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Abstract. Lakes on the Tibetan Plateau have expanded markedly over recent decades, reflecting complex interactions between
the regional water cycle and the cryosphere. Whereas annual datasets capture long-term trends, they often overlook short-term
hydrological responses and seasonal transitions that are resolved by monthly observations. Consequently, a systematic
understanding of intra-annual lake variability remains limited, largely because most existing datasets are designed for
15 interannual scales, which makes monthly variations and seasonal patterns difficult to characterise. These limitations hinder
investigations into the driving mechanisms and complicate assessments of climate-change impacts. To address this gap, we
utilised Google Earth Engine (GEE) and the MODIS Surface Reflectance product MOD09A1 (500 m) to construct a monthly
vector boundary dataset for lakes larger than 10 km? across the Tibetan Plateau for 2000-2024. Within this dataset, the number
of large lakes larger than 50 km? ranged from 142 to 175, and the number of smaller lakes (10-50 km?) varies between 232 and
20 260 across the study period. A random forest classifier based on spectral indices was developed and validated with 533
balanced water/non-water samples, achieving an overall accuracy of 93.21% and an F1 score of 0.927. To enhance spatial
precision, we implemented a boundary optimisation workflow integrating filtering, morphological operations, and geometric
rectification, thereby improving agreement between extracted and actual lake extents. Aggregate lake area on the Plateau
increased at 34.91 km? per year, and typically reached its annual maximum in September or October. The relative monthly rate
25 of area change showed higher values in the west, lower in the east, and stronger variability centrally; for individual lakes the
maximum monthly relative change reached 28.43% from 2000 to 2024. In addition, smaller lakes were more sensitive to
environmental change than larger lakes. To our knowledge, this is the first monthly resolution vector dataset of Tibetan Plateau
lakes that couples multi-temporal classification with morphological optimisation. The dataset provides critical support for
climate-change research, ecological conservation, and policy formulation, and 1is publicly available at

30  https://doi.org/10.12443/BNU.RSEC.TPLake-MED20251028.
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1 Introduction

The Tibetan Plateau (TP), often termed the “Roof of the World” and the “Water Tower of Asia”, is the world’s highest and
largest plateau and exhibits distinctive environmental characteristics (Qiu, 2018; Bibi et al., 2018). Its ecological significance
is paramount, as it contains the headwaters of the Yangtze and Yellow Rivers and supplies major transboundary watercourses
35 to South Asia, Southeast Asia, and the Indochinese Peninsula, supporting the livelihoods and socioeconomic development of
vast downstream populations (Immerzeel et al., 2010). The TP also hosts exceptionally diverse alpine biota that underpin
unique ecosystems and evolutionary processes (Ding et al., 2020). Through its extreme elevation and strong snow-albedo
feedbacks, the TP exerts substantial influence on the Asian monsoon system and even global atmospheric circulation patterns.
It is among the world’s most responsive climate regions, shaping key hydrological processes and distinctive ecological
40  regimes (Li and Guo, 2022; Wang, 2016). Moreover, the Plateau sustains rich cultural diversity and plays an irreplaceable
strategic role in regional sustainable development and ecological security (Luo and Yang, 2011).
Lakes are integral to the terrestrial water cycle; they modulate hydrological processes, respond to climatic variability, and
archive signals of past climate and human activity. They are widely regarded as indicators of global climate (Li et al., 2018;
Song et al., 2020). The Tibetan Plateau hosts the world’s largest, most numerous, and highest-elevation cluster of plateau lakes
45 (Zhao et al., 2022). Driven by climate warming, glacier melt, and permafrost degradation, lake area on the Plateau has
expanded substantially. Changes in lake number and surface area are now key indicators of regional hydrological processes
and climate change (Qiao et al., 2019; Wan et al., 2014). Since the late twentieth century, lakes in endorheic basins have
expanded faster than those in exorheic basins, against a backdrop of overall expansion across the Plateau (Zhao et al., 2021; Li
et al., 2022). This spatially distinct expansion process not only introduces uncertainties in how different watersheds and lake
50 basins respond to climate change and glacier melt (Chen et al., 2022; Deng et al., 2018), but also directly impacts regional
water balance, wetland ecosystem stability, and the safety of surrounding engineering infrastructure through fluctuations in
lake area (Xu et al., 2025; Zhu et al., 2025).
With advances in remote sensing technology and machine learning, methods for extracting lake extent from multi-temporal
satellite imagery have progressed rapidly (Saha et al., 2024). Traditional water body index-based approaches have found
55 application in large scale dynamic monitoring (Pekel et al., 2016; Han et al., 2019; Yan et al., 2018; Miao et al., 2025).
Common indices such as NDWI, MNDWI, and AWETI are extensively utilised with multispectral data from MODIS, Landsat,
and Sentinel-2 for water extraction. However, these index-based methods exhibit insufficient accuracy under conditions of
high cloud cover, ice and snow coverage, or complex surface conditions (Huang et al., 2020; Lei et al., 2022). Conversely,
water body classification methods integrating machine learning (e.g., random forest, support vector machine) with
60  multi-source remote sensing features demonstrate favourable adaptability and generalisation capabilities in the Tibetan Plateau

region (Li et al., 2021; Zhou et al., 2022), thereby improving the accuracy of lake boundary identification in complex
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environments (Li et al., 2022; Liu et al., 2022; Yang et al., 2025). For instance, Li et al. integrated Landsat-8/9 multispectral
data with DEM terrain features using a random forest algorithm to extract water bodies on the Tibetan Plateau, achieving an
overall accuracy of 95.84%, significantly outperforming traditional methods like NDWI. Liu et al. integrated Landsat

