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4  Key points:

5 @ Rigorous data quality control procedures were applied to clean nutrient and
6 hydrographic data collected from multiple sources in the North Pacific, following
7 state-of-the-art practices.

8 @ Three machine learning models demonstrated low errors across diverse validation
9 strategies.

10 ® We reconstructed a monumental database of ~473 million nutrient data points

11 across 1.92 million stations (1895-2024), expanding the number of nutrient data
12 points by a factor of 2,127-2,393 compared to original observations.
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Abstract

Nutrients play a critical role in oceanic primary productivity and the biological pump.
However, compared to hydrographic parameters such as temperature and salinity,
nutrient observations are limited due to their labor-intensive and costly measurements.
Thus, nutrient observations are several orders of magnitude sparser than hydrographic
observations. In this study, we first established a rigorous data quality control procedure
to clean the hydrographic and nutrient (including NOs~, NO2", DIP, and Si(OH)a)
observations collected from World Ocean Database (WOD) and CLIVAR and Carbon
Hydrographic Data Office (CCHDO) in the North Pacific. Subsequently, the cleaned
and high-quality CCHDO dataset was used to train three machine learning models—
Random Forest, Light Gradient Boosting Machine (LightGBM), and Gaussian Process
Regression—to establish relationships between nutrient concentrations and key
variables, including space coordinates (longitude, latitude, and depth), time variables
(year and month), and water mass properties (indexed by potential temperature and
salinity). Validation shows that the reconstruction closely matches the observations,
with RMSEs of <1.41, <0.071, <0.089 and <3.07 pmol kg! for NOs;~, NO:, DIP, and
Si(OH)a, respectively. The validated models were then applied to reconstruct nutrient
concentrations from the hydrographic observations in WOD, most of which lacked
direct nutrient measurements. This resulted in ~473 million reconstructed nutrient data
points across 1.92 million stations for each nutrient, spanning from 1895 to 2024,
representing a 2,127 to 2,393—fold increase compared to the original nutrient
observations in the North Pacific (197,539 to 222,234). This new dataset will be
valuable for studying nutrient variability under climate change and anthropogenic
influences, and for providing transient boundary conditions in ocean biogeochemical
models. The dataset generated in this study is openly available on Zenodo at

https://zenodo.org/records/17451417.
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1 Introduction

Bio-essential elements such as nitrogen, phosphorus, and silicon constitute the
fundamental material basis for marine ecosystems. Their concentrations govern
primary and new production (e.g., Browning et al., 2023; Lipschultz et al., 2002; Moore
et al., 2013) and subsequently regulate oceanic uptake of atmospheric CO. (Deutsch
and Weber, 2012; Sigman and Hain, 2012). However, traditional nutrient data collection
relies heavily on ship-based cruises and subsequent sample analysis, which are labor-
intensive, inefficient, and costly (Du et al., 2021). Consequently, compared to the
abundant hydrographic data collected from multiple platforms such as Conductivity-
Temperature-Depth (CTD) and the Array for Real-time Geostrophic Oceanography
(Argo) profilers, etc., nutrient observations are sparse in the ocean. These sparse
nutrient observations limit our understanding of both small-scale and long-term nutrient
variations and our comprehensive understanding of the mechanisms driving changes in
oceanic production and ecosystem dynamics (Bidigare et al., 2009; Yasunaka et al.,
2021; Karl et al., 2021).

To address this data sparsity, two main approaches have been commonly employed
to augment the spatiotemporal coverage of the observed nutrient data. The first is
objective analysis, which interpolates field measurements to generate broader spatial
coverage, as implemented in products such as the World Ocean Atlas (WOA) (e.g.,
Reagan et al., 2023; Lee et al., 2023). The second is data fusion, which establishes
statistical relationships between nutrients and environmental predictors such as
temperature (e.g., Kamykowski, 1987; Kamykowski et al., 2002; Kamykowski, 2008),
density (e.g., Dugdale et al,, 1989; Switzer et al., 2003), oxygen, salinity, and
chlorophyll a (Goes et al., 1999; Palacios et al., 2013; Sarangi et al., 2011). Statistical
methods including cubic regression, multiple linear regression (Steinhoff et al., 2010;
Arteaga et al., 2015; Madani et al., 2024; Zhong et al., 2024), and generalized additive
models (Palacios et al., 2013) are frequently used in these efforts.

