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Abstract. Forests play a central role in the global carbon cycle by serving as critical carbon sinks for atmospheric CO₂. Yet, 

the stability and continued capacity of these sinks are increasingly threatened by a growing number of disturbances. Accurately 20 

representing the stochastic nature of disturbance remains a major challenge and a key source of uncertainty in our 

understanding of carbon cycle dynamics. This study presents a novel framework for deriving disturbance regimes characterized 

by extent (μ), frequency (α), intensity (β), as well as background mortality (Kb) directly from landscape features of high-

resolution satellite biomass data. These regimes reflect the characteristics of long term disturbances at the landscape scale 

rather than the properties of any single event. Our analysis inverts the forward model framework developed by Wang et al. 25 

(2024), which used a machine learning model trained on a massive synthetic dataset of over 8 million forward model 

simulations to link known disturbance regimes to spatial biomass patterns. Instead of predicting patterns from regimes, we use 

observed satellite biomass patterns to infer the underlying disturbance regimes. To ensure robustness, we first identified the 

optimal spatial resolution for aggregating both simulation and satellite data, minimizing discrepancies in feature value ranges 

and reducing extrapolation risk. Using this framework, we produced the first globally consistent, observationally constrained 30 

dataset of forest disturbance regime parameters and their associated uncertainties, provided at both a 25x25 km2 tile level and 

as a gridded 0.25° global product. Additionally, we used a Dissimilarity Index (DIK) to quantify prediction uncertainty and 

identify potential extrapolation by measuring observations’ divergence from the training set. An empirical evaluation of 

borderline disturbance regimes supports the assumptions and methodological approach used to build the dataset. Our global 

maps of disturbance regimes provide a novel, process-based tool for investigating the coupled dynamics of disturbance, 35 
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vegetation, and the carbon cycle, with potential applications for improving the representation of stochastic disturbances in 

large-scale ecosystem models.  

1 Introduction 

Global forests serve as significant carbon sinks, playing a vital role in mitigating climate change through sequestering 

atmospheric carbon dioxide derived from anthropogenic fossil fuel burning and land use change (Reichstein and Carvalhais, 40 

2019). The mean carbon sink attributed to forests has remained steady at around 3.6 Pg C yr⁻¹ since the 1990s, surpassing the 

ocean sink at around 2.3 Pg C yr⁻¹ (Friedlingstein et al., 2022; Pan et al., 2024). However, the persistence of this sink is 

increasingly threatened by a wide array of natural and anthropogenic disturbances, including fires, droughts, insect outbreaks, 

windthrow, and land use change (Kulakowski et al., 2017; Wohlgemuth et al., 2022). The frequency, temporal duration, and 

spatial extent of these disturbances remain highly unknown; as a consequence, the resulting large-scale tree damage and 45 

mortality and their effects on the carbon cycle are poorly quantified (Senf and Seidl, 2021a, b), creating a primary source of 

uncertainty in the projection of future carbon cycle dynamics within Earth System Models (ESMs) (Friend et al., 2014; Seidl 

et al., 2014). A key limitation of current ESMs is their overly simplistic representation of forest disturbance dynamics (Seidl 

et al., 2011; Wohlgemuth et al., 2022), or in some cases their complete omission, due to limited understanding of the 

spatiotemporal regimes that dictate the long-term impact of these events on forest carbon cycling dynamics (Turner, 2010; 50 

Turner and Seidl, 2023). 

 

Efforts to characterize forest disturbance regimes, including their frequency, intensity, and extent, from Earth observation have 

largely followed two distinct approaches. The individual event-detection method, which applied a continuous detection change 

algorithm to time series of satellite imagery to identify and map individual disturbance events (Kennedy et al., 2010; Senf and 55 

Seidl, 2021a, b). This approach provides a detailed historical record of disturbances and benefits from a growing diversity of 

data sources, including optical, microwave (radar), and laser-based (lidar) data . However, it is difficult to use this method to 

derive regime parameters that reflect disturbance dynamics over past decades (Turner, 2010), because it heavily relied on 

good-quality and continuous time series that were often lacking (Fisher et al., 2008; Chambers et al., 2013). This is especially 

true for high-spatial-resolution data, which have only become available relatively recently and cover short temporal period. 60 