65 multispectral data, DEM texture features, and textural features using a random forest algorithm to generate a water body
distribution map for the Tibetan Plateau, achieving an overall accuracy of 92.9%, markedly superior to single index methods.
Yang et al. utilised the Google Earth Engine (GEE) platform to classify wetland types using a random forest approach,
integrating Landsat time series data from 2000 to 2023 with DEM texture features. This achieved an average overall accuracy
of 88.45%, effectively distinguishing lakes from marshy meadows.

70 Several vector datasets of lake area on the Tibetan Plateau are currently available and widely utilised (Zhang et al., 2018; Pang
et al., 2021; Wang et al., 2023; Zhang et al., 2019; Zhang et al., 2020; Ran et al., 2023). For instance, Zhang et al. constructed
triennial area time series for 364 lakes larger than 10 km? between 1970 and 2013; Pang et al. generated continuous area time
series for 20 lakes larger than 100 km? from 1976 to 2019; Wang et al. (2023) provided annual mean area data for 180 lakes
from 1986 to 2020; Zhang et al. acquired lake area data for 16 periods from 1970 to 2022; Zhang et al. extracted monthly scale

75 area for lakes larger than 50 km? from 2015 to 2018 based on Sentinel-1 SAR data; Ran et al. generated a dataset of monthly
lake area changes for lakes larger than 30 km? from 2015 to 2020 using multi-source remote sensing imagery. However, these
interannual datasets typically select only a single specific phase (e.g., one summer scene per year) to represent annual lake
extent, lacking representativeness and failing to capture intra-annual dynamics and seasonal variations. This limits their utility
for analysing responses to extreme climate events and short-term hydrological processes (Yang et al., 2017). Secondly,

80 although studies have begun to provide monthly scale data, their temporal coverage remains relatively short (e.g., 3-5 years),
making it difficult to support in-depth analysis of long-term lake change trends and their driving factors (Li et al., 2025);
Furthermore, existing datasets emphasise larger lakes, with insufficient coverage of small and medium lakes. Spatial resolution
and temporal continuity are often difficult to reconcile (Ma et al., 2022). Simultaneously, inconsistencies in remote sensing
data sources, extraction methods, and temporal phase selection across different datasets reduce consistency and comparability

85  (Guetal., 2023).

Few studies have systematically undertaken long-term, high-frequency, comprehensive monitoring of monthly lake area
change across the Tibetan Plateau. High temporal resolution continuous data series (such as monthly data spanning over a
decade) can effectively fill gaps in temporal granularity and sequence continuity within existing datasets. This provides crucial
data support for high precision lake water volume dynamics modelling, analysis of driving mechanisms, and research into

90  responses to climate change (Liu et al., 2024; Khandelwal et al., 2022). Consequently, this study aims to: (1) develop an
automated extraction method for Tibetan Plateau lakes based on multi-temporal MODIS remote sensing imagery,
incorporating random forest classification and morphological optimisation; (2) construct a high precision monthly scale vector

boundary dataset for lakes exceeding 10 km? in area from 2000 to 2024, and systematically validate its accuracy; (3) compare

3
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the dataset with existing products to evaluate advantages in accuracy, temporal continuity, and spatial consistency; (4) reveal
the spatiotemporal patterns of lake area change across the Tibetan Plateau over the past two decades, providing crucial
foundational data for regional hydrological process modelling, cryosphere change research, and climate change impact

assessments.

2 Study area

The Tibetan Plateau (26°00-39°47' N, 73°19'-104°47" E) exceeds 4,000 metres in average elevation and is the highest and
largest plateau in the world. It is often referred to as the “Roof of the World” and the “Water Tower of Asia” (Long et al., 2022;
Zhang et al., 2023). The Tibetan Plateau is rich in lake resources, with over 1,500 lakes of various sizes, including
approximately 180 lakes larger than 50 square kilometres. The total lake area is approximately 44,993 square kilometres,
accounting for about 50% of the total lake area in China (Huang et al., 2025). These lakes are primarily saline lakes and salt
lakes, including the famous Nam Co, Qinghai Lake, and Qarhan Salt Lake (Yan et al., 2017). The distribution of lakes across
the Tibetan Plateau is influenced by both the altitude and geographical features. The larger lakes, those over 50 km? are
predominantly located in regions with relatively flat terrain and higher elevations, such as the central and northeastern parts of
the plateau. Smaller lakes (10-50 km?) are scattered more widely across areas with more complex terrain, including the
southern and southeastern regions of the plateau. These areas are characterized by rugged mountain systems, such as the

