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Abstract. Lakes on the Tibetan Plateau have expanded markedly over recent decades, reflecting complex interactions between 

the regional water cycle and the cryosphere. Whereas annual datasets capture long-term trends, they often overlook short-term 

hydrological responses and seasonal transitions that are resolved by monthly observations. Consequently, a systematic 

understanding of intra-annual lake variability remains limited, largely because most existing datasets are designed for 

interannual scales, which makes monthly variations and seasonal patterns difficult to characterise. These limitations hinder 15 

investigations into the driving mechanisms and complicate assessments of climate-change impacts. To address this gap, we 

utilised Google Earth Engine (GEE) and the MODIS Surface Reflectance product MOD09A1 (500 m) to construct a monthly 

vector boundary dataset for lakes larger than 10 km2 across the Tibetan Plateau for 2000–2024. Within this dataset, the number 

of large lakes larger than 50 km2 ranged from 142 to 175, and the number of smaller lakes (10–50 km2) varies between 232 and 

260 across the study period. A random forest classifier based on spectral indices was developed and validated with 533 20 

balanced water/non-water samples, achieving an overall accuracy of 93.21% and an F1 score of 0.927. To enhance spatial 

precision, we implemented a boundary optimisation workflow integrating filtering, morphological operations, and geometric 

rectification, thereby improving agreement between extracted and actual lake extents. Aggregate lake area on the Plateau 

increased at 34.91 km2 per year, and typically reached its annual maximum in September or October. The relative monthly rate 

of area change showed higher values in the west, lower in the east, and stronger variability centrally; for individual lakes the 25 

maximum monthly relative change reached 28.43% from 2000 to 2024. In addition, smaller lakes were more sensitive to 

environmental change than larger lakes. To our knowledge, this is the first monthly resolution vector dataset of Tibetan Plateau 

lakes that couples multi-temporal classification with morphological optimisation. The dataset provides critical support for 

climate-change research, ecological conservation, and policy formulation, and is publicly available at 

https://doi.org/10.12443/BNU.RSEC.TPLake-MED20251028. 30 
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1 Introduction 

The Tibetan Plateau (TP), often termed the “Roof of the World” and the “Water Tower of Asia”, is the world’s highest and 

largest plateau and exhibits distinctive environmental characteristics (Qiu, 2018; Bibi et al., 2018). Its ecological significance 

is paramount, as it contains the headwaters of the Yangtze and Yellow Rivers and supplies major transboundary watercourses 

to South Asia, Southeast Asia, and the Indochinese Peninsula, supporting the livelihoods and socioeconomic development of 35 

vast downstream populations (Immerzeel et al., 2010). The TP also hosts exceptionally diverse alpine biota that underpin 

unique ecosystems and evolutionary processes (Ding et al., 2020). Through its extreme elevation and strong snow-albedo 

feedbacks, the TP exerts substantial influence on the Asian monsoon system and even global atmospheric circulation patterns. 

It is among the world’s most responsive climate regions, shaping key hydrological processes and distinctive ecological 

regimes (Li and Guo, 2022; Wang, 2016). Moreover, the Plateau sustains rich cultural diversity and plays an irreplaceable 40 

strategic role in regional sustainable development and ecological security (Luo and Yang, 2011).  

Lakes are integral to the terrestrial water cycle; they modulate hydrological processes, respond to climatic variability, and 

archive signals of past climate and human activity. They are widely regarded as indicators of global climate (Li et al., 2018; 

Song et al., 2020). The Tibetan Plateau hosts the world’s largest, most numerous, and highest-elevation cluster of plateau lakes 

(Zhao et al., 2022). Driven by climate warming, glacier melt, and permafrost degradation, lake area on the Plateau has 45 

expanded substantially. Changes in lake number and surface area are now key indicators of regional hydrological processes 

and climate change (Qiao et al., 2019; Wan et al., 2014). Since the late twentieth century, lakes in endorheic basins have 

expanded faster than those in exorheic basins, against a backdrop of overall expansion across the Plateau (Zhao et al., 2021; Li 

et al., 2022). This spatially distinct expansion process not only introduces uncertainties in how different watersheds and lake 

basins respond to climate change and glacier melt (Chen et al., 2022; Deng et al., 2018), but also directly impacts regional 50 

water balance, wetland ecosystem stability, and the safety of surrounding engineering infrastructure through fluctuations in 

lake area (Xu et al., 2025; Zhu et al., 2025). 

With advances in remote sensing technology and machine learning, methods for extracting lake extent from multi-temporal 

satellite imagery have progressed rapidly (Saha et al., 2024). Traditional water body index-based approaches have found 

application in large scale dynamic monitoring (Pekel et al., 2016; Han et al., 2019; Yan et al., 2018; Miao et al., 2025). 55 

Common indices such as NDWI, MNDWI, and AWEI are extensively utilised with multispectral data from MODIS, Landsat, 

and Sentinel-2 for water extraction. However, these index-based methods exhibit insufficient accuracy under conditions of 

high cloud cover, ice and snow coverage, or complex surface conditions (Huang et al., 2020; Lei et al., 2022). Conversely, 

water body classification methods integrating machine learning (e.g., random forest, support vector machine) with 

multi-source remote sensing features demonstrate favourable adaptability and generalisation capabilities in the Tibetan Plateau 60 

region (Li et al., 2021; Zhou et al., 2022), thereby improving the accuracy of lake boundary identification in complex 
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environments (Li et al., 2022; Liu et al., 2022; Yang et al., 2025). For instance, Li et al. integrated Landsat-8/9 multispectral 

data with DEM terrain features using a random forest algorithm to extract water bodies on the Tibetan Plateau, achieving an 

overall accuracy of 95.84%, significantly outperforming traditional methods like NDWI. Liu et al. integrated Landsat 

multispectral data, DEM texture features, and textural features using a random forest algorithm to generate a water body 65 

distribution map for the Tibetan Plateau, achieving an overall accuracy of 92.9%, markedly superior to single index methods. 

