
Supplement 

S1. The Simulation Framework: Linking Disturbance and Biomass 

Building on our previous work (Wang et al., 2024), we use a forward-modeling framework to quantify 

the link between disturbance regime and the resulting biomass statistics. The core idea is to first 

simulate how a wide array of known, parameterized disturbance regimes manifest as synthetic, 

spatially explicit patterns of aboveground biomass. By systematically generating these cause-and effect 

pairings, we can establish a statistical link that later allows us to retrieve the problem: inferring the 

characteristics of a known disturbance regime from observable biomass patterns. 

 

The workflow proceeds in four main stages: 1) we parameterize a disturbance regime using a set of key 

attributes that control the extent, frequency, intensity and background state of forest mortality; 2) we 

stochastically generate multi-year sequences of disturbance events on a simulated landscape, where the 

size, location, and shape of each event are governed by the defined regime parameters; 3) we apply 

these disturbance sequences to a simple carbon cycle model to simulate the dynamic change in AGB 

across the landscape over centuries. 4) once the simulated landscape reaches a dynamically stable state, 

that is, a shifting mosaic of different successional stages, a comprehensive suite of statistical metrics 

from the AGB map is extracted, which quantitatively describes the emergent biomass pattern. This 

forward-modeling approach creates a large synthetic dataset where known disturbance regime 

parameters are linked to unique biomass pattern signatures, forming the basis for training a predictive 

model. 

S1.1 Parameterization of disturbance regime 

We characterize the disturbance regime acting upon a landscape using four key parameters, three of 

them—probability scale (μ), clustering degree (α), and intensity slope (β)—are adapted from our 

previous framework (Wang et al., 2024), but with a significant modification to the parameter range for 

α. Specifically, we now include lower values for the clustering degree, which allows for the simulation 

of fewer, larger, and more contiguous events. This adjustment is crucial for representing large-scale, 

intense disturbances such as stand-replacing fires. Another major advancement in our parameterization 

is the explicit inclusion of the background mortality rate (Kb) as a fourth independent parameter to be 

predicted, allowing us to disentangle the effects of baseline mortality from episodic disturbances and 

address a potential source of equifinality in the previous framework. The four parameters are detailed 

in Table 1. 

 

Table S1. Parameters Defining the Simulated Disturbance Regimes 

Parameter Symbol Definition 
Proposed 

Range 
Intervals Count Role in Simulation 

Probability 
Scale μ 

The mean fraction of the 
total domain area 
affected by disturbance 
events annually. 

0.01 - 0.05 0.005 9 
Controls the overall 
frequency and extent of 
disturbances. 

Clustering 
Degree α 

The scaling exponent in 
the power-law function 

0.5 - 1.8 0.05 27 
Governs the spatial 
pattern of disturbance, 



(n ∝ z−α) relating the 

number of events (n) to 
their size (z). 

where increasing 
values shift the pattern 
from large, contiguous 
events to many small, 
fragmented 
disturbances. 

Intensity 
Slope β 

The slope of the 
relationship defining the 
fraction of AGB lost as a 
function of disturbance 
event size. 

0.03 - 0.5 
0.01/0.05 

/0.1 
14 

Determines the severity 
of disturbance events. 

Background 
Mortality Kb 

The constant, first-order 
mortality rate 
representing baseline 
carbon loss process like 
litterfall, root exudates, 
and herbivory. 

0.025 - 0.2 0.025 8 

Controls the 
background carbon 

turnover time (τ =  
1

Kb
) 

and influences the 
maximum potential 
biomass. 

S1.2 Simulating Spatially-Explicit Disturbance Events 

To translate our parameterized disturbance regime into concrete spatial patterns, we developed an 

advanced disturbance event generator. This tool is a key advancement from our previous framework, 

which was limited to computationally efficient but unrealistic rectangular shapes. The new generator is 

capable of producing disturbance events with a wide range of morphological complexities, allowing us 

to enhance the realism of our simulations and test the influence of event geometry on emergent 

biomass patterns. 