Himalayas and Hengduan Mountains, which shape the hydrological landscape and influence lake distribution.
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Figure 1: Overview map of the study area. TP denotes the Tibetan Plateau.
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Figure 2 summarised the monthly lake area data generation workflow for this study: First, the monthly baseline imagery is
constructed by selecting the image with the lowest cloud cover from MODO09A1 (500 m) for each month from the GEE
platform, followed by cloud masking and temporal gap-filling interpolation. Second, water bodies are classified with a random
forest classifier using multispectral bands and spectral indices, and assessed accuracy with confusion matrices and
multi-algorithm comparisons. Third, post-classification processing included noise reduction, missing pixel detection and
filling, overlaying the JRC global surface water mask, morphological smoothing, boundary IoU constraints, and invalid

geometry repair to optimize boundaries. Finally, we validated accuracy against multi-source data and existing products, and

Figure 2: Framework of monthly lake data generation in this study. The process comprises four steps: data preprocessing to select
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monthly imagery with the lowest cloud cover (Step 1), random forest classification to obtain preliminary water body extraction
results (Step 2), post-classification lake morphological and boundary optimisation (Step 3), lake area calculation and comparative

125 validation (Step 4).
3.1 Data preprocessing

We utilized the MODIS MODO09A1 surface reflectance (SR) product with a spatial resolution of 500 metres. The MODO09A 1
product provides atmospheric-corrected surface reflectance data under favourable atmospheric conditions and is directly
accessible via GEE. For each month, we selected the MODO09A1 scene with the lowest cloud cover as the monthly baseline
130 image for subsequent lake area extraction. Before using the base image, we further processed it using the product’s built-in
StateQA band for cloud masking (by bitwise operation to detect the 10th cloud flag) to remove residual cloud and cloud
shadow-affected pixels. To address data gaps remaining after cloud masking, we employed a time series linear interpolation
method. This involves stacking the best monthly images in chronological order to generate a reflectance time series for each
pixel, then interpolating missing values using the reflectance values from the available pixels in the preceding and following

135 months, as shown in Eq. (1):

Re=Req +(t—t_y) X% M
+1-t-1

Where R, is the reflectance of the pixel to be filled, and t..; are the effective time points adjacent to the missing value.
Missing data in the first and last months were filled using the nearest pixel values to ensure the spatio-temporal continuity of
lake boundary extraction. Based on these monthly image data that had undergone rigorous screening, cloud masking, and
140 interpolation processing, we further performed water body classification to extract lake area. Selecting the lowest cloud scene
each month minimised cloud obstruction, yielding the clearest monthly surface observation and providing a robust basis for
accurate lake boundary identification. Subsequent cloud masking ensured that reflectance utilised for classification primarily

originates from true surface water or non-water, thereby reducing misclassification due to cloud contamination.
3.2 Machine learning classification

145 To accurately extract water bodies from MODIS imagery, we compared three machine learning algorithms—random forest
(RF), support sector machine (SVM), and classification and regression tree (CART)—under identical input features and
training sample conditions, and selected the optimal model for large scale water body extraction across the Tibetan Plateau. RF
constructs an ensemble of decision trees and aggregates their predictions by majority voting (Breiman, 2001; Wen et al., 2023).
SVM identifies the optimal separating hyperplane to maximize the classification margin, performing well on both linear and

150  non-linear problems and particularly excelling in high dimensional sparse datasets (Zhou et al., 2009; Kuter, 2021). CART

recursively splits data based on the Gini index without any distributional assumptions, effectively handling non-linear
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relationships and evaluating the importance of multi-source features such as spectral, textural, and index-based variables (Chen

etal., 2015).

3.2.1 Calculation of Input Features

155 We collected ten variables from the MODO09A1 imagery, including six original bands and four calculated indices (Zhang et al.,
2021). These variables were utilised to discriminate surface water from non-water bodies in the Tibetan Plateau. The four
indices included the Normalised Difference Vegetation Index (NDVI; Tucker, 1979), the Normalised Difference Water Index
(NDWI; McFeeters, 1996), the Modified Normalised Difference Water Index (MNDWI; Xu, 2006), and the Automatic Water

Extraction Index (AWETI; Feyisa, 2014), with the formulas as follows:

160  NDV] = BNIRZPRED )
PNIRTPRED
NDWI — PGREEN —PNIR (3)
PGREENTPNIR
MNDWI = PGREEN=PSWiR1 @)
PGREENtPSWIR1
AWEI = 4(pcreen — Pswir1) — (0.25pnir + 2.75pswir2) )

where pgreens PRED> Pswir: and pswirz denote the surface reflectance in the green, red, near-infrared, and the first and

165 second short-wave infrared bands of the MODIS Surface Reflectance product, respectively.

