Supplement
S1. The Simulation Framework: Linking Disturbance and Biomass

Building on our previous work (Wang et al., 2024), we use a forward-modeling framework to quantify
the link between disturbance regime and the resulting biomass statistics. The core idea is to first
simulate how a wide array of known, parameterized disturbance regimes manifest as synthetic,
spatially explicit patterns of aboveground biomass. By systematically generating these cause-and effect
pairings, we can establish a statistical link that later allows us to retrieve the problem: inferring the

characteristics of a known disturbance regime from observable biomass patterns.

The workflow proceeds in four main stages: 1) we parameterize a disturbance regime using a set of key
attributes that control the extent, frequency, intensity and background state of forest mortality; 2) we
stochastically generate multi-year sequences of disturbance events on a simulated landscape, where the
size, location, and shape of each event are governed by the defined regime parameters; 3) we apply
these disturbance sequences to a simple carbon cycle model to simulate the dynamic change in AGB
across the landscape over centuries. 4) once the simulated landscape reaches a dynamically stable state,
that is, a shifting mosaic of different successional stages, a comprehensive suite of statistical metrics
from the AGB map is extracted, which quantitatively describes the emergent biomass pattern. This
forward-modeling approach creates a large synthetic dataset where known disturbance regime
parameters are linked to unique biomass pattern signatures, forming the basis for training a predictive

model.

S1.1 Parameterization of disturbance regime

We characterize the disturbance regime acting upon a landscape using four key parameters, three of
them—probability scale (), clustering degree (o), and intensity slope (B)—are adapted from our
previous framework (Wang et al., 2024), but with a significant modification to the parameter range for
a. Specifically, we now include lower values for the clustering degree, which allows for the simulation
of fewer, larger, and more contiguous events. This adjustment is crucial for representing large-scale,
intense disturbances such as stand-replacing fires. Another major advancement in our parameterization
is the explicit inclusion of the background mortality rate (Kp) as a fourth independent parameter to be
predicted, allowing us to disentangle the effects of baseline mortality from episodic disturbances and
address a potential source of equifinality in the previous framework. The four parameters are detailed

in Table 1.

Table S1. Parameters Defining the Simulated Disturbance Regimes

Proposed

Intervals Count Role in Simulation
Range

Parameter Symbol Definition

The mean fraction of the Controls the overall

Probability total domain area
Scale s affected by disturbance 0.01-0.05 0.005 ° gg?ﬁi)g?;eagd extent of
events annually. )
Clustering The scaling exponent in Governs the spatial
Degree a the power-law function 05-18 0.05 2 pattern of disturbance,



(n oc z7*) relating the where increasing

number of events (n) to values shift the pattern

their size (z). from large, contiguous
events to many small,
fragmented

disturbances.
The slope of the
relationship defining the

Intensity B fraction of AGB lost as a 0.03-05 0.01/0.05 14 Det(_ermlnes the severity
Slope . : /0.1 of disturbance events.
function of disturbance
event size.
The constant, first-order SO”;“"S th; o
mortality rate ackground carbon
. 1
Background representing baseline turnover time (t = =)
Mortality Ks carbon loss process like 0.025-0.2 0.025 8 and influences the *
litterfall, root exudates, maximum potential
and herbivory. biomass.

S1.2 Simulating Spatially-Explicit Disturbance Events

To translate our parameterized disturbance regime into concrete spatial patterns, we developed an
advanced disturbance event generator. This tool is a key advancement from our previous framework,
which was limited to computationally efficient but unrealistic rectangular shapes. The new generator is
capable of producing disturbance events with a wide range of morphological complexities, allowing us
to enhance the realism of our simulations and test the influence of event geometry on emergent

biomass patterns.

For each combination of disturbance regime parameters, the generator creates a set of 200 annual
disturbance maps on a 1000 x 1000 pixel grid, with event shapes corresponding to one of the six
settings detailed in Table 2. These 200 maps are temporally independent, representing a stochastic
sequence of events over time. This design choice—the absence of temporal autocorrelation—is crucial
as it allows the set of maps to be shuffled, enabling multiple, unique simulation runs for the same

underlying disturbance regime.

