently, climate change in the 

lake hydrological system caused water salinization, weakening the stability of lake ecosystems, particularly in arid and semi-35 

arid regions (Jeppesen et al., 2015; Wurtsbaugh et al., 2017). Therefore, frequent and effective monitoring of water salinity is 

necessary for salinization prevention and sustainable development. However, the low density of salinity field measurements 

cannot reveal its spatial patterns and long-term trends, limiting the perceptions of salinity for lake communities. Existing 

inland lake salinity datasets (e.g., Xu et al., 2024, Tibetan Plateau: RMSE = 12.51 g/L, >1 km resolution) lack high spatial 

detail and arid-region specificity, whereas our dataset provides 10 m resolution and targets IMXL’s multi-type lakes 40 

(freshwater to oligosaline). 

Satellite remote sensing enables the frequent detection of substance concentrations in lake waters by utilizing different 

electromagnetic wavebands to address the issues of data sparsity and discontinuity. The response of microwave sensors to 

the dielectric properties of water allows it to be uniquely advantageous for salinity observation (Le Vine et al., 2022). 

Missions designed to measure water salinity from space have made progress in the oceanographic field, with satellite sensors 45 

including SMOS, SMAP, and Aquarius. However, their spatial resolution of 40–150 km is too coarse for small-scale inland 

lakes (Reul et al., 2020). The Sentinel-1 Synthetic Aperture Radar (SAR), operating at 5.405 GHz with 10 m spatial 

resolution, has an acquisition orbit for both ascending and descending and a revisit interval of 6 days (dual-satellite 

constellation), which supports the space observations of lake salinity (Torres et al., 2012). The backscatter coefficient of 

water surfaces measured by SAR is mainly determined by radar-related parameters (frequency and incidence angle, etc.), 50 

water surface geometry (roughness), and water physical properties (dielectric constant and temperature, etc.) (Peake, 1959; 

Reul et al., 2020). Changes in salinity directly affect the dielectric constant of water, which in turn influences the Fresnel 

reflection coefficient at the water surface and ultimately causes variations in the lake water backscatter coefficient. Clearly, 

when radar parameters are fixed, the contribution of the water surface geometry must be separated to solve for salinity from 

the SAR backscatter coefficient (Hwang et al., 2011; Meissner et al., 2014; Ma et al., 2021; Taillade et al., 2023). The 55 

microwave backscatter coefficient model combined with the wave spectrum model was commonly used to quantify the 

contribution of surface roughness because it effectively described the energy information of wind waves (Xie et al., 2019). 

The dielectric constant model was essential for inverting salinity after removing the contributions from roughness. However, 

the current predominant dielectric constant model was developed by seawater experiments with simple ionic compositions 

(Klein and Swift, 1977), whereas inland lakes receive substantial exogenous sources that result in complex ionic 60 

compositions (Zou et al., 2024). Salinity estimation at the lake inlet region or in optically complex waters (such as high 

variability in suspended minerals and phytoplankton) may introduce uncertainty using the present dielectric constant models 
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(Chen and Hu, 2017; Gonzalez-Gambau et al., 2022; Xue et al., 2025). Hence, this study attempts to supplement mechanism-

based microwave salinity estimation with optical data. 

Optical data can effectively retrieve optically active constituents (OACs) in lake water, and it has been demonstrated that the 65 

colored dissolved organic matter (CDOM) absorption coefficient [ag(λ), m−1] and Secchi Disk Depth (SDD, m) can serve as 

salinity tracers for inland lakes, which confirmed the feasibility of optical data in salinity detection (Bai et al., 2013; Liu et 

al., 2023b). But the tracer method was constrained by the accuracy of indirect parameters and prone to errors. Furthermore, 

their correlations with salinity vary across different lakes and seasons to limit model transferability (Liu et al., 2014; Chen 

and Hu, 2017). Machine learning (ML) algorithms could handle the nonlinear relationship between salinity and remote 70 

sensing reflectance [Rrs(λ), sr−1] to avoid errors caused by the traces. It is becoming an innovative approach for retrieving 

non-OACs (e.g., salinity) from optical satellite imagery (Deng et al., 2024; Guo et al., 2023; Liu et al., 2024). The Sentinel-2 

Multi-Spectral Instrument (Sentinel-2 MSI) with high spatial resolution (10–60 m) and temporal resolution (5 days) (Drusch 

et al., 2012), enables the detection of water salinity. However, relying on optical data for salinity estimation is insufficient at 

the mechanism level, while microwave data compensates for this deficiency as it has a clear physical mechanism. Despite its 75 

potential, the combination of microwave and optical data for regional and long-term salinity monitoring remains 

underexplored, restricting the advancement of space observation missions for inland lake salinity. 

This study aims to: (1) develop a microwave-optical integrated framework for high-precision salinity estimation; (2) produce 

a 10 m resolution Inner Mongolia Xinjiang Lake zone (IMXL) lake salinity dataset (2016–2024); and (3) validate dataset 

quality and analyze salinity spatiotemporal trends. 80 

2 Data and Methods 

2.1 Dataset coverage 

The IMXL spans 70° E–120° E longitude and 30° N–50° N latitude, covering 11 arid or semi-arid inland lakes (Ma et al., 

2011). The topographic patterns of alternating mountains and basins direct surface water and groundwater into the 

depressions, forming numerous terminal lakes. The salinity of lakes in this region spans multiple magnitudes (Table 1). 85 

Referencing the classification criteria for lake salinity (Hammer, 1986; Zheng et al., 2002), the lakes were categorized as 

freshwater (< 1 g/L), brackish (1–3 g/L), and oligosaline (3–35 g/L) types. The salinity dataset to be produced covers the 

time span from 2016 to 2024 and the geographical coverage of 11 typical lakes within IMXL (Figure 1). Notably, some 

years are missing data for Lake Hulun and Lake Juyan due to insufficient SAR imagery or multi-source data matching pairs. 

  90 
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Table 1 Basic parameters and hydrological connectivity of the sample lakes, not all parameters were measured. 