3.2.2 Model training and parameter optimization

Classifiers are highly sensitive to sampling design (Belgiu et al., 2016). Appropriate training samples are critical for the
classification accuracy and stability of models (Xie, 2022). In the absence of suitable labelled sample data, we manually
labelled 2,420 sample points on the GEE platform as the training dataset, including 1,275 points labelled as water bodies and
170 1,145 points labelled as non-water bodies (Fig. 7a), ensuring that the sample points were uniformly distributed across the study
area. Additionally, we utilised the JRC dataset (Kibret et al., 2021) as auxiliary reference for classification. Finally, we
randomly divided 70% of the samples into a training set and the remaining 30% into a validation set.
For the RF classifier, hyperparameters were tuned by grid search with cross validation to ensure generalisation capability
(Zhang et al., 2021). The number of trees (numberOfTrees) was set to 150, the minimum number of samples per leaf node
175 (minLeafPopulation) was set to 5, and the sampling ratio (bagFraction) was set to 0.5, meaning each tree was trained on a
random 50% subset of the data with replacement (Liu et al., 2015). These settings increased ensemble diversity and mitigated
overfitting. SVM and CART classifiers are trained using the same dataset and parameter settings on the GEE platform. SVM
was implemented with a radial basis function (RBF) kernel to capture non-linear boundaries, while CART utilised Gini

impurity as the splitting criterion for optimal threshold selection.
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180 3.2.3 Model evaluation and selection

To assess and compare the performance of different models, a confusion matrix-based evaluation was conducted. The
predicted labels from each model were compared with the true labels to quantify classification accuracy, with overall accuracy
adopted as the primary metric (Congalton, 1991). To further compare the three algorithms, we computed precision (Eq. (6)),
recall (Eq. (7)), and F1 score (Eq. (8)) from the confusion matrix. We then compared the three models under identical

185 experimental conditions (Fawcett, 2006).

Precision = ——— (6)
TP+FP
Recall = —= @
TP+FN
Fl=2x PrecisionXRecall (8)

Precision+Recall

Where TP (True Positive), TN (True Negative), FP (False Positive), and FN (False Negative) represent the numbers of
190 correctly and incorrectly classified samples. TP represents the number of pixels correctly classified as water, while TN
indicates non-water pixels correctly identified as non-water. FP refers to non-water pixels that were incorrectly classified as
water, and FN represents water pixels that were misclassified as non-water. Based on these indices, the classification
performance of the three models was quantitatively compared to determine the most accurate and stable approach for water

body extraction.

195 3.3 Post-classification processing

Although the preliminary results generated by the random forest classifier effectively identified water bodies with
significant spectral features, they still faced two key limitations: first, the absence of terrain constraint mechanisms led to false
water bodies in mountain shadow areas and slope-related misclassification; second, spectral confusion caused salt-and-pepper
noise, significantly reducing the geographical plausibility of boundaries (Fu et al., 2022). To overcome these limitations and

200  meet the accuracy requirements for large scale lake area extraction, we constructed a complete automated post-processing
workflow for lake classification, covering core modules such as multi-file batch processing, dynamic coordinate system
unification, geometric topology repair, and fine-grained retention of internal islands (Huang et al., 2017). This workflow
enabled precise correction of lake water body boundaries by efficiently processing classified outputs. Morphological
optimisation and a boundary-control mechanism based on the intersection-over-union ratio (IoU) improved geometric integrity

205 and spatial realism, effectively suppressing spurious water detections and classification noise (Chen et al., 2022; Li et al., 2020).
An accompanying island screening step further improved the extraction of water features. Figure 3 illustrates the processing

workflow and example results for selected lakes.
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Figure 3: Schematic diagram of the lake remote sensing image classification and post-processing workflow. From left to right, the

210 images represent the classification result, the morphological correction result, and the final result after precise hole retention.

3.3.1 Lake boundary extraction through filtering and morphological optimisation

Using a random forest classifier, we obtained preliminary classifications of water and non-water across the study area. Due to
terrain constraints and spectral selection differences in water body distribution, such as slope and mountain shadow limitations,
we did not apply terrain filtering. As a result, spectral confusion produced salt-and-pepper noise, that is, isolated misclassified
215 pixels (Chi et al., 2017). To reduce such noise, we first filtered out classified water body pixels with fewer than nine
neighbouring pixels. Additionally, to leverage high confidence water body prior knowledge, we integrated the JRC Global
Surface Water Dataset (occurrence > 80%) as a mask applied to the preliminary classification results. We then applied spatial
smoothing and morphological operations for optimisation. A 3 x 3 majority filter was utilised to smooth the classifications,
suppressing noise and aggregating neighbouring pixels. Subsequently, on the GEE platform, we applied a circular kernel with
220 aradius of 1 pixel to the smoothed water body classification results, performing dilation (focal max) and erosion (focal_min)
operations once each. Dilation connected adjacent small water patches and promotes more complete inclusion of water edges,
especially near wetlands or unclassified areas, whereas erosion removed small artefacts introduced by dilation, yielding

smoother boundaries. Finally, all post-processing results were vectorised and output for subsequent analysis.

3.3.2 Boundary refinement techniques using IoU and geometric repair

225 Based on the vectorised water body boundaries generated through morphological optimisation, automated operations were
implemented using a multi-file batch processing framework. During the data loading phase, dynamic coordinate system
unification ensured that all input files were spatially referenced to the reference layer (Zhou et al., 2025), guaranteeing the
reliability of subsequent overlay analyses. During processing, vector lake boundaries were first subjected to geometric repair,
filling unclosed gaps within polygonal features and correcting topological anomalies such as self-intersections and duplicate

230  vertices to ensure the geometric integrity of water body polygons. Second, a boundary control mechanism based on the

intersection-over-union ratio (IoU) precisely constrained lake boundaries, and in conjunction with the reference layer, refined
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the retention of internal holes and islands within lakes. Finally, the corrected global lake vector file was output via batch

processing, with manual visual inspection performed to ensure the completeness and accuracy of lake boundaries.

