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Abstract 9 

Drought events pose significant challenges to both ecosystems and human societies, requiring 10 

precise methodologies for their detection and impact assessment. A key challenge is linking 11 

physical drought indicators to socioeconomic consequences, such as the number of people 12 

affected or economic losses. This study introduces a robust two-step framework that integrates 13 

drought detection with impact analysis. In the first step, a clustering algorithm is used to 14 

identify coherent drought events and extract key characteristics such as severity and spatial 15 

extent. These events are tracked as spatially and temporally evolving objects. In the second 16 

step, the drought events are linked to population and GDP exposure, as well as to impact data 17 

from global disaster databases. 18 

To characterize droughts, the study employs two widely used drought indices: the Standardized 19 

Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI). 20 

Precipitation and temperature data from the ERA5 reanalysis are used to compute these indices 21 

at four different timescales (1, 3, 6, and 12 months). Drought events are identified for different 22 

severity levels (-1, -1.5, and -2). The study also incorporates high resolution gridded datasets 23 

of global population and economic activity, alongside disaster impact data on affected 24 

populations and economic losses. The resulting drought dataset provides valuable information 25 

on the association between drought characteristics, exposure, and recorded impacts. 26 

The analysis shows that a relatively large buffer distance is needed to match the identified 27 

drought events to impacts from disaster databases, and that more severe drought thresholds 28 

isolate fewer but higher-impact events. Population exposure is found to be highest in Asia, 29 

while GDP exposure is largest in North America. This integrated framework 30 

(https://doi.org/10.5281/zenodo.17251815; Samantaray & Messori, 2025) bridges the gap 31 

between physical drought characteristics, exposure, and documented impacts, supporting 32 

vulnerability analyses, improved climate adaptation planning and disaster risk management. 33 
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1) Introduction 40 

Drought is a complex natural hazard that poses considerable challenges for accurate monitoring 41 

and effective management (Wilhite, 2016). Unlike storms, temperature extremes or floods, 42 

drought conditions often develop gradually and go unnoticed in their early stages, rather than 43 

presenting a distinct onset (Mishra & Singh, 2010; Mishra & Singh, 2011). This creeping nature 44 

makes drought challenging to detect and monitor in a timely manner; however, understanding 45 

its key characteristics such as severity and duration is crucial for effective planning and risk 46 

mitigation (Tsakiris et al., 2007). Drought can be classified into several types, which are 47 

identified using different hydroclimatic variables (Mishra & Singh, 2010). For example, 48 

precipitation deficits are used to identify meteorological drought, streamflow deficits to 49 

identify hydrological drought, and low soil moisture or groundwater to identify agricultural 50 

drought. This study focuses on meteorological drought.  51 

To monitor and quantify meteorological droughts systematically, researchers often rely on 52 

drought indices (Zargar et al., 2011) such as the Standardized Precipitation Index (SPI; McKee 53 

et al., 1993) and the Standardized Precipitation Evapotranspiration Index (SPEI; Vicente-54 

Serrano et al., 2010). These indices provide consistent, objective measures of anomalies over 55 

various temporal scales and serve as the foundation for assessing drought characteristics. One 56 

widely used approach for characterizing droughts based on these indices is statistical run 57 

theory, which defines drought events as periods during which hydrological variables remain 58 

below predefined thresholds for consecutive time steps (Yevjevich, 1967). Within this 59 

framework, drought severity is quantified by the cumulative water deficit over the duration of 60 

the event, enabling precise identification of drought onset, persistence, and recovery phases 61 

(Zhang, 2024). 62 

Globally, droughts between 1998 and 2017 caused economic losses totalling approximately 63 

USD $124 billion, demonstrating the vast scale of drought impacts (UNCCD, 2023). Over 64 

recent years, drought events characterized by exceptional severity and prolonged durations 65 

have been observed globally, significantly impacting the environment, economy, and society 66 

(Buras et al., 2020; Pokhrel et al., 2021; Vicente-Serrano et al., 2022; Samantaray et al., 2022). 67 

For instance, the 2014-2015 drought event in India affected around 330 million people, 68 

resulting in extreme water scarcity and widespread agricultural losses, highlighting the region's 69 

vulnerability (Kafle et al., 2022). South America, notably the Amazon basin, faced severe 70 

drought conditions from 2022 to 2024, influenced by oceanic anomalies associated with El 71 

Niño events. This prolonged drought led to historically low river levels, disrupted 72 

transportation, and increased wildfire frequency, profoundly altering the region's ecosystem 73 