On the other hand, the second approach infers disturbance regimes from landscape-scale characteristics such as spatial patterns 

of forest biomass derived from Earth observation data (Williams et al., 2013), then uses ecosystem models to inversely estimate 

disturbance parameters that synthesize historical disturbance dynamics. A key limitation, however, is that different 

combinations of disturbances (e.g., long duration and weak drought vs. rapid severe heatwave) can produce similar landscape 

outcomes; the use of coarse-resolution data often led to equifinality (Delbart et al., 2010; Williams et al., 2013). The recent 65 

proliferation of globally consistent, high-resolution satellite biomass products now provides the critical observational 
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foundation to test and apply this pattern-based framework at a global scale (Quegan et al., 2019; Toan et al., 2018; Reichstein 

and Carvalhais, 2019). 

 

This study was built upon our previous framework (Wang et al., 2024), which first used a forward-modeling approach to create 70 

a synthetic forest regimes dataset (8 million regime parameter combinations) that linked to unique biomass patterns and 

landscape-level photosynthetic capacity, using a machine learning model. The primary objective of this study is to globally 

map forest disturbance regime parameters (extent μ [%], frequency α [-], intensity β [-], and background mortality Kb [year-1]) 

by inverting this advanced forest disturbance framework against biomass landscape features derived from 25 m resolution 

ESA CCI biomass data (Santoro et al., 2021) and landscape-level photosynthetic capacity from FLUXCOM data (Nelson et 75 

al., 2024). To achieve this, we first extended our synthetic forest regimes dataset by broadening the parameterization range 

and incorporating a diversity of non-rectangular disturbance shapes, increasing the number of regime parameter combinations 

from 0.85M to 8M (see supplementary S1). Second, we identified the optimal spatial resolution for aggregating simulation 

and EO data to minimize discrepancies in biomass feature value ranges between simulations and observations, thereby 

reducing extrapolation risk. Third, we applied landscape features calculated from EO data into the pre-trained machine learning 80 

model to derive forest disturbance regime parameters. Additionally, we developed a scalable Dissimilarity Index (DIK) to 

provide a spatially explicit measure of model applicability uncertainty for the final predictions (the entire workflow see Figure 

1). 

 

In the following sections, we detail this comprehensive framework: Section 2 describes the input datasets and multi-stage 85 

methodology, from the forward modeling and observational data processing to the machine learning prediction and uncertainty 

quantification. Section 3 presents the data products in both their native tile-level and gridded global formats and provides a 

comprehensive evaluation of spatially explicit uncertainty and scientific plausibility. This dataset provides a novel, 

observationally constrained tool for improving the representation of stochastic disturbances, with the potential to reduce a key 

uncertainty in future carbon cycle projections. 90 
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Figure 1. Conceptual workflow of the disturbance regime prediction framework. The framework is organized into four 

stages. (A) Forward Modeling: A synthetic dataset is created by simulating how known disturbance regimes (μ, α, β, Kb) 

produce unique biomass patterns. (B) Observational Data Processing & Gap Analysis: Global satellite biomass data is 

processed into standardized tiles, and the discrepancy between the simulated and observed data is resolved using a spatial 95 

aggregation strategy. (C) Machine Learning Prediction: A Random Forest model is trained on the aligned synthetic data and 

applied to the observed data to predict disturbance regimes. (D) Product Generation & Evaluation: The final tile-level and 

gridded global datasets are produced and then evaluated for uncertainty and scientific plausibility. 
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2 Data and Methods 100 

2.1 Observational Datasets and Post-Processing 

This analysis uses three primary observational datasets to derive predictive features: (1) the ESA GlobBiomass product 

(Santoro et al., 2021), to characterize fine-scale biomass spatial patterns; (2) the Copernicus land cover dataset (Buchhorn et 

al., 2020), to provide a high-resolution forest mask; and (3) the FLUXCOM-X GPP product (Nelson et al., 2024), to represent 

landscape-level photosynthetic capacity. The specifics of each dataset and its subsequent processing are detailed below. 105 

 

Biomass observation 

We selected the ESA GlobBiomass product dataset, as it provides a globally consistent, spatially explicit map of above-ground 

biomass for the year 2010 at a native resolution of approximately 25 meters at the equator, the highest publicly available spatial 

resolution. Its high resolution is critical for resolving the fine-scale spatial heterogeneity of forest distribution required for our 110 

analysis. The dataset was generated primarily from a fusion of Synthetic Aperture Radar (SAR) backscatter observations, 

including L-band data from ALOS PALSAR and C-band data from ENVISAT ASAR. The retrieval algorithm first estimates 

Growing Stock Volume (GSV) and subsequently converts it to AGB using spatially explicit layers of wood density and 

biomass expansion factors, resulting in a product that captures key structural attributes of forests across the globe. 