3.4 Verification methods

235 To assess seasonal performance, we validated lake area extraction for spring, summer, autumn, and winter. We compared our
results with the dataset of Li et al. (2025). Correlation analysis utilised two monthly scale lake datasets from 2001 to 2023. A
total of 11 lakes were selected from the two sets, with 3, 4, and 4 lakes selected from the small, medium, and large lake types,
respectively, yielding a total of 726 sample data points. The correlation analysis of the data was quantified using root mean
square error (RMSE; Eq.(9)), unbiased RMSE (URMSE; Eq.(11)), and the coefficient of determination (R2; Eq.(12)).

240 Additionally, the extracted monthly average lake area data were aggregated to the annual scale and compared with the existing

dataset for validation (Table 1).

Table 1: Information on the reference lake area products utilised for comparison.

Dataset description Image used Lake numbers Time span Source

Annual 30-m lake maps on the

Landsat 6158 1991-2023 Zhou et al., 2025
Tibetan Plateau
Annual area dataset of lakes over

Landsat 180 19862020 Wang et al., 2023
50 km? on the Tibetan Plateau
Time series dataset of lake area on
Tibetan Plateau for the past 100 Landsat 1236 1920-2020 Zhang et al., 2022
years
The lakes larger than 1km? in

Landsat 1400 1970-2022 Zhang et al., 2019

Tibetan Plateau (v3.1)

Note: All the above data are from the National Tibetan Plateau Science Data Center.

Interannual lake area datasets from Zhou et al. (2025), Wang et al. (2020), Zhang et al. (2022), and Zhang et al. (2019) were
utilised as comparison baselines. Quantitative assessment utilised the coefficient of determination (R2), root-mean-square

245 error (RMSE), mean absolute percentage error (MAPE; Eq. (13)), and bias (Eq. (10)) (Hui et al., 2025). By constructing
comparison scatter plots, the consistency between the study data and the comparison datasets was analysed to validate the data
quality and the effectiveness of the methods (Li et al., 2015).

RMSE = X510y~ 9)? ©)

Bias = -1, (i — y)) (10)
250  URMSE = VRMSE? — Bias? (11)

10
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In the above formula, n represents the number of samples, i.e., the total number of data points utilised for evaluation; i is
utilised to iterate through each sample, from the first (i = 1) to the n th (i = n). y; represents the true value of the i th
sample; y; represents the predicted value of the i th sample calculated according to the model. ¥ represents the average of all

true values; y; — y; represents the prediction error or residual of the i th sample, indicating the degree of deviation of the

By combining random forest classifier with morphological methods, We generated a dataset (TPLake-MED) of lake boundary
ranges for lakes larger than 10 km? on the Tibetan Plateau from 2000 to 2024, with a spatial resolution of 500 m. Among lakes
larger than 50 km?, most showed increasing area, particularly in the central and north-eastern Plateau. A minority decreased in
size, mainly in the western and some marginal areas (Fig. 4a). The decrease in the western region may have been influenced by
tectonic activity and human water abstraction, while changes in marginal areas may be associated with enhanced evaporation
(temperature increase of 1.2°C per decade) (Wang et al., 2024). As of 2024, the fastest growing lakes by relative area change
were Selin Co (2,369.5 km?; +21.6%), Aqikkol (570.5 km2; +17.7%), Ayagekumuli (1,077.75 km?; +20.3%), Duoersuo Co
(1,031.5 km?; +13.5%), Hulu Lake (311.25 km?; +18.2%), and Ruola Co Lake (270.5 km?; +11.3%) (Fig. 4b). The total lake
area shows a significant upward trend, with an average annual growth rate of 34.91 km? per year, and the correlation is
significant (p < 0.05), overall expansion of high-elevation lakes is evident. In particular, the total area of lakes larger than 50
km? increased by 32.5% compared with that in 2000 (Zhu et al., 2019) (Fig. 4c). The six fastest growing lakes exhibited
marked interannual fluctuations but an overall increase. Annual area for these lakes fluctuated substantially, with the smallest
lake area occurring in March and April, when precipitation, temperature, and evapotranspiration were all relatively low. The

largest lake area occured in September and October (Fig. 4d), when precipitation was relatively abundant, while temperature

255

predicted value from the true value.

4 Results

4.1 Changes in Tibetan Plateau lakes (2000-2024)
260 4.1.1 Yearly lake expansion: patterns and responses
265
270
275

and evapotranspiration were relatively low. This pattern indicates joint control of lake area by precipitation and

evapotranspiration (Li et al., 2022).
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Figure 4: Spatial-temporal characteristics of lake area changes and trends in typical lakes from 2000 to 2024. (a) The spatial
distribution of interannual lake area change rates. Triangular symbols indicate the interannual area change rates (km? per year) of
lakes on the Tibetan Plateau. Red triangles indicate area increase, and blue triangles indicate area decrease. The size of the triangles
represents the magnitude of the change rate. (b) The fastest growing lakes by relative area change on the Tibetan Plateau (2024).
Below the horizontal line are the lake area in 2024 and the percentage expansion from 2000 to 2024. Blue contours indicate the
boundary extent in 2000, while red contours represent the boundary extent for the same month in 2024. (c) The monthly trend of

total lake area. (d) The monthly trend of typical lake areas.

