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Abstract.Mesoscale Convective Complexes (MCCs) are major convective weather systems occurring in midlatitude regions,

typically associated with significant weather phenomena such as heavy rainfall, thunderstorms, strong winds, and hail. Based

on the cloud-top temperature (CTT) data of the FY-2G satellite, and through multi-threshold screening combined with

morphological analysis, an automated algorithm for MCC identification and tracking was developed. The algorithm is then15
applied to generate an hourly dataset of MCC variables over mainland China from June 2015 to December 2024. The dataset

encompasses variables describing the spatial extent of the cold-core region (CTT < -52℃) of MCCs, the minimum cloud-top

temperature within the cold cloud shields, and the geographic coordinates (longitude and latitude) of the centroids of the cold

cloud shields. This work also conducts a preliminary analysis of the spatial and temporal distribution characteristics of

MCCs over mainland China based on the dataset. Results indicate that MCCs occur more frequently in Southwest China20
than in other regions of the country, and over 70% of MCC events occur in summer both in Southwest China and mainland

China. Moreover, MCC frequency in Southwest China exhibits significant interannual variability.

1 Introduction

MCCs represent an important class of organized deep convection characterized by large (meso- α scale), long-lived, and

circular cloud shields. MCCs form through the merger of multiple thunderstorms, often persist for 6-12 hours, and typically25
produce widespread heavy precipitation and severe weather. MCCs play a significant role in the global hydrological cycle

and frequently cause damaging floods through prolonged rainfall (Maddox, 1980). It was found that 91% of major floods in

East Asia are linked to meso-scale convective systems (Zhou et al., 2023).

Previous studies have conducted extensive and systematic research on MCCs, based on manual census. Augustine and

Howard (1989) documented MCC activity during 1985-1987 in North America using digitized satellite imagery,30
significantly advancing understanding of MCC structure and evolution in the region. Prior researches have also investigated
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MCCs in South America, the western Pacific, the Indian subcontinent and Africa, respectively, thoroughly documenting the

climatological characteristics of MCCs in these regions (Velasco, 1987; Fritsch, 1991; Miller, 1991; Laing, 1993; Febrizky,

2023). It is indicated in these research that MCCs exhibit distinct nocturnal characteristics, primarily forming over

continental areas, and often occurring on the leeward side or downwind regions of major topographic features with lifetimes35
of 8-14 hours. Abisusmita (2023) investigated three MCC events that occurred in South Sulawesi during 2018–2020, all

located over the Makassar Strait, and revealed that their formation was jointly influenced by the Southern Oscillation, the

Madden-Julian Oscillation, and sea surface temperature anomalies.

Southwest China-encompassing the provinces of Sichuan, Guizhou, and Yunnan, along with Chongqing Municipality-

exhibits complex topography and a pronounced monsoon climate. Frequent summertime MCCs in this region often produce40
heavy rainfall that triggers severe mountain hazards, underscoring the critical need to quantify their hydrometeorological

characteristics for improved disaster risk reduction (Zhang et al., 2025). While numerous studies have investigated MCCs

over Southwest China, the majority rely on case analysis or labor-intensive manual surveys, which are often constrained by

limited temporal coverage and spatial extent. Jing et al. (2013) manually identified MCCs over China from 2005 to 2011

using FY-2 satellite imagery and MICAPS data, and performed a comprehensive analysis of their spatiotemporal45
distributions and meteorological characteristics. The results show that MCCs are predominantly concentrated in the Yunnan-

Guizhou-Guangxi-Guangdong region, occur most frequently at night during June and July, are often associated with heavy

rainfall that leads to flooding, originate from relatively consistent genesis locations, and can be classified into five distinct

synoptic circulation patterns at 200 hPa.