 115 

To transform the raw GlobBiomass map into a set of predictive features, we first established a global grid of analysis domains 

and then systematically characterized the biomass structure within each. A global grid of non-overlapping, true-to-area 25 km 

× 25 km landscapes was generated using geodetic calculations on the WGS84 ellipsoid, ensuring that each landscape unit 

represents a consistent surface area regardless of latitude. For each landscape, the corresponding 25 m resolution AGB data 

was extracted and then reprojected to a local Azimuthal Equidistant (AEQD) projection to standardize its internal geometry. 120 

The crucial step involved a two-stage resampling process to ensure accurate pixel alignment: the data was first resampled to a 

1 m resolution using cubic interpolation and subsequently aggregated via pixel averaging to a final, standardized 1000 × 1000 

pixel grid at a 25 m resolution. A global forest cover mask derived from the latest Copernicus land cover dataset was then 

applied to this standardized grid, assigning non-forest pixels with a NaN value to isolate only forested areas for analysis. Prior 

to statistical derivation, AGB values were converted from tons per hectare (t/ha) to grams per square meter (g/m2). From this 125 

masked AGB grid, we derived a comprehensive suite of biomass spatial statistics (Supplementary Table S3), including first-

order distribution metrics and second-order texture metrics from a Gray-Level Co-occurrence Matrix (GLCM). Critically, to 

ensure ecological integrity, it was constructed exclusively from adjacent pairs of valid forest pixels in four directions, an 

adaptive approach that captures the true spatial arrangement of forest structure without introducing artifacts from interpolating 

across non-forested gaps. For methodological robustness, texture features were only computed for landscapes containing at 130 
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least 100 valid forest pixels. The resulting vector of 17 statistical features for each landscape formed the quantitative basis for 

the machine learning models used to predict disturbance regimes. 

Forest cover mask  

The forest cover mask used in this study was derived from the Copernicus land cover dataset, which provides the latest global 

coverage at 100 meter spatial resolution for the year 2019 (Buchhorn et al., 2020). This product includes 23 discrete land cover 135 

classes aligned with the UN-FAO Land Cover Classification System. The forest type layer was reprojected and resampled to 

match the spatial extent and resolution of each biomass tile using nearest-neighbor interpolation. Then, we identified the pixel 

belonging to any forest categories (e.g., evergreen needleleaf, evergreen broadleaf, deciduous needleleaf, deciduous broadleaf, 

and mixed forest) and generated a binary forest mask. We used the resulting masks to select all landscapes with a forest cover 

ratio greater than 0. This process filtered out non-forest areas, ensuring that the biomass statistics extraction and disturbance 140 

regime prediction were performed only on forested landscapes. 

GPP dataset 

We used the GPP product from the FLUXCOM-X (X-BASE) dataset (Nelson et al., 2024) at a spatial resolution of 0.05° to 

calculate landscape-level photosynthesis capacity. This product is a data-driven product constrained by in-situ eddy covariance 

observations with superior skill in spatial variation in GPP. We used GPP data from the year 2010, and the monthly GPP values 145 

were converted into a total annual sum for each grid cell. For each of the selected forested landscape domains, the annual GPP 

totals of all grid cells within the landscape’s bounding box were spatially averaged into a single value. As a result, for each 

landscape domain, we obtained one single value, representing the landscape’s integrated annual photosynthetic capacity (g C 

m-2 yr-1), which was subsequently used as a key predictor in the machine learning models to predict disturbance regime. 