 

For each combination of disturbance regime parameters, the generator creates a set of 200 annual 

disturbance maps on a 1000 × 1000 pixel grid, with event shapes corresponding to one of the six 

settings detailed in Table 2. These 200 maps are temporally independent, representing a stochastic 

sequence of events over time. This design choice—the absence of temporal autocorrelation—is crucial 

as it allows the set of maps to be shuffled, enabling multiple, unique simulation runs for the same 

underlying disturbance regime. 

 

Table S2. Disturbance Event Shape Settings 

Category Shape Setting Description 

Simple Regular 

Rectangle 
The baseline setting from (Wang et at., 2024); all events are four-sided 
rectangles. 

Triangle All events are simple three-sides polygons. 

Circle All events are uniform, non-directional circular pathes. 

Complex Convex 

Gradient 
Event complexity (number of sides) is proportional to event size; larger 
events have more sides. 

Complex 
All events are generated with maximum complexity (49 sides), regardless 
of their size. 

Random 
The complexity of each event is a random integrer of sides between 3 and 
49. 

 

The complete spatiotemporal output of the generator for a single disturbance regime is stored in a 

disturbance reference cube. This three-dimensional array (1000 × 1000 pixels × 200 years) serves as 

the precise blueprint of all disturbance locations, sizes, and shapes over the entire simulation period. A 

unique disturbance reference cube is generated for every combination of the six shape settings and the 

disturbance regime parameters (μ, α and β). This systematic approach allows us to isolate the impact of 

event morphology on emergent biomass patterns. This methodology tests the robustness of our 



framework, with the hypothesis that landscape-level biomass statistics are more sensitive to the 

fundamental regime parameters than to the specific geometry of individual disturbance patches.  

S1.3 Generating Synthetic Biomass Statistics with a Carbon Cycle Model 

The carbon modeling workflow is conceptually identical to our previous framework. Each disturbance 

reference cube is used to drive a simple, dynamic carbon cycle model at the pixel level. The annual 

change in aboveground biomass is governed by the balance between carbon gains and losses: 

𝑑𝐴𝐺𝐵

𝑑𝑡
= 𝑁𝑃𝑃𝐴𝐺𝐵 − 𝐿𝑡𝑜𝑡𝑎𝑙  

where the total loss, 𝐿𝑡𝑜𝑡𝑎𝑙 , is partitioned into episodic disturbance loss ( 𝐿𝑑 ) and continuous 

background mortality (𝐿𝑑 = 𝐴𝐺𝐵 × 𝐾𝑏 ). 

 

The simulation experiment was designed to be comprehensive. Our full factorial design included every 

combination of the four disturbance regime parameters (9 μ values × 27 α values × 14 β values × 8 Kb 

values), five different levels of primary productivity (Photosynthetic capacity), and all six disturbance 

shape settings. To account for stochasticity, each of these scenarios was replicated 10 times using a 

different random shuffle of the annual disturbance maps, resulting in a total of 8,164,800 individual 

simulation runs. 

 

Each simulation runs for 200 years to ensure the landscape reaches a dynamically stable equilibrium. 

To characterize this stable state, we extracted the Gross Primary Production (GPP) from the final 

simulation year and the average aboveground biomass (AGB) map over the last 10 years. It is from this 

10-year average AGB map that we derived a comprehensive vector of spatial statistics to serve as the 

quantitative signature of the biomass pattern. This suite of metrics—encompassing first-order 

distribution statistics and second-order texture metrics from a Gray-Level Co-occurrence Matrix 

(GLCM)—is methodologically identical to the one derived from the observed biomass data described 

in the following section, ensuring a consistent basis for comparison. 

 

The final output is a massive dataset linking each unique set of input parameters to a corresponding 

vector of output features (Table S3, 16 biomass pattern statistics plus the average GPP). This dataset 

provides the foundation for training a machine learning algorithm to infer disturbance regimes from 

biomass patterns. 