The aforementioned studies on MCCs have predominantly relied on manual identification methods, typically involving the50
analysis of enhanced infrared imagery. While this approach is considered reliable, it is inherently labor-intensive and time-

consuming, rendering it impractical for generating long-term, large-scale MCC datasets. Laing and Fritsch (1993) employed

a computerized MCC program, with pixeled cloud shield temperature, latitude, and longitude values as input, to document

the characteristics of MCCs over the Indian subcontinent region. Lakshmanan (2003) pioneered the use of the K-Means

clustering algorithm for thunderstorm identification. Matthews et al. (2010) introduced the DBSCAN (Density-Based Spatial55
Clustering of Applications with Noise) algorithm for thunderstorm detection. Compared with the K-Means clustering

algorithm, the DBSCAN algorithm does not require the number of clusters to be predefined, is insensitive to initial centroid

selection, and can effectively identify thunderstorms with diverse and irregular morphologies. Yan et al. (2020) used an

improved DBSCAN method for identifying the three-dimensional structure of thunderstorms based on radar reflectivity.

Shah et al. (2015) developed a fully automated thunderstorm detection algorithm that adaptively determines optimal multi-60
parameter thresholds by combining optimized radar reflectivity thresholding with the SALdEdA (structure, amplitude,

location, eccentricity difference and areal difference) tracking technique. Guo (2016) employed digital image processing and

fuzzy pattern recognition techniques for the automated identification and tracking of meso-scale convective system cloud

clusters. Nevertheless, the method still necessitated manual intervention to handle newly formed cloud clusters, and its
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identification and tracking accuracy could be influenced by satellite projection geometry and coordinate transformation65
errors.

Although numerous automated detection methods have been developed, most are not specifically designed for MCC

identification or have not been applied to regions over China. As a result, a long-term MCC dataset suitable for studying the

evolution and variability of these meso-α-scale weather systems remains scarce. To address this gap, we develop an adaptive

MCC detection algorithm based on FY-2G satellite data, which integrates cloud-top temperature thresholds, area criteria, and70
morphological characteristics of cloud shields. The open-source algorithm and the resulting MCC dataset are expected to

support operational MCC recognition and tracking, and research on the variability of convective systems under global

warming. By applying this method, we construct a comprehensive MCC event dataset spanning 10 years (June 2015 to

December 2024) over mainland China, which will be regularly updated in the future.

2 Data75

The FY-2G satellite, a member of China’ s Fengyun-2 geostationary meteorological satellite series operated by the China

Meteorological Administration (CMA), was launched on 31 December 2014 and has since maintained a geostationary orbit

at an altitude of approximately 35,800 km. It carries the second-generation Visible and Infrared Spin-Scan Radiometer

(VISSR-II, also referred to as S-VISSR) as primary imaging payload. Through multispectral sensing in the visible, infrared,

and water-vapor bands, The satellite's longitude has been relocated twice: initially at 99.5 °E prior to June 1, 2015, then80
adjusted to 105°E until April 16, 2018, and finally moved back to 99.2 °E, where it remains currently. FY-2G provides

meteorological observations at hourly intervals (with operational scan cycles as frequent as 30-60 minutes), supporting

applications in weather forecasting, climate research, and environmental monitoring.

In this study, we utilize the FY-2G CTT product (https://satellite.nsmc.org.cn/). In contrast to Black Body Temperature

(TBB) measurements, CTT is retrieved through multi-band infrared data inversion integrated with atmospheric modeling,85
yielding a more accurate representation of actual cloud-top thermal conditions. Because the MCC signatures—extensive

cold-cloud shields, near-circular morphology, and prolonged lifetimes—are readily discerned in CTT imagery derived from

infrared satellite observations, physically retrieved CTTs are particularly advantageous for MCC identification and tracking.

The FY-2G CTT product has a nominal 5km spatial resolution (each pixel≈ 5km×5km) and an hourly temporal resolution; it

is available from June 2015 to the present, of which the subset spanning from June 2015 to December 2024 are used for90
analysis in this study.
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3 Algorithm and implementation

3.1 Parameter Optimization

This study develops an automated detection algorithm for MCCs using CTT data retrieved from the infrared channels of the

FY-2G satellite. The initial detection criteria are anchored in the morphological and lifecycle criteria for MCCs proposed by95
Maddox (1980) (Table 1). However, manual census of MCC occurrence over China reveal that the area, morphology and

lifecycle parameters—originally derived from MCC characteristics over North America—are not fully applicable to China,

and therefore warrant region-specific modification. The corresponding parameter adjustments are introduced below.