Lake name Coordinates 
Catchment 

area (km2) 

Hydrological 

connectivity 
Date 

Samples 

number 

Dominant 

ions 

Salinity (ppt) SDD (m) 

Mean 

± STD 

Min

-
Max 

Mean 

± STD 

Min

-
Max 

Hulun 
(117°30′ E, 

49°00′ N) 
38,683 Open 

2019/07 

2020/09 
35 

HCO3
−, 

Na+ 

0.78 ± 

0.08 

0.54

–
0.86 

0.29 ± 

0.02 

0.26

–
0.33 

Dalinor 
(116°39′ E, 

43°20′ N) 
4,675 Terminal 

2018/09 

2019/08 
32 

Cl−, 
HCO3

−, 

Na+, K+ 

6.43 ± 

0.18 

6.15
–

6.59 

0.48 ± 

0.06 

0.36
–

0.54 

Chagannaoer 
(115°01′ E, 

43°27′ N) 
14,000 Terminal 

2018/09 

2020/09 
15 Na+, Cl− 

0.86 ± 

0.03 

0.83

–
0.92 

/ / 

Daihai 
(112°41′ E, 

40°35′ N) 
2,341 Terminal 

2017/09 

2018/09 

2020/07 
2020/10 

2024/04 

60 

Cl−, 
HCO3

−, 

Na+, 

Mg2+ 

13.52 

± 2.20 

10.6
7–

16.8

1 

2.37 ± 

1.1 

0.63

–
4.80 

Hongjiannao 
(109°53′ E, 

39°06′ N) 
1,446 Terminal 2020/08 30 

Na+, Ca+, 

HCO3
−, 

SO4
2− 

5.94± 

0.13 

5.82

–
7.00 

1.67 ± 

0.29 

0.70

–
2.20 

Nanhaizi 
(110°01′ E, 

40°33′ N) 
3.17 Terminal 2017/08 5 / 

1.39 ± 

0.01 

1.39
–

1.41 

0.27 ± 

0.02 

0.24
–

0.29 

Ulansuhai 
(108°45′ E, 
40°50′ N) 

27,515 Open 

2024/10 

2020/09 

2017/07 

29 

Na+,  

Mg2+,  
Cl−,  

SO4
2− 

1.81 ± 
0.53 

0.86

–

3.27 

0.88 ± 
0.34 

0.24

–

1.30 

Juyan 
(101°15′ E, 
42°18′ N) 

142,900 Terminal 2020/09 11 

Cl−, 

SO4
2−, 

Mg2+, 

Na2+ 

4.61 ± 
0.11 

4.53

–

4.93 

/ / 

Ulungur 
(87°18′ E, 

47°11′ N) 
37,882 Terminal 2018/07 14 

HCO3
−, 

Na+ 

1.15 ± 

0.34 

1.16

–

2.15 

2.43 ± 

0.11 

2.21

–

2.61 

Bosten 
(87°05′ E, 

41°55′ N) 
79,204 Open 2018/04 18 Cl−, Na+ 

0.53 ± 

0.02 

0.50
–

0.56 

2.42 ± 

0.35 

1.80
–

2.95 

Sayram 
(81°13′ E, 

44°35′ N) 
1,408 Terminal 2018/07 8 

Mg2+, 

SO4
2− 

1.15 ± 

0.05 

1.07

–
1.20 

/ / 



5 

 

 

Figure 1: (a) Spatial distribution of sampled lakes covered by the dataset, inlet rivers, and sub-basins. (b)-(l) Eleven study lakes in 

the IMXL from east to west and its surface water occurrence frequency (Pekel et al., 2016), including Lake Hulun, Lake Dalinor, 

Lake Chagannaoer, Lake Daihai, Lake Nanhaizi, Lake Hongjiannao, Lake Ulansuhai, Lake Juyan, Lake Ulungur, Lake Bosten, 95 
and Lake Sayram. Cross symbols in each lake denote the field salinity sampling points. The frequency of surface water occurrence 

refers to the normalized count of pixels that were identified as water in Landsat imagery from 1984 to 2021. 
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2.2 Data products 

Data products for each lake contain both raw data and derived data. The raw data includes Sentinel-1 SAR backscatter data 

and incidence angle, Sentinel-2 MSI remote sensing reflectance, and Landsat-8 Thermal Infrared Sensor (TIRS) temperature 100 

data. Derived data comprise daily, quarterly, yearly and all-season average salinity rasters, along with their mean and 

standard deviation statistical files (Table 2). All raw or derived raster data is stored in TIF format based on the 

WGS1984_UTM_Zone projection with a spatial resolution of 10 m. The statistical documents are compiled in Excel format. 

Table 2 Attribute names and descriptions of derived data.  

Attribute Description 

LakeName Customized simplified names for each lake in this study. 

Daily salinity rasters 
Produced individual salinity data by the proposed framework, naming convention: 

[LakeName]_[YYYYMMDD]_[ProductType]_[Resolution].t if 

Quarterly salinity rasters 
Calculated season-average salinity data, naming convention: 

[LakeName]_[YYYY]_[Season]_[ProductType]_[Resolution].tif  

Yearly salinity rasters 
Calculated annual-average salinity data, naming convention: 

[LakeName]_[YYYY]_[ProductType]_[Resolution].tif  

All-season salinity rasters 
Calculated all-season average salinity data, naming convention: 

[LakeName]_[Season]_[ProductType]_[Resolut ion].tif  

Statistical files 
Compiled mean value and standard deviation of salinity images for each lake, name: 

[IMXLSAL]_[MeanSTD]_[2016–2024].xlsx 

2.3 Metadata 105 

2.3.1 Sensors parameters 

Sentinel-1 SAR Level-1 GRD data operates at a center wavelength in the C-band, acquired in Interferometric Wide Swath 

(IW) mode with a pixel spacing of 10 m. It possesses both VV and VH polarization and simultaneously measures the 

incidence angle. Sentinel-2 MSI Level-1C images provide 13 spectral bands covering visible optical, near-infrared, and 

shortwave infrared, with red, green, blue, and near-infrared bands having 10 m spatial resolution, while other bands offer 20 110 

m or 60 m resolution. Landsat-8 TIRS is a dual-band push-broom radiometer containing band 10 (10.9 μm) and band 11 

(12.0 μm) with a spatial resolution of 100 m and a radiometric resolution of 12-bit. 

2.3.2 Processing procedure 

The Copernicus Data Space Ecosystem (CDSE) offers free Sentinel-1 SAR data that can be loaded directly at the Google 

Earth Engine (GEE) platform. These products were processed with thermal noise removal, radiometric calibration, terrain 115 

correction, and debelization. Additionally, we employed a 3×3 window Lee filter to restrain coherent spot noise in the radar 

imagery. Lastly, the backscattering coefficients of VV and VH as well as the incident angle were acquired.  

Sentinel-2 MSI Level-1C images were also downloaded from CDSE. ACOLITE processors designed for water processing 

have demonstrated excellent performance in inland waters (Deng et al., 2024). This study derives multi-band Rrs(λ) data with 
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a spatial resolution of 10 m from MSI images using the Dark Spectrum Fitting algorithm (DSF) already embedded within the 120 

ACOLITE processor (Knaeps et al., 2015; Vanhellemont, 2019). It produced 11 bands, namely, Rrs(443), Rrs(492), Rrs(559), 

Rrs(665), Rrs(704), Rrs(740), Rrs(780), Rrs(833), Rrs(864), Rrs(1610), and Rrs(2186). 