Recent studies have demonstrated the potential of machine learning for enhancing

the spatial and temporal coverage of nutrient data. For instance, Mozejko and Gniot
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(2008) used Artificial Neural Networks (ANNs) to model time series of total
phosphorous concentrations in the Odra River. Self-organizing maps (SOMs) were used
to estimate mixed layer nitrate and sea surface nutrients in the open ocean (Steinhoff et
al., 2010; Yasunaka et al., 2014). Liu et al. (2022) applied Support Vector Regression,
Random Forest Regression, and ANNs to reconstruct monthly surface nutrient
concentrations in the Yellow and Bohai Seas from 2003 to 2019. Their results revealed
pronounced seasonal and spatial variability in nutrient levels and underscored the
influence of environmental drivers such as sea surface temperature and salinity.
Similarly, Sundararaman and Shanmugam (2024) employed Gaussian Process
Regression (GPR) models to estimate global ocean surface macronutrient
concentrations using satellite-derived data, achieving high accuracy and demonstrating
their suitability for large-scale marine ecosystem monitoring. Yang et al. (2024)
employed a U-net and Earthformer to reconstruct the three-dimensional nitrate
distribution by integrating surface data including wind speed, sea surface temperature,
chlorophyll a, solar radiation, and precipitation in the Indian Ocean. These
advancements highlight the expanding role of machine learning in marine biochemical
data fusion and provide novel insights into nutrient dynamics and their ecological
impacts.

However, many existing approaches rely solely on mathematical extrapolation or
data fusion and often neglect the influence of physical seawater properties, such as
water mass characteristics. Using the relationship between nutrient concentration and
water masses (indexed by temperature and salinity), Du et al. (2021) successfully
predicted the nutrient concentrations in the South China Sea. However, the water
masses and their relationship with nutrients can also vary with space and time, which
should also be taken into consideration. In addition, most research has predominantly
focused on nutrient predictions at surface waters—driven by readily available remote-
sensing measurements of sea surface temperature and chlorophyll a—while subsurface

nutrient distributions remain poorly studied.
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The North Pacific Ocean is one of the largest marine biomes in the global ocean (Karl
and Church, 2017), spanning a broad latitudinal range from tropical to subpolar regions.
It includes a subtropical gyre characterized by extremely low surface nutrient
concentrations due to Ekman convergence (e.g., Dave and Lozier, 2010; Browning et
al., 2021; Dai et al., 2023), and subpolar gyres in the north with elevated nutrient
concentrations driven by Ekman divergence. The North Pacific Ocean is influenced by
multiple upwelling and current systems, including the equatorial and California
upwelling systems, North Equatorial Current, Kuroshio Current, etc., which further
change nutrient levels in these regions. In addition, the North Pacific Ocean exhibits
abundant mesoscale eddies (Chelton et al., 2007), which play a critical role in
redistributing nutrients and modulating biological activity (e.g., Benitez-Nelson et al.,
2007; Ascani et al., 2013; Barone et al., 2022). The interaction of these multi-scale
physical processes with biogeochemical processes results in highly dynamic nutrient
variability in the upper ocean. Therefore, high-resolution and extensive nutrient
datasets are essential to accurately resolve the nutrient dynamics. Although the WOA
(Reagan et al., 2023) serves as a primary nutrient database and is widely used for
boundary conditions in biogeochemical models, its applicability is constrained by
relatively coarse spatial resolution (currently 1°) and climatological smoothing, which
limit its ability to represent mesoscale and episodic features or to capture long-term
variations.

In the North Pacific, Yasunaka et al. (2014) used the SOMs technique to generate
monthly surface nutrient maps by integrating sea surface temperature, salinity,
chlorophyll a, and mixed layer depth. These maps revealed seasonal and interannual
variability in surface nutrient distributions in the northern North Pacific. To investigate
long-term changes, Yasunaka et al. (2016) applied Optimal Interpolation to analyze the
spatial and temporal evolution of surface nutrient concentrations. Lee et al. (2023)
provided spatiotemporally gridded nitrate and phosphate data in northwest Pacific from

1980 to 2019 using the spatiotemporal kriging technique. Wang et al. (2023) used the
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deep neural network model to estimate nitrate concentrations in the upper northwestern
Pacific Ocean using temperature and salinity as the primary input parameters.