At each time step, candidate grid cells meeting the prescribed CTT thresholds are first identified. The original cold-cloud

shield requirement (CTT ≤ −32℃ with area ≥105 km2) is overly permissive; although all genuine MCCs satisfy this100
condition, it does little to exclude other convective systems and is therefore omitted (Augustine, 1992). By contrast, the

deep-convection core requirement (CTT ≤ -52℃ with an area ≥50000 km2) proves too restrictive for Chinese MCC cases;

accordingly, the area threshold is revised to ≥40000 km2 to better match observed MCC events previously. To represent the

quasi-circular morphology typical of MCCs, the cold cloud region is extracted and best-fitting ellipse is computed, where the

ellipse eccentricity (ecc) serves as a quantitative measure of roundness. Following Xiang (1995)—who reported smaller105
eccentricity values for MCCs in China than in North America—the conventional ecc criterion is relaxed from ecc ≥ 0.7 to

ecc ≥ 0.6 when the cold-cloud shield reaches maximum extent, enabling capturing the full MCC lifecycle from initiation to

dissipation. For identification accuracy, additional morphological quality-control constraint is incorporated. The cloud

cluster must cover at least 80% of the fitted ellipse’s area (area ratio ≥ 0.8), thereby filtering fragmented or spuriously

connected patches. Finally, a system is classified as an MCC only if all above morphological and area criteria are satisfied110
continuously for at least 6 hours, ensuring consistency in both structural integrity and lifecycle evolution (Table 1).

Table 1: Comparison of MCC parameters/criteria between Maddox (1980) and the this study

Criterion/Parameter Original Standard in Maddox (1980) Optimized Standard in This Study

Cold Cloud Area Threshold TBB ≤ -32℃ with area ≥ 105 km2 null

Deep Convection Core Threshold TBB ≤ -52℃ with area ≥ 50000 km2 CTT ≤ −52℃ with area ≥ 40000 km2

Ellipse Eccentricity Ecc ≥ 0.7 Ecc ≥ 0.6

Area Ratio Quality Control Not specified Cloud cluster area / ellipse area ≥ 0.8

Lifetime ≥ 6h ≥ 6h

3.2 Automated Identification Algorithm115

Based on the aforementioned criteria, the steps of the automated identification algorithm were correspondingly designed and

tailored for the specific analysis of the China region (Fig.1).
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Figure. 1: Flowchart of the automated MCC identification and tracking process. The left panel delineates the steps for algorithmic120
identification, while the right panel outlines the procedures for data validation and output.

a. The first procedure involved geographically masking the original FY-2G satellite data to isolate the China region. The

masked data were then resampled to a 0.1°grid, optimizing computational efficiency for subsequent analysis. Finally, the

initial extraction of potential cold cloud pixels was performed by applying a Cloud Top Temperature (CTT) threshold of ≤ -125
52℃.

b. The second phase comprised the application of the density-based DBSCAN algorithm to cluster the discrete cold cloud

pixels, a technique chosen for its proficiency in identifying dense clusters amidst noise. Following the clustering application,

the critical parametrization of DBSCAN was performed. The core parameters neighborhood radius (eps) and minimum

points (min_samples) - were optimized through analysis of 50 historical MCC event samples (Table 2), with the optimal130
parameter combination ultimately determined as eps = 0.5 and min_samples = 36.

135
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Table 2: Algorithm performance evaluation across parameter configurations using 50 manually verified MCC cases

Parameter selection Event success rate Moment individual recall Moment individual precision

eps = 0.5, min_samples = 25 46/50 317/370 317/397

eps = 0.5, min_samples = 30 48/50 328/370 328/403

eps = 0.5, min_samples = 35 50/50 332/370 332/422

eps = 0.5, min_samples = 36 50/50 342/370 342/419

eps = 0.5, min_samples = 40 50/50 325/370 325/404

eps = 0.5, min_samples = 45 45/50 306/370 306/368

eps = 0.5, min_samples = 50 37/50 247/370 247/309

eps = 0.5, min_samples = 55 32/50 212/370 212/267

eps = 0.6, min_samples = 85 21/50 138/370 138/182

eps = 1.0, min_samples = 220 7/50 39/370 39/41

eps = 1.0, min_samples = 240 3/50 12/370 12/12

c. The third procedure involved the estimation of the spatial extent for each cluster generated in the previous step. The area140
was derived by computing the cumulative area of all pixels belonging to a given cluster. The individual pixel area, which

incorporates a geometric correction for the Earth's sphericity, is defined as Eq. (1):