(Marengo et al., 2024). Europe also experienced severe drought conditions in 2022, primarily 74 

caused by significant soil moisture deficits and low river discharges, exacerbated by 75 

anthropogenic climate change. This event caused major agricultural losses, hydropower 76 

reductions, and interruptions to river navigation (Bevacqua et al., 2024). Droughts also trigger 77 

human migration, notably in Africa. Populations often move toward rivers and urban areas in 78 

search of water and economic opportunities during drought periods, illustrating a clear link 79 

between drought severity and human displacement (Ceola et al., 2023). Additionally, climate 80 

models predict increased drought severity and frequency in several regions, including South 81 

and North America (Penalba & Rivera, 2013; Cook et al., 2020; Samantaray et al., 2025). 82 

 83 
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Recent studies have extensively used disaster databases, such as the Geocoded Disasters 84 

Dataset (GDIS; Rosvold & Buhaug, 2021) dataset, to examine drought-related socio-economic 85 

impacts at subnational scales. Kulkarni et al. (2024) evaluated multiple drought indices, 86 

including a novel Combined Drought Indicator (CDI), and confirmed their effectiveness in 87 

accurately identifying drought-affected regions and associated socioeconomic impacts. 88 

Similarly, Kageyama & Sawada (2024) used the GDIS dataset to investigate global drought 89 

events, emphasizing the relationship between drought severity and subsequent socio-economic 90 

consequences, such as agricultural losses, displacement, and economic disruptions. Such 91 

research underscores the critical importance of integrating comprehensive drought monitoring 92 

and assessment methodologies with information on drought impacts, to plan and mitigate 93 

socio-economic risks (Jägermeyr & Frieler, 2018; Marengo et al., 2022; Petersen-Perlman et 94 

al., 2022). 95 

The above-discussed studies evidence that the impact of drought varies significantly across 96 

both space and time. The association between drought indices and impact data is thus both 97 

localized and temporally variable. This speaks to the need for analytical methods for 98 

identifying spatially coherent drought-affected regions and tracking the droughts’ temporal 99 

evolution. Ghasempour et al. (2022) employed clustering techniques to regionalize drought 100 

areas based on satellite indices such as normalized difference vegetation index (NDVI). 101 

Kageyama & Sawada (2022) used the GDIS dataset coupled with ERA5-Land reanalysis data 102 

to demonstrate how drought hazards translate into socio-economic impacts at subnational 103 

levels, emphasizing the value of precise local-scale data. Herrera‐Estrada et al. (2017) used a 104 

Lagrangian approach to monitor drought clusters' temporal and spatial progression, viewing 105 

droughts as continuous spatiotemporal phenomena with complex propagation dynamics. 106 

Understanding drought dynamics is critical, given their increasing frequency, severity, and 107 

widespread socio-economic impacts across the globe. Despite significant advancements, 108 

accurately identifying drought events and relating their characteristics to the associated impacts 109 

remains a challenge (AghaKouchak et al., 2023). Specifically, we lack a globally consistent 110 

framework that combines spatiotemporal drought clustering with high-resolution 111 

socioeconomic exposure and impact data. This study addresses this challenge by pursuing three 112 

primary objectives. First, it seeks to develop a robust clustering algorithm capable of 113 

systematically identifying distinct spatio-temporal drought "objects," enabling automated 114 

extraction of key drought characteristics such as severity and spatial extent. Second, the study 115 

aims to assign population and economic exposure to the physical drought information as 116 

identified through the clustering process. Third, the study relates drought characteristics to 117 

impact data from the Emergency Events database (EM-DAT, Guha-Sapir et al., 2023). The 118 

resulting dataset and the code used to generate it are made publicly available for research and 119 

policy development purposes. 120 

2) Data 121 

We utilise precipitation and temperature data from the ERA5 reanalysis (Hersbach et al., 2023) 122 

provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). The data 123 

has a horizontal resolution of 0.25o and we analyse the period from 1960 to 2018. To facilitate 124 

drought index calculation, the daily data are aggregated to a monthly timescale. These climate 125 

variables serve as the basis for computing the SPI and the SPEI drought indices at multiple 126 

timescales. 127 
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We also employ socioeconomic impact data from EM-DAT (Guha-Sapir et al., 2023) and 128 

geographical locations from GDIS (Rosvold & Buhaug, 2021). EM-DAT offers quantitative, 129 

categorical information on disaster impacts, including the number of people affected and total 130 

economic losses. However, it reports disasters at country level and only indicates subnational 131 

locations in non-standardised textual form. GDIS provides georeferenced information for a 132 

subset of the disaster events reported in EM-DAT, covering the years 1960-2018, which 133 

constitute our study period, facilitating a spatially explicit linkage between drought events and 134 

their impacts. These impact data are integrated with the drought indices to examine the 135 

relationship between drought characteristics and socioeconomic outcomes, as elaborated in 136 

later sections. To illustrate the spatial heterogeneity of the drought events reported in GDIS, 137 

we have plotted them in Figure 1. China displays the highest frequency, reporting over 30 138 

drought events during the study period. Other countries with a high number of reported events 139 

include the United States, Brazil, Argentina, Australia, and several nations in Southern and 140 

