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Abstract. Mesoscale Convective Complexes (MCCs) are major convective weather systems occurring in midlatitude regions,
typically associated with significant weather phenomena such as heavy rainfall, thunderstorms, strong winds, and hail. Based
on the cloud-top temperature (CTT) data of the FY-2G satellite, and through multi-threshold screening combined with
morphological analysis, an automated algorithm for MCC identification and tracking was developed. The algorithm is then
applied to generate an hourly dataset of MCC variables over mainland China from June 2015 to December 2024. The dataset
encompasses variables describing the spatial extent of the cold-core region (CTT < -52°C) of MCCs, the minimum cloud-top
temperature within the cold cloud shields, and the geographic coordinates (longitude and latitude) of the centroids of the cold
cloud shields. This work also conducts a preliminary analysis of the spatial and temporal distribution characteristics of
MCCs over mainland China based on the dataset. Results indicate that MCCs occur more frequently in Southwest China
than in other regions of the country, and over 70% of MCC events occur in summer both in Southwest China and mainland

China. Moreover, MCC frequency in Southwest China exhibits significant interannual variability.

1 Introduction

MCCs represent an important class of organized deep convection characterized by large (meso-a scale), long-lived, and
circular cloud shields. MCCs form through the merger of multiple thunderstorms, often persist for 6-12 hours, and typically
produce widespread heavy precipitation and severe weather. MCCs play a significant role in the global hydrological cycle
and frequently cause damaging floods through prolonged rainfall (Maddox, 1980). It was found that 91% of major floods in
East Asia are linked to meso-scale convective systems (Zhou et al., 2023).

Previous studies have conducted extensive and systematic research on MCCs, based on manual census. Augustine and
Howard (1989) documented MCC activity during 1985-1987 in North America using digitized satellite imagery,

significantly advancing understanding of MCC structure and evolution in the region. Prior researches have also investigated
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MCCs in South America, the western Pacific, the Indian subcontinent and Africa, respectively, thoroughly documenting the
climatological characteristics of MCCs in these regions (Velasco, 1987; Fritsch, 1991; Miller, 1991; Laing, 1993; Febrizky,
2023). It is indicated in these research that MCCs exhibit distinct nocturnal characteristics, primarily forming over
continental areas, and often occurring on the leeward side or downwind regions of major topographic features with lifetimes
of 8-14 hours. Abisusmita (2023) investigated three MCC events that occurred in South Sulawesi during 2018—2020, all
located over the Makassar Strait, and revealed that their formation was jointly influenced by the Southern Oscillation, the
Madden-Julian Oscillation, and sea surface temperature anomalies.

Southwest China-encompassing the provinces of Sichuan, Guizhou, and Yunnan, along with Chongqing Municipality-
exhibits complex topography and a pronounced monsoon climate. Frequent summertime MCCs in this region often produce
heavy rainfall that triggers severe mountain hazards, underscoring the critical need to quantify their hydrometeorological
characteristics for improved disaster risk reduction (Zhang et al., 2025). While numerous studies have investigated MCCs
over Southwest China, the majority rely on case analysis or labor-intensive manual surveys, which are often constrained by
limited temporal coverage and spatial extent. Jing et al. (2013) manually identified MCCs over China from 2005 to 2011
using FY-2 satellite imagery and MICAPS data, and performed a comprehensive analysis of their spatiotemporal
distributions and meteorological characteristics. The results show that MCCs are predominantly concentrated in the Yunnan-
Guizhou-Guangxi-Guangdong region, occur most frequently at night during June and July, are often associated with heavy
rainfall that leads to flooding, originate from relatively consistent genesis locations, and can be classified into five distinct
synoptic circulation patterns at 200 hPa.