Si = R2 ⋅ ∆ φi ⋅ ∆ λi ⋅ |cos(φi)| × ni , (1)

where R denotes the Earth's radius ( ≈ 6,371 km), ∆ φi and ∆ λi represent the latitudinal and longitudinal spans in radians,

|cos(φi)| is the correction factor for the latitudinal variation in longitudinal arc length. The total cluster area Si was145

subsequently obtained by multiplying the unit pixel area by ni, the number of grid points in the cluster.

d. The fourth phase consisted of a multi-tiered filtering process. It commenced with a preliminary screening that eliminated

cloud clusters with an area below 40,000 km². For clusters satisfying this area threshold, a two-stage morphological filtering

approach was then executed based on minimum bounding ellipse fitting. The first filtering criterion mandated an ellipse-

fitted eccentricity of ≥ 0.6, a deliberately lenient parameter to encompass systems in their formative stages. The second150
filtering criterion required clusters to maintain at least 80% areal coverage relative to their fitted ellipses, thereby enforcing

morphological regularity and physical plausibility.

e. The final processing stage entailed the definitive classification of the screened MCC candidates. These candidates first

underwent standardized parameter extraction. Subsequently, their validity as MCC events was determined by evaluating

spatiotemporal continuity against strict criteria: a maximum centroid displacement of 50 km and a minimum duration of155
continuous convective activity of 6 hours. This concluding phase of the algorithm ensured that only systems demonstrating

the requisite persistence and spatial coherence were formally classified as MCC events and archived for subsequent analysis.
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Figure 2: a. Spatial distribution of cloud-top temperature (CTT) below -52℃ across China and adjacent regions at [2021-7-20-160
15:00 UTC], derived from FY-2G satellite observations. b. Spatial distribution of clustered cold-cloud systems identified through
DBSCAN algorithm, where distinct colors represent individual clusters meeting MCC candidate criteria (CTT ≤ -52℃, area ≥ 4×
104 km2). c. Spatial distribution of clustered cold-cloud systems after area threshold filtering (≥4×104 km2), where distinct colors
represent individual valid MCC candidates. d. Final MCC candidates after morphological filtering, where color-filled areas
represent systems meeting all criteria (elliptical eccentricity ≥ 0.6, area ratio ≥ 0.8).165

3.3 Validation and Refinement

The initial analysis of the MCC dataset (June 2015–December 2024) produced by our algorithm reveals several key spatial

patterns (Fig. 3). The warm-season concentration in southern China is consistent with the canonical pattern described by

Chang et al. (2015) and serves to benchmark the algorithm's performance. Notably, the occurrence frequency in Northeast170
China is significantly higher than in other regions, with this pattern being particularly pronounced in winter (Dec–Feb),

which contrasts with the findings of Chang et al. (2015). It is essential to consider whether this pattern points to a genuine

climatological feature or highlights a potential limitation of the identification algorithm in capturing the morphological

characteristics of MCCs in Northeast China.

175
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Figure 3: National MCC distribution patterns (2015-2024) with: Color coding: Monthly variation (see colorbar); Marker size:
Cluster area with CTT ≤ -52℃ (log-scaled, 10⁴–10⁵ km² range); Geographic base: China political boundaries with terrain shading.

To evaluate the accuracy of the elevated frequency of MCCs identified in northeastern China, a comparative analysis was180
conducted between a typical algorithm-identified case from this region and a manually confirmed case from southern China.

the CTT distribution of the Northeast China case lacks a coherent structure, exhibiting dispersed cold regions without a

defined core. In contrast, the Southern China case displays a compact deep convective system featuring a pronounced cold

center below −92 ℃, indicative of high cloud tops. This contrast is further corroborated by the optical thickness distribution:

the Northeast China case appears nearly cloud-free or covered by thin clouds, while the Southern China case shows185
extremely high values ( τ ≈ 100), suggestive of deep cumulonimbus. Similarly, the rainfall distribution for the Northeast