4.1.2 Monthly area change: heterogeneity and scale

The monthly rate of lake area change on the Tibetan Plateau exhibited marked spatial variation and scale dependence. By
comparing intra-annual relative change rates across years, we found that 2005 showed the largest variability and therefore
selected it as a representative year for detailed analysis. Within that year, the maximum monthly relative change rate observed
for an individual lake reached 28.43%. Longitudinally, lakes in the western plateau region between 80-85° E showed higher
rates of change with pronounced fluctuations. As longitude increased eastward, the rate of change gradually decreased,
stabilizing notably east of 95° E. Latitudinally, change rates were generally higher between 30-34° N, with the strongest
variability between 32—34° N. North of 36° N, rates diminished markedly (Fig. 5a). This spatial variation was closely linked to
regional climatic conditions, the western region experienced significant seasonal precipitation variations and intense
evaporation, leading to pronounced lake water fluctuations. In contrast, the eastern region, influenced by stable monsoons and
supplemented by glacial runoff, exhibited relatively smoother changes.

Approximately 70% of lakes had change rates below 0.05, with a right skewed distribution peaking at 0-0.05. The number of
lakes decreased sharply as change rates increased, consistent with an inverse J-shaped pattern, indicating overall stability in the
plateau lake system (Fig. 5b). The lake change rate was significantly negatively correlated with lake area: larger lakes exhibit
lower monthly change rates and reduced data dispersion. Specifically, lakes smaller than 150 km? exhibited the highest

variation rates and greatest variability, with multiple outliers present. Lakes between 150-500 km? showed intermediate
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variation rates and variability. Lakes between 500-1000 km” demonstrated a marked decrease in variation rates with a more
concentrated distribution. Lakes larger than 1000 km? had the lowest variation rates and minimal variability, with only a few
isolated (Fig. 5c). This scale dependence largely reflected the greater storage and stronger buffering capacity of large lakes,
which enabled them to withstand short-term climatic fluctuations. Conversely, small lakes exhibited heightened sensitivity to
305 environmental factors such as precipitation, evaporation, and runoff. Our data (TPLake-MED) support the “area-stability”
hypothesis, providing an empirical basis for lake classification, dynamic monitoring, and climate change impact assessment on

the Tibetan Plateau (Zhu et al., 2025).
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Figure 5: Spatial distribution and statistical characteristics of inter-monthly lake area change rates on the Tibetan Plateau. (a)
310 Temporal variation and spatial distribution of inter-monthly change rates, with the orange and blue lines representing mean and
maximum relative changes, the red bars indicating the year of maximum rate, and the coloured background showing lake specific
change rates in that year. (b) The frequency distribution histogram of change rates. (c) The box plots of change rates for lakes of
varying sizes.
Inter-monthly lake area variation across the Tibetan Plateau exhibited spatial heterogeneity, with many lakes showing
315 pronounced fluctuations in surface area. Monthly area differences of 6.50-26.38 km? occured predominantly in the Plateau
interior, indicating heightened sensitivity to climatic shifts. Differences of 3.91-6.50 km? were widely distributed across the
interior, indicating moderate variability; and differences of 0.25-3.91 km? occured mainly along Plateau margins and transition

zones, representing relatively stable lake systems (Fig. 6a). Figures (b—i) show the intra-annual maximum and minimum

boundary differences of the lakes exhibiting the most significant variations. Overlay analysis of satellite imagery and vector
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320  boundaries further validated the extracted outlines and substantiated intra-annual fluctuations, whereby observed area changes
directly reflected the magnitude of seasonal expansion and contraction. This multi-scale presentation revealed macro-spatial
patterns of Plateau lake dynamics and supported data quality and analytical reliability through detailed validation of
representative lakes. It provided evidence to deepen understanding of the stability and vulnerability of Plateau lake

ecosystems.

70

Monthly area range
[0.25, 2.00)
[2.00, 3.00)
[3.00, 3.91)
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[5.00, 6.50)
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[10.12, 26.38]
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Figure 6: Spatial distribution of inter-monthly lake area variation on the Tibetan Plateau and verification of boundary changes for

325

representative lakes. (a) The spatial distribution pattern of inter-monthly lake area variation (max-min) across the Tibetan Plateau.
(b—i) The comparative boundary change diagrams for eight lakes with the most pronounced intra-annual fluctuations. The red
contours indicate the maximum intra-annual boundary extent, the blue contours denote the minimum intra-annual boundary

330 extent, and the numerical labels represent the corresponding expanded lake area (km?). The left subfigures use MODIS/Terra
MOD09A1 Collection 6.1 8-day (500 m) imagery composited to monthly products and processed in Google Earth Engine; data ©
NASA EOSDIS/LP DAAC.