Table S3. Features of Biomass and GPP used to train the Random Forest model 

Type Feature Meaning 

Histogram Features 

Mean Mean biomass value of domain 

Median Median biomass value of domain 

Variance 
Statistical Variance of biomass values in the 

domain 

Standard Deviation 
Statistical deviation of biomass values in the 

domain 

Coefficient of Variation 
Ratio of the standard deviation to the mean 

of biomass values 



Skewness 
Measure of the asymmetry of the biomass 

value distribution 

Kurtosis 

Measure of the weight of the tails or the 

sharpness of the central peak of the 

biomass value distribution 

Percentile 25% 
The 25th percentile biomass value of the 

domain (P25) 

Percentile 75% 
The 75th percentile biomass value of the 

domain (P75) 

Range 
Distance between 90th percentile biomass 

and 20th percentile biomass (P90 - P20) 

Trimean 
The Tukey’s trimean of the biomass values, 

calculated as (P25 + 2*Median + P75)/4 

Informative Feature Shannon Entropy 
A measure of the diversity or uncertainty in 

the distribution of biomass values 

Texture Features 

Contrast 

Measures how “sharp” or “different” 

neighboring biomass values are. (High 

contrast = big jumps between neighbors) 

Correlation 

Measures how related neighboring biomass 

values are. (High correlation = neighbors are 

usually very similar) 

Energy 

Measures how "uniform" or "orderly" the 

biomass pattern is. (High energy = a very 

simple, repetitive pattern) 

Homogeneity 

Measures the "smoothness" of the biomass 

pattern. (High homogeneity = most 

neighbors have very similar values) 

Photosynthesis Feature GPP 
Mean Gross Primary Production at the end 

of the simulation 

 

S2. Determining the Optimal Aggregation Scale 

S2.1 Mismatch between Model Simulation and EO 

 



Figure S2.1 Statistical overlap between simulated and observed biomass feature distributions. 

The panels compare the percentage of overlap for 17 statistical features derived from (a) the original 

forward modeling framework and (b) the improved framework, which incorporates an expanded 

parameter space and non-rectangular disturbance shapes (see Supplementary S1 for details). The 

overlap percentage is calculated based on the intersecting range between the frequency distributions of 

simulated and observed values. Panels (c) and (d) show the specific distributions for the two most 

important predictive features identified in Wang et al. (2024): GLCM Correlation and Coefficient of 

Variation, respectively. 

 

 

Figure S2.2 The effect of spatial aggregation on the statistical overlap between simulated and 

observed biomass features. The figure illustrates how statistical overlap changes as a function of 

aggregation scale, which is represented by the kernel size used for averaging (larger kernels correspond 

to coarser spatial resolutions). The results demonstrate a clear positive trend: as the level of aggregation 

increases, the statistical overlap between the simulated and observed datasets consistently improves. 

This confirms that spatial aggregation is an effective strategy for reducing the discrepancy between the 

two domains, an effect that is particularly pronounced for key predictive features such as GLCM 

Correlation and the Coefficient of Variation (CV). 

S2.2 Weighted Overlap Ratio 

To objectively identify the optimal aggregation scale, we developed the Feature Importance Weighted 

Overlap Ratio (WOR), a robust metric that quantifies the similarity between the multi-dimensional 

feature spaces of the simulated and observed datasets. The WOR calculation prioritizes the most 

influential features (Correlation, Kurtosis, Skewness, and CV) by assessing their pairwise overlap and 

weighting the result by their combined, scale-dependent feature importance ( 𝐹𝐼𝑖,𝑗
′ ). The pairwise 

overlap ratio ( 𝑂𝑅𝑖,𝑗 ) for any two feature distributions, p(x, y) and q(x, y) , is calculated as the 

intersecting volume of their probability density function: 

 

𝑂𝑅𝑖,𝑗 = ∬ 𝑚𝑖𝑛(𝑝(𝑥, 𝑦), 𝑞(𝑥, 𝑦))𝑑𝑥𝑑𝑦 

 

The final WOR score is a single value between 0 and 1 that measures statistical alignment, calculated 

as: 

WOR =  ∑  

i,j

FIi,j
′  ×  ORi,j 

 



A higher WOR values signifies greater similarity and thus higher confidence in the model’s predictive 

capability at that scale. 

 

S2.3 Optimal Aggregation Scale 

 

 

Figure S2.3 Global distribution of biomass observation locations for optimal aggregation 

analysis. The map displays the locations of the 24 globally distributed zones randomly selected for the 

multi-level overlap analysis, categorized by biome. Each zone (e.g., A1, inset) is composed of 81 

individual landscapes, where each landscape consists of a 1000×1000 pixel grid corresponding to 

approximately 25×25 km at the equator. This design forms the hierarchical structure used for 

evaluating the simulation-observation gap at the zone, region, biome, and global levels. 