China case shows negligible precipitation, whereas the Southern China case features a strong rainfall maximum co-located

with the cloud system (Fig. 4). Validation of additional algorithm-identified cases in Northeast China consistently yielded

similar results, leading to the conclusion that the Northeast China case does not represent a genuine MCC event. This

demonstrates that conventional MCC identification criteria carry a inherent risk of misclassification in Northeast China,190
necessitating algorithm adaptations to account for the region's distinctive climatic characteristics.
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Figure 4: (Left) Cloud-top temperature (shaded, ℃) with 500-hPa relative vorticity (contours, 10-5 s-1); (Middle) Total optical
thickness (unitless); (Right) Six-hour accumulated precipitation (mm) centered on peak -52℃ cloud area in a northeast case195
(upper panel) and in a southern case (lower panel)

Our analysis demonstrates that the spatial distribution of MCC occurrences across China shows significantly enhanced

agreement with the patterns documented by Chang et al. (2015) when winter data are excluded. To quantitatively evaluate

the algorithm's performance, we defined a validation reference zone (20°-30°N, 100°-120°E) within which all algorithm-200
detected events were manually verified against key MCC characteristics, including cloud-top structure, lifetime duration, and

associated precipitation. This rigorously validated region subsequently served as a benchmark for assessing the detection

accuracy in other geographic domains.

Comparative analysis of the probability density functions (PDFs) for MCC areas shows a clear divergence in distribution

shape between the unfiltered national data and the ground-truth benchmark, contrasting the green and pink curves in Figure 5.205
Conversely, the seasonally-filtered national dataset (black curve) exhibits striking concordance with the validated reference

distribution. This finding substantiates that the conspicuous divergence in PDF shapes can be primarily ascribed to false-

positive MCC identifications, with a significant concentration in Northeast China's winter season.
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210
Figure 5. Area Probability Distribution Curve. The green line represents the area probability distribution for the China region,
the purple line shows the area probability distribution for a specific ground-truth region, and the black line indicates the area
probability distribution for the China region after removing winter data.

This study demonstrates that the exclusion of winter observations effectively suppresses false MCC identifications in215
Northeast China while preserving legitimate climatic signals in other regions. This finding provides quantitative support for

the limited applicability of conventional MCC criteria in areas with pronounced seasonal atmospheric divergence. The

results highlight that incorporating seasonal and regional specificity is critical for advancing MCC detection methodology.

Our empirical results demonstrate the limited applicability of the standard MCC identification criteria to Northeast China

during the winter season. This finding underscores the necessity for future algorithm optimization to incorporate regionally-220
specific parameters.

3.4 Results Output

The algorithmic outputs were consolidated into a structured dataset representing the spatiotemporal and physical

characteristics of the identified MCC events. Each record includes quantified metrics such as cloud shield area, minimum

CTT, and centroid location, stored alongside necessary metadata in standardized text formats. This final dataset is readily225
accessible for climatological analysis, model validation, and comparative studies.
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4 Results

We perform a preliminary statistical analysis of the comprehensive MCC dataset to delineate the spatial and seasonal

distribution of MCC occurrences across China (Fig. 6). The results reveal pronounced regional heterogeneity. Over the past

decade, cumulative MCC activity has been the most frequent in Southwest China, far exceeding that in other regions. The230
Yangtze River Basin, the South China coast, and the Sichuan Basin are also identified as hotspots for MCC occurrence. A

distinct north-south seasonal contrast is evident, with MCCs in northern China relatively rare and occurring during spring

and autumn, whereas those in southern China frequent and predominantly concentrated in summer. Furthermore, the spatial

scales of the MCCs, represented by the circle sizes in Figure 6, indicate that summer systems rarely attain extremely large

areal extents. An exception is Southwest China, where MCCs from June to August are both larger in scale and more frequent235
than their autumn (Sep - Nov) counterparts.

Figure 6: Spatial distribution of MCC events across China (2015 - 2024, winter-excluded), where color-coding indicates monthly
variation (see colorbar) and marker size represents the cluster area with cloud-top temperature ≤ -52°C.240
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Given the significantly higher frequency of MCC occurrences and associated extreme rainfall and secondary disasters in

Southwest China compared to other regions, this area (demarcated in Fig. 6) is analyzed separately in addition to the analysis

for mainland China as a whole.