Landsat-8 TIRS data was provided by the U.S. Geological Survey and can be loaded at the GEE platform with the Level-2 

product, namely surface temperature data. The raw values were corrected to degrees Celsius (°C) with a scaling factor. The 

lake surface temperature (LST) data was then resampled with 10 m and calibrated to align with SAR and MSI data. 125 

Sentinel-1 SAR, Sentinel-2 MSI, and Landsat-8 TIRS LST images were matched with a 3-day time window to ensure 

salinity consistency over short periods. Eventually, a total of 385 multi-source satellite image pairs were obtained. 

2.3.3 Quality controls 

High-quality Sentinel-2 MSI images with few clouds covered (< 10%) were selected by visual interpretation and 

downloaded for all ice-free periods. Invalid pixels of clouds and cloud shadows covered in band 10 of Landsat-8 TIRS were 130 

masked with the QA_PIXEL band. Furthermore, the study extracted water and removed aquatic vegetation in the MSI image 

processing to avoid outliers generated by the model in sub-observed pixels. Using lake outline data from the Lake-Watershed 

Science Data Center (http://lake.geodata.cn) as the lake’s initial boundary (Ma et al., 2011). Calculate normalized difference 

water index (NDWI) and combine it with the OTSU algorithm to set thresholds for extracting water from MSI imagery.  The 

floating algae index (FAI) allows for spectral diagnosis of floating algae scum and was also useful in inland lakes (Hu, 2009). 135 

The FAI threshold was defined as 0.03 after multiple adjustments in the grassland lake Ulansuhai to exclude aquatic 

vegetation. A three-pixel inner buffer was created to mask out mixed pixels and minimize uncertainties in salinity estimation 

caused by bottom reflections (Feng et al., 2012), after which the lake area was counted. 

2.4 Field dataset 

From July 2017 to October 2024, 322 field survey data were collected from 11 lakes using two approaches: uniformly 140 

distributed field measurements and the China National Environment Monitoring Centre (CNEMC, https://www.cnemc.cn/). 

These data were divided into Dataset one and Dataset two. Dataset one contains 257 field salinity data, with 69 sets of 

collected surface water samples (depth < 0.5 m) and simultaneously measured SDD and in situ spectral data. Dataset one 

was used for training, testing, and five-fold cross-validation (CV) of the ML salinity algorithm and also as the initial driver 

for the salinity mechanistic model. Dataset two contains salinity data transformed from conductivity measurements by 145 

CNEMC or the latest data not involved in modeling. The conversion function was established based on synchronized 

measured conductivity and salinity in the IMXL (R² = 0.99, RMSE = 1.76 ppt, and MAPE = 28.4%) (Rusydi, 2018), as 

shown in Table 3. Dataset two (65 samples) was selected to ensure spatial independence (no overlap with Dataset 1’s 

sampling points) and temporal coverage (2017–2024, including 10% of 2024 data not used in modelling) to validate 

generalization. The surface water salinity (units ppt) and conductivity (units μS/cm) of the lake were in situ measured using a 150 
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YSI multi-parameter water quality instrument (YSI ProDSS, USA). Spectral Evolution PSR-1100f (350–1050 nm, 1 nm 

spectral resolution) was used to measure water surface upward radiance (Lsw), sky radiance (Lsky), and gray plate radiance (Lp) 

at an observation direction of 40 degrees from the nadir and 135 degrees from the Sun (Mobley, 1999; Mueller et al., 2003). 

These radiance data were further used to calculate Rrs(λ), with the formula given as follows (Mobley, 1999): 

𝑅𝑟𝑠(𝜆) = [(𝐿𝑠𝑤 − 𝜌 × 𝐿𝑠𝑘𝑦)× 𝜌𝑝]/𝜋 × 𝐿𝑝                                                               (1) 155 

where ρ represents the water-air interface reflectance, assumed to be 0.0028 under calm conditions (wind speed < 4 m/s), and 

ρp denotes the reflectance of the reference gray plate defined as 0.30. We calculated it by setting Rrs(λ) between 950 and 

1050 nm to zero, since a low signal-to-noise ratio was observed within this range (Lee et al., 2016). Finally, convolve Rrs(λ) 

through the spectral response function (SRF) to simulate bands of the MSI. 

Field water samples were stored in polyethylene bottles and rapidly transported back to the laboratory for analysis at the end 160 

of the cruise. Water samples were filtered using Whatman GF/F films with a 0.7 μm pore size to extract chlorophyll a (Chla, 

μg/L), suspended particulate matter (mg/L), and CDOM samples. Laboratory measurements of these parameter 

concentrations can be found in Deng et al. (2024). 

Table 3 Conversion equation and factors for salinity and conductivity of lakes in the IMXL. 

Salinity (ppt) Salinity = conductivity ∗ factors/1000 

Conductivity (μS/cm) <1,000 
1,000–

10,000 

10,000–

20,000 

20,000–

30,000 

30,000–

45,000 

45,000–

60,000 

60,000–

65,000 
>65,000 

Factors 0.50 0.55 0.58 0.60 0.65 0.70 0.725 0.75 

R2 0.99 

95% CI 0.98–1.00 

2.5 Ancillary data 165 

ERA5 land reanalysis data was published by the European Center for Medium-Range Weather Forecasts (ECMWF, 

https://cds.climate.copernicus.eu/) and can be downloaded for free. This product provides hourly meteorological variables in 

GeoTIF format with a spatial resolution of approximately 11 km (Muñoz Sabater, 2019). It has been available since 1980 

and provides a continuous record that can compensate for gaps in field meteorological observations. We downloaded hourly 

wind speed (WS, m/s), temperature (TEMP, ℃), evaporation (EVP, mm) and precipitation (PRE, mm) data for each lake 170 

from GEE during 2016–2024 and calculated daily data on this basis. Additionally, nighttime light (NTL, nW/cm²/sr) in the 

Lake Daihai sub-basin was derived from the Visible Infrared Imaging Radiometer Suite (VIIRS). Population (POP) data 

were sourced from the statistical yearbook. 

2.6 Construction of salinity model 

This study proposed a brand-new framework integrating microwave and optical data to estimate lake salinity, as illustrated in 175 

Figure 2. It consists of three modules: data processing and feature building, model construction and ensemble, and lake 
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salinity estimation. Module 2 is the core of the framework, aiming to use wave spectrum, backscatter coefficient, and 

dielectric constant models as forward models to build a salinity mechanistic model, then establish ML models, and finally 

construct an ensemble model by coupling mechanistic and ML results via a Generalized Additive Models (GAM) model. 