 

The optimal aggregation scale for generating global product was determined through a comprehensive, 

multi-level sensitivity analysis using the Weighted Overlap Ratio (WOR). This was conducted across a 

nested hierarchy of observational levels, based on a global distribution of landscape zones sampled 

from Boreal, Temperate, and Humid Biomes (Fig S2.3). The WOR was calculated at each level of the 

hierarchy by progressively expanding the observational pool: from individual zones, to regions (e.g., 

Region A= pool of A1, A2, A3), to biomes, and finally to the entire global dataset. 

 



 

Figure S2.4 Multi-scale Weighted Overlap Ratio (WOR) analysis across hierarchical spatial 

domains. The figure displays WOR heatmaps for four distinct observational levels: (a) individual 

landscape zones (A1-H3), (b) regional groups (e.g., A, B, C), (c) biome groups (Humid, Temperate, 

Boreal), and (d) the global scale. For each heatmap, the rows represent different aggregation kernel 

sizes, and the columns represent the different spatial domains (e.g., individual zones, regions). Color 

intensity represents the WOR percentage (0-100%), indicating the statistical similarity between 

observed and simulated datasets when both are processed with the same aggregation scale. The 

conceptual diagram (bottom right) illustrates the hierarchical spatial organization from landscape zones 

through regional and biome aggregations to global scale. 

 

The result of the hierarchical WOR analysis (Fig S2.4) reveals several key findings. First, a consistent 

trend was observed across all landscape zones: as the degree of aggregation increases, the WOR value 

improves, highlighting the general effectiveness of this strategy in narrowing the simulation-

observation gap. For most zones, an aggregation with a kernel size of 10 is sufficient to achieve a 

WOR greater than 90%, indicating good statistical consistency. Second, this trend holds at higher 

spatial levels (region, biome, and global), confirming the value of aggregation. Specifically, boreal 

ecosystems consistently exhibit a relatively higher WOR compared to temperate and humid biomes at 

equivalent aggregation scales. Third, by setting a target threshold of 90% for the WOR and considering 

that prediction accuracy is highest at smaller kernel sizes, a kernel size of 10 emerges as the optimal 



choice for global-scale prediction. While this represents the global optimum, the framework allows for 

this scale to be adjusted for specific regional or biome-level analyses. 

 

S3. Uncertainty Assessment based on Meyer and Pebesma’s framework  

S3.1 Theoretical Formulation 

The DI metric quantifies the relative dissimilarity of a prediction point to the training data space: 

𝐷𝐼𝑘 =
𝐷𝐼

𝐷𝐴𝑉𝐺
 

Where 𝐷𝐼𝑘  is the minimum weighted Euclidean distance from the prediction point to any training 

sample, 𝐷𝐴𝑉𝐺 is the average weighted distance between training samples. The weighting is based on 

feature importance derived from aggregated Random Forest models, ensuring that more informative 

features contribute more to the dissimilarity calculation. 

For a prediction point 𝑥𝑝 and training data {𝑥𝑖}𝑖=1
𝑛 , the weighted distance is computed as: 

𝐷𝐼 = min
𝑖

√∑ 𝑤𝑗(𝑥𝑝,𝑗 − 𝑥𝑖,𝑗)
2

𝑑

𝑗=1

 

where 𝑤𝑗 represents the importance weight for feature 𝑗,  

The 𝐷𝐴𝑉𝐺 (Distance Average) computes the average pairwise distances between training samples to 

establish a baseline for the DI metric: 

𝐷𝐴𝑉𝐺 =
1

𝑛(𝑛 − 1)/2
∑ √∑ 𝑤𝑗(𝑥𝑖,𝑗 − 𝑥𝑘,𝑗)

2
𝑑

𝑗=1𝑖<𝑘

 

S3.2 Scalable Implementation Workflow 

Directly applying the DI formulation described in Section 2.5.1 to large-scale datasets is 

computationally prohibitive due to the quadratic complexity of calculating the pairwise distance matrix 

for the full training dataset (Τ). To address this challenge, we develop a scalable workflow that 

decouples the calculation into an efficient pre-calculation for each prediction point. This process 

involves three key steps: data standardization, baseline dissimilarity pre-calculation, and the final DI 

computation. 

