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Key points: 4 

⚫ Rigorous data quality control procedures were applied to clean nutrient and 5 

hydrographic data collected from multiple sources in the North Pacific, following 6 

state-of-the-art practices. 7 

⚫ Three machine learning models demonstrated low errors across diverse validation 8 

strategies. 9 

⚫ We reconstructed a monumental database of ~473 million nutrient data points 10 

across 1.92 million stations (1895–2024), expanding the number of nutrient data 11 

points by a factor of 2,127–2,393 compared to original observations. 12 

 13 

  14 
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Abstract 15 

Nutrients play a critical role in oceanic primary productivity and the biological pump. 16 

However, compared to hydrographic parameters such as temperature and salinity, 17 

nutrient observations are limited due to their labor-intensive and costly measurements. 18 

Thus, nutrient observations are several orders of magnitude sparser than hydrographic 19 

observations. In this study, we first established a rigorous data quality control procedure 20 

to clean the hydrographic and nutrient (including NO₃⁻, NO₂⁻, DIP, and Si(OH)₄) 21 

observations collected from World Ocean Database (WOD) and CLIVAR and Carbon 22 

Hydrographic Data Office (CCHDO) in the North Pacific. Subsequently, the cleaned 23 

and high-quality CCHDO dataset was used to train three machine learning models—24 

Random Forest, Light Gradient Boosting Machine (LightGBM), and Gaussian Process 25 

Regression—to establish relationships between nutrient concentrations and key 26 

variables, including space coordinates (longitude, latitude, and depth), time variables 27 

(year and month), and water mass properties (indexed by potential temperature and 28 

salinity). Validation shows that the reconstruction closely matches the observations, 29 

with RMSEs of <1.41, <0.071, <0.089 and <3.07 mol kg-1 for NO₃⁻, NO₂⁻, DIP, and 30 

Si(OH)₄, respectively. The validated models were then applied to reconstruct nutrient 31 

concentrations from the hydrographic observations in WOD, most of which lacked 32 

direct nutrient measurements. This resulted in ~473 million reconstructed nutrient data 33 

points across 1.92 million stations for each nutrient, spanning from 1895 to 2024, 34 

representing a 2,127 to 2,393–fold increase compared to the original nutrient 35 

observations in the North Pacific (197,539 to 222,234). This new dataset will be 36 

valuable for studying nutrient variability under climate change and anthropogenic 37 

influences, and for providing transient boundary conditions in ocean biogeochemical 38 

models. The dataset generated in this study is openly available on Zenodo at 39 

https://zenodo.org/records/17451417. 40 

41 
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1 Introduction 42 

Bio-essential elements such as nitrogen, phosphorus, and silicon constitute the 43 

fundamental material basis for marine ecosystems. Their concentrations govern 44 

primary and new production (e.g., Browning et al., 2023; Lipschultz et al., 2002; Moore 45 

et al., 2013) and subsequently regulate oceanic uptake of atmospheric CO₂ (Deutsch 46 

and Weber, 2012; Sigman and Hain, 2012). However, traditional nutrient data collection 47 

relies heavily on ship-based cruises and subsequent sample analysis, which are labor-48 

intensive, inefficient, and costly (Du et al., 2021). Consequently, compared to the 49 

abundant hydrographic data collected from multiple platforms such as Conductivity-50 

Temperature-Depth (CTD) and the Array for Real-time Geostrophic Oceanography 51 

(Argo) profilers, etc., nutrient observations are sparse in the ocean. These sparse 52 

nutrient observations limit our understanding of both small-scale and long-term nutrient 53 

variations and our comprehensive understanding of the mechanisms driving changes in 54 

oceanic production and ecosystem dynamics (Bidigare et al., 2009; Yasunaka et al., 55 

2021; Karl et al., 2021). 56 

To address this data sparsity, two main approaches have been commonly employed 57 

to augment the spatiotemporal coverage of the observed nutrient data. The first is 58 

objective analysis, which interpolates field measurements to generate broader spatial 59 

coverage, as implemented in products such as the World Ocean Atlas (WOA) (e.g., 60 

Reagan et al., 2023; Lee et al., 2023). The second is data fusion, which establishes 61 

statistical relationships between nutrients and environmental predictors such as 62 

temperature (e.g., Kamykowski, 1987; Kamykowski et al., 2002; Kamykowski, 2008), 63 

density (e.g., Dugdale et al., 1989; Switzer et al., 2003), oxygen, salinity, and 64 

chlorophyll a (Goes et al., 1999; Palacios et al., 2013; Sarangi et al., 2011). Statistical 65 

methods including cubic regression, multiple linear regression (Steinhoff et al., 2010; 66 

Arteaga et al., 2015; Madani et al., 2024; Zhong et al., 2024), and generalized additive 67 

models (Palacios et al., 2013) are frequently used in these efforts.  68 

Recent studies have demonstrated the potential of machine learning for enhancing 69 

the spatial and temporal coverage of nutrient data. For instance, Możejko and Gniot 70 
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(2008) used Artificial Neural Networks (ANNs) to model time series of total 71 

phosphorous concentrations in the Odra River. Self-organizing maps (SOMs) were used 72 

to estimate mixed layer nitrate and sea surface nutrients in the open ocean (Steinhoff et 73 

al., 2010; Yasunaka et al., 2014). Liu et al. (2022) applied Support Vector Regression, 74 