 180 

Figure 2: A brand-new lake water salinity estimation framework by a stacking salinity model, consisting of three steps: step one, 

data processing and feature construction; step two, model construction and ensemble; and step three, salinity estimation.  Details of  

individual steps and the meaning of the symbols are described below. 
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2.6.1 Mechanistic salinity model 

(1) Construct a lake surface roughness model. The wave spectrum was used to rapidly calculate roughness parameters. The 185 

roughness of a lake surface can be characterized by the height standard deviation (kσ) and the correlation length (kL). The 

Elfouhaily spectrum considers the long-wave and short-wave effects simultaneously and defines the inverse wave age as a 

function of wind speed and fetch. It was widely used to describe the energy information of surface wind waves, and its basic 

formula was given as follows (Elfouhaily et al., 1997): 

𝛹(𝑘, 𝜑) =
1

𝑘
𝑆(𝑘)𝜙(𝑘,𝜑)                                                                                            (2) 190 

𝑆(𝑘) = (𝐵𝑙 + 𝐵ℎ)/𝑘
3                                                                                                 (3) 

where k is the wave number (rad/m), φ is the direction angle, (k, φ) is the directional spectrum, S(k) is the omnidirectional 

spectrum, Bl is the long-wave curvature spectrum, and Bh is the short-wave curvature spectrum. Parameter adjustments to the 

Elfouhaily model were required due to the significant differences in wave formation and magnitude between lakes and 

oceans. Fetch was parameterized as a function of lake area (Fetch = 𝑒 × √area) to adjust the inverse wave age, which 195 

influences the wave mode of the Elfouhaily model. e is an empirical coefficient of 0.65 determined by several field 

observations and published lake experiments (Young and Verhagen, 1996). The Elfouhaily model can calculate the height 

variance (𝜎𝜂²) and mean square slope (mss) of surface waves, with the specific formulas detailed in Elfouhaily et al. (1997). 

The kσ and slope can be obtained by taking the square root of these two parameters, respectively. Due to the small scale of 

lake waves, the study assumed kL as the maximum distance between wave peaks and troughs and defined it as the ratio of kσ 200 

to slope based on trigonometric relationships. Therefore, the initial lake roughness can be calculated by using the adjusted 

Elfouhaily model in combination with wind speed and lake area. 

(2) Calculate pixel-based roughness by combining the backscatter coefficient model and cost function. The small 

perturbation method (SPM), a backscatter coefficient simulation model, is suitable for water surfaces with small undulations 

dominated by capillary waves (Johnson and Zhang, 1999; Khenchaf, 2001; Shareef et al., 2016), whose fundamental formula 205 

is as follows: 

𝜎𝑝𝑞
0 (d𝐵) = 4kL2kσ2𝑐𝑜𝑠4𝜃|𝛼𝑝𝑞|

2
exp⁡(−(kL𝑠𝑖𝑛𝜃)2)                                                  (4) 

𝑎𝑉𝑉 =
(ε𝑟 − 1) [sin2 𝜃 − ε𝑟(1 + sin2 𝜃)]

(ε𝑟 cos𝜃 +√ε𝑟 − sin2 𝜃)²
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5) 

𝜀𝑟(ω,LST,SAL) = ε∞ +
εs − ε∞

1 + (iω𝜏)1−α
− i

σ

ωε0
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(6) 

where 𝜎𝑝𝑞
0 (d𝐵) represents the water backscattering coefficient simulated by the SPM model at different polarizations, apq is 210 

the Fresnel reflection coefficient for VV or HH polarization, θ is the incident angle, and ɛr is the water dielectric constant 

calculated using the Klein and Swift (K&S) model with parameter details as shown in Klein and Swift (1977). Construct a 

cost function and iteratively optimize it using the least squares algorithm to derive pixel-based roughness from SAR images: 
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𝑋𝑖[kσ,kL] =
[𝜎𝑣𝑣

𝑚𝑒𝑎𝑠𝑢𝑟𝑒 −𝜎𝑣𝑣
𝑚𝑜𝑑𝑒𝑙(𝜃𝑖 , SAL, LST,kσ,kL)]

2

𝜎𝑣𝑣𝑚𝑒𝑎𝑠𝑢𝑟𝑒
2

, 𝑖 ∈ [1, N]⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(7) 

where 𝜎𝑣𝑣
𝑚𝑒𝑎𝑠𝑢𝑟𝑒  is the backscattering coefficient measured by SAR at VV polarization, 𝜎𝑣𝑣

𝑚𝑜𝑑𝑒𝑙  denotes the C-band 215 

backscattering coefficient simulated by the SPM model at VV polarization, i is the i-th pixel, N is the total number of pixels, 

θi is the i-th pixel incident angle, and Xi[kσ, kL] is the i-th pixel roughness. 

(3) Stepwise salinity retrieval based on the SPM and K&S models. Step one, the avv was calculated using the SPM model 

based on pixel-based roughness images. Step two, the dielectric constant was deduced by the Fresnel reflection model with 

the Newton method. Step three, the K&S model was employed to iteratively solve for salinity via the Newton method, using 220 

TEMP and initial salinity as inputs. 

2.6.2 Machine learning salinity models 

The ML salinity models will be developed utilizing four algorithms, including gradient boosting (XGB), random forest 

regressor (RFR), deep neural networks (DNN), and convolutional neural networks (CNN). 70% of dataset one will be used 

for training and 30% for testing, with the entire dataset applied to five-fold CV. The XGB and RFR are typical ensemble 225 

learning models with decision trees as the fundamental units. The XGB predictions are the weighted sum of each tree’s score, 

while the RFR results are averages of all tree predictions (Breiman, 2001; Chen and Guestrin, 2016). DNN and CNN are 

typical neural network models made up of interconnected neurons. Their parameters are updated via backpropagation to 

optimize the loss function, and the final predictions are output by fully connected layers (LeCun et al., 2015; Alzubaidi et al., 

2021). 230 

The construction of four salinity algorithms involves feature selection, model training, model testing, and five-fold CV. A 

total of 18 features were selected, including Rrs(443), Rrs(497), Rrs(560), Rrs(664), Rrs(704), Rrs(740), Rrs(842), B4/(B4 + B3), 