Table S2. Disturbance Event Shape Settings

Category Shape Setting Description
The baseline setting from (Wang et at., 2024); all events are four-sided
Rectangle
rectangles.
Simple Regular Triangle All events are simple three-sides polygons.
Circle All events are uniform, non-directional circular pathes.
. Event complexity (number of sides) is proportional to event size; larger
Gradient h
events have more sides.
Complex Convex Complex All evgnt_s are generated with maximum complexity (49 sides), regardless
of their size.
The complexity of each event is a random integrer of sides between 3 and
Random 49

The complete spatiotemporal output of the generator for a single disturbance regime is stored in a
disturbance reference cube. This three-dimensional array (1000 x 1000 pixels X 200 years) serves as
the precise blueprint of all disturbance locations, sizes, and shapes over the entire simulation period. A
unique disturbance reference cube is generated for every combination of the six shape settings and the
disturbance regime parameters (i, o and ). This systematic approach allows us to isolate the impact of

event morphology on emergent biomass patterns. This methodology tests the robustness of our



framework, with the hypothesis that landscape-level biomass statistics are more sensitive to the

fundamental regime parameters than to the specific geometry of individual disturbance patches.

S1.3 Generating Synthetic Biomass Statistics with a Carbon Cycle Model

The carbon modeling workflow is conceptually identical to our previous framework. Each disturbance
reference cube is used to drive a simple, dynamic carbon cycle model at the pixel level. The annual

change in aboveground biomass is governed by the balance between carbon gains and losses:

dAGB
dt

where the total loss, Lioq;, 1S partitioned into episodic disturbance loss (L;) and continuous

= NPPy¢p — Liotar

background mortality (L; = AGB X K}, ).

The simulation experiment was designed to be comprehensive. Our full factorial design included every
combination of the four disturbance regime parameters (9 p values x 27 a values x 14 3 values x 8 Kb
values), five different levels of primary productivity (Photosynthetic capacity), and all six disturbance
shape settings. To account for stochasticity, each of these scenarios was replicated 10 times using a
different random shuffle of the annual disturbance maps, resulting in a total of 8,164,800 individual

simulation runs.

Each simulation runs for 200 years to ensure the landscape reaches a dynamically stable equilibrium.
To characterize this stable state, we extracted the Gross Primary Production (GPP) from the final
simulation year and the average aboveground biomass (AGB) map over the last 10 years. It is from this
10-year average AGB map that we derived a comprehensive vector of spatial statistics to serve as the
quantitative signature of the biomass pattern. This suite of metrics—encompassing first-order
distribution statistics and second-order texture metrics from a Gray-Level Co-occurrence Matrix
(GLCM)—is methodologically identical to the one derived from the observed biomass data described

in the following section, ensuring a consistent basis for comparison.

The final output is a massive dataset linking each unique set of input parameters to a corresponding
vector of output features (Table S3, 16 biomass pattern statistics plus the average GPP). This dataset
provides the foundation for training a machine learning algorithm to infer disturbance regimes from
biomass patterns.

Table S3. Features of Biomass and GPP used to train the Random Forest model

Type Feature Meaning
Mean Mean biomass value of domain
Median Median biomass value of domain

. Statistical Variance of biomass values in the
Variance

Histogram Features domain

o Statistical deviation of biomass values in the
Standard Deviation
domain

Ratio of the standard deviation to the mean
Coefficient of Variation
of biomass values




Measure of the asymmetry of the biomass

Skewness
value distribution
Measure of the weight of the tails or the
Kurtosis sharpness of the central peak of the

biomass value distribution

Percentile 25%

The 25™ percentile biomass value of the
domain (P25)

Percentile 75%

The 75 percentile biomass value of the
domain (P75)

Range

Distance between 90 percentile biomass
and 20" percentile biomass (P90 - P20)

Trimean

The Tukey’s trimean of the biomass values,
calculated as (P25 + 2*Median + P75)/4

Informative Feature

Shannon Entropy

A measure of the diversity or uncertainty in
the distribution of biomass values

Texture Features

Contrast

Measures how “sharp” or “different”
neighboring biomass values are. (High

contrast = big jumps between neighbors)

Correlation

Measures how related neighboring biomass
values are. (High correlation = neighbors are

usually very similar)

Energy

Measures how "uniform" or "orderly" the
biomass pattern is. (High energy = a very

simple, repetitive pattern)

Homogeneity

Measures the "smoothness" of the biomass
pattern. (High homogeneity = most
neighbors have very similar values)