In this study, we first collected nutrient data from public databases and applied
rigorous quality control procedures. Using machine learning methods, we established
relationships between nutrient concentrations and water mass properties, spatial
coordinates, and temporal variables. We then evaluated the model performance through
a comprehensive error analysis. Finally, the validated models were applied to

reconstruct historical nutrient distributions across the North Pacific from 1895 to 2024.
2 Data and Methods

2.1 Observation data

Field observations were originally downloaded from the Climate and Ocean:
Variability, Predictability, and Change (CLIVAR) and Carbon Hydrographic Data
Office (CCHDO), which distributes vessel-based hydrographic data from programs
such as the World Ocean Circulation Experiment (WOCE), Joint Global Ocean Flux
Study (JGOFS), GO-SHIP, CLIVAR, and other repeat hydrography efforts
(https://cchdo.ucsd.edu/). In total, 631 cruises were collected in the North Pacific,
comprising 228,091, 197,617, 225,403, and 212,660 data points for NOs~ + NOz~
(NOx"), NO:7, DIP, and Si(OH)4, respectively (Table 1). The dataset spans from 1973
to 2022 and was downloaded on October 1 2024; any updates made after this date were
not included in this study. The data cover a geographic range from 120.08°E to 95.17°W
and from 2.05°S to 60.25°N. The study domain was slightly extended into the South

Pacific to mitigate potential boundary effects during model development.
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Table 1. Information on nutrients and their associated hydrographic data collected
from CLIVAR and Carbon Hydrographic Data Office (CCHDO) and the data

information after quality control (QC).

Original data information Data information after QC

Data Stations Data Stations
Temperature 328502 15274 327688 15125
Salinity 311871 15274 328275 15269
NOy«~ 228091 9588 214943 9120
NO:- 197617 8233 197539 8228
DIP 225403 9623 222234 9474
Si(OH)4 212660 8220 210447 8121

Hydrographic data for nutrient reconstruction were obtained from the World Ocean
Database (WOD; Mishonov et al., 2024), which compiles observations from various
platforms, including Autonomous Pinniped Bathythermograph (APB), Conductivity-
Temperature-Depth profiler (CTD), Drifting Buoy (DRB), Glider (GLD), Mechanical
Bathythermograph (MBT), Moored Buoy (MRB), Ocean Station Data (OSD), Profiling
Float (PFL), and Undulating Oceanographic Recorder (UOR). Since nutrient
reconstruction models rely on relationships with water masses, only samples containing
both temperature and salinity measurements were used; therefore, most APB
observations, which record only temperature, were excluded. Among these platforms,
CTD, OSD, and PFL provided the majority of usable data. Additionally, several
marginal seas—including the South China Sea, the Yellow Sea, the Sea of Japan, and
the Sea of Okhotsk—were excluded from this study because they are semi-enclosed
and strongly influenced by terrestrial inputs. The spatial domain was consistent with
that used for the CCHDO dataset, while the temporal coverage extended from 1875 to
2024. In total, 577,215,683 data points from 2,284,448 stations across 40,113 original

cruises were collected (Table 2).
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Table 2. Information on hydrographic data collected from World Ocean Database, and

the data information after quality control (QC).

Original data information Data information after QC

Platform

Data Stations  Cruises Data Stations  Cruises
APB 692302 46454 189 543714 37209 154
CTD 157914052 315177 8785 135584007 297036 8415
GLD 119302218 288840 384 69834989 285778 380
OsSD 8885341 592225 21169 6942902 505780 17671
PFL 284781001 700798 9511 255423345 680531 9099
UOR 3373799 26699 7 3304158 25813 6
MRB 1459032 293734 65 1019565 88487 19
DRB 807938 20521 3 0 0 0
Total 577215683 2284448 40113 472652680 1920634 35744

2.2 Data quality control

Given that the data were collected from multiple platforms using various methods
over a long-time span and broad spatial range, quality control (QC) was essential (Du
et al., 2021; Wang et al., 2025). Following the QC procedures developed by the World
Ocean Database (WOD) (Garcia et al., 2024), we applied comprehensive QC protocols
(Fig. 2) to both CCHDO and WOD datasets, including hydrographic and nutrient
variables.

Four levels of QC were applied to identify and remove potentially erroneous or low-
quality records from the CCHDO and WOD datasets. The first level targeted individual
measurements, including several checks. (1) A range check was conducted by defining
depth-dependent acceptable value ranges for each parameter; data falling outside these
ranges were flagged as invalid. This check was applied to temperature, salinity, NOy",