B4/(B2 + B3), B4/B2, NDWI, chromaticity angle (alpha), lake area, VV, theta, kσ, kL, and LST. Visible and near-infrared 

bands are considered sensitive to water salinity (Urquhart et al., 2012; Bayati and Danesh-Yazdi, 2021), while alpha 

synthesized abundant information from the visible bands (Wang et al., 2023b). Lake area as a proxy for lake water volume is 235 

closely correlated with salinity (McGrath et al., 2025). The selected microwave features are the crucial variables in the 

mechanistic model. Model hyperparameters were determined using grid search during the training process. The 

hyperparameters to be determined for each model are detailed in  Table 4. For the assessment of model stability and 

generalization performance, five-fold CV was subsequently conducted after determining the model structures and 

hyperparameters (Cao et al., 2024). The entire dataset was randomly divided into five folds, each serving sequentially as the 240 

test set while the remaining folds were used for training. Model performance was assessed by averaging the statistical 

metrics obtained from the five rounds. To improve ML model interpretability, Shapley Additive Prediction (SHAP) values 

were used to quantify the contribution of each feature (Lundberg et al., 2020; Gao et al., 2025). And then four ML salinity 

models were applied to estimate lake salinity from MSI and SAR data. 
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Table 4 Listed key hyperparameters for each machine learning model, with specific parameter settings available in Supplementary 245 
Table S1 of the Zenodo repository. 

Model Key hyperparameters 

XGB Trees, Learning rate, Maximum tree depth, Colsample_bytree, Subsample rate, Min_child_weight, Regularization 

RFR Trees, Maximum depth, Maximum features at node splitting 

DNN 
Hidden layer number, Each layer neurons, Learning rate, Activation function, Optimizer, Alpha, Maximum training epochs, 
Patience 

CNN 
Convolutional layer kernels, Activation layers, Fully connected layer, Learning rate, Optimizer, Alpha, Maximum training 

epochs, Patience 
GAM Smoothing function, Link function, N_splines, Callbacks, Max_iter, Lam, Tol 

BMA GLM.family, Prior, OR, maxCol 

2.6.3 Stacking salinity model 

The GAM model is an interpretable statistical model that can handle nonlinear relationships between covariates and response 

variables by using smoothing functions (Yee and Wild, 1996). It can work with response variables of various distribution 

types and provides multiple link functions. Partial dependency plots (PDP) provide a highly interpretable visualization of the 250 

smoothing functions for GAM response variables, and the tipping points defined the threshold for variables contributing 

positively or negatively to the model. The effective degree of freedom (edf) parameter can be used to measure the nonlinear 

complexity of each response variable's smoothing term. An integrated salinity model was constructed based on the 

estimation results from mechanistic and ML models under the assumption that variables follow a Gaussian distribution, and 

it is structured as follows: 255 

g(E(Y)) = a0 + s1(XGB) + s2(RFR) + s3(DNN) + s4(CNN) + s5(Mechanistic)                         (8) 

where g(E(Y)) represents the predicted salinity with a unit of ppt, a0 is the intercept term, and s1(XGB) denotes the 

smoothing term constructed using thin-plate regression spline functions for the XGB-predicted salinity, with smoothing 

terms for other variables consistent with this approach. The key hyperparameters of the GAM model are listed in Table 4, 

with specific configurations shown in Supplementary Table S1. This integrated model combines the powerful diagnostic 260 

capabilities of several ML models with the prior knowledge of mechanistic models to enable collaborative estimation of lake 

salinity using optical and microwave data. 

2.7 Accuracy evaluation 

The differences between estimated and measured salinity were evaluated by using several statistical metrics named R2, root 

mean square error (RMSE), mean absolute error (MAE), bias (system error), and mean absolute percentage error (MAPE). 265 

These metrics were calculated as follows: 

RMSE = √
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖)

2
𝑛

𝑖=1
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(9) 

MAE =
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖|⁡

𝑛

𝑖=1
        ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡                                      (10) 
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Bias =
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖)

𝑛

𝑖=1
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(11) 

MAPE =
1

𝑛
∑ |

𝑦𝑖 − 𝑦𝑖

𝑦𝑖
| ×

𝑛

𝑖=1
100%⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(12) 

where yi is the field measured salinity, ŷi is the model estimated salinity, i denotes the i-th sampling point data, and n is the 

number of sampling point pairs. 

3 Results and analysis 

3.1 Model performance 270 

The constructed stacking model (N = 84, RMSE = 0.60 ppt, and MAPE = 2.3%) outperformed four ML models and the 

mechanistic model, and the predicted salinity distributed consistently along the 1:1 line without significant underestimation 

or overestimation (Figure 3). The five-fold CV result for the stacking model was close to the accuracy of the 30% dataset test 

(N = 257, RMSE = 0.38 ppt, and MAPE = 6.9%), with the range of estimated salinity consistent with measured salinity and 

no outliers observed, indicating that the model has good generalization and stability without significant dependence on the 275 

training set (Figure 3j). The performance of the mechanistic model was second only to the ensemble model (N = 257, RMSE 

= 0.80 ppt, and MAPE = 13.3%), better than the results of five-fold CV for each ML model (RMSE > 0.97 ppt and MAPE > 

15.1%) (Figure 3m). The XGB model showed the best accuracy among the four ML models, followed by CNN and DNN, 

while the RFR model was the worst performer (Figure 3). Additionally, the bar chart shows that the ensemble model 

outperforms the ML algorithms in terms of accuracy (RMSE < 0.55 ppt and MAPE < 8.7%) (Figure 3k,l), indicating that 280 

incorporation of the mechanistic model improves overall performance. 

Figure 4 displays the SHAP values of the selected features for four ML salinity models. Among these models, lake area, 

theta, and VV exhibit significant contributions, as reflected in their higher SHAP values compared to other variables. The 

lake area contributes the most because it correlates with water volume, which directly influences the degree of salinity 

dilution (McGrath et al., 2025). VV and theta are important parameters because of their sensitivity to water surface scattering 285 

mechanisms, while salinity affects scattering intensity by altering the dielectric constant of the water (Reul et al., 2009). B6 

reflectance ranks third in contribution within the XGB, RFR, and DNN models, indicating it is an optically sensitive band for 

salinity. In the CNN model, the VV band contributes most significantly, while alpha was the most influential optical index. 

A simpler positive correlation (edf = 2.19) with salinity was found for s5(Mechanistic) compared to the other variables (edf > 

2.76) in the PDP of the ensemble model (Figure 5). The PDP curve of the mechanistic model has a broader range of variation 290 

on the y-axis than the ML models, with its 95% confidence region encompassing most of the sample data, suggesting that the 

model contributes significantly and reliably to salinity prediction for the ensemble model. At a salinity range of 0–4.71 ppt, 

XGB, RFR, CNN, and Mechanistic models contribute negatively to the ensemble model, but their contributions turn positive 

at salinities exceeding 9.52 ppt. The contribution pattern of the DNN model differed from those of the aforementioned 
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models (Figure 5c). Overall, the integrated salinity model works admirably by effectively coupling the virtues of both 295 

mechanistic and ML models, making it successful for estimating lake salinity. 