The aforementioned studies on MCCs have predominantly relied on manual identification methods, typically involving the
analysis of enhanced infrared imagery. While this approach is considered reliable, it is inherently labor-intensive and time-
consuming, rendering it impractical for generating long-term, large-scale MCC datasets. Laing and Fritsch (1993) employed
a computerized MCC program, with pixeled cloud shield temperature, latitude, and longitude values as input, to document
the characteristics of MCCs over the Indian subcontinent region. Lakshmanan (2003) pioneered the use of the K-Means
clustering algorithm for thunderstorm identification. Matthews et al. (2010) introduced the DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) algorithm for thunderstorm detection. Compared with the K-Means clustering
algorithm, the DBSCAN algorithm does not require the number of clusters to be predefined, is insensitive to initial centroid
selection, and can effectively identify thunderstorms with diverse and irregular morphologies. Yan et al. (2020) used an
improved DBSCAN method for identifying the three-dimensional structure of thunderstorms based on radar reflectivity.
Shah et al. (2015) developed a fully automated thunderstorm detection algorithm that adaptively determines optimal multi-
parameter thresholds by combining optimized radar reflectivity thresholding with the SALdEdA (structure, amplitude,
location, eccentricity difference and areal difference) tracking technique. Guo (2016) employed digital image processing and
fuzzy pattern recognition techniques for the automated identification and tracking of meso-scale convective system cloud

clusters. Nevertheless, the method still necessitated manual intervention to handle newly formed cloud clusters, and its
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identification and tracking accuracy could be influenced by satellite projection geometry and coordinate transformation
errors.

Although numerous automated detection methods have been developed, most are not specifically designed for MCC
identification or have not been applied to regions over China. As a result, a long-term MCC dataset suitable for studying the
evolution and variability of these meso-a-scale weather systems remains scarce. To address this gap, we develop an adaptive
MCC detection algorithm based on FY-2G satellite data, which integrates cloud-top temperature thresholds, area criteria, and
morphological characteristics of cloud shields. The open-source algorithm and the resulting MCC dataset are expected to
support operational MCC recognition and tracking, and research on the variability of convective systems under global
warming. By applying this method, we construct a comprehensive MCC event dataset spanning 10 years (June 2015 to

December 2024) over mainland China, which will be regularly updated in the future.

2 Data

The FY-2G satellite, a member of China’s Fengyun-2 geostationary meteorological satellite series operated by the China
Meteorological Administration (CMA), was launched on 31 December 2014 and has since maintained a geostationary orbit
at an altitude of approximately 35,800 km. It carries the second-generation Visible and Infrared Spin-Scan Radiometer
(VISSR-II, also referred to as S-VISSR) as primary imaging payload. Through multispectral sensing in the visible, infrared,
and water-vapor bands, The satellite's longitude has been relocated twice: initially at 99.5°E prior to June 1, 2015, then
adjusted to 105°E until April 16, 2018, and finally moved back to 99.2°E, where it remains currently. FY-2G provides
meteorological observations at hourly intervals (with operational scan cycles as frequent as 30-60 minutes), supporting
applications in weather forecasting, climate research, and environmental monitoring.

In this study, we utilize the FY-2G CTT product (https://satellite.nsmc.org.cn/). In contrast to Black Body Temperature
(TBB) measurements, CTT is retrieved through multi-band infrared data inversion integrated with atmospheric modeling,
yielding a more accurate representation of actual cloud-top thermal conditions. Because the MCC signatures —extensive
cold-cloud shields, near-circular morphology, and prolonged lifetimes—are readily discerned in CTT imagery derived from
infrared satellite observations, physically retrieved CTTs are particularly advantageous for MCC identification and tracking.
The FY-2G CTT product has a nominal Skm spatial resolution (each pixel~ Skmx5km) and an hourly temporal resolution; it
is available from June 2015 to the present, of which the subset spanning from June 2015 to December 2024 are used for

analysis in this study.
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3 Algorithm and implementation
3.1 Parameter Optimization

This study develops an automated detection algorithm for MCCs using CTT data retrieved from the infrared channels of the
FY-2G satellite. The initial detection criteria are anchored in the morphological and lifecycle criteria for MCCs proposed by
Maddox (1980) (Table 1). However, manual census of MCC occurrence over China reveal that the area, morphology and
lifecycle parameters—originally derived from MCC characteristics over North America—are not fully applicable to China,
and therefore warrant region-specific modification. The corresponding parameter adjustments are introduced below.