Random Forest Regression, and ANNs to reconstruct monthly surface nutrient 75 

concentrations in the Yellow and Bohai Seas from 2003 to 2019. Their results revealed 76 

pronounced seasonal and spatial variability in nutrient levels and underscored the 77 

influence of environmental drivers such as sea surface temperature and salinity. 78 

Similarly, Sundararaman and Shanmugam (2024) employed Gaussian Process 79 

Regression (GPR) models to estimate global ocean surface macronutrient 80 

concentrations using satellite-derived data, achieving high accuracy and demonstrating 81 

their suitability for large-scale marine ecosystem monitoring. Yang et al. (2024) 82 

employed a U-net and Earthformer to reconstruct the three-dimensional nitrate 83 

distribution by integrating surface data including wind speed, sea surface temperature, 84 

chlorophyll a, solar radiation, and precipitation in the Indian Ocean. These 85 

advancements highlight the expanding role of machine learning in marine biochemical 86 

data fusion and provide novel insights into nutrient dynamics and their ecological 87 

impacts. 88 

However, many existing approaches rely solely on mathematical extrapolation or 89 

data fusion and often neglect the influence of physical seawater properties, such as 90 

water mass characteristics. Using the relationship between nutrient concentration and 91 

water masses (indexed by temperature and salinity), Du et al. (2021) successfully 92 

predicted the nutrient concentrations in the South China Sea. However, the water 93 

masses and their relationship with nutrients can also vary with space and time, which 94 

should also be taken into consideration. In addition, most research has predominantly 95 

focused on nutrient predictions at surface waters—driven by readily available remote-96 

sensing measurements of sea surface temperature and chlorophyll a—while subsurface 97 

nutrient distributions remain poorly studied. 98 

https://doi.org/10.5194/essd-2025-654
Preprint. Discussion started: 12 November 2025
c© Author(s) 2025. CC BY 4.0 License.



6 

 

The North Pacific Ocean is one of the largest marine biomes in the global ocean (Karl 99 

and Church, 2017), spanning a broad latitudinal range from tropical to subpolar regions. 100 

It includes a subtropical gyre characterized by extremely low surface nutrient 101 

concentrations due to Ekman convergence (e.g., Dave and Lozier, 2010; Browning et 102 

al., 2021; Dai et al., 2023), and subpolar gyres in the north with elevated nutrient 103 

concentrations driven by Ekman divergence. The North Pacific Ocean is influenced by 104 

multiple upwelling and current systems, including the equatorial and California 105 

upwelling systems, North Equatorial Current, Kuroshio Current, etc., which further 106 

change nutrient levels in these regions. In addition, the North Pacific Ocean exhibits 107 

abundant mesoscale eddies (Chelton et al., 2007), which play a critical role in 108 

redistributing nutrients and modulating biological activity (e.g., Benitez-Nelson et al., 109 

2007; Ascani et al., 2013; Barone et al., 2022). The interaction of these multi-scale 110 

physical processes with biogeochemical processes results in highly dynamic nutrient 111 

variability in the upper ocean. Therefore, high-resolution and extensive nutrient 112 

datasets are essential to accurately resolve the nutrient dynamics. Although the WOA 113 

(Reagan et al., 2023) serves as a primary nutrient database and is widely used for 114 

boundary conditions in biogeochemical models, its applicability is constrained by 115 

relatively coarse spatial resolution (currently 1°) and climatological smoothing, which 116 

limit its ability to represent mesoscale and episodic features or to capture long-term 117 

variations. 118 

In the North Pacific, Yasunaka et al. (2014) used the SOMs technique to generate 119 

monthly surface nutrient maps by integrating sea surface temperature, salinity, 120 

chlorophyll a, and mixed layer depth. These maps revealed seasonal and interannual 121 

variability in surface nutrient distributions in the northern North Pacific. To investigate 122 

long-term changes, Yasunaka et al. (2016) applied Optimal Interpolation to analyze the 123 

spatial and temporal evolution of surface nutrient concentrations. Lee et al. (2023) 124 

provided spatiotemporally gridded nitrate and phosphate data in northwest Pacific from 125 

1980 to 2019 using the spatiotemporal kriging technique. Wang et al. (2023) used the 126 
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deep neural network model to estimate nitrate concentrations in the upper northwestern 127 

Pacific Ocean using temperature and salinity as the primary input parameters. 128 

In this study, we first collected nutrient data from public databases and applied 129 

rigorous quality control procedures. Using machine learning methods, we established 130 

relationships between nutrient concentrations and water mass properties, spatial 131 

coordinates, and temporal variables. We then evaluated the model performance through 132 

a comprehensive error analysis. Finally, the validated models were applied to 133 

reconstruct historical nutrient distributions across the North Pacific from 1895 to 2024. 134 