Yang et al. utilised the Google Earth Engine (GEE) platform to classify wetland types using a random forest approach, 

integrating Landsat time series data from 2000 to 2023 with DEM texture features. This achieved an average overall accuracy 

of 88.45%, effectively distinguishing lakes from marshy meadows. 

Several vector datasets of lake area on the Tibetan Plateau are currently available and widely utilised (Zhang et al., 2018; Pang 70 

et al., 2021; Wang et al., 2023; Zhang et al., 2019; Zhang et al., 2020; Ran et al., 2023). For instance, Zhang et al. constructed 

triennial area time series for 364 lakes larger than 10 km2 between 1970 and 2013; Pang et al. generated continuous area time 

series for 20 lakes larger than 100 km2 from 1976 to 2019; Wang et al. (2023) provided annual mean area data for 180 lakes 

from 1986 to 2020; Zhang et al. acquired lake area data for 16 periods from 1970 to 2022; Zhang et al. extracted monthly scale 

area for lakes larger than 50 km2 from 2015 to 2018 based on Sentinel-1 SAR data; Ran et al. generated a dataset of monthly 75 

lake area changes for lakes larger than 30 km2 from 2015 to 2020 using multi-source remote sensing imagery. However, these 

interannual datasets typically select only a single specific phase (e.g., one summer scene per year) to represent annual lake 

extent, lacking representativeness and failing to capture intra-annual dynamics and seasonal variations. This limits their utility 

for analysing responses to extreme climate events and short-term hydrological processes (Yang et al., 2017). Secondly, 

although studies have begun to provide monthly scale data, their temporal coverage remains relatively short (e.g., 3–5 years), 80 

making it difficult to support in-depth analysis of long-term lake change trends and their driving factors (Li et al., 2025); 

Furthermore, existing datasets emphasise larger lakes, with insufficient coverage of small and medium lakes. Spatial resolution 

and temporal continuity are often difficult to reconcile (Ma et al., 2022). Simultaneously, inconsistencies in remote sensing 

data sources, extraction methods, and temporal phase selection across different datasets reduce consistency and comparability 

(Gu et al., 2023). 85 

Few studies have systematically undertaken long-term, high-frequency, comprehensive monitoring of monthly lake area 

change across the Tibetan Plateau. High temporal resolution continuous data series (such as monthly data spanning over a 

decade) can effectively fill gaps in temporal granularity and sequence continuity within existing datasets. This provides crucial 

data support for high precision lake water volume dynamics modelling, analysis of driving mechanisms, and research into 

responses to climate change (Liu et al., 2024; Khandelwal et al., 2022). Consequently, this study aims to: (1) develop an 90 

automated extraction method for Tibetan Plateau lakes based on multi-temporal MODIS remote sensing imagery, 

incorporating random forest classification and morphological optimisation; (2) construct a high precision monthly scale vector 

boundary dataset for lakes exceeding 10 km2 in area from 2000 to 2024, and systematically validate its accuracy; (3) compare 
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the dataset with existing products to evaluate advantages in accuracy, temporal continuity, and spatial consistency; (4) reveal 

the spatiotemporal patterns of lake area change across the Tibetan Plateau over the past two decades, providing crucial 95 

foundational data for regional hydrological process modelling, cryosphere change research, and climate change impact 

assessments. 

2 Study area 

The Tibetan Plateau (26°00′–39°47′ N, 73°19′–104°47′ E) exceeds 4,000 metres in average elevation and is the highest and 

largest plateau in the world. It is often referred to as the “Roof of the World” and the “Water Tower of Asia” (Long et al., 2022; 100 

Zhang et al., 2023). The Tibetan Plateau is rich in lake resources, with over 1,500 lakes of various sizes, including 

approximately 180 lakes larger than 50 square kilometres. The total lake area is approximately 44,993 square kilometres, 

accounting for about 50% of the total lake area in China (Huang et al., 2025). These lakes are primarily saline lakes and salt 

lakes, including the famous Nam Co, Qinghai Lake, and Qarhan Salt Lake (Yan et al., 2017). The distribution of lakes across 

the Tibetan Plateau is influenced by both the altitude and geographical features. The larger lakes, those over 50 km2 are 105 

predominantly located in regions with relatively flat terrain and higher elevations, such as the central and northeastern parts of 

the plateau. Smaller lakes (10–50 km2) are scattered more widely across areas with more complex terrain, including the 

southern and southeastern regions of the plateau. These areas are characterized by rugged mountain systems, such as the 

Himalayas and Hengduan Mountains, which shape the hydrological landscape and influence lake distribution. 