NO:", DIP, and Si(OH)4. Note that the NOx~ denotes the sum concentration of NOz™ and
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NO:s™. At stations lacking direct NOx~ measurements, NOx~ concentrations were derived
by summing discrete NO>~ and NOs~ observations. (2) An empirical relationship check
was performed to verify consistency among paired variables based on predefined
acceptable domains, including temperature—salinity, temperature-NO, ", temperature—
NO:", temperature—DIP, temperature—Si(OH)a, salinity—NOx~, salinity—NO.", salinity—
DIP, salinity—Si(OH)s, NOx—DIP, and NO,—Si(OH)a. (3) A six-standard-deviation
check was conducted by calculating the mean and standard deviation at each depth level;
values falling beyond six standard deviations were flagged as outliers. (4) A gradient
check assessed the vertical gradients of each parameter at each depth level across
stations; data showing abnormal gradients exceeding five standard deviations from the
mean were flagged as questionable. (5) A depth/potential density (os) inversion check
was applied to detect unrealistic reversals in parameters such as temperature and
nutrients, which typically exhibit monotonic relationships with depth or oy in stratified
waters; measurements violating preset thresholds for depth—temperature, depth—NOy",
depth—DIP, depth—Si(OH)s, op—temperature, oo—NOx~, og—DIP, and g¢—Si(OH)s were
flagged. (6) A spike check was implemented to identify abrupt deviations (spikes)
between a measurement and its adjacent vertical neighbors; if the difference exceeded
a defined threshold, the data point was flagged as suspect. This check was applied to
temperature, NO,~, DIP, and Si(OH)a. (7) Only measurements with an original quality
flag of ‘good’ from CCHDO and WOD were retained, while those marked as

questionable or erroneous were flagged as outliers.
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Figure 1. Data quality control procedures for temperature, salinity and nutrients
collected from the CLIVAR and Carbon Hydrographic Data Office (CCHDO) and the
World Ocean Database (WOD) datasets.

Building on the individual-level QC, we implemented additional QC at the station
and cruise levels. At the station level, if a station profile contained more than 20%
flagged data points, all data from that station were flagged as questionable. At the cruise
level, if over 30% of a cruise’s data were flagged, all data from that cruise were flagged.
The final step integrated flags from all three levels (individual, station, and cruise), and
any data flagged at any level were excluded. This hierarchical QC protocol effectively
eliminates low-quality data. Although this approach may discard some high-quality
measurements, the large volume of available data necessitates strict QC to ensure

reliability.
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After quality control, the CCHDO dataset retained 214,943 (9,120), 197,539 (8,228),
222,234 (9,457) and 210,447 (8,123) data points (stations), accounting for 94.2%
(95.1%), 100.0% (99.9%), 98.6% (98.5%) and 99.0% (98.8%) of the original data
points (stations) for NOx~, NO:~, DIP, and Si(OH)as, respectively (Table 1). The retained
stations cover nearly the entire North Pacific Ocean (Fig. 2a). The retained data spanned
from 1972 to 2023. Most observations were collected after 1980, with a
substantial increase after 1990 (Fig. 2b). Seasonally, the number of stations in June,
July, and August was approximately three times greater than that in March and

December (Fig. 2¢).
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Figure 2. Spatial and temporal distributions of NOy~ (nitrate plus nitrite) after quality
control in the North Pacific. a) Distribution of NO,~ data locations, with points color-

coded by year; b) station counts per year; c) station counts per month.
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Following quality control, the final WOD dataset comprised 472,652,680
temperature and salinity data points from 1,920,634 stations across 35,744 cruises,
spanning 1895 to 2024. These represent 81.9% of the original observations, 84.1% of
the original stations, and 89.1% of the original cruises, respectively (Table 2). Spatially,
station counts per 1°x1° grid cell range from 1 to 31,851, with a mean of 249 stations
per cell (Fig. 3a). High sampling densities are found off eastern Japan and western
North America, resulting from high frequency observations from CTD and OSD
platforms, whereas elevated counts in the southwestern North Pacific primarily result
from MRB observations. Temporally, fewer than 300 stations per year were collected
before 1930. The annual number of stations exceeds 10,000 after 1964 and peaked at
approximately 100,000 in 2021 (Fig. 3b). Seasonally, station numbers are highest from
May to August (Fig. 3¢). Overall, the collected WOD dataset provides 2127-2393 times

more observations and 202 times more station records than the CCHDO dataset.
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Figure 3. Spatial and temporal distribution of the World Ocean Database (WOD) data
after quality control. a) Station counts per 1°x1° grid cell; b) station counts per year;

¢) station counts per month.