2.2 Calibration of Spatial Aggregation Scale for Model-Data Consistency 150 

Prior to applying statistical features derived from EO biomass data to the machine learning model, we evaluated the value 

ranges of features identified as highly important for predicting disturbance regimes, including GLCM Correlation and 

Coefficient of Variation (Supplementary Table S3). This is to ensure these features fall within the range encountered during 

model training, thereby minimizing extrapolation risk. However, a substantial mismatch was observed between the feature 

value ranges from the synthetic forest regimes dataset generated by Wang et al. (2024) and those computed from the actual 155 

EO biomass data (Supplementary S2.1). This discrepancy was particularly evident for GLCM Correlation, which was [0 – 

0.75] for simulation but [0.75 – 0.98] for EO data (Figure S2.1 c). Moreover, expanding the parameter space and incorporating 

non-rectangular disturbance shapes did not significantly reduce this divergence (Fig. S2.1 b). The primary source of 

inconsistency was identified in the representation of spatial patterns: the simulation framework treats each grid cell as an 
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independent unit, whereas real-world landscapes exhibit strong spatial autocorrelation arising from complex interaction among 160 

topography, soil, hydrology, and community competition.  

 

To overcome this, we implemented a spatial aggregation procedure for both the simulated and observed data to adjust value 

ranges of spatial autocorrelation-related features such as GLCM Correlation and Coefficient of Variation. This approach used 

a moving window (kernel) to systematically aggregate the original 1000 × 1000 pixel biomass maps from both simulations 165 

and EO observations to coarser resolutions. By calculating the mean value within the kernel (e.g., a 2 × 2 kernel aggregates 

four pixels into one), this process smooths the data and fundamentally alters the texture statistics, and it applies a range of 

distinct aggregation scales to generate a suite of down-sampled biomass maps and their corresponding features, allowing us to 

find a common scale where the statistical domains of simulation and observation align. As shown in Figure S1, the divergence 

(quantified by a metric called weighted overlap ratio, WOR; see details in supplementary S2.2) for important features between 170 

simulation and EO observation was substantially reduced across coarser scales, i.e., at kernel size ranging from 5 to 40.  

 

A primary concern regarding spatial aggregation for simulation data is the potential reduction in the accuracy of machine 

learning model prediction due to the loss of fine-scale details. To evaluate this, we assessed whether model prediction accuracy 

change across spatial aggregation scales. We trained a series of Random Forest models on the synthetic dataset aggregated to 175 

different scales using an identical cross-validation scheme with consistent training-testing splitting. The predictive accuracy 

of the machine learning model on the test folds was quantified using the Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 

1970), where a value of 1 signifies perfect model-data correspondence (D. N. Moriasi et al., 2007). The results show that 

predictive accuracy remained high across a wide range of aggregation scales (Fig. 2), dropping only when the kernel size was 

40 (at very coarse spatial resolution). In summary, a kernel size of 10 was selected as the optimal balance between prediction 180 

accuracy (all NSE values > 0.85 for 4 parameters, Figure 2) and consistency between aggregated simulated and observed 

biomass features (most of WOR values > 0.9;  Supplementary Figure S2.4). 
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Figure 2. Model predictive performance across spatial aggregation scales. The main panel a. displays the Nash-Sutcliffe 185 

Efficiency (NSE) for predicting disturbance parameters using a 10-fold random cross-validation Random Forest model. The 

x-axis represents the aggregation of kernel size, where a value of 1 corresponds to the original resolution, and coarser scales 

are to the left. The panel b shows density scatter plots for the optimal aggregation scale (kernel size = 10) at the global level, 

comparing model predictions (x-axis) to the prescribed parameters (y-axis). The color scale indicates the density of samples, 

with darker colors representing a higher concentration of points. The consistently high NSE values across scales demonstrate 190 

that predictive power is maintained even at coarser resolutions. 
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2.3 Machine Learning Prediction and Uncertainty Quantification 

For this production run, the Random Forest models were trained on the entire synthetic dataset, using all 17 predictive features 

aggregated to the optimal kernel size of 10, i.e., 100 m x 100 m scale. The final trained models from this specific run were 195 

then saved and applied to the globally aggregated satellite biomass statistics to generate the disturbance regime dataset 

presented in Section 3.  