 110 

Figure 1: Overview map of the study area. TP denotes the Tibetan Plateau. 
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3 Method 

Figure 2 summarised the monthly lake area data generation workflow for this study: First, the monthly baseline imagery is 

constructed by selecting the image with the lowest cloud cover from MOD09A1 (500 m) for each month from the GEE 

platform, followed by cloud masking and temporal gap-filling interpolation. Second, water bodies are classified with a random 115 

forest classifier using multispectral bands and spectral indices, and assessed accuracy with confusion matrices and 

multi-algorithm comparisons. Third, post-classification processing included noise reduction, missing pixel detection and 

filling, overlaying the JRC global surface water mask, morphological smoothing, boundary IoU constraints, and invalid 

geometry repair to optimize boundaries. Finally, we validated accuracy against multi-source data and existing products, and 

conducted spatial heterogeneity and time series analysis to reveal spatiotemporal evolution patterns of lake area. 120 

 

Figure 2: Framework of monthly lake data generation in this study. The process comprises four steps: data preprocessing to select 
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monthly imagery with the lowest cloud cover (Step 1), random forest classification to obtain preliminary water body extraction 

results (Step 2), post-classification lake morphological and boundary optimisation (Step 3), lake area calculation and comparative 

validation (Step 4). 125 

3.1 Data preprocessing 

We utilized the MODIS MOD09A1 surface reflectance (SR) product with a spatial resolution of 500 metres. The MOD09A1 

product provides atmospheric-corrected surface reflectance data under favourable atmospheric conditions and is directly 

accessible via GEE. For each month, we selected the MOD09A1 scene with the lowest cloud cover as the monthly baseline 

image for subsequent lake area extraction. Before using the base image, we further processed it using the product’s built-in 130 

StateQA band for cloud masking (by bitwise operation to detect the 10th cloud flag) to remove residual cloud and cloud 

shadow-affected pixels. To address data gaps remaining after cloud masking, we employed a time series linear interpolation 

method. This involves stacking the best monthly images in chronological order to generate a reflectance time series for each 

pixel, then interpolating missing values using the reflectance values from the available pixels in the preceding and following 

months, as shown in Eq. (1): 135 

𝑅௧ ൌ 𝑅௧ିଵ ൅ ሺ𝑡 െ 𝑡ିଵሻ ൈ
ோ೟శభିோ೟షభ
௧శభି௧షభ

                (1) 

Where R୲ is the reflectance of the pixel to be filled, and tേଵ are the effective time points adjacent to the missing value. 

Missing data in the first and last months were filled using the nearest pixel values to ensure the spatio-temporal continuity of 

lake boundary extraction. Based on these monthly image data that had undergone rigorous screening, cloud masking, and 

interpolation processing, we further performed water body classification to extract lake area. Selecting the lowest cloud scene 140 

each month minimised cloud obstruction, yielding the clearest monthly surface observation and providing a robust basis for 

accurate lake boundary identification. Subsequent cloud masking ensured that reflectance utilised for classification primarily 

originates from true surface water or non-water, thereby reducing misclassification due to cloud contamination. 

3.2 Machine learning classification 

To accurately extract water bodies from MODIS imagery, we compared three machine learning algorithms—random forest 145 

(RF), support sector machine (SVM), and classification and regression tree (CART)—under identical input features and 

training sample conditions, and selected the optimal model for large scale water body extraction across the Tibetan Plateau. RF 

constructs an ensemble of decision trees and aggregates their predictions by majority voting (Breiman, 2001; Wen et al., 2023). 

SVM identifies the optimal separating hyperplane to maximize the classification margin, performing well on both linear and 

non-linear problems and particularly excelling in high dimensional sparse datasets (Zhou et al., 2009; Kuter, 2021). CART 150 

recursively splits data based on the Gini index without any distributional assumptions, effectively handling non-linear 
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relationships and evaluating the importance of multi-source features such as spectral, textural, and index-based variables (Chen 

et al., 2015). 

3.2.1 Calculation of Input Features 

We collected ten variables from the MOD09A1 imagery, including six original bands and four calculated indices (Zhang et al., 155 

2021). These variables were utilised to discriminate surface water from non-water bodies in the Tibetan Plateau. The four 

indices included the Normalised Difference Vegetation Index (NDVI; Tucker, 1979), the Normalised Difference Water Index 

(NDWI; McFeeters, 1996), the Modified Normalised Difference Water Index (MNDWI; Xu, 2006), and the Automatic Water 

Extraction Index (AWEI; Feyisa, 2014), with the formulas as follows: 

𝑁𝐷𝑉𝐼 ൌ
ఘಿ಺ೃିఘೃಶವ
ఘಿ಺ೃାఘೃಶವ

                   (2) 160 

𝑁𝐷𝑊𝐼 ൌ
ఘಸೃಶಶಿିఘಿ಺ೃ
ఘಸೃಶಶಿାఘಿ಺ೃ

                  (3) 

𝑀𝑁𝐷𝑊𝐼 ൌ
ఘಸೃಶಶಿିఘೄೈ಺ೃభ

ఘಸೃಶಶಿାఘೄೈ಺ೃభ
                 (4) 

𝐴𝑊𝐸𝐼 ൌ 4ሺ𝜌ீோாாே െ 𝜌ௌௐூோଵሻ െ ሺ0.25𝜌ேூோ ൅ 2.75𝜌ௌௐூோଶሻ           (5) 

where ρୋୖ୉୉୒, ρୖ୉ୈ, ρୗ୛୍ୖଵ and ρୗ୛୍ୖଶ denote the surface reflectance in the green, red, near-infrared, and the first and 

second short-wave infrared bands of the MODIS Surface Reflectance product, respectively. 165 

3.2.2 Model training and parameter optimization 

Classifiers are highly sensitive to sampling design (Belgiu et al., 2016). Appropriate training samples are critical for the 

classification accuracy and stability of models (Xie, 2022). In the absence of suitable labelled sample data, we manually 

labelled 2,420 sample points on the GEE platform as the training dataset, including 1,275 points labelled as water bodies and 

1,145 points labelled as non-water bodies (Fig. 7a), ensuring that the sample points were uniformly distributed across the study 170 

area. Additionally, we utilised the JRC dataset (Kibret et al., 2021) as auxiliary reference for classification. Finally, we 

randomly divided 70% of the samples into a training set and the remaining 30% into a validation set. 