As a primary distribution area for MCCs in China, Southwest China accounts for approximately 32% of the national total245
frequency, underscoring its prominence in the regional climatology. The seasonal distribution of MCC occurrences in this

region aligns with the broader pattern observed across mainland China, characterized by a dominant peak in boreal summer

(June – August), a secondary frequency in spring (March –May), and notably subdued activity in autumn (September –

November). This temporal regime is principally governed by monsoon-modulated dynamics and the thermodynamic

environment, in which the availability of low-level moisture and the degree of convective instability during the warm season250
serve as critical controlling factors (Zhang, 2025). As evidenced in Figs. 7 and 8, the summer months alone account for a

substantial majority (75–80%) of all annual MCC events identified in the region.
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Figure 7: Seasonal distribution of MCC frequency over China (blue bars) and the southwestern region (brown bars).255

Figure 8 depicts the annual frequency of MCC occurrences over mainland China and Southwest China from 2015 to 2024.

Both time series exhibit substantial interannual variability. The mainland China series fluctuates between a minimum of 17

(2015) and a maximum of 59 (2020), with notably higher frequencies also recorded in 2016 and 2024. Similarly, Southwest

China witnesses MCC counts ranging from 4 (2022) to 21 (2020). The coherence of the peak in 2020 across mainland China260
and Southwest China implicates a common set of large-scale climatic drivers that are particularly conducive to MCC

development during that year.
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Figure 8: Interannual variation of MCC frequency over China (blue bars) and the southwestern region (brown bars).265

The interannual variability of MCC occurrence in Southwest China appears to be influenced by the El Niño-Southern

Oscillation (ENSO). For instance, the peak years of MCC occurrence in Southwest China (2016, 2020, 2024), consistently

coincided with the decaying phase of El Niño and/or the developing phase of La Niña. Conversely, the annual trough of

MCC occurrence in 2018 corresponded to the decaying year of La Niña and the developing year of El Niño. Statistical fitting270

of the 2015－2024 time series further corroborates this relationship, revealing a significant periodicity of 4.27 years (p-value

< 0.0001), which is strikingly close to the mean period of the ENSO. This result strongly suggests that the statistical

characteristics of annual MCC occurrences in Southwest China are modulated by large-scale air-sea interactions, although

the underlying mechanisms require further investigation.

275

5 Data availability

The database is available via Zenodo at https://doi.org/10.5281/zenodo.17349888 (Xu, 2025).
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6 Conclusions

This study develops an automatic MCC detection and tracking algorithm based on the cloud top temperature from the FY-2G

satellite, by employing a combination of DBSCAN clustering, multi-threshold screening, and morphological filtering. And a280

long-term (2015－2014) MCC dataset across mainland China is generated. The algorithm effectively captures MCC events.

The Exclusion of winter data substantially enhances detection accuracy in Northeast China, where cold surface conditions

can lead to false identifications. This necessity of region-specific adaptations to the MCC indentification protocol.

Analysis of the spatial distribution of MCCs across mainland China reveals pronounced regional heterogeneity.

Southwestern China stands out as a primary hotspot for MCC occurrence, exhibiting a notably higher frequency than other285
regions that accounts for approximately 32% of the national total. MCC activity demonstrates clear seasonal variability, with

a primary peak during boreal summer and a secondary maximum in spring. Furthermore, both mainland China and

Southwest China exhibit marked interannual variability in annual MCC frequency. The interannual fluctuations in MCC

occurrence over Southwest China are likely modulated by the El Niño-Southern Oscillation.

The primary objective of this work is the development of a novel MCC detection algorithm; consequently, the analysis of the290
spatiotemporal distribution of MCCs across mainland China remains preliminary. Our findings, however, clearly identify

Southwestern China as a region of exceptionally high frequency of MCCs and associated disaster risk. This insight paves the

way for our future research, which will leverage the generated dataset to focus on this hotspot region. We will investigate the

region's key meteorological characteristics, MCC triggering conditions, and maintenance mechanisms, ultimately elucidating

their relationship with ENSO. Furthermore, the rapid advancement of satellite technology and increasing availablility of295
high-resolution data present a critical avenue for future research: the adaptation of this algorithm for practical application in

operational convective systems monitoring and nowcasting.
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