 

Although the spatial aggregation process has effectively reduced the discrepancy between the simulation training set and EO 

data, we further used the Dissimilarity Index (DIK) from Meyer and Pebesma (2021) to quantify the extrapolation-related 200 

uncertainty of each pixel-level prediction of three disturbance regimes and background mortality parameters. The DIK 

measures how different a prediction sample is from the training data in the model's feature space. DIK values below 1.0 suggest 

the landscape is well-represented, whereas values significantly greater than 1.0 serve as a flag for potential extrapolation, 

indicating that predictions for that landscape are less reliable. The calculation procedure involves three key steps: (1) 

standardizing each feature individually, (2) pre-calculating a baseline average dissimilarity from the training data, and (3) 205 

computing the final DIK for each new prediction. The detailed theoretical formulation and scalable implementation are 

provided in the Supplementary S3. 

3 The Dataset: Global Patterns of Forest Disturbance Regimes 

This section presents the two distinct but related data products derived from our modelling framework: a primary Tile-Level 

Dataset containing predictions for each 25 × 25 km landscape and a derivative 0.25° × 0.25° Gridded Global Dataset for large-210 

scale analysis and visualization. This dual-product approach is motivated by the need to serve two distinct purposes: the tile-

level data provides the native, high-resolution detail required for in-depth, local-scale investigation (Fig. 3), while the gridded 

product is aggregated for large-scale analysis, visualization of broad biogeographic patterns (Fig. 4), and integration with 

global ecosystem models. We first provide a comprehensive description of the data product, including variables and technical 

specifications, to facilitate user understanding and application. Subsequently, we detail the comprehensive, multi-faceted 215 

evaluation undertaken to assess the dataset’s quality, uncertainty, and scientific plausibility. 

3.1 Data Product Description 

3.1.1 Tile-Level Disturbance Regime Dataset 

The Tile-Level Disturbance Regime Dataset is the primary, high-resolution output of our prediction workflow. It provides 

disturbance regime parameters for each of the individual 25 km x 25 km forested landscape tiles analyzed globally. An example 220 

of this tile-level data is visualized in Figure 3. 
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Figure 3. Example of the Tile-Level Dataset for a region in the Amazon basin. The four panels show the spatial distribution 

of the mean predicted (a) Disturbance Extent (μ), (b) Disturbance Frequency (α), (c) Disturbance Intensity (β), and (d) 

Background Mortality (Kb). Each colored square represents a single 25 × 25 km landscape tile. The inset in each panel provides 225 

a magnified view of a 0.25° x 0.25° area, illustrating how multiple high-resolution tiles are nested within the area of a single 

grid cell from the gridded global product. 

 

Dataset Variables: The dataset is provided as four separate prediction files, one for each disturbance parameter (, , , Kb). 

Each file contains the unique identifier, the raw prediction from each of the 10 randomly cross-validation folds (fold 0 to fold 230 

9), the final ensemble mean prediction, and the corresponding parameter-specific Dissimilarity Index (e.g., DIK_mu). Key 

variables include: 

• Disturbance Extent ( ): the characteristic spatial extent of total annually disturbed area. 

• Disturbance Frequency ( −): the spatial pattern of disturbance, distinguishing between regimes of many small 

events versus few large events. 235 

• Disturbance Intensity ( −): the severity of disturbance, representing the relative fraction of biomass lost during an 

event. 

• Background Mortality (Kb [year-1]): the baseline mortality rate from non-catastrophic processes like natural decay 

and competition. 

• DIK: the dissimilarity of a given landscape’s biomass statistics from the training data domain from the specific 240 

parameter being predicted, providing a direct measure of model applicability uncertainty for each tile. 

 

Technical Specifications: 

• Spatial Coverage: Global (90° N to 90° S), masked in forested areas. 

• Format: Comma-Separated Values (CSV). 245 

https://doi.org/10.5194/essd-2025-670
Preprint. Discussion started: 24 November 2025
c© Author(s) 2025. CC BY 4.0 License.



   

 

11 

 

• Spatial Representation: The dataset is structured in a vector format, with each record representing a 25 × 25 km 

landscape tile. For compatibility, each tile location is defined by a bounding box in standard geographic coordinates 

(WGS84). To ensure analytical accuracy, the spatial statistics for each tile were calculated internally using a local 

AEQD projection. 

• Uncertainty: The dataset provides two measures of uncertainty for each tile. First, the inclusion of all 10-fold 250 

predictions allows users to quantify the model of ensemble uncertainty by calculating the variance across predictions. 

Second, the parameter-specific DIK quantifies the model's applicability uncertainty, indicating how similar the 

landscape is to the training data. 