For the RF classifier, hyperparameters were tuned by grid search with cross validation to ensure generalisation capability 

(Zhang et al., 2021). The number of trees (numberOfTrees) was set to 150, the minimum number of samples per leaf node 

(minLeafPopulation) was set to 5, and the sampling ratio (bagFraction) was set to 0.5, meaning each tree was trained on a 175 

random 50% subset of the data with replacement (Liu et al., 2015). These settings increased ensemble diversity and mitigated 

overfitting. SVM and CART classifiers are trained using the same dataset and parameter settings on the GEE platform. SVM 

was implemented with a radial basis function (RBF) kernel to capture non-linear boundaries, while CART utilised Gini 

impurity as the splitting criterion for optimal threshold selection. 
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3.2.3 Model evaluation and selection 180 

To assess and compare the performance of different models, a confusion matrix-based evaluation was conducted. The 

predicted labels from each model were compared with the true labels to quantify classification accuracy, with overall accuracy 

adopted as the primary metric (Congalton, 1991). To further compare the three algorithms, we computed precision (Eq. (6)), 

recall (Eq. (7)), and F1 score (Eq. (8)) from the confusion matrix. We then compared the three models under identical 

experimental conditions (Fawcett, 2006). 185 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ
்௉

்௉ାி௉
                   (6) 

𝑅𝑒𝑐𝑎𝑙𝑙 ൌ
்௉

்௉ାிே
                   (7) 

𝐹1 ൌ 2 ൈ
௉௥௘௖௜௦௜௢௡ൈோ௘௖௔௟௟

௉௥௘௖௜௦௜௢௡ାோ௘௖௔௟௟
                  (8) 

Where TP (True Positive), TN (True Negative), FP (False Positive), and FN (False Negative) represent the numbers of 

correctly and incorrectly classified samples. TP represents the number of pixels correctly classified as water, while TN 190 

indicates non-water pixels correctly identified as non-water. FP refers to non-water pixels that were incorrectly classified as 

water, and FN represents water pixels that were misclassified as non-water. Based on these indices, the classification 

performance of the three models was quantitatively compared to determine the most accurate and stable approach for water 

body extraction. 

3.3 Post-classification processing 195 

Although the preliminary results generated by the random forest classifier effectively identified water bodies with 

significant spectral features, they still faced two key limitations: first, the absence of terrain constraint mechanisms led to false 

water bodies in mountain shadow areas and slope-related misclassification; second, spectral confusion caused salt-and-pepper 

noise, significantly reducing the geographical plausibility of boundaries (Fu et al., 2022). To overcome these limitations and 

meet the accuracy requirements for large scale lake area extraction, we constructed a complete automated post-processing 200 

workflow for lake classification, covering core modules such as multi-file batch processing, dynamic coordinate system 

unification, geometric topology repair, and fine-grained retention of internal islands (Huang et al., 2017). This workflow 

enabled precise correction of lake water body boundaries by efficiently processing classified outputs. Morphological 

optimisation and a boundary-control mechanism based on the intersection-over-union ratio (IoU) improved geometric integrity 

and spatial realism, effectively suppressing spurious water detections and classification noise (Chen et al., 2022; Li et al., 2020). 205 

An accompanying island screening step further improved the extraction of water features. Figure 3 illustrates the processing 

workflow and example results for selected lakes. 
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Figure 3: Schematic diagram of the lake remote sensing image classification and post-processing workflow. From left to right, the 

images represent the classification result, the morphological correction result, and the final result after precise hole retention. 210 

3.3.1 Lake boundary extraction through filtering and morphological optimisation 

Using a random forest classifier, we obtained preliminary classifications of water and non-water across the study area. Due to 

terrain constraints and spectral selection differences in water body distribution, such as slope and mountain shadow limitations, 

we did not apply terrain filtering. As a result, spectral confusion produced salt-and-pepper noise, that is, isolated misclassified 

pixels (Chi et al., 2017). To reduce such noise, we first filtered out classified water body pixels with fewer than nine 215 

neighbouring pixels. Additionally, to leverage high confidence water body prior knowledge, we integrated the JRC Global 

Surface Water Dataset (occurrence ≥ 80%) as a mask applied to the preliminary classification results. We then applied spatial 

smoothing and morphological operations for optimisation. A 3 × 3 majority filter was utilised to smooth the classifications, 

suppressing noise and aggregating neighbouring pixels. Subsequently, on the GEE platform, we applied a circular kernel with 

a radius of 1 pixel to the smoothed water body classification results, performing dilation (focal_max) and erosion (focal_min) 220 

operations once each. Dilation connected adjacent small water patches and promotes more complete inclusion of water edges, 

especially near wetlands or unclassified areas, whereas erosion removed small artefacts introduced by dilation, yielding 

smoother boundaries. Finally, all post-processing results were vectorised and output for subsequent analysis. 

3.3.2 Boundary refinement techniques using IoU and geometric repair 

Based on the vectorised water body boundaries generated through morphological optimisation, automated operations were 225 

implemented using a multi-file batch processing framework. During the data loading phase, dynamic coordinate system 

unification ensured that all input files were spatially referenced to the reference layer (Zhou et al., 2025), guaranteeing the 

reliability of subsequent overlay analyses. During processing, vector lake boundaries were first subjected to geometric repair, 

filling unclosed gaps within polygonal features and correcting topological anomalies such as self-intersections and duplicate 

vertices to ensure the geometric integrity of water body polygons. Second, a boundary control mechanism based on the 230 

intersection-over-union ratio (IoU) precisely constrained lake boundaries, and in conjunction with the reference layer, refined 
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the retention of internal holes and islands within lakes. Finally, the corrected global lake vector file was output via batch 

processing, with manual visual inspection performed to ensure the completeness and accuracy of lake boundaries. 