At each time step, candidate grid cells meeting the prescribed CTT thresholds are first identified. The original cold-cloud
shield requirement (CTT < —32°C with area >10° km?) is overly permissive; although all genuine MCCs satisfy this
condition, it does little to exclude other convective systems and is therefore omitted (Augustine, 1992). By contrast, the
deep-convection core requirement (CTT < -52°C with an area >50000 km?) proves too restrictive for Chinese MCC cases;
accordingly, the area threshold is revised to >40000 km? to better match observed MCC events previously. To represent the
quasi-circular morphology typical of MCCs, the cold cloud region is extracted and best-fitting ellipse is computed, where the
ellipse eccentricity (ecc) serves as a quantitative measure of roundness. Following Xiang (1995)—who reported smaller
eccentricity values for MCCs in China than in North America—the conventional ecc criterion is relaxed from ecc > 0.7 to
ecc > 0.6 when the cold-cloud shield reaches maximum extent, enabling capturing the full MCC lifecycle from initiation to
dissipation. For identification accuracy, additional morphological quality-control constraint is incorporated. The cloud
cluster must cover at least 80% of the fitted ellipse’s area (area ratio > 0.8), thereby filtering fragmented or spuriously
connected patches. Finally, a system is classified as an MCC only if all above morphological and area criteria are satisfied

continuously for at least 6 hours, ensuring consistency in both structural integrity and lifecycle evolution (Table 1).

Table 1: Comparison of MCC parameters/criteria between Maddox (1980) and the this study

Criterion/Parameter Original Standard in Maddox (1980) Optimized Standard in This Study
Cold Cloud Area Threshold Tes <-32°C with area > 10° km? null
Deep Convection Core Threshold Tep < -52°C with area > 50000 km? CTT < —52°C with area > 40000 km?
Ellipse Eccentricity Ecc>0.7 Ecc>0.6
Area Ratio Quality Control Not specified Cloud cluster area / ellipse area > 0.8
Lifetime > 6h > 6h

3.2 Automated Identification Algorithm

Based on the aforementioned criteria, the steps of the automated identification algorithm were correspondingly designed and

tailored for the specific analysis of the China region (Fig.1).
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ellipse fits.

Analyze cloud top temperature, precipitation and optical
thickness.

Validate and determine exclusion criteria for Northeast case.

B Duration > 6h, displacement < 50 kmv/h.

Figure. 1: Flowchart of the automated MCC identification and tracking process. The left panel delineates the steps for algorithmic
identification, while the right panel outlines the procedures for data validation and output.

a. The first procedure involved geographically masking the original FY-2G satellite data to isolate the China region. The
masked data were then resampled to a 0.1°grid, optimizing computational efficiency for subsequent analysis. Finally, the
initial extraction of potential cold cloud pixels was performed by applying a Cloud Top Temperature (CTT) threshold of < -
52°C.

b. The second phase comprised the application of the density-based DBSCAN algorithm to cluster the discrete cold cloud
pixels, a technique chosen for its proficiency in identifying dense clusters amidst noise. Following the clustering application,
the critical parametrization of DBSCAN was performed. The core parameters neighborhood radius (eps) and minimum
points (min_samples) - were optimized through analysis of 50 historical MCC event samples (Table 2), with the optimal

parameter combination ultimately determined as eps = 0.5 and min_samples = 36.
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Table 2: Algorithm performance evaluation across parameter configurations using 50 manually verified MCC cases

Parameter selection Event success rate Moment individual recall Moment individual precision

eps = 0.5, min_samples = 25 46/50 317/370 317/397
eps = 0.5, min_samples = 30 48/50 328/370 328/403
eps = 0.5, min_samples = 35 50/50 332/370 332/422
eps = 0.5, min_samples =36 50/50 342/370 342/419
eps = 0.5, min_samples = 40 50/50 325/370 325/404
eps = 0.5, min_samples = 45 45/50 306/370 306/368
eps = 0.5, min_samples = 50 37/50 247/370 247/309
eps = 0.5, min_samples = 55 32/50 212/370 212/267
eps = 0.6, min_samples = 85 21/50 138/370 138/182
eps = 1.0, min_samples = 220 7/50 39/370 39/41

eps = 1.0, min_samples = 240 3/50 12/370 12/12

c. The third procedure involved the estimation of the spatial extent for each cluster generated in the previous step. The area
was derived by computing the cumulative area of all pixels belonging to a given cluster. The individual pixel area, which

incorporates a geometric correction for the Earth's sphericity, is defined as Eq. (1):
Si=R*> A@; AN [cos(@)| x mj, )]

where R denotes the Earth's radius ( = 6,371 km), A @; and A A; represent the latitudinal and longitudinal spans in radians,
|cos(@;)| is the correction factor for the latitudinal variation in longitudinal arc length. The total cluster area S; was
subsequently obtained by multiplying the unit pixel area by n;, the number of grid points in the cluster.