2 Data and Methods 135 

2.1 Observation data 136 

Field observations were originally downloaded from the Climate and Ocean: 137 

Variability, Predictability, and Change (CLIVAR) and Carbon Hydrographic Data 138 

Office (CCHDO), which distributes vessel-based hydrographic data from programs 139 

such as the World Ocean Circulation Experiment (WOCE), Joint Global Ocean Flux 140 

Study (JGOFS), GO-SHIP, CLIVAR, and other repeat hydrography efforts 141 

(https://cchdo.ucsd.edu/). In total, 631 cruises were collected in the North Pacific, 142 

comprising 228,091, 197,617, 225,403, and 212,660 data points for NO₃⁻ + NO₂⁻ 143 

(NOₓ⁻), NO₂⁻, DIP, and Si(OH)₄, respectively (Table 1). The dataset spans from 1973 144 

to 2022 and was downloaded on October 1 2024; any updates made after this date were 145 

not included in this study. The data cover a geographic range from 120.08°E to 95.17°W 146 

and from 2.05°S to 60.25°N. The study domain was slightly extended into the South 147 

Pacific to mitigate potential boundary effects during model development. 148 

 149 

 150 

 151 

 152 

 153 

 154 
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Table 1. Information on nutrients and their associated hydrographic data collected 155 

from CLIVAR and Carbon Hydrographic Data Office (CCHDO) and the data 156 

information after quality control (QC). 157 

 
Original data information Data information after QC 

Data Stations Data Stations 

Temperature 328502 15274 327688 15125 

Salinity 311871 15274 328275 15269 

NOx⁻ 228091 9588 214943 9120 

NO₂⁻ 197617 8233 197539 8228 

DIP 225403 9623 222234 9474 

Si(OH)4 212660 8220 210447 8121 

Hydrographic data for nutrient reconstruction were obtained from the World Ocean 158 

Database (WOD; Mishonov et al., 2024), which compiles observations from various 159 

platforms, including Autonomous Pinniped Bathythermograph (APB), Conductivity-160 

Temperature-Depth profiler (CTD), Drifting Buoy (DRB), Glider (GLD), Mechanical 161 

Bathythermograph (MBT), Moored Buoy (MRB), Ocean Station Data (OSD), Profiling 162 

Float (PFL), and Undulating Oceanographic Recorder (UOR). Since nutrient 163 

reconstruction models rely on relationships with water masses, only samples containing 164 

both temperature and salinity measurements were used; therefore, most APB 165 

observations, which record only temperature, were excluded. Among these platforms, 166 

CTD, OSD, and PFL provided the majority of usable data. Additionally, several 167 

marginal seas—including the South China Sea, the Yellow Sea, the Sea of Japan, and 168 

the Sea of Okhotsk—were excluded from this study because they are semi-enclosed 169 

and strongly influenced by terrestrial inputs. The spatial domain was consistent with 170 

that used for the CCHDO dataset, while the temporal coverage extended from 1875 to 171 

2024. In total, 577,215,683 data points from 2,284,448 stations across 40,113 original 172 

cruises were collected (Table 2). 173 

 174 
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Table 2. Information on hydrographic data collected from World Ocean Database, and 175 

the data information after quality control (QC).  176 

 177 

 178 

2.2 Data quality control 179 

Given that the data were collected from multiple platforms using various methods 180 

over a long-time span and broad spatial range, quality control (QC) was essential (Du 181 

et al., 2021; Wang et al., 2025). Following the QC procedures developed by the World 182 

Ocean Database (WOD) (Garcia et al., 2024), we applied comprehensive QC protocols 183 

(Fig. 2) to both CCHDO and WOD datasets, including hydrographic and nutrient 184 

variables. 185 

Four levels of QC were applied to identify and remove potentially erroneous or low-186 

quality records from the CCHDO and WOD datasets. The first level targeted individual 187 

measurements, including several checks. (1) A range check was conducted by defining 188 

depth-dependent acceptable value ranges for each parameter; data falling outside these 189 

ranges were flagged as invalid. This check was applied to temperature, salinity, NOₓ⁻, 190 

NO₂⁻, DIP, and Si(OH)₄. Note that the NOₓ⁻ denotes the sum concentration of NO₂⁻ and 191 

Platform 
Original data information Data information after QC 

Data Stations Cruises Data Stations Cruises 

APB 692302 46454 189 543714 37209 154 

CTD 157914052 315177 8785 135584007 297036 8415 

GLD 119302218 288840 384 69834989 285778 380 

OSD 8885341 592225 21169 6942902 505780 17671 

PFL 284781001 700798 9511 255423345 680531 9099 

UOR 3373799 26699 7 3304158 25813 6 

MRB 1459032 293734 65 1019565 88487 19 

DRB 807938 20521 3 0 0 0 

Total 577215683 2284448 40113 472652680 1920634 35744 
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NO₃⁻. At stations lacking direct NOₓ⁻ measurements, NOₓ⁻ concentrations were derived 192 

by summing discrete NO₂⁻ and NO₃⁻ observations. (2) An empirical relationship check 193 

was performed to verify consistency among paired variables based on predefined 194 

acceptable domains, including temperature–salinity, temperature–NOₓ⁻, temperature–195 