4.2 Validation of lake extraction accuracy

The accuracy assessment of binary classifiers is crucial in lake classification practices (Olofsson et al., 2014; Stehman et al.,
335 2019). A 30% subset of the labelled samples was reserved as a validation set to evaluate binary classification of water and
non-water by the three algorithms. We present a comprehensive assessment based on this set, including the spatial distribution
of validation samples, confusion matrix analysis, and cross algorithm performance comparison. The validation samples
totalled 633, exhibiting a relatively uniform spatial distribution and effectively covering the main geographical units and
different terrain conditions of the study area (Fig. 7a), providing a representative sample basis for classification accuracy
340 assessment. The confusion matrix results indicated that the random forest algorithm performed excellently in water body

classification, with an overall classification accuracy of 93.21%, with 273 correctly classified water body samples and only 39
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misclassified as non-water bodies, while the SVM and CART algorithms achieved overall accuracies of 84.98% and 85.75%,
respectively. For non-water bodies, 317 samples were correctly classified by the random forest, with only 4 misclassified as
water bodies (Fig. 7b). Overall, random forest showed higher accuracy and stability than SVM and CART in distinguishing

345 water from non-water.

Table 2: Comparison of accuracy between different classification algorithms for the “water bodies” and “non-water bodies”

categories.
Algorithm Class Precision Recall Fl-score
Random Forest Water 0.986 0.875 0.927
SVM Water 0.972 0.871 0.869
CART Water 0.903 0.824 0.870
Random Forest Non-water 0.988 0.890 0.936
SVM Non-water 0.967 0.921 0.854
CART Non-water 0.873 0.875 0.874

Further quantitative comparison analysis was conducted on three machine learning algorithms—random forest (RF), support
vector machine (SVM), and classification and regression tree (CART), using three metrics: precision, recall, and F1-score
350 (Table 2). For the water class, RF performed best across all metrics, with precision, recall, and F1 score of 0.90, 0.93, and 0.97,
respectively, exceeding SVM (0.88, 0.82, 0.90) and CART (0.87, 0.87, 0.87) (Fig. 7c). For the non-water class, RF also
maintained its leading advantage, with precision, recall, and F1 score of 0.99, 0.94, and 0.97, all higher than the other two
algorithms (Fig. 7d). These results indicate that RF offers strong performance and practical value for remote sensing
classification of lake water on the Tibetan Plateau, providing a useful reference for subsequent monitoring of lake area

355 dynamics and spatiotemporal analyses (Wang, 2023).
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Figure 7: Validation sample distribution and classification accuracy of the Random Forest model for lake water and non-water
body identification. (a) The distribution of validation sample points for the classification models. (b) The confusion matrix of the
Random Forest classification model. (c—d) The bar chart compares the main evaluation metrics (Precision, Recall, and F1-score) of
different classification algorithms for the two categories of “water body” and “non-water body.”

Figure 8 presents the water body boundary extraction results for five representative lakes—Qinghai Lake, Nam Co, Selin Co,
Zhari Namu Co, and Angla Ren Co—across spring, summer, autumn, and winter. The extracted red boundaries aligned closely
with the water bodies depicted in corresponding seasonal satellite imagery, accurately capturing shoreline inflections,
peninsulas, and bay entrances. This indicates robust performance of the seasonal extraction under varying surface conditions,
including snow cover, cloud shadow, and low solar elevation. From the seasonal variation patterns, most lakes exhibited the
typical seasonal variation pattern of highland lakes, with the largest area in summer and relatively smaller area in winter.
Among them, Qinghai Lake, as the largest lake in the study area, showed relatively stable seasonal variation, with similar water
body boundaries in spring and winter, and a significant expansion of the water body range in summer and autumn, reflecting
the lake’s strong water body stability (Li et al., 2012). Nam Co exhibited significant fluctuations in area across the four seasons,
with relatively smaller water areas in spring, reaching a maximum in summer, and gradually contracting in autumn and winter,
reflecting the lake’s sensitive response to seasonal climate changes. Medium lakes such as Selin Co, Zhari Nam Co, and Angla
Ren Co also followed the basic pattern of expansion in summer and contraction in winter, but the specific magnitude of
changes varied among lakes. Such variability likely reflected differences in location, elevation, catchment characteristics, and
local climate. Overall, the seasonal comparison showed high consistency between extracted boundaries and the imagery under

varying conditions, supporting the method’s efficacy and stability. These seasonal boundary variations provided spatial
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evidence for understanding lake dynamics and hydrological processes on the Plateau, and offered a basis for elucidating lake

responses to climate change.

Spring (March) Summer(July) Autumn(October) Winter(December)

T =

Selin Co Namu Co Qinghai

Zhari Nam Co

Angla Ren Co

Figure 8: Typical lake boundary extraction results for spring, summer, autumn, and winter. The background uses MODIS/Terra
MODO09A1 Collection 6.1 8-day (500 m) imagery composited to monthly products and processed in Google Earth Engine; data ©
NASA EOSDIS/LP DAAC; overlays © Authors.