2.3 Machine learning and nutrient reconstruction

After rigorous data quality control, CCHDO data were used to train machine learning
models. Three algorithms including Random Forest (RF), Light Gradient Boosting
Machine (LightGBM), and Gaussian Process Regression (GPR) were applied to
establish the relationship between environmental parameters and nutrient
concentrations. These methods are widely used in marine science (Hu et al., 2021;
Huang et al., 2022; Yu et al., 2022; Chen et al., 2023; Sundararaman and Shanmugam,
2024). The use of diverse models helps decrease algorithm selection bias. RF is an
ensemble technique based on bagging, which builds multiple independent decision
trees and aggregates their outputs by voting or averaging (Liaw and Wiener, 2002). Its
strengths include high predictive accuracy and reduced overfitting owing to the large
number of trees. RF has been applied to predict global primary production (Huang et
al., 2021), chlorophyll concentrations (Madani et al., 2024), nutrients (Chen et al., 2023;
Chen et al., 2024), dissolved iron (Huang et al., 2022), surface ocean pCO: (Chen et al.,
2019), and N2 fixation rates (Yu et al., 2024).

LightGBM is an ensemble learning algorithm based on Gradient Boosting Decision
Trees (GBDT). Compared to standard GBDT, LightGBM employs a leaf-wise tree
growth strategy and a histogram-based binning technique to improve predictive
accuracy and computational efficiency (Ke et al., 2017). It has been successfully
applied to predict water levels (Gan et al., 2021), salinity (Dong et al., 2022; Wang et
al., 2022), and chlorophyll a concentration (Su et al., 2021). GPR is a non-parametric
Bayesian approach that infers relationships by defining a prior distribution over
functions via kernel-based covariance matrices, rather than estimating fixed
coefficients. This flexibility allows GPR to capture complex, nonlinear input—output

relationships and to quantify prediction uncertainty. GPR has been used in
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oceanography to estimate global dissolved oxygen and nutrient concentrations

(Sundararaman and Shanmugam, 2024).
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Figure 4. Flowchart of the machine learning framework and its application to WOD

hydrographic data for nutrient reconstruction.

In this study, we used spatial coordinates (longitude, latitude, depth), temporal
variables (month and year), and water mass properties (represented by potential
temperature and salinity) as environmental predictors of nutrient concentrations. The
time predictors used month and year with decimals to capture seasonal, interannual,
and long-term variability. The North Pacific contains distinct water masses, including
North Pacific Subtropical Water, North Pacific Intermediate Water, Antarctic
Intermediate Water, Western South Pacific Central Water, North Pacific Deep Water,
and Pacific Deep Water, as well as Circumpolar Deep Water (e.g., Talley et al., 2011;
Fuhr et al., 2021). These water masses mix to form different water types associated with

distinct nutrient concentrations (Fig. 5). Water types have been found to be an important

parameter to reconstruct nutrient concentrations in the South China Sea (Du et al., 2021).

Thus, potential temperature and salinity serve as proxies for water mass identification.
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310 (NPSTUW), North Pacific Subtropical Mode Water (NPSTMW), North Pacific

311  Intermediate Water (NPIW), Dichothermal Water (DtW), Mesothermal Water (MtW),

312 Antarctic Intermediate Water (AAIW), Western South Pacific Central Water (WSPCW),

313 Pacific Deep Water (PDW), and Circumpolar Deep Water (CDW). The water masses

314  and their acronyms are follow the classifications in Talley et al. (2011) and Fuhr et al.

315 (2021).

316

317 3 Results

318 3.1 Error estimation
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338

Leave-one-out cross-validation was used to quantify model reconstruction errors.
The CCHDO dataset was divided into training and testing subsets for model
development and performance evaluation, respectively. To assess how data partitioning
affects error metrics, we implemented four validation methods based on different data-
selection strategies (Fig. 6a). The first three methods involved partitioning the CCHDO
dataset into training (80%) and testing (20%) subsets. These methods employed three
data selection strategies: (1) sample-random, by withholding 20% of individual samples;
(2) station-random, by withholding 20% of stations; and (3) cruise-random, by
withholding 20% of cruises. Predictions for the held-out subsets, generated using their
respective spatial, temporal, and water mass property data, were compared against the
actual withheld nutrient measurements to calculate error metrics. These partitioning
strategies were designed to evaluate potential errors under the sparse and non-uniform
spatiotemporal distribution of observations: Error 1 represented an optimistic estimate
(validation data are likely colocated with training data in space and time), Error 3
represented a conservative, generalized scenario (validation data are independent of
training data), Error 2 provided an intermediate estimate (validation data may share
spatial/temporal context with training data within the same cruise). The choice of error
metric (Error 1, 2, or 3) should be guided by the degree of extrapolation in the intended

application relative to the training data's spatiotemporal distribution.
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Figure 6. Schematic of the error estimation procedure. a) Error estimation based on
three types of data selection strategy; b) assessing temporal error evolution by

excluding the data at Station ALOHA.