3.4 Verification methods 

To assess seasonal performance, we validated lake area extraction for spring, summer, autumn, and winter. We compared our 235 

results with the dataset of Li et al. (2025). Correlation analysis utilised two monthly scale lake datasets from 2001 to 2023. A 

total of 11 lakes were selected from the two sets, with 3, 4, and 4 lakes selected from the small, medium, and large lake types, 

respectively, yielding a total of 726 sample data points. The correlation analysis of the data was quantified using root mean 

square error (RMSE; Eq.(9)), unbiased RMSE (URMSE; Eq.(11)), and the coefficient of determination (R2; Eq.(12)). 

Additionally, the extracted monthly average lake area data were aggregated to the annual scale and compared with the existing 240 

dataset for validation (Table 1). 

Table 1: Information on the reference lake area products utilised for comparison. 

Dataset description Image used Lake numbers Time span Source 

Annual 30-m lake maps on the 

Tibetan Plateau 
Landsat 6158 1991–2023 Zhou et al., 2025 

Annual area dataset of lakes over 

50 km2 on the Tibetan Plateau 
Landsat 180 1986–2020 Wang et al., 2023 

Time series dataset of lake area on 

Tibetan Plateau for the past 100 

years 

Landsat 1236 1920–2020 Zhang et al., 2022 

The lakes larger than 1km2 in 

Tibetan Plateau (v3.1) 
Landsat 1400 1970–2022 Zhang et al., 2019 

Note: All the above data are from the National Tibetan Plateau Science Data Center. 

Interannual lake area datasets from Zhou et al. (2025), Wang et al. (2020), Zhang et al. (2022), and Zhang et al. (2019) were 

utilised as comparison baselines. Quantitative assessment utilised the coefficient of determination (R2), root-mean-square 

error (RMSE), mean absolute percentage error (MAPE; Eq. (13)), and bias (Eq. (10)) (Hui et al., 2025). By constructing 245 

comparison scatter plots, the consistency between the study data and the comparison datasets was analysed to validate the data 

quality and the effectiveness of the methods (Li et al., 2015). 

𝑅𝑀𝑆𝐸 ൌ ටଵ

௡
∑ ሺ𝑦௜ െ 𝑦ො௜ሻଶ௡
௜ୀଵ                  (9) 

𝐵𝑖𝑎𝑠 ൌ
ଵ

௡
∑ ሺ𝑦ො௜ െ 𝑦௜ሻ
௡
௜ୀଵ                   (10) 

𝑈𝑅𝑀𝑆𝐸 ൌ √𝑅𝑀𝑆𝐸ଶ െ 𝐵𝑖𝑎𝑠ଶ                 (11) 250 
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𝑅ଶ ൌ 1 െ
∑ ሺ௬೔ି௬ො೔ሻ

మ೙
೔సభ
∑ ሺ௬೔ି௬‾ሻమ
೙
೔సభ

                   (12) 

𝑀𝐴𝑃𝐸 ൌ
ଵ଴଴%

௡
∑ ቚ

௬೔ି௬ො೔
௬೔

ቚ௡
௜ୀଵ                   (13) 

In the above formula, 𝑛 represents the number of samples, i.e., the total number of data points utilised for evaluation; 𝑖 is 

utilised to iterate through each sample, from the first ሺ𝑖 ൌ 1ሻ to the 𝑛 th ሺ𝑖 ൌ 𝑛ሻ. 𝑦௜ represents the true value of the 𝑖 th 

sample; 𝑦ො௜ represents the predicted value of the 𝑖 th sample calculated according to the model. 𝑦ത represents the average of all 255 

true values; 𝑦ො௜ െ 𝑦௜ represents the prediction error or residual of the 𝑖 th sample, indicating the degree of deviation of the 

predicted value from the true value. 

4 Results 

4.1 Changes in Tibetan Plateau lakes (2000–2024) 

4.1.1 Yearly lake expansion: patterns and responses 260 

By combining random forest classifier with morphological methods, We generated a dataset (TPLake-MED) of lake boundary 

ranges for lakes larger than 10 km2 on the Tibetan Plateau from 2000 to 2024, with a spatial resolution of 500 m. Among lakes 

larger than 50 km2, most showed increasing area, particularly in the central and north-eastern Plateau. A minority decreased in 

size, mainly in the western and some marginal areas (Fig. 4a). The decrease in the western region may have been influenced by 

tectonic activity and human water abstraction, while changes in marginal areas may be associated with enhanced evaporation 265 

(temperature increase of 1.2°C per decade) (Wang et al., 2024). As of 2024, the fastest growing lakes by relative area change 

were Selin Co (2,369.5 km2; +21.6%), Aqikkol (570.5 km2; +17.7%), Ayagekumuli (1,077.75 km2; +20.3%), Duoersuo Co 