Photosynthesis Feature

GPP

Mean Gross Primary Production at the end

of the simulation

S2. Determining the Optimal Aggregation Scale

S2.1 Mismatch between Model Simulation and EO
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Figure S2.1 Statistical overlap between simulated and observed biomass feature distributions.
The panels compare the percentage of overlap for 17 statistical features derived from (a) the original
forward modeling framework and (b) the improved framework, which incorporates an expanded
parameter space and non-rectangular disturbance shapes (see Supplementary S1 for details). The
overlap percentage is calculated based on the intersecting range between the frequency distributions of
simulated and observed values. Panels (c) and (d) show the specific distributions for the two most
important predictive features identified in Wang et al. (2024): GLCM Correlation and Coefficient of

Variation, respectively.
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Figure S2.2 The effect of spatial aggregation on the statistical overlap between simulated and
observed biomass features. The figure illustrates how statistical overlap changes as a function of
aggregation scale, which is represented by the kernel size used for averaging (larger kernels correspond
to coarser spatial resolutions). The results demonstrate a clear positive trend: as the level of aggregation
increases, the statistical overlap between the simulated and observed datasets consistently improves.
This confirms that spatial aggregation is an effective strategy for reducing the discrepancy between the

two domains, an effect that is particularly pronounced for key predictive features such as GLCM

Correlation and the Coefficient of Variation (CV).

S2.2 Weighted Overlap Ratio

To objectively identify the optimal aggregation scale, we developed the Feature Importance Weighted
Overlap Ratio (WOR), a robust metric that quantifies the similarity between the multi-dimensional
feature spaces of the simulated and observed datasets. The WOR calculation prioritizes the most
influential features (Correlation, Kurtosis, Skewness, and CV) by assessing their pairwise overlap and
weighting the result by their combined, scale-dependent feature importance (FI; ;). The pairwise
overlap ratio (OR;;) for any two feature distributions, p(x,y)and q(x,y), is calculated as the

intersecting volume of their probability density function:

ORy; = [[ min(p (. »).aCoydxdy

The final WOR score is a single value between 0 and 1 that measures statistical alignment, calculated

as:
WOR = Z FIi"]- X ORj;
ij



A higher WOR values signifies greater similarity and thus higher confidence in the model’s predictive

capability at that scale.

S2.3 Optimal Aggregation Scale
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Figure S2.3 Global distribution of biomass observation locations for optimal aggregation
analysis. The map displays the locations of the 24 globally distributed zones randomly selected for the
multi-level overlap analysis, categorized by biome. Each zone (e.g., Al, inset) is composed of 81
individual landscapes, where each landscape consists of a 1000x1000 pixel grid corresponding to
approximately 25%25 km at the equator. This design forms the hierarchical structure used for

evaluating the simulation-observation gap at the zone, region, biome, and global levels.

The optimal aggregation scale for generating global product was determined through a comprehensive,
multi-level sensitivity analysis using the Weighted Overlap Ratio (WOR). This was conducted across a
nested hierarchy of observational levels, based on a global distribution of landscape zones sampled
from Boreal, Temperate, and Humid Biomes (Fig S2.3). The WOR was calculated at each level of the
hierarchy by progressively expanding the observational pool: from individual zones, to regions (e.g.,

Region A= pool of A1, A2, A3), to biomes, and finally to the entire global dataset.
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Figure S2.4 Multi-scale Weighted Overlap Ratio (WOR) analysis across hierarchical spatial
domains. The figure displays WOR heatmaps for four distinct observational levels: (a) individual
landscape zones (A1-H3), (b) regional groups (e.g., A, B, C), (c) biome groups (Humid, Temperate,
Boreal), and (d) the global scale. For each heatmap, the rows represent different aggregation kernel
sizes, and the columns represent the different spatial domains (e.g., individual zones, regions). Color
intensity represents the WOR percentage (0-100%), indicating the statistical similarity between
observed and simulated datasets when both are processed with the same aggregation scale. The
conceptual diagram (bottom right) illustrates the hierarchical spatial organization from landscape zones

through regional and biome aggregations to global scale.