The validation results for reconstructed NO,~ versus observations under the first three
data-selection strategies are shown in Fig. 7. RF and GPR exhibited nearly identical
performance, with regression slopes of 0.992-0.998, R?>0.992, and Root Mean
Squared Errors (RMSE) between 0.734 and 1.313 umol kg (Fig. 7a, ¢, d, f, g, 1).
LightGBM showed slightly lower accuracy (slope: 0.991-0.995; R 0.991-0.996;
RMSE: 0.780-1.419 umol kg ') (Fig. 7b, e, h). Across different data-selection strategies,
sample-random (Error 1) yielded the lowest errors (RMSE: 0.734-0.983 umol kg™)
(Fig. 7a—c), station-random (Error 2) was intermediate (RMSE: 0.908—1.313 umol kg™*)
(Fig. 7d—f), and cruise-random (Error 3) produced the highest errors (RMSE: 1.243—
1.424 pumol kg™) (Fig. 7; Table 3). This gradient in error estimates underscores the
necessity of employing different data-selection strategies for a comprehensive error
assessment. The high slopes and R? values (>0.99) achieved across all algorithms and

data-selection strategies confirmed the robustness of the nutrient reconstructions.
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Open Access

357  Figure 7. Validating the reconstructed NOx~ concentrations using leave-one-out cross-
358  validation with different data selection strategies and machine learning methods. Plots
359  shown in row 1 correspond to the sample random strategy (a-c), row 2 correspond to
360  the station random strategy (d-e), and row 3 correspond to the cruise random
361  strategy (g-i). Plots shown in column 1 correspond to the Random Forest (RF; a, d, and
362  g), column 2 correspond to the LightGBM (b, e, and h), and column 3 correspond to
363 the Gaussian Process Regression (GPR; ¢, f, and 1). The black lines and text show the
364 fitted linear regressions, regression equations, coefficient of determination (R%), p
365  values, and Root Mean Squared Errors (RMSE). The color represents the data density
366 (N, number of observations). Note that the logarithmic scale of N is applied.
367
368 Reconstruction errors for NO2~, DIP, and Si(OH)4 are summarized in Figs. S1-S3
369  and Table 3. Across methods, RMSE values were below 0.079 pmol kg™ for NO-",
370 0.089 umol kg for DIP, and 3.07 umol kg™ for Si(OH)a. DIP and Si(OH)4 exhibited
371  similar error trends: RMSE increased from sample-random to station-random to cruise-
372 random selection. In contrast, NOz™ reconstruction exhibited lower accuracy than NOy~,
373 DIP, and Si(OH)4, with regression slopes of 0.48—0.68 and R? values of 0.32-0.72. RF
374  and LightGBM outperform GPR for NO: . The poorer NO:™ performance likely reflects
375  its generally low concentrations (mostly <0.5 umol kg™') and high biological variability.
376  Table 3 The Root Mean Squared Errors of nutrient reconstruction from different error
377 evaluation strategies (unit: pmol kg!).
Data NO« NO: DIP Si(OH)s
selection
Light Light Light Light
strategy RF GPR  RF GPR  RF GPR  RF GPR
GBM GBM GBM GBM
Sample
0724 0924 0760 0.049 0.054 0.079 0.056 0.070 0055 190 230 153
random
Station
0.780 0983 0908 0.065 0.068 0.072 0.058 0071 0.065 2.07 245 220
random
Cruise
1313 1409 1243 0054 0.057 0071 0.080 0.089 0084 279 3.07 2.94
random
ALOHA
0701 0.842 0674  — - — 0066 0079 0.064 213 248 232
validation
378
379 A fourth validation step assessed the model's temporal performance at Station
380  ALOHA. To test this, we withheld all observations from ALOHA (which, since 1988,
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represent 8.52%, 8.45%, and 8.11% of the total Si(OH)s, NOy, and DIP records,