3.1.2 Gridded Global Disturbance Regime Dataset 

This dataset provides continuous global maps of the disturbance regime parameters and multiple associated uncertainty and 255 

variability layers, created by aggregating the tile-level data onto a regular 0.25 grid. This product is ideal for large-scale 

analysis and integration with other global climate and ecosystem models. 
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Figure 4. Global patterns of predicted disturbance regime parameters. The four panels show the grided global maps of 

ensemble means for Disturbance Extent (μ), (b) Disturbance Frequency (α), (c) Disturbance Intensity (β), and (d) Background 260 

Mortality (Kb). Each parameter is displayed with a distinct color scale to highlight its unique spatial patterns. 

 

Dataset Variables: The dataset is a single NetCDF file containing multiple layers derived from the tile-level data for each of 

four parameters (, , , Kb): 

• Mean Parameters ({param}_mean): the mean value for each parameter within a grid cell, calculated by averaging the 265 

ensemble means of all tiles that overlap with that cell (Fig.4). 

• Dissimilarity Index (DIK_{param}_mean): the mean model applicability uncertainty for the grid cell, derived by 

averaging the DIK values of all overlapping tiles (Fig.4). 

• Model Prediction Uncertainty ({param}_std_all_folds): A comprehensive uncertainty metric representing the 

standard deviation of all individual fold predictions from all tiles within a grid cell. This layer combines both the 270 

model’s ensemble uncertainty and the sub-grid spatial variability (Fig. 5). 

• Sub-grid Spatial variability ({param}_std): The standard deviation of tile-level ensemble means within a grid cell. 

This metric isolates the spatial heterogeneity of the disturbance regime within the 0.25 cell. 

• Tile Count (tile_count): A data density layer indicating the number of landscape tiles used to calculate the value for 

each grid cell. 275 

 

Technical Specifications: 

• Spatial Resolution: 0.25° × 0.25° 

• Spatial Coverage: Global (90° N to 90° S), masked to forested areas. 

• Format: NetCDF-4 280 

• Coordinate System: Geographic, WGS84. 

• Uncertainty: the dataset provides multiple layers to characterize uncertainty. The DIK_{param}_mean layers quantify 

model applicability uncertainty. The {param}_std_all_folds layers provide a comprehensive measure of prediction 

uncertainty, combining model ensemble variance and sub-grid heterogeneity. Additionally, the {param}_std layers 

isolate the sub-grid spatial variability. 285 

3.2 Data Quality and Uncertainty 

To provide a comprehensive assessment of prediction confidence, the dataset includes two distinct uncertainty layers. The first 

layer reflects the machine learning prediction uncertainty (std_all_folds), quantified as the standard deviation across the 

different cross-validation folds. As shown in Fig. 5, this model-related uncertainty is low for forested regions, indicating a 

generally robust prediction. However, for most parameters, particularly β, relatively high uncertainty is consistently 290 

concentrated in the humid tropics—most notably the Amazon and Congo basins. This suggests the model has greater difficulty 
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disentangling the disturbance severity signal from biomass patterns in these high-biomass, structurally complex ecosystems. 

It is important to note that this uncertainty is not simply a function of sampling density (Supplementary Fig. S2 shows the tile 

count distribution for global grid cells), as the Kb parameter exhibits a different spatial pattern with distinct regional hotspots 

out of the tropical belt.  295 

 

 

Figure 5. Comprehensive prediction of uncertainty of disturbance regime parameters. The four panels show the global 

gridded maps of the comprehensive prediction of uncertainty (std_all_folds) for each parameter. This metric represents the 

standard deviation of all cross-validation fold predictions from all tiles within each 0.25° grid cell, thereby integrating both 300 

model ensemble uncertainty and sub-grid spatial heterogeneity. Higher values, indicated by warmer colors on a shared color 

scale, represent greater overall uncertainty. The number of tiles contributing to each grid cell is provided in the tile_count layer 

of the dataset (see Supplementary Information). 