(1,031.5 km2; +13.5%), Hulu Lake (311.25 km2; +18.2%), and Ruola Co Lake (270.5 km2; +11.3%) (Fig. 4b). The total lake 

area shows a significant upward trend, with an average annual growth rate of 34.91 km2 per year, and the correlation is 

significant (p < 0.05), overall expansion of high-elevation lakes is evident. In particular, the total area of lakes larger than 50 270 

km2 increased by 32.5% compared with that in 2000 (Zhu et al., 2019) (Fig. 4c). The six fastest growing lakes exhibited 

marked interannual fluctuations but an overall increase. Annual area for these lakes fluctuated substantially, with the smallest 

lake area occurring in March and April, when precipitation, temperature, and evapotranspiration were all relatively low. The 

largest lake area occured in September and October (Fig. 4d), when precipitation was relatively abundant, while temperature 

and evapotranspiration were relatively low. This pattern indicates joint control of lake area by precipitation and 275 

evapotranspiration (Li et al., 2022). 
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Figure 4: Spatial-temporal characteristics of lake area changes and trends in typical lakes from 2000 to 2024. (a) The spatial 

distribution of interannual lake area change rates. Triangular symbols indicate the interannual area change rates (km2 per year) of 

lakes on the Tibetan Plateau. Red triangles indicate area increase, and blue triangles indicate area decrease. The size of the triangles 280 

represents the magnitude of the change rate. (b) The fastest growing lakes by relative area change on the Tibetan Plateau (2024). 

Below the horizontal line are the lake area in 2024 and the percentage expansion from 2000 to 2024. Blue contours indicate the 

boundary extent in 2000, while red contours represent the boundary extent for the same month in 2024. (c) The monthly trend of 

total lake area. (d) The monthly trend of typical lake areas. 

4.1.2 Monthly area change: heterogeneity and scale 285 

The monthly rate of lake area change on the Tibetan Plateau exhibited marked spatial variation and scale dependence. By 

comparing intra-annual relative change rates across years, we found that 2005 showed the largest variability and therefore 

selected it as a representative year for detailed analysis. Within that year, the maximum monthly relative change rate observed 

for an individual lake reached 28.43%. Longitudinally, lakes in the western plateau region between 80–85° E showed higher 

rates of change with pronounced fluctuations. As longitude increased eastward, the rate of change gradually decreased, 290 

stabilizing notably east of 95° E. Latitudinally, change rates were generally higher between 30–34° N, with the strongest 

variability between 32–34° N. North of 36° N, rates diminished markedly (Fig. 5a). This spatial variation was closely linked to 

regional climatic conditions, the western region experienced significant seasonal precipitation variations and intense 

evaporation, leading to pronounced lake water fluctuations. In contrast, the eastern region, influenced by stable monsoons and 

supplemented by glacial runoff, exhibited relatively smoother changes.  295 

Approximately 70% of lakes had change rates below 0.05, with a right skewed distribution peaking at 0–0.05. The number of 

lakes decreased sharply as change rates increased, consistent with an inverse J-shaped pattern, indicating overall stability in the 

plateau lake system (Fig. 5b). The lake change rate was significantly negatively correlated with lake area: larger lakes exhibit 

lower monthly change rates and reduced data dispersion. Specifically, lakes smaller than 150 km2 exhibited the highest 

variation rates and greatest variability, with multiple outliers present. Lakes between 150–500 km2 showed intermediate 300 
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variation rates and variability. Lakes between 500–1000 km2 demonstrated a marked decrease in variation rates with a more 

concentrated distribution. Lakes larger than 1000 km2 had the lowest variation rates and minimal variability, with only a few 

isolated (Fig. 5c). This scale dependence largely reflected the greater storage and stronger buffering capacity of large lakes, 

which enabled them to withstand short-term climatic fluctuations. Conversely, small lakes exhibited heightened sensitivity to 

environmental factors such as precipitation, evaporation, and runoff. Our data (TPLake-MED) support the “area-stability” 305 

hypothesis, providing an empirical basis for lake classification, dynamic monitoring, and climate change impact assessment on 

the Tibetan Plateau (Zhu et al., 2025). 

 

Figure 5: Spatial distribution and statistical characteristics of inter-monthly lake area change rates on the Tibetan Plateau. (a) 

Temporal variation and spatial distribution of inter-monthly change rates, with the orange and blue lines representing mean and 310 

maximum relative changes, the red bars indicating the year of maximum rate, and the coloured background showing lake specific 

change rates in that year. (b) The frequency distribution histogram of change rates. (c) The box plots of change rates for lakes of 

varying sizes. 

Inter-monthly lake area variation across the Tibetan Plateau exhibited spatial heterogeneity, with many lakes showing 

pronounced fluctuations in surface area. Monthly area differences of 6.50–26.38 km2 occured predominantly in the Plateau 315 

interior, indicating heightened sensitivity to climatic shifts. Differences of 3.91–6.50 km2 were widely distributed across the 

interior, indicating moderate variability; and differences of 0.25–3.91 km2 occured mainly along Plateau margins and transition 

zones, representing relatively stable lake systems (Fig. 6a). Figures (b–i) show the intra-annual maximum and minimum 

boundary differences of the lakes exhibiting the most significant variations. Overlay analysis of satellite imagery and vector 
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boundaries further validated the extracted outlines and substantiated intra-annual fluctuations, whereby observed area changes 320 

directly reflected the magnitude of seasonal expansion and contraction. This multi-scale presentation revealed macro-spatial 

patterns of Plateau lake dynamics and supported data quality and analytical reliability through detailed validation of 

representative lakes. It provided evidence to deepen understanding of the stability and vulnerability of Plateau lake 

ecosystems. 

 325 
Figure 6: Spatial distribution of inter-monthly lake area variation on the Tibetan Plateau and verification of boundary changes for 

representative lakes. (a) The spatial distribution pattern of inter-monthly lake area variation (max-min) across the Tibetan Plateau. 