d. The fourth phase consisted of a multi-tiered filtering process. It commenced with a preliminary screening that eliminated
cloud clusters with an area below 40,000 km?. For clusters satisfying this area threshold, a two-stage morphological filtering
approach was then executed based on minimum bounding ellipse fitting. The first filtering criterion mandated an ellipse-
fitted eccentricity of > 0.6, a deliberately lenient parameter to encompass systems in their formative stages. The second
filtering criterion required clusters to maintain at least 80% areal coverage relative to their fitted ellipses, thereby enforcing
morphological regularity and physical plausibility.

e. The final processing stage entailed the definitive classification of the screened MCC candidates. These candidates first
underwent standardized parameter extraction. Subsequently, their validity as MCC events was determined by evaluating
spatiotemporal continuity against strict criteria: a maximum centroid displacement of 50 km and a minimum duration of
continuous convective activity of 6 hours. This concluding phase of the algorithm ensured that only systems demonstrating

the requisite persistence and spatial coherence were formally classified as MCC events and archived for subsequent analysis.
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Figure 2: a. Spatial distribution of cloud-top temperature (CTT) below -52°C across China and adjacent regions at [2021-7-20-
15:00 UTC], derived from FY-2G satellite observations. b. Spatial distribution of clustered cold-cloud systems identified through
DBSCAN algorithm, where distinct colors represent individual clusters meeting MCC candidate criteria (CTT < -52°C, area > 4x
10* km?). c. Spatial distribution of clustered cold-cloud systems after area threshold filtering (>4x10* km?), where distinct colors
represent individual valid MCC candidates. d. Final MCC candidates after morphological filtering, where color-filled areas
represent systems meeting all criteria (elliptical eccentricity > 0.6, area ratio > 0.8).

3.3 Validation and Refinement

The initial analysis of the MCC dataset (June 2015—December 2024) produced by our algorithm reveals several key spatial
patterns (Fig. 3). The warm-season concentration in southern China is consistent with the canonical pattern described by
Chang et al. (2015) and serves to benchmark the algorithm's performance. Notably, the occurrence frequency in Northeast
China is significantly higher than in other regions, with this pattern being particularly pronounced in winter (Dec—Feb),
which contrasts with the findings of Chang et al. (2015). It is essential to consider whether this pattern points to a genuine
climatological feature or highlights a potential limitation of the identification algorithm in capturing the morphological

characteristics of MCCs in Northeast China.
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Figure 3: National MCC distribution patterns (2015-2024) with: Color coding: Monthly variation (see colorbar); Marker size:
Cluster area with CTT <-52°C (log-scaled, 10*-10° km* range); Geographic base: China political boundaries with terrain shading.

To evaluate the accuracy of the elevated frequency of MCCs identified in northeastern China, a comparative analysis was
conducted between a typical algorithm-identified case from this region and a manually confirmed case from southern China.
the CTT distribution of the Northeast China case lacks a coherent structure, exhibiting dispersed cold regions without a
defined core. In contrast, the Southern China case displays a compact deep convective system featuring a pronounced cold
center below —92 °C, indicative of high cloud tops. This contrast is further corroborated by the optical thickness distribution:
the Northeast China case appears nearly cloud-free or covered by thin clouds, while the Southern China case shows
extremely high values (t = 100), suggestive of deep cumulonimbus. Similarly, the rainfall distribution for the Northeast
China case shows negligible precipitation, whereas the Southern China case features a strong rainfall maximum co-located
with the cloud system (Fig. 4). Validation of additional algorithm-identified cases in Northeast China consistently yielded
similar results, leading to the conclusion that the Northeast China case does not represent a genuine MCC event. This
demonstrates that conventional MCC identification criteria carry a inherent risk of misclassification in Northeast China,

necessitating algorithm adaptations to account for the region's distinctive climatic characteristics.
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Figure 4: (Left) Cloud-top temperature (shaded, °C) with 500-hPa relative vorticity (contours, 10 s'); (Middle) Total optical
thickness (unitless); (Right) Six-hour accumulated precipitation (mm) centered on peak -52°C cloud area in a northeast case
(upper panel) and in a southern case (lower panel)