NO₂⁻, temperature–DIP, temperature–Si(OH)₄, salinity–NOₓ⁻, salinity–NO₂⁻, salinity–196 

DIP, salinity–Si(OH)₄, NOₓ⁻–DIP, and NOₓ⁻–Si(OH)₄. (3) A six-standard-deviation 197 

check was conducted by calculating the mean and standard deviation at each depth level; 198 

values falling beyond six standard deviations were flagged as outliers. (4) A gradient 199 

check assessed the vertical gradients of each parameter at each depth level across 200 

stations; data showing abnormal gradients exceeding five standard deviations from the 201 

mean were flagged as questionable. (5) A depth/potential density (σθ) inversion check 202 

was applied to detect unrealistic reversals in parameters such as temperature and 203 

nutrients, which typically exhibit monotonic relationships with depth or σθ in stratified 204 

waters; measurements violating preset thresholds for depth–temperature, depth–NOₓ⁻, 205 

depth–DIP, depth–Si(OH)₄, σθ–temperature, σθ–NOₓ⁻, σθ–DIP, and σθ–Si(OH)₄ were 206 

flagged. (6) A spike check was implemented to identify abrupt deviations (spikes) 207 

between a measurement and its adjacent vertical neighbors; if the difference exceeded 208 

a defined threshold, the data point was flagged as suspect. This check was applied to 209 

temperature, NOₓ⁻, DIP, and Si(OH)₄. (7) Only measurements with an original quality 210 

flag of ‘good’ from CCHDO and WOD were retained, while those marked as 211 

questionable or erroneous were flagged as outliers. 212 
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  213 

 214 

Figure 1. Data quality control procedures for temperature, salinity and nutrients 215 

collected from the CLIVAR and Carbon Hydrographic Data Office (CCHDO) and the 216 

World Ocean Database (WOD) datasets.  217 

 218 

Building on the individual-level QC, we implemented additional QC at the station 219 

and cruise levels. At the station level, if a station profile contained more than 20% 220 

flagged data points, all data from that station were flagged as questionable. At the cruise 221 

level, if over 30% of a cruise’s data were flagged, all data from that cruise were flagged. 222 

The final step integrated flags from all three levels (individual, station, and cruise), and 223 

any data flagged at any level were excluded. This hierarchical QC protocol effectively 224 

eliminates low-quality data. Although this approach may discard some high-quality 225 

measurements, the large volume of available data necessitates strict QC to ensure 226 

reliability. 227 
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After quality control, the CCHDO dataset retained 214,943 (9,120), 197,539 (8,228), 228 

222,234 (9,457) and 210,447 (8,123) data points (stations), accounting for 94.2% 229 

(95.1%), 100.0% (99.9%), 98.6% (98.5%) and 99.0% (98.8%) of the original data 230 

points (stations) for NOx⁻, NO₂⁻, DIP, and Si(OH)₄, respectively (Table 1). The retained 231 

stations cover nearly the entire North Pacific Ocean (Fig. 2a). The retained data spanned 232 

from 1972 to 2023. Most observations were collected after 1980, with a 233 

substantial increase after 1990 (Fig. 2b). Seasonally, the number of stations in June, 234 

July, and August was approximately three times greater than that in March and 235 

December (Fig. 2c). 236 

 237 

Figure 2. Spatial and temporal distributions of NOₓ⁻ (nitrate plus nitrite) after quality 238 

control in the North Pacific. a) Distribution of NOₓ⁻ data locations, with points color-239 

coded by year; b) station counts per year; c) station counts per month. 240 

 241 
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Following quality control, the final WOD dataset comprised 472,652,680 242 

temperature and salinity data points from 1,920,634 stations across 35,744 cruises, 243 

spanning 1895 to 2024. These represent 81.9% of the original observations, 84.1% of 244 

the original stations, and 89.1% of the original cruises, respectively (Table 2). Spatially, 245 

station counts per 1°×1° grid cell range from 1 to 31,851, with a mean of 249 stations 246 

per cell (Fig. 3a). High sampling densities are found off eastern Japan and western 247 

North America, resulting from high frequency observations from CTD and OSD 248 

platforms, whereas elevated counts in the southwestern North Pacific primarily result 249 

from MRB observations. Temporally, fewer than 300 stations per year were collected 250 

before 1930. The annual number of stations exceeds 10,000 after 1964 and peaked at 251 

approximately 100,000 in 2021 (Fig. 3b). Seasonally, station numbers are highest from 252 

May to August (Fig. 3c). Overall, the collected WOD dataset provides 2127–2393 times 253 

more observations and 202 times more station records than the CCHDO dataset.   254 

 255 
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Figure 3. Spatial and temporal distribution of the World Ocean Database (WOD) data 256 

after quality control. a) Station counts per 1°×1° grid cell; b) station counts per year; 257 

c) station counts per month. 258 

 259 

2.3 Machine learning and nutrient reconstruction  260 

After rigorous data quality control, CCHDO data were used to train machine learning 261 

models. Three algorithms including Random Forest (RF), Light Gradient Boosting 262 