 
Figure 3: (a)-(i) Scatter plots of 30% test data (N = 84) for XGB (R² = 0.98 and RMSE = 0.58 ppt), RFR (R² = 0.97 and RMSE = 

0.87 ppt), DNN (R² = 0.97 and RMSE = 0.82 ppt), CNN (R² = 0.98 and RMSE = 0.79 ppt), and stacking model (R² = 0.98 and 

RMSE = 0.60 ppt); (j) Five-fold CV for stacking model (N = 257, RMSE = 0.38 ppt, and MAPE = 6.9%); (k)-(l) RMSE/MAPE 300 
comparison; (m) Mechanistic model field validation (N = 257, RMSE = 0.80 ppt, and MAPE = 13.3%). 
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Figure 4: (a)-(d) SHAP plots for XGB, RFR, DNN, and CNN. B1–B6 and B8 correspond to Rrs(443) –Rrs(740) and Rrs(833), 

respectively. 

 305 

Figure 5: (a)-(e) Partial dependence plots for XGB, RFR, DNN, and CNN models, the red dots represent the tipping point for the 

model variables contribute positively or negatively to salinity predictions. 
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3.2 Single-scene analysis of different models 

A single-scene comparison for lakes with matching field sampling points was used to examine the spatial quality of salinity 

data produced by the stacking model, ML model, and mechanistic model (Figure 6). Lake salinity maps generated by the 310 

stacking model show a smooth transition from the shore to the center in 10 lakes, whereas a slight discontinuity of salinity 

was observed in each lake using ML or mechanistic models. Especially in nearshore waters, DNN, CNN, and mechanistic 

models exhibit outliers due to land adjacency effects, while the stacking model corrects predictions by combining accurate 

salinity derived from XGB and RFR, such as in Lake Hongjiannao, as shown in Figure 6(h2,h3). However, salinity values in 

Lake Bosten’s nearshore pixels were not fully corrected because the DNN and CNN models overestimate salinity influenced 315 

by mixed pixels (Figure 6(c4,c5,c7)). The stacking model successfully captured the spatial variations of freshwater dilute 

salinity by combining the capabilities of ML models in salinity estimates at river inlets into lakes, compensating for the 

limitations of mechanistic models, as shown in Figure 6(i7). Furthermore, the RMSE of the stacking model was observed to 

be lower than other algorithms across nine lakes in single-scene comparisons, with only the mechanistic model performing 

better in Lake Juyan. Finally, it was observed that the stacking model effectively suppressed salinity outliers to guarantee the 320 

quality of the dataset. In brief, the stacking model produced maps of lake salinity with smoother spatial variations and richer 

detail, yielding a higher-quality dataset. 



17 

 

 

Figure 6: (a1)-(j7) Comparisons of water salinity estimated by XGB, RFR, DNN, CNN, mechanistic, and stacking models from 

MSI-derived Rrs(λ) images and SAR data in 10 lakes, namely, Sayram, Ulungur, Bosten, Ulansuhai, Nanhaizi, Chagannaoer, 325 
Dalinor, Hongjiannao, Juyan, and Daihai, respectively. For each lake, the first column shows a true color composite generated by 

MSI data. 
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3.3 Comparison with previous single-satellite algorithms 

Comparisons between the MSI-based XGB salinity algorithm (Deng et al., 2025) and the SAR-based mechanistic algorithm 

were performed for each lake (Figure 7), and it can be revealed that the stacking algorithm has higher and more stable 330 

accuracy with an average RMSE of 0.24 ppt. Although the XGB and the mechanistic models outperformed the stacking 

algorithm in some lakes, including Lake Ulungur, Lake Juyan, and Lake Nanhaizi, both models (with RMSE of 0.45 ppt and 

0.57 ppt, respectively) still showed slightly lower precision across the entire region. The stacking model and the mechanistic 

model outperformed the XGB salinity model in oligosaline-type lakes, suggesting that the mechanistic model improves the 

accuracy of the stacking algorithm under salinity exceeding 3 ppt. In addition, the points for the three models were 335 

concentrated on the Taylor plots of several lakes. It can be deduced that the mechanistic model and XGB model also exhibit 

reliable performance to provide rational data support for constructing the stacking model. Overall, the proposed algorithm 

combines the strengths of both the physically constrained model and the data-driven model in that it avoids the single model 

or data source as well as improving the precision in complex inland water. 
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 340 

Figure 7: Comparison of multisource data-based stacking model with single-satellite model. (a)-(k) Comparison results using the 

salinity dataset from Lake Sayram, Lake Ulungur, Lake Bosten, Lake Juyan, Lake Ulansuhai, Lake Nanhaizi, Lake Hongjiannao, 

Lake Daihai, Lake Chagannaoer, Lake Dalinor, and Lake Hulun, respectively.  



20 

 

3.4 Independent validation 

To further objectively evaluate the accuracy and scientific validity of the proposed framework, independent validation was 345 

performed using Dataset 2, which was not involved in model training, testing, or CV. The validation density was insufficient 

due to the absence of some lake stations and historical salinity data. The independent validation (Figure 8) demonstrates that 

salinity estimates from the integrated algorithm predominantly align well with measured salinity along the 1:1 line (N = 65, 

R² = 0.97, RMSE = 0.89 ppt, and MAPE = 37.6%). Only Lake Ulansuhai showed a slight overestimation, likely affected by 

aquatic vegetation pixels. An underestimated validation point was observed in the southern part of the Juyan Lake, 350 

associated with the complex water characteristics in the river inlet region. No significant underestimation or overestimation 

was observed in other lakes. These results confirm that the integrated algorithm combining microwave and optical data has 

considerable accuracy in retrieving salinity in inland lakes. 