The result of the hierarchical WOR analysis (Fig S2.4) reveals several key findings. First, a consistent
trend was observed across all landscape zones: as the degree of aggregation increases, the WOR value
improves, highlighting the general effectiveness of this strategy in narrowing the simulation-
observation gap. For most zones, an aggregation with a kernel size of 10 is sufficient to achieve a
WOR greater than 90%, indicating good statistical consistency. Second, this trend holds at higher
spatial levels (region, biome, and global), confirming the value of aggregation. Specifically, boreal
ecosystems consistently exhibit a relatively higher WOR compared to temperate and humid biomes at
equivalent aggregation scales. Third, by setting a target threshold of 90% for the WOR and considering

that prediction accuracy is highest at smaller kernel sizes, a kernel size of 10 emerges as the optimal




choice for global-scale prediction. While this represents the global optimum, the framework allows for

this scale to be adjusted for specific regional or biome-level analyses.

S3. Uncertainty Assessment based on Meyer and Pebesma’s framework
S3.1 Theoretical Formulation

The DI metric quantifies the relative dissimilarity of a prediction point to the training data space:

D,

DI, =
7 Daye

Where DI, is the minimum weighted Euclidean distance from the prediction point to any training
sample, D,y is the average weighted distance between training samples. The weighting is based on
feature importance derived from aggregated Random Forest models, ensuring that more informative
features contribute more to the dissimilarity calculation.

For a prediction point x,, and training data {x;}]-,, the weighted distance is computed as:

d
, 2
D; = min Z w; (%, — % )
=

where w; represents the importance weight for feature j,

The D,y (Distance Average) computes the average pairwise distances between training samples to

establish a baseline for the DI metric:

d

1
Dave = mz PRGICTRED

i<k |j=1

S3.2 Scalable Implementation Workflow

Directly applying the DI formulation described in Section 2.5.1 to large-scale datasets is
computationally prohibitive due to the quadratic complexity of calculating the pairwise distance matrix
for the full training dataset (T). To address this challenge, we develop a scalable workflow that
decouples the calculation into an efficient pre-calculation for each prediction point. This process
involves three key steps: data standardization, baseline dissimilarity pre-calculation, and the final DI
computation.

To ensure that all features contribute proportionally to the distance metric and to mitigate the influence
of extreme outliers, each feature f is independently standardized, we use a robust percentile-based
normalization where each value x; ; of a sample i for a feature f is scaled to the range defined by the

15t and 99" percentiles of that feature in the training data:



o xir — Pi(f)
Y Poo(f) — P1(f)

Where x; ¢ is the normalized feature value, and Pso(f) and P;(f) are the 99t and 1% percentiles of
feature f across the training set T, respectively. All subsequent calculations are performed on these

normalized features.

The average pairwise distance between all samples in the training data, Dg,,4, serves as a stable baseline
for the DI metric. To compute this efficiently, we pre-calculate it on a representative and
computationally tractable subset of the training data. First, a small subset Ty < T is sampled (typically
0.1% of the full dataset) to maintain statistical representativeness while ensuring computational
feasibility. For each feature f, the unweighted average distance, Dg,4(f), is computed across all pairs

of points within this subset:

ng—1 ng

1
Dayg(f) = @ Z |xi ;= x] ]
2

i=1 j=i+1
Where n; is the number of samples in the subset T;. These single-feature average distances are pre-
calculated and stored for each cross-validation fold, forming the building blocks for the final weighted

baseline dissimilarity, Dg,q. With the component values pre-calculated, the final DI for a new

prediction point (observed statistical features from a realistic landscape), X,y¢q, is computed efficiently.

First, the weighted average distance d is assembled by combining the pre-calculated single-feature
distances with their corresponding feature importance weights, wy, derived from the trained Random

Forest model:

d
d= wa ' Davg(f)
=1

Where d is the total number of features, 17 in this study.
Next, the minimum weighted Euclidean distance, dj, from the new prediction point Xp,.q to any

sample in the full training set T is calculated:

da
— i ! — ! 2
dy (xpred'T) = rlrél?p \/ § o1 Wy (xpred.f xi.f)

Finally, the Dissimilarity Index for the prediction point is computed as the ratio of these two values:

dk (xpred)
d

This scalable workflow enables the practical application of the DI framework to extensive datasets by

DI(xprea) =

strategically avoiding the most computationally expensive operation while preserving the theoretical

integrity of the uncertainty metric.

S4. Predictions
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Figure S4.1 Global map of the number of 25 km x 25 km landscape tiles aggregated into each
0.25° grid cell. This tile _count layer serves as an indicator of sampling density, showing the number of
underlying tile-level predictions used to calculate each grid cell value. Higher values indicate that the

gridded cell value is derived from a more robust spatial sample.
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