Machine (LightGBM), and Gaussian Process Regression (GPR) were applied to 263 

establish the relationship between environmental parameters and nutrient 264 

concentrations. These methods are widely used in marine science (Hu et al., 2021; 265 

Huang et al., 2022; Yu et al., 2022; Chen et al., 2023; Sundararaman and Shanmugam, 266 

2024). The use of diverse models helps decrease algorithm selection bias. RF is an 267 

ensemble technique based on bagging, which builds multiple independent decision 268 

trees and aggregates their outputs by voting or averaging (Liaw and Wiener, 2002). Its 269 

strengths include high predictive accuracy and reduced overfitting owing to the large 270 

number of trees. RF has been applied to predict global primary production (Huang et 271 

al., 2021), chlorophyll concentrations (Madani et al., 2024), nutrients (Chen et al., 2023; 272 

Chen et al., 2024), dissolved iron (Huang et al., 2022), surface ocean pCO₂ (Chen et al., 273 

2019), and N₂ fixation rates (Yu et al., 2024).  274 

LightGBM is an ensemble learning algorithm based on Gradient Boosting Decision 275 

Trees (GBDT). Compared to standard GBDT, LightGBM employs a leaf-wise tree 276 

growth strategy and a histogram-based binning technique to improve predictive 277 

accuracy and computational efficiency (Ke et al., 2017). It has been successfully 278 

applied to predict water levels (Gan et al., 2021), salinity (Dong et al., 2022; Wang et 279 

al., 2022), and chlorophyll a concentration (Su et al., 2021). GPR is a non-parametric 280 

Bayesian approach that infers relationships by defining a prior distribution over 281 

functions via kernel-based covariance matrices, rather than estimating fixed 282 

coefficients. This flexibility allows GPR to capture complex, nonlinear input–output 283 

relationships and to quantify prediction uncertainty. GPR has been used in 284 
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oceanography to estimate global dissolved oxygen and nutrient concentrations 285 

(Sundararaman and Shanmugam, 2024).  286 

 287 

 288 

Figure 4. Flowchart of the machine learning framework and its application to WOD 289 

hydrographic data for nutrient reconstruction.  290 

 291 

In this study, we used spatial coordinates (longitude, latitude, depth), temporal 292 

variables (month and year), and water mass properties (represented by potential 293 

temperature and salinity) as environmental predictors of nutrient concentrations. The 294 

time predictors used month and year with decimals to capture seasonal, interannual, 295 

and long-term variability. The North Pacific contains distinct water masses, including 296 

North Pacific Subtropical Water, North Pacific Intermediate Water, Antarctic 297 

Intermediate Water, Western South Pacific Central Water, North Pacific Deep Water, 298 

and Pacific Deep Water, as well as Circumpolar Deep Water (e.g., Talley et al., 2011; 299 

Fuhr et al., 2021). These water masses mix to form different water types associated with 300 

distinct nutrient concentrations (Fig. 5). Water types have been found to be an important 301 

parameter to reconstruct nutrient concentrations in the South China Sea (Du et al., 2021). 302 

Thus, potential temperature and salinity serve as proxies for water mass identification. 303 

https://doi.org/10.5194/essd-2025-654
Preprint. Discussion started: 12 November 2025
c© Author(s) 2025. CC BY 4.0 License.



16 

 

 304 

Figure 5. The water masses (indicated by salinity and potential temperature (θ)) and 305 

NOx
– (NO3

– + NO2
–; color shading) relationships in the North Pacific. The temperature 306 

and salinity data were collected from the CCHDO dataset. The gray contour lines and 307 

number denote the potential density anomaly. The typical water masses are shown as 308 

follows: North Pacific Central Water (NPCW), North Pacific Subtropical Underwater 309 

(NPSTUW), North Pacific Subtropical Mode Water (NPSTMW), North Pacific 310 

Intermediate Water (NPIW), Dichothermal Water (DtW), Mesothermal Water (MtW), 311 

Antarctic Intermediate Water (AAIW), Western South Pacific Central Water (WSPCW), 312 

Pacific Deep Water (PDW), and Circumpolar Deep Water (CDW). The water masses 313 

and their acronyms are follow the classifications in Talley et al. (2011) and Fuhr et al. 314 

(2021).  315 

 316 

3 Results 317 

3.1 Error estimation 318 
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Leave-one-out cross-validation was used to quantify model reconstruction errors. 319 

The CCHDO dataset was divided into training and testing subsets for model 320 

development and performance evaluation, respectively. To assess how data partitioning 321 

affects error metrics, we implemented four validation methods based on different data-322 

selection strategies (Fig. 6a). The first three methods involved partitioning the CCHDO 323 

dataset into training (80%) and testing (20%) subsets. These methods employed three 324 

data selection strategies: (1) sample-random, by withholding 20% of individual samples; 325 