Open Access

381
382 respectively) from model training. We then reconstructed nutrient concentrations using
383 space, time, and water-type predictors at Station ALOHA. NO: was excluded due to
384  insufficient observations. For NOy, the regression slopes between reconstruction and
385  observations were 0.99, 0.98, and 0.99, with RMSEs of 0.701, 0.842, and 0.674 pmol
386 kg for RF, LightGBM, and GPR, respectively; R? values exceeded 0.997 for all
387  models (Fig. 8a). RF and GPR slightly outperformed LightGBM. All models accurately
388  reproduced the NOx™ profiles (Fig. 8b). The reconstruction errors for DIP were 0.066,
389  0.079, and 0.064 pmol kg*' for RF, LightGBM, and GPR, respectively. The
390  corresponding errors for Si(OH)s were 2.13, 2.48, and 2.32 pmol kg (Table 3, Figs.
391 S4-S6).
4 =0.987x+0.058; R?=0.998; p<0.01; RMSE=0.701 0
0 ¥=0.979x+0.080; R’=0.997; p<0.01; RMSE=0.872 500
a) 1000 -
35 =
i 1500 _;»,; 1
i; 30 =
S 2000 - L
c 25 S =
e '3 2500 - =
£ 20 g z
2 3000 -
] -
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e} 3500 =
z -
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51 LightGBM | 4500 LightGBM 3
GPR GPR X
Q e ! ' : ' ; ! 5000 . ! - : ' ' :
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45
392 NO] (Prediction, smol kg™') NO;, (1mol kg ')
393 Figure 8. Validating the reconstructed nutrient concentrations at Station ALOHA. a)
394  Reconstructed NO3™ + NO2™ (NOx") vs. observations: Random Forest (RF; red dots),
395  LightGBM (blue dots), and Gaussian Process Regression (GPR; green dots). b) Profiles
396  of observed (black dots) and reconstructed NO,~ from RF (red dots), LightGBM (blue
397  dots), and GPR (green dots).
398
399 Since the variations of nutrients primarily occur in the upper water column, we
400  focused on the nutrient reconstruction in the upper 300 m at Station ALOHA. Overall,
401  the models reproduced the profiles of NO,~ from 1988 to 2021 well (Fig. 9a-d). To
402  evaluate models’ ability to reconstruct nutrient variations in time, the nutrient
403  concentrations were averaged monthly over the upper 300 m. As compared to
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404  observations, RF, LightGBM, and GPR all well reconstructed the interannual variations
405  of NOy, DIP and Si(OH)4 at Station ALOHA (Figs. 9e, S6, and S7).
Observation (NO;)
o—a)— e R — 7 -
g 100 - : ‘
300 S ; e o : : <4 Mo
1990 1995 2000 2005 2010 2015 2020 1990 1995 2000 2005 2010 2015 2020
LightGBM (NO’) GPR (NO))
0r X 0= s : 5
C) ! d) ]
5 100 | 100 |
2 S b Rl
& 200 Tome -i 200 - S = ~
300 22 S S A D50 s00L ok A S U
1990 1995 2000 2005 2010 2015 2020 1990 1995 2000 2005 2010 2015 2020
Year Year
Monthly averaged NO; in the upper 300 m
. te) —a— Observation —8—RF —OLLightGBM —B-GPR
F'm 4 X
g2 MN
) 7§90 » ‘ 19‘95 » ‘ 20‘00 l ‘ 20J05 ‘ 20‘10 - 20’15 T 20:20
406 Year
407  Figure 9. Temporal variations of NOx™ concentrations in the upper 300 m at Station
408  ALOHA from 1988 to 2021 for observed (a) and reconstructed NOy~ by Random Forest
409  (RF;b), LightGBM (c), and Gaussian Process Regression (GPR; d). (e) Time series of
410  monthly averaged NOx~ concentrations in the upper 300 m from observations, and
411  reconstructions by RF, LightGBM, and GPR.
412
413 3.2 Reconstructed nutrients and their distributions
414 The final reconstructed nutrient dataset aligns with the spatiotemporal coverage of
415  the quality-controlled WOD hydrographic dataset, comprising 472,652,680 data points
416  for each nutrient (NOx -, NO2z", DIP, and Si(OH)4) from 1,920,634 stations across 35,744
417  cruises, spanning from 1895 to 2024 (Table 2). Most data points are located above 2,000
418  m, with fewer observations at greater depths due to observational platform limitations.
419  Since the distribution patterns of NO,~, DIP, and Si(OH)s are consistent across the
420  different methods (Figs. 10—13, S8—S16), we focus on the reconstructed NOy~ from RF
421  model in this section unless stated otherwise.
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Figs. 10—13 present the monthly climatology of NOx™ at 5 m, 100 m, 500 m, and
1,000 m in the North Pacific. At 5 m, the reconstructed NOy~ accurately captures the
established spatial patterns, with elevated concentrations in the subpolar gyre, Bering
Sea, and equatorial regions, and depleted concentrations in the North Pacific
Subtropical Gyre (NPSG). Seasonally, the basin-averaged surface NOx™ concentrations
display the highest value of 3.50 umol kg! in March, in contrast to the lowest value of
1.82 umol kg ! in September. These results agree with Yasunaka et al. (2014, 2021),
who, using extensive surface nutrient observations (up to 14,000 for nitrate) in the

North Pacific, reported similar spatial and seasonal patterns.
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Figure 10. The monthly climatology of NOx™ at 5 m in the North Pacific. Data are
binned and averaged within 1x1° grid cells. The values in the title represent the spatial

mean values.