(b–i) The comparative boundary change diagrams for eight lakes with the most pronounced intra-annual fluctuations. The red 

contours indicate the maximum intra-annual boundary extent, the blue contours denote the minimum intra-annual boundary 

extent, and the numerical labels represent the corresponding expanded lake area (km2). The left subfigures use MODIS/Terra 330 

MOD09A1 Collection 6.1 8-day (500 m) imagery composited to monthly products and processed in Google Earth Engine; data © 

NASA EOSDIS/LP DAAC. 

4.2 Validation of lake extraction accuracy 

The accuracy assessment of binary classifiers is crucial in lake classification practices (Olofsson et al., 2014; Stehman et al., 

2019). A 30% subset of the labelled samples was reserved as a validation set to evaluate binary classification of water and 335 

non-water by the three algorithms. We present a comprehensive assessment based on this set, including the spatial distribution 

of validation samples, confusion matrix analysis, and cross algorithm performance comparison. The validation samples 

totalled 633, exhibiting a relatively uniform spatial distribution and effectively covering the main geographical units and 

different terrain conditions of the study area (Fig. 7a), providing a representative sample basis for classification accuracy 

assessment. The confusion matrix results indicated that the random forest algorithm performed excellently in water body 340 

classification, with an overall classification accuracy of 93.21%, with 273 correctly classified water body samples and only 39 

https://doi.org/10.5194/essd-2025-649
Preprint. Discussion started: 13 November 2025
c© Author(s) 2025. CC BY 4.0 License.



 15

misclassified as non-water bodies, while the SVM and CART algorithms achieved overall accuracies of 84.98% and 85.75%, 

respectively. For non-water bodies, 317 samples were correctly classified by the random forest, with only 4 misclassified as 

water bodies (Fig. 7b). Overall, random forest showed higher accuracy and stability than SVM and CART in distinguishing 

water from non-water. 345 

Table 2: Comparison of accuracy between different classification algorithms for the “water bodies” and “non-water bodies” 

categories. 

Algorithm Class Precision Recall F1-score 

Random Forest Water 0.986 0.875 0.927 

SVM Water 0.972 0.871 0.869 

CART Water 0.903 0.824 0.870 

Random Forest Non-water 0.988 0.890 0.936 

SVM Non-water 0.967 0.921 0.854 

CART Non-water 0.873 0.875 0.874 

Further quantitative comparison analysis was conducted on three machine learning algorithms—random forest (RF), support 

vector machine (SVM), and classification and regression tree (CART), using three metrics: precision, recall, and F1-score 

(Table 2). For the water class, RF performed best across all metrics, with precision, recall, and F1 score of 0.90, 0.93, and 0.97, 350 

respectively, exceeding SVM (0.88, 0.82, 0.90) and CART (0.87, 0.87, 0.87) (Fig. 7c). For the non-water class, RF also 

maintained its leading advantage, with precision, recall, and F1 score of 0.99, 0.94, and 0.97, all higher than the other two 

algorithms (Fig. 7d). These results indicate that RF offers strong performance and practical value for remote sensing 

classification of lake water on the Tibetan Plateau, providing a useful reference for subsequent monitoring of lake area 

dynamics and spatiotemporal analyses (Wang, 2023). 355 
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Figure 7: Validation sample distribution and classification accuracy of the Random Forest model for lake water and non-water 

body identification. (a) The distribution of validation sample points for the classification models. (b) The confusion matrix of the 

Random Forest classification model. (c–d) The bar chart compares the main evaluation metrics (Precision, Recall, and F1-score) of 

different classification algorithms for the two categories of “water body” and “non-water body.” 360 

Figure 8 presents the water body boundary extraction results for five representative lakes—Qinghai Lake, Nam Co, Selin Co, 

Zhari Namu Co, and Angla Ren Co—across spring, summer, autumn, and winter. The extracted red boundaries aligned closely 

with the water bodies depicted in corresponding seasonal satellite imagery, accurately capturing shoreline inflections, 

peninsulas, and bay entrances. This indicates robust performance of the seasonal extraction under varying surface conditions, 

including snow cover, cloud shadow, and low solar elevation. From the seasonal variation patterns, most lakes exhibited the 365 

typical seasonal variation pattern of highland lakes, with the largest area in summer and relatively smaller area in winter. 

Among them, Qinghai Lake, as the largest lake in the study area, showed relatively stable seasonal variation, with similar water 

body boundaries in spring and winter, and a significant expansion of the water body range in summer and autumn, reflecting 

the lake’s strong water body stability (Li et al., 2012). Nam Co exhibited significant fluctuations in area across the four seasons, 

with relatively smaller water areas in spring, reaching a maximum in summer, and gradually contracting in autumn and winter, 370 

reflecting the lake’s sensitive response to seasonal climate changes. Medium lakes such as Selin Co, Zhari Nam Co, and Angla 

Ren Co also followed the basic pattern of expansion in summer and contraction in winter, but the specific magnitude of 

changes varied among lakes. Such variability likely reflected differences in location, elevation, catchment characteristics, and 

local climate. Overall, the seasonal comparison showed high consistency between extracted boundaries and the imagery under 

varying conditions, supporting the method’s efficacy and stability. These seasonal boundary variations provided spatial 375 
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evidence for understanding lake dynamics and hydrological processes on the Plateau, and offered a basis for elucidating lake 

responses to climate change. 

 

Figure 8: Typical lake boundary extraction results for spring, summer, autumn, and winter. The background uses MODIS/Terra 

MOD09A1 Collection 6.1 8-day (500 m) imagery composited to monthly products and processed in Google Earth Engine; data © 380 

NASA EOSDIS/LP DAAC; overlays © Authors. 