Our analysis demonstrates that the spatial distribution of MCC occurrences across China shows significantly enhanced
agreement with the patterns documented by Chang et al. (2015) when winter data are excluded. To quantitatively evaluate
the algorithm's performance, we defined a validation reference zone (20°-30°N, 100°-120°E) within which all algorithm-
detected events were manually verified against key MCC characteristics, including cloud-top structure, lifetime duration, and
associated precipitation. This rigorously validated region subsequently served as a benchmark for assessing the detection
accuracy in other geographic domains.

Comparative analysis of the probability density functions (PDFs) for MCC areas shows a clear divergence in distribution
shape between the unfiltered national data and the ground-truth benchmark, contrasting the green and pink curves in Figure 5.
Conversely, the seasonally-filtered national dataset (black curve) exhibits striking concordance with the validated reference
distribution. This finding substantiates that the conspicuous divergence in PDF shapes can be primarily ascribed to false-

positive MCC identifications, with a significant concentration in Northeast China's winter season.
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Figure 5. Area Probability Distribution Curve. The green line represents the area probability distribution for the China region,
the purple line shows the area probability distribution for a specific ground-truth region, and the black line indicates the area
probability distribution for the China region after removing winter data.

This study demonstrates that the exclusion of winter observations effectively suppresses false MCC identifications in
Northeast China while preserving legitimate climatic signals in other regions. This finding provides quantitative support for
the limited applicability of conventional MCC criteria in areas with pronounced seasonal atmospheric divergence. The
results highlight that incorporating seasonal and regional specificity is critical for advancing MCC detection methodology.
Our empirical results demonstrate the limited applicability of the standard MCC identification criteria to Northeast China
during the winter season. This finding underscores the necessity for future algorithm optimization to incorporate regionally-

specific parameters.

3.4 Results Output

The algorithmic outputs were consolidated into a structured dataset representing the spatiotemporal and physical
characteristics of the identified MCC events. Each record includes quantified metrics such as cloud shield area, minimum
CTT, and centroid location, stored alongside necessary metadata in standardized text formats. This final dataset is readily

accessible for climatological analysis, model validation, and comparative studies.

10



Earth System
Science

Data

https://doi.org/10.5194/essd-2025-652
Preprint. Discussion started: 19 January 2026
(© Author(s) 2026. CC BY 4.0 License.

Open Access
suoIssnasIqg

4 Results

We perform a preliminary statistical analysis of the comprehensive MCC dataset to delineate the spatial and seasonal
distribution of MCC occurrences across China (Fig. 6). The results reveal pronounced regional heterogeneity. Over the past
230 decade, cumulative MCC activity has been the most frequent in Southwest China, far exceeding that in other regions. The
Yangtze River Basin, the South China coast, and the Sichuan Basin are also identified as hotspots for MCC occurrence. A
distinct north-south seasonal contrast is evident, with MCCs in northern China relatively rare and occurring during spring
and autumn, whereas those in southern China frequent and predominantly concentrated in summer. Furthermore, the spatial
scales of the MCCs, represented by the circle sizes in Figure 6, indicate that summer systems rarely attain extremely large
235 areal extents. An exception is Southwest China, where MCCs from June to August are both larger in scale and more frequent

than their autumn (Sep - Nov) counterparts.

55°N

25°N/-...

15°N

2
2

v~ S NFe L
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Figure 6: Spatial distribution of MCC events across China (2015 - 2024, winter-excluded), where color-coding indicates monthly
240  variation (see colorbar) and marker size represents the cluster area with cloud-top temperature < -52°C.
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Given the significantly higher frequency of MCC occurrences and associated extreme rainfall and secondary disasters in
Southwest China compared to other regions, this area (demarcated in Fig. 6) is analyzed separately in addition to the analysis
for mainland China as a whole.