 

Figure 8: Using Dataset two for independent validation, not all lakes have independent validation data.  355 

3.5 All salinity images pixel-based statistical validation 

Pixel-based histogram statistics were performed on the salinity raster generated by the stacking model for each lake (Figure 

9). Using frequency instead of pixel counts in traditional histograms, the mean salinity,  standard deviation (STD), and 

frequency proportions of different salinity ranges were calculated. The distribution patterns of salinity can be visualized 

through a frequency histogram, which helps identify outliers and objectively assess salinity map quality. Outliers are usually 360 

found dispersed and dramatically changed, appearing as discontinuities in histograms. A single peak pattern of salinity 

histogram was observed in most freshwater or brackish lakes, including Lake Sayram, Lake Ulungur, Lake Bosten, Lake 

Nanhaizi, and Lake Hulun. These minimal spatial and interannual variations within the lakes align with the field 

measurements found. A double-peak characteristic was observed in Lake Juyan and Lake Ulansuhai, with the primary and 
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subsidiary peaks distributed consecutively, caused by the differences between the northern and southern regions for the lake 365 

salinity. However, the subpeaks in the bimodal distribution of Lake Chagannaoer showed low frequency and discontinuity, 

indicating that this portion of the data may be abnormal. The oligosaline-type lakes (e.g., Lake Hongjiannao, Lake Daihai, 

and Lake Dalinor) commonly showed multi-peak characteristics and wide fluctuation ranges, suggesting high interannual or 

spatial variations in salinity. 

Further analyze image quality by examining the pixel frequency across different salinity ranges. The pixel frequency in Lake 370 

Sayram, Lake Ulungur, Lake Bosten, and Lake Nanhaizi was more than 90% within the interval of 0–2 ppt. Lake Juyan 

(46.6%), Lake Ulansuhai (89.1%), and Lake Daihai (88.2%) accounted for the highest pixel proportions within salinity 

ranges of 4–6 ppt, 0–4 ppt, and 8–16 ppt, respectively. Lake Hongjiannao and Lake Dalinor had the highest pixel proportions 

in the range of 4–8 ppt, with 68.5% and 70.4%. These high-proportion intervals align with the distribution of field 

measurement salinity, and the small proportion of abnormally low-frequency pixels demonstrated that the salinity data 375 

generated by the stacking model had a good image quality with only a few outliers. 
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Figure 9: (a)-(k) Pixel-based frequency statistics for all salinity images in each lake, and the STD represents the degree of 

deviation from the mean salinity. 
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3.6 Spatial patterns and trends 380 

The annual scale salinity map of 11 lakes was shown in Figure 10, with its color fluctuations effectively delineating the 

spatial differences in water salinity. The water salinity exhibits spatial homogeneity within several lakes, such as Lake 

Sayram, Lake Ulungur, and Lake Bosten. Lake salinity discontinuities were commonly observed in shore or river inflow 

zones, such as the western part of Lake Ulansuhai, the southern region of Lake Juyan, the northern part of Lake Chagannaoer, 

and the eastern part of Lake Hulun, which were primarily affected by mixing pixels or freshwater dilution (Han et al., 2021). 385 

This phenomenon with freshwater dilution of water salinity is prevalent in inland lakes receiving surface runoff, as well as 

lakes on the Tibetan Plateau (Wang et al., 2023a). In addition, the salinity in Lake Nanhaizi was higher in the east than in the 

west. Seasonal salinity patterns showed greater spatial heterogeneity than annual patterns across all lakes (Figure 11), 

particularly in Lake Ulansuhai, Lake Nanhaizi, and Lake Chagannaoer. It indicates that the spatial pattern of salinity is 

regulated by external environmental factors, such as seasonal variations in precipitation, runoff, and evaporation  (Rimmer et 390 

al., 2006; Yihdego and Webb, 2012; Jiang et al., 2022). 

Interannual salinity trends were calculated using the Mann-Kendall trend test (significance level α = 0.05). Lake Daihai 

(slope = 0.48 ppt/year, p < 0.01) and Lake Dalinor (slope = 0.22 ppt/year, p < 0.05) showed significant increasing trends 

(Figure 12a), and the management agency requires attention to this occurrence. Other lakes had non-significant interannual 

trends, with a comparable proportion of them increasing or decreasing in salinity. Significant seasonal variations of salinity 395 

(p < 0.05) were observed in some lakes (Figure 12c), with higher salinity in summer and autumn compared to spring due to 

enhanced evaporation during summer, including Lake Ulungur, Lake Ulansuhai, Lake Hongjiannao, and Lake Chagannaoer. 

The other lakes did not present significant seasonal changes, and the freshwater and brackish lakes had lower seasonal 

salinity differences compared to oligosaline lakes, likely due to their greater water storage capacity and more reliable water 

supply sources (Rusuli et al., 2016). 400 
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Figure 10: Annual spatial distribution and statistics values (mean ± STD) of water salinity in each lake, with some years lacking 

salinity maps due to insufficient matching image data.  



25 

 

 

Figure 11: Seasonal spatial distribution and statistics values (mean ± STD) of water salinity in each lake. Winter data are 405 
unavailable due to ice cover. 

 

Figure 12: (a) Long-term variations of water salinity in each lake, lakes from Sayram to Hulun are simply denoted as SL to HL, * 

and ** indicate p < 0.05 and p < 0.01, (b) multi-year average salinity, and (c) seasonal salinity patterns in each lake, and the star 

denotes significant seasonal differences with p < 0.05. 410 
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4 Data availability 

The IMXL salinity dataset (IMXSAL) was constructed with a three-layer architecture and contains salinity images from 11 

lakes during 2016–2024. Under the IMXSAL dataset, 11 data folders named for lakes and 5 tables were included. Each data 

folder contains 4 subfolders for storing raster data, named according to the data’s temporal scale (Table 5). The dataset’s 

total uncompressed size is about 5.35 GB. Breakdown: (1) Salinity raster for 11 lakes at different temporal scales (daily, 415 

quarterly, yearly, and all-season average), comprising 673 TIF files, each approximately 8 MB; (2) Excel files, including 

lake basic information table, dataset metadata table, statistical table (mean and STD), field salinity table, and Supplementary 

Table S1, each approximately 100 KB. The dataset was archived and publicly accessible via the Zenodo portal: 

https://doi.org/10.5281/zenodo.18371515 (Deng et al., 2026). Furthermore, to maintain the time-series integrity of the 

dataset, it will be updated yearly with new Sentinel data and expanded to cover Central Asian lakes to support transboundary 420 

water resource management. Dataset versioning follows [Major].[Minor] (e.g., v1.0: 2016–2024; v1.1: 2025 update, January 

2026). Annual updates will continue for 10 years (through 2034) or until funding termination, with update notifications 

posted on the Zenodo repository and Lake-Watershed Science Data Center. 

Table 5 The organizational architecture and file naming of the dataset.  