 

The second uncertainty layer represents model applicability, quantified by the Dissimilarity Index (DIK; see Supplementary 305 

S3). The DIK measures the dissimilarity in the key landscape features of biomass patterns between satellite observations and 

our synthetic training data. Because the relative importance of these landscape features may differ for each parameter, we 

generated DIK maps for four disturbance parameters (μ, α, and β) and background mortality separately (Figure 6). The DIK 

maps for the disturbance parameters (μ, α, and β) are spatially consistent, identifying regions of high confidence (DIK close  
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to 0, dark blue areas) across major intact forest ecosystems, including the Amazon and Congo Basin rainforests, the Pacific 310 

temperate rainforests of North America, the forests of insular Southeast Asia, and large tracts of the Eurasian boreal forest. 

Conversely, these maps flag areas of potential extrapolation (DIK > 1.0, purple areas) in landscapes where biomass patterns 

are dissimilar from the disturbance scenarios in our simulation library. These include regions with strong anthropogenic 

influence such as the United Kingdom and Western Europe, agriculture-dominated ecosystems like India, and regions with 

low overall forest fraction, such as Western Australia. The DIK for background mortality (Kb) exhibits a strikingly different 315 

pattern, indicating high uncertainty and potential extrapolation across nearly the entire boreal forest biome of North America 

and Eurasia. This high uncertainty aligns with the model's prediction of unexpectedly high Kb values in these regions, which 

contradicts the long carbon turnover times known to characterize these ecosystems. This suggests that in systems dominated 

by large, infrequent, stand-replacing disturbances like fires in boreal regions, the subtle spatial signature of background 

mortality is masked by the strong imprint of the dominant disturbance regime, leading to equifinality and reduced model 320 

reliability for this specific parameter. 

 

 

Figure 6. Model applicability uncertainty quantified by Dissimilarity Index. The four panels show the global gridded 

maps of the mean Dissimilarity Index (DIK) for each parameter. The DIK quantifies the novelty of observed landscapes 325 

compared to the training data. Values below 1.0 indicate that observed biomass patterns are well represented within the model's 
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training domain. Values exceeding this threshold (labelled as purple) serve as a flag for potential extrapolation, indicating that 

predictions in these areas have higher uncertainty because the model is encountering landscape patterns not seen during 

training. 

 330 

3.3 Empirical Evaluation  

A direct, quantitative validation of our disturbance regimes is inherently challenging, as no existing dataset captures the long-

term, landscape-scale characteristics we aim to represent. Therefore, in this section we assessed the scientific plausibility of 

our product by evaluating the correspondence between predicted disturbance regime parameters and biomass patterns in the 

extreme high/low scenarios. To isolate the impact of each parameter (μ, α, β), we selected extreme high/low study sites (Figure 335 

7c) that were the most similar in all other variables (DPRs, Kb, GPP), allowing a controlled visual assessment of how each 

parameter uniquely influences biomass patterns (Figure 7). 

 

The low- and high-μ sites are both located in boreal forests (Figure 7c). The low-μ site exhibits a high-biomass, intact forest 

canopy with a heavily skewed biomass histogram, confirming its mature, undisturbed state. In contrast, the high-μ site shows 340 

more areas with low-biomass patches (Figure 7b, Panel 2), reflected in its left-skewed histogram with lower mean biomass 

values. This observed pairing demonstrates how a significant difference in μ alone, as other variables are similar, drives a clear 

divergence in landscape patterns, especially for the overall mean value. This pattern aligns with the conceptual definition 

(Figure 7a, Panel 1-2) that μ governs the total area affected by disturbance. 

 345 

The pairing for α contrasts a low-α site in the Amazon rainforest with a high α site in Southeast Asia (Figure 7c). The 

Amazonian site (low α) exhibits a coarse-grained spatial texture with large clustered low biomass area (Figure 7b, Panel 3), 

where its broad biomass histogram indicates a landscape mix of intact forest blocks and significant clearings, indicative of 

large-scale, infrequent events. Conversely, the Southeast Asian site (high α) presents a fine-grained, highly fragmented texture 

(Panel b4). Its biomass patterns are small and intermixed, lacking the large, consolidated clearings of the low-α site and 350 

suggesting a regime driven by small-scale, scattered events. This observed contrast highlights how α modulates the spatial 

aggregation of disturbance. It effectively differentiates regimes dominated by a few large, contiguous events (low α) from 

those characterized by many small, dispersed events (high α), a finding consistent with the conceptual design (Figure 7a, Panel 

3-4). 