As a primary distribution area for MCCs in China, Southwest China accounts for approximately 32% of the national total
frequency, underscoring its prominence in the regional climatology. The seasonal distribution of MCC occurrences in this
region aligns with the broader pattern observed across mainland China, characterized by a dominant peak in boreal summer
(June — August), a secondary frequency in spring (March—May), and notably subdued activity in autumn (September —
November). This temporal regime is principally governed by monsoon-modulated dynamics and the thermodynamic
environment, in which the availability of low-level moisture and the degree of convective instability during the warm season
serve as critical controlling factors (Zhang, 2025). As evidenced in Figs. 7 and 8, the summer months alone account for a

substantial majority (75-80%) of all annual MCC events identified in the region.

12
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Figure 7: Seasonal distribution of MCC frequency over China (blue bars) and the southwestern region (brown bars).

Figure 8 depicts the annual frequency of MCC occurrences over mainland China and Southwest China from 2015 to 2024.
Both time series exhibit substantial interannual variability. The mainland China series fluctuates between a minimum of 17
(2015) and a maximum of 59 (2020), with notably higher frequencies also recorded in 2016 and 2024. Similarly, Southwest
China witnesses MCC counts ranging from 4 (2022) to 21 (2020). The coherence of the peak in 2020 across mainland China
and Southwest China implicates a common set of large-scale climatic drivers that are particularly conducive to MCC

development during that year.
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Figure 8: Interannual variation of MCC frequency over China (blue bars) and the southwestern region (brown bars).

The interannual variability of MCC occurrence in Southwest China appears to be influenced by the El Nifio-Southern
Oscillation (ENSO). For instance, the peak years of MCC occurrence in Southwest China (2016, 2020, 2024), consistently
coincided with the decaying phase of El Niflo and/or the developing phase of La Nifia. Conversely, the annual trough of
MCC occurrence in 2018 corresponded to the decaying year of La Nifia and the developing year of El Nifio. Statistical fitting
of the 2015—2024 time series further corroborates this relationship, revealing a significant periodicity of 4.27 years (p-value
< 0.0001), which is strikingly close to the mean period of the ENSO. This result strongly suggests that the statistical
characteristics of annual MCC occurrences in Southwest China are modulated by large-scale air-sea interactions, although

the underlying mechanisms require further investigation.

5 Data availability

The database is available via Zenodo at https://doi.org/10.5281/zenodo.17349888 (Xu, 2025).
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6 Conclusions

This study develops an automatic MCC detection and tracking algorithm based on the cloud top temperature from the FY-2G
satellite, by employing a combination of DBSCAN clustering, multi-threshold screening, and morphological filtering. And a
long-term (2015 —2014) MCC dataset across mainland China is generated. The algorithm effectively captures MCC events.
The Exclusion of winter data substantially enhances detection accuracy in Northeast China, where cold surface conditions
can lead to false identifications. This necessity of region-specific adaptations to the MCC indentification protocol.

Analysis of the spatial distribution of MCCs across mainland China reveals pronounced regional heterogeneity.
Southwestern China stands out as a primary hotspot for MCC occurrence, exhibiting a notably higher frequency than other
regions that accounts for approximately 32% of the national total. MCC activity demonstrates clear seasonal variability, with
a primary peak during boreal summer and a secondary maximum in spring. Furthermore, both mainland China and
Southwest China exhibit marked interannual variability in annual MCC frequency. The interannual fluctuations in MCC
occurrence over Southwest China are likely modulated by the El Nifio-Southern Oscillation.

The primary objective of this work is the development of a novel MCC detection algorithm; consequently, the analysis of the
spatiotemporal distribution of MCCs across mainland China remains preliminary. Our findings, however, clearly identify
Southwestern China as a region of exceptionally high frequency of MCCs and associated disaster risk. This insight paves the
way for our future research, which will leverage the generated dataset to focus on this hotspot region. We will investigate the
region's key meteorological characteristics, MCC triggering conditions, and maintenance mechanisms, ultimately elucidating
their relationship with ENSO. Furthermore, the rapid advancement of satellite technology and increasing availablility of
high-resolution data present a critical avenue for future research: the adaptation of this algorithm for practical application in

operational convective systems monitoring and nowcasting.
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