(2) station-random, by withholding 20% of stations; and (3) cruise-random, by 326 

withholding 20% of cruises. Predictions for the held-out subsets, generated using their 327 

respective spatial, temporal, and water mass property data, were compared against the 328 

actual withheld nutrient measurements to calculate error metrics. These partitioning 329 

strategies were designed to evaluate potential errors under the sparse and non-uniform 330 

spatiotemporal distribution of observations: Error 1 represented an optimistic estimate 331 

(validation data are likely colocated with training data in space and time), Error 3 332 

represented a conservative, generalized scenario (validation data are independent of 333 

training data), Error 2 provided an intermediate estimate (validation data may share 334 

spatial/temporal context with training data within the same cruise). The choice of error 335 

metric (Error 1, 2, or 3) should be guided by the degree of extrapolation in the intended 336 

application relative to the training data's spatiotemporal distribution. 337 

 338 
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Figure 6. Schematic of the error estimation procedure. a) Error estimation based on 339 

three types of data selection strategy; b) assessing temporal error evolution by 340 

excluding the data at Station ALOHA.  341 

 342 

The validation results for reconstructed NOₓ⁻ versus observations under the first three 343 

data-selection strategies are shown in Fig. 7. RF and GPR exhibited nearly identical 344 

performance, with regression slopes of 0.992–0.998, R² >0.992, and Root Mean 345 

Squared Errors (RMSE) between 0.734 and 1.313 µmol kg⁻¹ (Fig. 7a, c, d, f, g, i). 346 

LightGBM showed slightly lower accuracy (slope: 0.991–0.995; R²: 0.991–0.996; 347 

RMSE: 0.780–1.419 µmol kg⁻¹) (Fig. 7b, e, h). Across different data-selection strategies, 348 

sample-random (Error 1) yielded the lowest errors (RMSE: 0.734–0.983 µmol kg⁻¹) 349 

(Fig. 7a–c), station-random (Error 2) was intermediate (RMSE: 0.908–1.313 µmol kg⁻¹) 350 

(Fig. 7d–f), and cruise-random (Error 3) produced the highest errors (RMSE: 1.243–351 

1.424 µmol kg⁻¹) (Fig. 7; Table 3). This gradient in error estimates underscores the 352 

necessity of employing different data-selection strategies for a comprehensive error 353 

assessment. The high slopes and R² values (>0.99) achieved across all algorithms and 354 

data-selection strategies confirmed the robustness of the nutrient reconstructions. 355 

 356 
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Figure 7. Validating the reconstructed NOₓ⁻ concentrations using leave-one-out cross-357 

validation with different data selection strategies and machine learning methods. Plots 358 

shown in row 1 correspond to the sample random strategy (a-c), row 2 correspond to 359 

the station random strategy (d-e), and row 3 correspond to the cruise random 360 

strategy (g-i). Plots shown in column 1 correspond to the Random Forest (RF; a, d, and 361 

g), column 2 correspond to the LightGBM (b, e, and h), and column 3 correspond to 362 

the Gaussian Process Regression (GPR; c, f, and i). The black lines and text show the 363 

fitted linear regressions, regression equations, coefficient of determination (R2), p 364 

values, and Root Mean Squared Errors (RMSE). The color represents the data density 365 

(N, number of observations). Note that the logarithmic scale of N is applied.  366 

 367 

Reconstruction errors for NO₂⁻, DIP, and Si(OH)₄ are summarized in Figs. S1–S3 368 

and Table 3. Across methods, RMSE values were below 0.079 µmol kg⁻¹ for NO₂⁻, 369 

0.089 µmol kg⁻¹ for DIP, and 3.07 µmol kg⁻¹ for Si(OH)₄. DIP and Si(OH)₄ exhibited 370 

similar error trends: RMSE increased from sample-random to station-random to cruise-371 

random selection. In contrast, NO₂⁻ reconstruction exhibited lower accuracy than NOₓ⁻, 372 

DIP, and Si(OH)₄, with regression slopes of 0.48–0.68 and R² values of 0.32–0.72. RF 373 

and LightGBM outperform GPR for NO₂⁻. The poorer NO₂⁻ performance likely reflects 374 

its generally low concentrations (mostly <0.5 µmol kg⁻¹) and high biological variability. 375 

Table 3 The Root Mean Squared Errors of nutrient reconstruction from different error 376 

evaluation strategies (unit: mol kg-1). 377 

Data 

selection 

strategy 

NOx
– NO2

– DIP Si(OH)4 

RF 
Light

GBM 
GPR RF 

Light

GBM 
GPR RF 

Light

GBM 
GPR RF 

Light

GBM 
GPR 

Sample 

random 
0.724 0.924 0.760 0.049 0.054 0.079 0.056 0.070 0.055 1.90 2.30 1.53 

Station 

random 
0.780 0.983 0.908 0.065 0.068 0.072 0.058 0.071 0.065 2.07 2.45 2.20 

Cruise 

random 
1.313 1.409 1.243 0.054 0.057 0.071 0.080 0.089 0.084 2.79 3.07 2.94 

ALOHA 

validation 
0.701 0.842 0.674 – – – 0.066 0.079 0.064 2.13 2.48 2.32 

 378 

A fourth validation step assessed the model's temporal performance at Station 379 