To ensure that all features contribute proportionally to the distance metric and to mitigate the influence 

of extreme outliers, each feature 𝑓 is independently standardized, we use a robust percentile-based 

normalization where each value 𝑥𝑖,𝑗 of a sample 𝑖 for a feature 𝑓 is scaled to the range defined by the 

1st and 99th percentiles of that feature in the training data: 



𝑥𝑖,𝑓
′ =

𝑥𝑖,𝑓  −  𝑃1(𝑓)

𝑃99(𝑓) − 𝑃1(𝑓)
 

Where 𝑥𝑖,𝑓
′  is the normalized feature value, and 𝑃99(𝑓) and 𝑃1(𝑓) are the 99th and 1st percentiles of 

feature 𝑓 across the training set Τ, respectively. All subsequent calculations are performed on these 

normalized features. 

 

The average pairwise distance between all samples in the training data, 𝐷𝑎𝑣𝑔, serves as a stable baseline 

for the DI metric. To compute this efficiently, we pre-calculate it on a representative and 

computationally tractable subset of the training data. First, a small subset 𝑇𝑠 ⊂ 𝑇 is sampled (typically 

0.1% of the full dataset) to maintain statistical representativeness while ensuring computational 

feasibility. For each feature 𝑓, the unweighted average distance, 𝐷𝑎𝑣𝑔(𝑓), is computed across all pairs 

of points within this subset: 

𝐷𝑎𝑣𝑔(𝑓) =
1

(𝑛𝑠
2 )

∑  

𝑛𝑠−1

𝑖=1

∑  

𝑛𝑠

𝑗=𝑖+1

|𝑥𝑖,𝑓
′ − 𝑥𝑗,𝑓

′ | 

Where 𝑛𝑠 is the number of samples in the subset 𝑇𝑠. These single-feature average distances are pre-

calculated and stored for each cross-validation fold, forming the building blocks for the final weighted 

baseline dissimilarity, 𝐷𝑎𝑣𝑔 . With the component values pre-calculated, the final DI for a new 

prediction point (observed statistical features from a realistic landscape), 𝑥𝑝𝑟𝑒𝑑, is computed efficiently. 

 

First, the weighted average distance 𝑑̅ is assembled by combining the pre-calculated single-feature 

distances with their corresponding feature importance weights, 𝑤𝑓, derived from the trained Random 

Forest model: 

𝑑̅ =  ∑ 𝑤𝑓 ∙ 𝐷𝑎𝑣𝑔(𝑓)

𝑑

𝑗=1

 

Where d is the total number of features, 17 in this study. 

Next, the minimum weighted Euclidean distance, 𝑑𝑘 , from the new prediction point 𝑥𝑝𝑟𝑒𝑑  to any 

sample in the full training set Τ is calculated: 

𝑑𝑘(𝑥𝑝𝑟𝑒𝑑 , Τ) = min
𝑖∈𝑇

(√∑ 𝑤𝑓(𝑥𝑝𝑟𝑒𝑑,𝑓
′ − 𝑥𝑖,𝑓

′ ) 2
𝑑

𝑓=1
)  

Finally, the Dissimilarity Index for the prediction point is computed as the ratio of these two values: 

𝐷𝐼(𝑥𝑝𝑟𝑒𝑑) =
𝑑𝑘(𝑥𝑝𝑟𝑒𝑑)

𝑑̅
 

This scalable workflow enables the practical application of the DI framework to extensive datasets by 

strategically avoiding the most computationally expensive operation while preserving the theoretical 

integrity of the uncertainty metric. 

 

 

S4. Predictions 

 



 

Figure S4.1 Global map of the number of 25 km x 25 km landscape tiles aggregated into each 

0.25° grid cell. This tile_count layer serves as an indicator of sampling density, showing the number of 

underlying tile-level predictions used to calculate each grid cell value. Higher values indicate that the 

gridded cell value is derived from a more robust spatial sample. 
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