4.3 Comparison with other products 

4.3.1 Seasonal product comparison 

To validate the accuracy of our lake area estimates, we compared results for 11 lakes with the dataset of Li et al. (2025). Using 

two sets of lake data from 2001 to 2023 for comparison analysis, the results showed that the area extraction accuracy for all 385 

four seasons was excellent: the spring correlation coefficient R2 reached 0.9995, URMSE was 0.0032, and RMSE was 28.88; 

summer R2 was 0.9994, URMSE was 0.0032, and RMSE was 32.75; autumn R2 was 0.9993, URMSE was 0.0036, and RMSE 
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was 28.88; winter R2 was 0.9995, URMSE was 0.0037, and RMSE was 29.46 (Fig. 9). Scatter points clustered tightly around 

the 1:1 line, indicating high reliability and seasonal stability of the extraction. Results for both large lakes (e.g. Qinghai Lake, 

Nam Co, Selin Co) and numerous small and medium lakes were highly consistent with the reference data. These findings 390 

supported high overall accuracy, especially for large lakes with clear boundaries, where the extraction results were almost 

identical. Therefore, it can be concluded that the lake area extraction results obtained using the proposed automated extraction 

algorithm based on random forest classification and morphological post-processing are accurate and reliable. 

 
Figure 9: Scatter plot comparing different lake area extraction methods in spring, summer, autumn, and winter. 395 

4.3.2 Inter-annual product comparison 

Given the use of MOD09A1 and the available mapping period, we analysed annual and monthly lake area variations from 2000 

to 2024 and compared them with four interannual products from the National Tibetan Plateau Data Centre. Using Qinghai Lake 

as a demonstration case, the lake exhibited a clear long-term expansion trend, with its area increasing from approximately 4300 

km2 in the early 2000s to more than 4600 km2 after 2020 (Fig. 10a). The lake area typically reached its minimum in January 400 

and gradually expanded with increasing snowmelt and runoff, peaking in September before slightly declining in late autumn 

and early winter. This pattern was consistent with combined influences of seasonal precipitation, glacier and snowmelt, and 

evaporation, demonstrating the seasonal regulation of the lake’s hydrological balance. Comparisons with the four reference 

datasets showed strong overall consistency. The comparison results indicated that the lake area data extracted in this study 

exhibit an R2 of 0.96, RMSE of 1019.31 km2, MAPE of 2.2%, and a bias of -832.49 km2 relative to Zhou et al. (2025) (Fig. 405 
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10b); an R2 of 0.98, RMSE of 433.19 km2, MAPE of 0.9%, and a bias of 15.15 km2 relative to Wang et al. (2023) (Fig. 10c); an 

R2 of 0.99, RMSE of 366.42 km2, MAPE of 0.7%, and a bias of -178.00 km2 relative to Zhang et al. (2022) (Fig. 10d); and an 

R2 of 0.89, RMSE of 1359.51 km2, MAPE of 2.7%, and a bias of -998.32 km2 relative to Zhang et al. (2019) (Fig. 10e). Scatter 

points aligned closely along the 1:1 line, indicating high agreement with existing interannual datasets. Agreement was 

particularly high with Zhang et al. (2022) and Wang et al. (2023). Our series also resolved intra-annual variations, reflecting 410 

seasonal expansion and contraction. Together, these comparisons suggest that the MOD09A1-based method captures both 

interannual and intra-annual lake area dynamics across the Plateau and offers a sound basis for long-term lake change analyses. 

 
Figure 10: Temporal variations of Qinghai Lake area from 2000 to 2024 and consistency comparison with existing interannual 

datasets. (a) Annual variations in Qinghai Lake area derived from this study (2000–2024). Monthly lake areas are shown as 415 

coloured scatter points (M01–M12) using a spectral gradient, and the annual results from four existing datasets are marked with 

star symbols. Tibetan Plateau. (b–e) The comparison of total lake area (>50 km2) from this study with four reference datasets. 
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5 Data availability 

The monthly scale vector boundary dataset of lakes larger than 10 km2 on the Tibetan Plateau from 2000 to 2024 

(TPLake-MED) constructed in this study has been publicly shared on the National Tibetan Plateau Scientific Data Centre, 420 

accessible at: https://doi.org/10.12443/BNU.RSEC.TPLake-MED20251028 (Zhao et al., 2025). The dataset includes monthly 

lake boundary vector files, area statistics tables, and related metadata, supporting Shapefile and GeoJSON formats, and can 

provide standardised data support for related research. 

6 Code availability 

The codes are available from the first and corresponding authors upon request. 425 

7 Conclusions 

Tibetan Plateau lakes are changing quickly, but most existing datasets only describe year-to-year trends and cannot capture 

seasonal behaviour. In this study, we utilised Google Earth Engine (GEE) and multi-temporal MODIS data to construct a 

monthly scale vector boundary dataset for lakes larger than 10 km2 across the Tibetan Plateau for 2000–2024. Using a random 

forest model and morphological optimisation, we improved water classification accuracy (overall accuracy 93.21%, F1 score 430 

0.927) and boundary precision. The dataset reveals that total lake area has increased steadily (~34.91 km2 per year); lake area 

typically reaches its annual maximum in September or October; the maximum monthly relative change rate for an individual 

lake can reach 28.43%; western lakes show stronger monthly growth and larger intra-annual fluctuations than eastern lakes, 

and the central plateau exhibits strongest variability; and smaller lakes are more sensitive to environmental change than larger 

lakes. Compared with existing interannual products, our monthly scale data provide higher temporal resolution, filling a key 435 

gap and offering baseline information for studies of water-ice interactions and climate-change-related hydrological responses 

in high-altitude cold regions. 
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