ALOHA. To test this, we withheld all observations from ALOHA (which, since 1988, 380 
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represent 8.52%, 8.45%, and 8.11% of the total Si(OH)₄, NOₓ⁻, and DIP records, 381 

respectively) from model training. We then reconstructed nutrient concentrations using 382 

space, time, and water-type predictors at Station ALOHA. NO₂⁻ was excluded due to 383 

insufficient observations. For NOₓ⁻, the regression slopes between reconstruction and 384 

observations were 0.99, 0.98, and 0.99, with RMSEs of 0.701, 0.842, and 0.674 µmol 385 

kg⁻¹ for RF, LightGBM, and GPR, respectively; R² values exceeded 0.997 for all 386 

models (Fig. 8a). RF and GPR slightly outperformed LightGBM. All models accurately 387 

reproduced the NOₓ⁻ profiles (Fig. 8b). The reconstruction errors for DIP were 0.066, 388 

0.079, and 0.064 μmol kg⁻¹ for RF, LightGBM, and GPR, respectively. The 389 

corresponding errors for Si(OH)₄ were 2.13, 2.48, and 2.32 μmol kg⁻¹ (Table 3, Figs. 390 

S4–S6).  391 

 392 

Figure 8. Validating the reconstructed nutrient concentrations at Station ALOHA. a) 393 

Reconstructed NO3
– + NO2

– (NOₓ⁻) vs. observations: Random Forest (RF; red dots), 394 

LightGBM (blue dots), and Gaussian Process Regression (GPR; green dots). b) Profiles 395 

of observed (black dots) and reconstructed NOₓ⁻ from RF (red dots), LightGBM (blue 396 

dots), and GPR (green dots).  397 

 398 

Since the variations of nutrients primarily occur in the upper water column, we 399 

focused on the nutrient reconstruction in the upper 300 m at Station ALOHA. Overall, 400 

the models reproduced the profiles of NOₓ⁻ from 1988 to 2021 well (Fig. 9a-d). To 401 

evaluate models’ ability to reconstruct nutrient variations in time, the nutrient 402 

concentrations were averaged monthly over the upper 300 m. As compared to 403 
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observations, RF, LightGBM, and GPR all well reconstructed the interannual variations 404 

of NOₓ⁻, DIP and Si(OH)4 at Station ALOHA (Figs. 9e, S6, and S7).   405 

 406 

Figure 9. Temporal variations of NOx
– concentrations in the upper 300 m at Station 407 

ALOHA from 1988 to 2021 for observed (a) and reconstructed NOx
– by Random Forest 408 

(RF; b), LightGBM (c), and Gaussian Process Regression (GPR; d). (e) Time series of 409 

monthly averaged NOx
– concentrations in the upper 300 m from observations, and 410 

reconstructions by RF, LightGBM, and GPR.  411 

 412 

3.2 Reconstructed nutrients and their distributions 413 

The final reconstructed nutrient dataset aligns with the spatiotemporal coverage of 414 

the quality-controlled WOD hydrographic dataset, comprising 472,652,680 data points 415 

for each nutrient (NOₓ⁻, NO₂⁻, DIP, and Si(OH)₄) from 1,920,634 stations across 35,744 416 

cruises, spanning from 1895 to 2024 (Table 2). Most data points are located above 2,000 417 

m, with fewer observations at greater depths due to observational platform limitations. 418 

Since the distribution patterns of NOₓ⁻, DIP, and Si(OH)₄ are consistent across the 419 

different methods (Figs. 10–13, S8–S16), we focus on the reconstructed NOₓ⁻ from RF 420 

model in this section unless stated otherwise. 421 
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Figs. 10–13 present the monthly climatology of NOₓ⁻ at 5 m, 100 m, 500 m, and 422 

1,000 m in the North Pacific. At 5 m, the reconstructed NOₓ⁻ accurately captures the 423 

established spatial patterns, with elevated concentrations in the subpolar gyre, Bering 424 

Sea, and equatorial regions, and depleted concentrations in the North Pacific 425 

Subtropical Gyre (NPSG). Seasonally, the basin-averaged surface NOx
– concentrations 426 

display the highest value of 3.50 mol kg–1 in March, in contrast to the lowest value of 427 

1.82 mol kg–1 in September. These results agree with Yasunaka et al. (2014, 2021), 428 

who, using extensive surface nutrient observations (up to 14,000 for nitrate) in the 429 

North Pacific, reported similar spatial and seasonal patterns.  430 

 431 

Figure 10. The monthly climatology of NOx
- at 5 m in the North Pacific. Data are 432 

binned and averaged within 1×1º grid cells. The values in the title represent the spatial 433 

mean values.  434 

 435 

At 100 m, NOₓ⁻ concentrations are elevated particularly in the subarctic gyre, north 436 

of the Equator, and the eastern North Pacific, while the central regions, particularly the 437 