Dataset 
Folder 

name 

Subfolder 

name 
Filename Format  

Spatial 

resolution 

Temporal 

resolution 

IMXSAL 

Lake 

name 

daily 
[LakeName]_[YYYYMMDD]_[ProductType]_[Reso

lution] 
TIF 10 m Daily 

quarterly 
[LakeName]_[YYYY]_[Season]_[ProductType]_[Re

solution] 
TIF 10 m Quarterly 

yearly [LakeName]_[YYYY]_[ProductType]_[Resolution] TIF 10 m Yearly  

All-season [LakeName]_[Season]_[ProductType]_[Resolut ion] TIF 10 m Nine-year 
  Lake_infor xlsx \ \ 

  IMXSAL_meta xlsx \ \ 

  IMXSAL_MeanSTD_2016-2024 xlsx \ \ 

  Field_salinity xlsx \ \ 

  Supplementary Table S1 xlsx \ \ 

5 Discussion 425 

5.1 Feasibilities and limitations of algorithms in observing lake salinity 

The development of remote sensing algorithms for water salinity has long presented technical challenges, particularly in 

inland lakes. The lake salinity dataset generated using the proposed framework exhibits a spatial resolution of 10 m, 

significantly higher than ocean salinity products such as SMOS, SMAP, and Aquarius (> 40 km) (Hu and Zhao, 2022; Jang 

et al., 2022; Zhang et al., 2023), thereby enabling much greater spatial detail. It also demonstrates higher accuracy (RMSE = 430 

0.60 ppt) compared to even a regional-scale Tibetan Plateau lake salinity product (RMSE = 12.51 g/L) (Xu et al., 2024). To 

further confirm the scientific validity of the GAM algorithm, it was compared with Bayesian Model Averaging (BMA) 

https://doi.org/10.5281/zenodo.18371515
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(Hoeting et al., 1999), a method suited for addressing model uncertainty, with the BMA model’s key hyperparameters listed 

in Table 4. The GAM model outperformed the BMA method (N = 84), with lower RMSE (0.60 ppt vs. 0.88 ppt) and MAPE 

(2.3% vs. 12.6%) in both the test and five-fold CV (Figure 3 and Figure 13). It suggested that the GAM algorithm more 435 

effectively handled the nonlinear relationship between the outputs of the mechanism and the ML model, with its average edf 

of 6.58 (n_splines = 20) implying moderate model complexity while avoiding overfitting. 

In Lake Juyan’s southern river estuary, the stacking model showed higher RMSE (0.41 ppt) compared to open water (0.19 

ppt), due to suspended particulate matter interference. This underestimation accounts for ~5% of total pixels in estuary zones. 

Subsequent works will focus on integrating Sentinel-2 shortwave infrared (SWIR) band data for correcting this effect 440 

(Knaeps et al., 2015). And the spatial heterogeneity stemming from the 3-day matching interval between TIRS and Sentinel 

data may introduce errors (Jin et al., 2016), which future work will mitigate by combining Sentinel-3 Sea and Land Surface 

Temperature Radiometer (SLSTR) for temperature correction. Limited by the salinity gradient of the training set (< 35 ppt), 

the salinity algorithm has insufficient applicability in polysaline (35–50 g/L) and hypersaline lakes (> 50 g/L) and will 

expand the boundaries of the model by adding high-salinity samples in the future. The K&S model was designed for 445 

seawater, and its application to complex ionic lakes (e.g., Lake Chagannaoer) introduces about 5% uncertainty (Figure 6(f7)). 

This uncertainty can be reduced in the future by developing lake-specific dielectric constant models. 

 

Figure 13: (a)-(b) Performance of the ensemble model constructed by using Bayesian model averaging in testing and five-fold CV. 

5.2 Exploring the application potential of salinity dataset 450 

Salinity significantly increased (slope = 0.48 ppt/year, p < 0.01) in Lake Daihai (Figure 12a), which was selected for driving 

force analysis to demonstrate the potential application of the dataset. The generalized linear model was used to quantify the 

relative contribution of each factor, and the correlation coefficient (r) was applied to examine the relationship between 

salinity and factors. The lake area accounts for 34.1% of the variation in Daihai salinity, followed by POP (32.5%) and 
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TEMP (17.0%), with other factors contributing less (Figure 14a). Lake area (r = −0.89, p < 0.01) and POP (r = −0.71, p < 455 

0.05) showed negative correlations with salinity, while TEMP (r = 0.69, p < 0.05) and NTL (r = 0.95, p < 0.01) exhibited 

positive correlations, and other variables were not significant (Figure 14b). These indicate that the lake area closely related to 

the water volume is the dominant factor in the salinity change of Lake Daihai, while climatic warming will aggravate the 

salinization of inland lakes (Jeppesen et al., 2020). Overall, the dataset supports UN SDG 6.3 (improve water quality) by 

providing high-resolution salinity data for IMXL—an arid region with 30% of China’s saline lakes—enabling local 460 

policymakers to track salinization progress (e.g., Lake Daihai’s ecological water replenishment with 2.57 × 107 m3 in 2024 

under SDG 6.6) (Liangcheng County, 2025). 

 

Figure 14: Driver analysis of salinity variations in Lake Daihai from 2016 to 2024, (a) relative contributions of drive factors and (b) 

correlations with lake salinity.  Light blue colored zones indicate negative correlations.  * and ** denote p < 0.05 and p < 0.01, 465 
respectively. 

6 Conclusions 

This study proposes an estimation framework for lake salinity by integrating microwave and optical imagery, producing the 

first 10 m dataset covering 11 lakes in the IMXL (2016–2024), filling a gap in high-resolution salinity data for inland lakes 

in arid regions. The framework’s innovation lies in the development of an ensemble model, which couples microwave 470 

physical mechanisms with the nonlinear fitting capabilities of ML to overcome the deficiencies of single-satellite data 

monitoring in terms of spatial detail or mechanism. Moreover, several technical improvements have been made, the main 

ones being the adjustment of Elfouhaily spectrum parameters to suit inland lakes, the establishment of a rapidly calculated 

method for lake surface roughness, the definition of the SPM model for simulating the water backscattering coefficient, and 

the integration of the mechanistic and ML models via a GAM model. Compared to the products generated from single-475 

satellite data algorithms, this dataset shows improvements in both accuracy and mapping details (RMSE = 0.60 ppt and 
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MAPE = 2.3%). The histogram validation at the pixel level for all salinity images reconfirmed the satisfactory quality of the 

dataset. The long-term salinity dataset revealed a spatial pattern of smooth transition from the nearshore to the center and 

trends with significant increases in Lake Daihai and Lake Dalinor. 

The proposed integrated algorithms provide methodological references for other lakes and help advance space-based salinity 480 

observation missions for inland waters. The created dataset supports salinization prevention (e.g., Lake Daihai water 

diversion planning) and global lake salinity budget research. 
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