 355 

Both the low- and high- β are in the Amazon rainforest, and critically, the biomass histograms are highly similar. Both exhibit 

a bimodal distribution with no clear difference in mean biomass, which is expected as their μ and α are nearly identical. Despite 

the similarity in the first dimensional statistics, a stark contrast in spatial pattern between the low- and high- β landscapes, as 

low- β shows a more transition while high- β has more obvious footprints of disturbance. This pairing powerfully illustrates 
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the insufficiency of differentiating regimes solely based on first-order statistics from biomass. It underscores the necessity of 360 

using spatial-statistical features to capture more sophisticated disturbance scenarios, validating our model’s approach. 

 

The global distributions for the three parameters are presented in Figure 7d. Both μ (global mean value of 0.035) and β (global 

mean value of 0.25) are negatively skewed, characterized by a dominant peak at high values and a long tail extending toward 

low values. This feature is particularly pronounced for β, which displays two distinct peaks for high values, with the extreme-365 

high peak being the most dominant. In contrast, the parameter α is more central distributed, with the global mean value of 1.25. 

The colored vertical lines in these histograms confirm that the selected case studies are representative of the extremes of the 

global distributions. 

 

This analysis demonstrates that the predicted parameters can distinguish between remarkably different disturbance regimes 370 

that correspond to visually and ecologically distinct real-world biomass patterns. Furthermore, it highlights the value of using 

high-dimensional, spatial-statistical information to derive these parameters (example of low- and high- β landscapes). The 

derived disturbance parameters are suited for implementing stochastic disturbance modules for within-forest perturbations in 

Dynamic Global Vegetation Models (DGVMs) and Earth System Models (ESMs), which currently rely on more simplistic 

schemes. This application has the potential to reduce a key uncertainty in carbon cycle projections by providing a globally 375 

consistent, observationally constrained representation of natural disturbance regimes.  
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Figure 7. Correspondence between Predicted Disturbance Parameters and Empirical Biomass Patterns. (a) Conceptual 

Schematics: Illustrates the theoretical landscape-scale patterns for six extreme cases (low vs. high) of the parameters μ, α, and 380 

β. (b) Regional Biomass Patterns: Shows corresponding empirical biomass maps from satellite observations. These low/high 

pairs were selected by filtering landscapes to ensure high similarity in photosynthesis level (GPP), background mortality (Kb) 

and the other two disturbance parameters, thereby isolating the observable impact of the target parameter on biomass pattern. 

(c) Study Site Locations: Geographic locations of the six regional case studies shown in panel b. (d) Global Parameter 

Distributions: Histograms showing the full global distribution of predicted μ, α, and β. The colored vertical lines indicate the 385 

values for the selected low and high case studies, placing these examples within their global context. 

4 Data Availability 

The two data products described in this paper, the Tile-Level Dataset (CSV) and the Gridded Global Dataset (NetCDF), will 

be publicly available in the Edmond Repository after peer review. The datasets contain the global disturbance regime 

parameters (μ, α, β, Kb) and the associated uncertainty layers detailed in this manuscript.  390 
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5 Code Availability 

The source code used to process the input data, train the models, and generate the final dataset will be available in Edmond 

Repository after peer review. 

6 Conclusion 

This study presents a novel global dataset of forest disturbance regimes, including extent, frequency, intensity, and background 395 

mortality, derived from high-resolution satellite-based biomass observations. This process-based product was enabled by a 

massive synthetic training dataset and high-performance computing. We quantified two key sources of uncertainty for these 

derived disturbance regime parameters and background mortality: one inherent to the machine learning predictions and another 

related to model applicability (extrapolation risk). Together, these uncertainties show low uncertainty, i.e., reliable prediction 

across widespread ~90% forest regions. In addition, an empirical evaluation using paired contrasting landscapes from the 400 

distributional extremes confirms that the derived parameters correspond to ecologically distinct real-world biomass patterns, 

qualitatively confirming the scientific plausibility of inferring disturbance regimes from biomass landscape features. This 

dataset offers a critical new resource, providing not only a means to implement more realistic, stochastic disturbance modules 

in Earth System Models, but also a novel pathway to investigate the coupled dynamics of disturbance, vegetation, and the 

carbon cycle, with the potential to reduce a key uncertainty in future carbon cycle projections. 405 
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