At 100 m, NOx™ concentrations are elevated particularly in the subarctic gyre, north
of the Equator, and the eastern North Pacific, while the central regions, particularly the
NPSG, exhibit lower values. At 500 m, NO,~ concentrations display patterns similar to

those at 100 m, except that the NOx~ concentrations in the western NPSG are evidently
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454

lower than those in other regions (Fig. 13). At 1000 m, concentrations in the
southwestern North Pacific Ocean are markedly lower than those in other regions (Fig.
12). Below 100 m depth, seasonal variability in NOx is minimal (Figs. 11-13).
Compared to the World Ocean Atlas (WOA23) climatology (Figs. S17-S25), although
the seasonal patterns are similar in the surface layer, the reconstructed NOy

concentrations are lower than those in WOAZ23. In addition, our reconstructions capture

finer spatial detail, exhibit less oversmoothing, and avoid artificial “bull’s-eye” patterns.

It should be noted that our climatology is derived from the mean of existing data, which
heavily relies on the spatiotemporal distribution of those data and may not represent the

true climatological mean.
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Figure 11. The monthly climatology of NOx™ at 100 m in the North Pacific. Data are

binned and averaged within 1x1° grid cells. The values in the title represent the spatial

mean values.
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456 Figure 12. The monthly climatology of NOy™ at 500 m in the North Pacific. Data are
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Figure 13. The monthly climatology of NO, at 1000 m in the North Pacific. Data are
binned and averaged within 1x1° grid cells. The values in the title represent the spatial

mean values.

Sectional distributions of NOy in the upper 2000 m along 10° N and 180° E were
used as examples to illustrate the vertical profile distributions of nutrients within the
North Pacific. At 10° N, NOx~ concentrations increase from ~0.0 umol kg at the
surface to ~45.0 umol kg! at ~1000 m, followed by a decrease to ~38.0 pmol kg™! at
2000 m. NOy~ concentrations increase from west to the east in the North Pacific in the
upper 300 m (Fig. 14). At 180° E, in the upper 500 m, meridional NO,~ concentrations
increase from the equator to the North Equatorial Current (~10° N), decline within the
subtropical gyre, and then increase toward the subarctic region (Fig. 15). Generally,

seasonal differences of NOy~ concentrations along both sections are not evident.
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Figure 14. Zonal and monthly climatology of NOy in the upper 2000 m at 10 °N in

the North Pacific. Data were binned and averaged within 1°x1° grid cells.
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Figure 15. The monthly climatology of NO, in the upper 2000 m at 170 °E section in

the North Pacific. Data were binned and averaged within 1°x1° grid cells.

4 Data availability

The database 1is available in a data repository (Du et al, 2025
https://zenodo.org/records/17140658). Although the reconstruction results from REF,
LightGBM, and GPR are generally consistent, RF yields the best performance. To avoid
redundancy and minimize storage requirements—given the large volume of the data
files—only the nutrient data reconstructed by RF have been uploaded. Researchers may
contact the corresponding authors to request the reconstructions generated by

LightGBM and GPR.

5 Conclusion

In this study, we applied rigorous quality control procedures to clean hydrographic
and nutrient observations from CCHDO and WOD datasets. The cleaned CCHDO data
were then used to train three machine-learning models to relate nutrient concentrations
to spatial, temporal, and water-mass predictors. The models were applied to reconstruct

nutrient concentrations from hydrographic observations collected from WOD, though
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most of which lack direct nutrient measurements. We assessed the model performance
using four data-partition strategies, and found that all models reproduced held-out data
with low RMSE values. RF and GPR slightly outperformed LightGBM. The application
of these models to WOD hydrography yielded 472,652,680 reconstructed nutrient
concentrations across 1,920,634 stations and 35,744 cruises, spanning from 1895 to
2024. This represents a 2,127— to 2,393-fold increase compared to the original volume
of CCHDO nutrient data. The reconstruction captured the spatial, seasonal, and
interannual variations of water column nutrients in the North Pacific Ocean well.
Compared to the WOA23 climatology, the reconstruction-based nutrient climatology
exhibited more realistic spatial structures than WOAZ23. This high-quality nutrient
dataset enables historical nutrient estimation for locations and times with only
hydrographic measurements. It also supports studies of climatological and long-term
nutrient variability under climate change and anthropogenic impacts, and provides

transient boundary conditions for ocean biogeochemical models in the Pacific Ocean.
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