4.3 Comparison with other products

4.3.1 Seasonal product comparison

To validate the accuracy of our lake area estimates, we compared results for 11 lakes with the dataset of Li et al. (2025). Using
two sets of lake data from 2001 to 2023 for comparison analysis, the results showed that the area extraction accuracy for all

four seasons was excellent: the spring correlation coefficient R2 reached 0.9995, URMSE was 0.0032, and RMSE was 28.88;

summer R2 was 0.9994, URMSE was 0.0032, and RMSE was 32.75; autumn R2 was 0.9993, URMSE was 0.0036, and RMSE
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was 28.88; winter R2 was 0.9995, URMSE was 0.0037, and RMSE was 29.46 (Fig. 9). Scatter points clustered tightly around
the 1:1 line, indicating high reliability and seasonal stability of the extraction. Results for both large lakes (e.g. Qinghai Lake,
Nam Co, Selin Co) and numerous small and medium lakes were highly consistent with the reference data. These findings
supported high overall accuracy, especially for large lakes with clear boundaries, where the extraction results were almost
identical. Therefore, it can be concluded that the lake area extraction results obtained using the proposed automated extraction

algorithm based on random forest classification and morphological post-processing are accurate and reliable.
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Figure 9: Scatter plot comparing different lake area extraction methods in spring, summer, autumn, and winter.

4.3.2 Inter-annual product comparison

Given the use of MODO09A 1 and the available mapping period, we analysed annual and monthly lake area variations from 2000
to 2024 and compared them with four interannual products from the National Tibetan Plateau Data Centre. Using Qinghai Lake
as a demonstration case, the lake exhibited a clear long-term expansion trend, with its area increasing from approximately 4300
km? in the early 2000s to more than 4600 km? after 2020 (Fig. 10a). The lake area typically reached its minimum in January
and gradually expanded with increasing snowmelt and runoff, peaking in September before slightly declining in late autumn
and early winter. This pattern was consistent with combined influences of seasonal precipitation, glacier and snowmelt, and
evaporation, demonstrating the seasonal regulation of the lake’s hydrological balance. Comparisons with the four reference
datasets showed strong overall consistency. The comparison results indicated that the lake area data extracted in this study

exhibit an R2 of 0.96, RMSE of 1019.31 km2, MAPE of 2.2%, and a bias of -832.49 km? relative to Zhou et al. (2025) (Fig.
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10b); an R2 0f 0.98, RMSE of 433.19 km?, MAPE of 0.9%, and a bias of 15.15 km? relative to Wang et al. (2023) (Fig. 10c); an
R2 0of 0.99, RMSE of 366.42 km?, MAPE of 0.7%, and a bias of -178.00 km? relative to Zhang et al. (2022) (Fig. 10d); and an
R2 0f 0.89, RMSE of 1359.51 km?, MAPE of 2.7%, and a bias of -998.32 km?” relative to Zhang et al. (2019) (Fig. 10e). Scatter
points aligned closely along the 1:1 line, indicating high agreement with existing interannual datasets. Agreement was
particularly high with Zhang et al. (2022) and Wang et al. (2023). Our series also resolved intra-annual variations, reflecting
seasonal expansion and contraction. Together, these comparisons suggest that the MODO09A 1-based method captures both

interannual and intra-annual lake area dynamics across the Plateau and offers a sound basis for long-term lake change analyses.
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Figure 10: Temporal variations of Qinghai Lake area from 2000 to 2024 and consistency comparison with existing interannual
datasets. (a) Annual variations in Qinghai Lake area derived from this study (2000-2024). Monthly lake areas are shown as
coloured scatter points (M01-M12) using a spectral gradient, and the annual results from four existing datasets are marked with

star symbols. Tibetan Plateau. (b—e) The comparison of total lake area (>50 km?) from this study with four reference datasets.
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5 Data availability

The monthly scale vector boundary dataset of lakes larger than 10 km? on the Tibetan Plateau from 2000 to 2024
420 (TPLake-MED) constructed in this study has been publicly shared on the National Tibetan Plateau Scientific Data Centre,
accessible at: https://doi.org/10.12443/BNU.RSEC.TPLake-MED20251028 (Zhao et al., 2025). The dataset includes monthly
lake boundary vector files, area statistics tables, and related metadata, supporting Shapefile and GeoJSON formats, and can

provide standardised data support for related research.

6 Code availability

425 The codes are available from the first and corresponding authors upon request.

7 Conclusions

Tibetan Plateau lakes are changing quickly, but most existing datasets only describe year-to-year trends and cannot capture
seasonal behaviour. In this study, we utilised Google Earth Engine (GEE) and multi-temporal MODIS data to construct a
monthly scale vector boundary dataset for lakes larger than 10 km? across the Tibetan Plateau for 2000-2024. Using a random
430 forest model and morphological optimisation, we improved water classification accuracy (overall accuracy 93.21%, F1 score
0.927) and boundary precision. The dataset reveals that total lake area has increased steadily (~34.91 km? per year); lake area
typically reaches its annual maximum in September or October; the maximum monthly relative change rate for an individual
lake can reach 28.43%; western lakes show stronger monthly growth and larger intra-annual fluctuations than eastern lakes,
and the central plateau exhibits strongest variability; and smaller lakes are more sensitive to environmental change than larger
435 lakes. Compared with existing interannual products, our monthly scale data provide higher temporal resolution, filling a key
gap and offering baseline information for studies of water-ice interactions and climate-change-related hydrological responses

in high-altitude cold regions.
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