NPSG, exhibit lower values. At 500 m, NOₓ⁻ concentrations display patterns similar to 438 

those at 100 m, except that the NOₓ⁻ concentrations in the western NPSG are evidently 439 
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lower than those in other regions (Fig. 13). At 1000 m, concentrations in the 440 

southwestern North Pacific Ocean are markedly lower than those in other regions (Fig. 441 

12). Below 100 m depth, seasonal variability in NOₓ⁻ is minimal (Figs. 11–13). 442 

Compared to the World Ocean Atlas (WOA23) climatology (Figs. S17–S25), although 443 

the seasonal patterns are similar in the surface layer, the reconstructed NOₓ⁻ 444 

concentrations are lower than those in WOA23. In addition, our reconstructions capture 445 

finer spatial detail, exhibit less oversmoothing, and avoid artificial “bull’s-eye” patterns. 446 

It should be noted that our climatology is derived from the mean of existing data, which 447 

heavily relies on the spatiotemporal distribution of those data and may not represent the 448 

true climatological mean.  449 

 450 

Figure 11. The monthly climatology of NOx
- at 100 m in the North Pacific. Data are 451 

binned and averaged within 1×1º grid cells. The values in the title represent the spatial 452 

mean values. 453 

 454 
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 455 

Figure 12. The monthly climatology of NOₓ⁻ at 500 m in the North Pacific. Data are 456 

binned and averaged within 1×1º grid cells. The values in the title represent the spatial 457 

mean values. 458 

 459 

 460 
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Figure 13. The monthly climatology of NOₓ⁻ at 1000 m in the North Pacific. Data are 461 

binned and averaged within 1×1º grid cells. The values in the title represent the spatial 462 

mean values. 463 

 464 

Sectional distributions of NOₓ⁻ in the upper 2000 m along 10° N and 180° E were 465 

used as examples to illustrate the vertical profile distributions of nutrients within the 466 

North Pacific. At 10° N, NOₓ⁻ concentrations increase from ~0.0 mol kg-1 at the 467 

surface to ~45.0 mol kg-1 at ~1000 m, followed by a decrease to ~38.0 mol kg-1 at 468 

2000 m. NOₓ⁻ concentrations increase from west to the east in the North Pacific in the 469 

upper 300 m (Fig. 14). At 180° E, in the upper 500 m, meridional NOₓ⁻ concentrations 470 

increase from the equator to the North Equatorial Current (~10° N), decline within the 471 

subtropical gyre, and then increase toward the subarctic region (Fig. 15). Generally, 472 

seasonal differences of NOₓ⁻ concentrations along both sections are not evident. 473 

 474 

Figure 14. Zonal and monthly climatology of NOₓ⁻ in the upper 2000 m at 10 ºN in 475 

the North Pacific. Data were binned and averaged within 1°×1° grid cells.  476 

 477 
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 478 

Figure 15. The monthly climatology of NOₓ⁻ in the upper 2000 m at 170 ºE section in 479 

the North Pacific. Data were binned and averaged within 1°×1° grid cells.   480 

 481 

4 Data availability 482 

The database is available in a data repository (Du et al., 2025; 483 

https://zenodo.org/records/17140658). Although the reconstruction results from RF, 484 

LightGBM, and GPR are generally consistent, RF yields the best performance. To avoid 485 

redundancy and minimize storage requirements—given the large volume of the data 486 

files—only the nutrient data reconstructed by RF have been uploaded. Researchers may 487 

contact the corresponding authors to request the reconstructions generated by 488 

LightGBM and GPR. 489 

 490 

5 Conclusion 491 

In this study, we applied rigorous quality control procedures to clean hydrographic 492 

and nutrient observations from CCHDO and WOD datasets. The cleaned CCHDO data 493 

were then used to train three machine-learning models to relate nutrient concentrations 494 

to spatial, temporal, and water-mass predictors. The models were applied to reconstruct 495 

nutrient concentrations from hydrographic observations collected from WOD, though 496 
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most of which lack direct nutrient measurements. We assessed the model performance 497 

using four data-partition strategies, and found that all models reproduced held-out data 498 

with low RMSE values. RF and GPR slightly outperformed LightGBM. The application 499 

of these models to WOD hydrography yielded 472,652,680 reconstructed nutrient 500 

concentrations across 1,920,634 stations and 35,744 cruises, spanning from 1895 to 501 

2024. This represents a 2,127– to 2,393-fold increase compared to the original volume 502 

of CCHDO nutrient data. The reconstruction captured the spatial, seasonal, and 503 

interannual variations of water column nutrients in the North Pacific Ocean well. 504 

Compared to the WOA23 climatology, the reconstruction-based nutrient climatology 505 

exhibited more realistic spatial structures than WOA23. This high-quality nutrient 506 

dataset enables historical nutrient estimation for locations and times with only 507 

hydrographic measurements. It also supports studies of climatological and long-term 508 

nutrient variability under climate change and anthropogenic impacts, and provides 509 

transient boundary conditions for ocean biogeochemical models in the Pacific Ocean. 510 
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