Eastern Africa, each with between 15 and 25 recorded droughts. In contrast, the northern 141 

latitudes, parts of Europe, and some equatorial regions exhibit relatively fewer drought reports, 142 

reflecting potential underreporting or lower drought occurrence. 143 

To assess socioeconomic exposure to drought, two high-resolution gridded datasets are 144 

utilised. The first is a global Gross Domestic Product (GDP) dataset 145 

(rast_gdpTot_1990_2022_5arcmin.tif) obtained from Kummu et al. (2023), which provides 146 

estimates of total GDP in constant 2015 US dollars from 1990 to 2022 at a spatial resolution 147 

of 5 arcminutes (approximately 10 km at the equator). GDP values are spatially disaggregated 148 

using national GDP data combined with subnational economic proxies, offering a realistic 149 

depiction of economic exposure at local scales. The second is the World Settlement Footprint 150 

(WSF; Marconcini et al., 2020) population time series, obtained from the Copernicus 151 

Emergency Management Service (CEMS). It provides gridded population estimates at a high 152 

spatial resolution of 1 km, covering the period from 1975 to 2025 in 5-year intervals. The data 153 

is derived through a combination of remote sensing (e.g., Landsat-based settlement detection), 154 

census data, and modelling. The dataset is designed to reflect residential population distribution 155 

and is particularly suited for applications in disaster risk assessment and humanitarian response 156 

(Chen et al., 2024). For both the population and GDP datasets, we limit the analysis to 2018 to 157 

match the end-date of GDIS, but the study periods nonetheless differ as neither dataset is 158 

available from 1960. 159 

 160 

 161 
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 162 

Figure 1. Global distribution of drought events reported in the GDIS dataset. 163 

These datasets provide a comprehensive foundation for linking meteorological drought 164 

conditions to real-world socioeconomic consequences. The subsequent methodology section 165 

outlines the step-by-step process used to detect drought events, harmonize disaster records and 166 

quantify the exposure of both populations and economies to drought hazards. 167 

3) Methodology 168 

The methodology of this study is designed to establish a systematic link between physical 169 

drought indicators, population and GDP exposure, and socioeconomic impacts. First, a 170 

matching process is conducted between the EM-DAT and GDIS datasets. Second, the SPI and 171 

the SPEI are computed across multiple timescales and threshold values, and used to detect 172 

spatio-temporally coherent drought-affected regions. Finally, the drought data is connected to 173 

the population, GDP and impacts data. 174 

3.1) Cross-Referencing Drought Events in EM-DAT and GDIS 175 

While GDIS builds on EM-DAT, there are some geographic inconsistencies across the two 176 

sources, including in country names. The first step in resolving these inconsistencies is the 177 

development of a country correction dictionary, mapping former political entities to their 178 

respective modern successor states. Additionally, the dictionary includes mappings for 179 

countries that have undergone name changes in recent decades such as Swaziland to Eswatini 180 

and standardizes naming variants like “Bolivia (Plurinational State of)” and “United States of 181 

America” to their commonly used equivalents. This standardisation step is applied to both EM-182 

DAT and GDIS. Following the textual harmonization of country names, a geospatial 183 

verification step is introduced to enhance the robustness of the matching process. Each drought 184 

event record is geolocated using a global shapefile of national boundaries. The geospatially 185 

derived country name is then compared against the standardized names from both GDIS and 186 

EM-DAT. 187 

 188 

 189 
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Table 1. Discrepancies in Reported Drought Event Locations Between GDIS and EM-DAT 190 

Disasterno Latitude Longitude GDIS EM-DAT Year 
ISO3 

GDIS 

2014-9580 

 

8,760251912 

 

-63,87780838 

 

Venezuela 

 

Costa Rica, 

Nicaragua, 

El 

Salvador 

2015 

 
VEN 

 

2012-9355 

 

-6,81120164 

 

-79,55017972 

 

Peru 

 
Guatemala 

2012 

 
PER 

 

2014-9277 

 

-6,81120164 

 

-79,55017972 

 
Peru Guatemala 

2014 

 
PER 

 

1997-9227 

 

5,353369065 

 

-6,675278369 

 

Côte 

d'Ivoire 
Nicaragua 

1997 

 
IVO 

 

1999-9404 

 

5,353369065 

 

-6,675278369 

 

Côte 

d'Ivoire 
Paraguay 

1999 

 
IVO 

2012-9021 

 

5,353369065 

 

-6,675278369 

 

Côte 

d'Ivoire 
Paraguay 

2012 

 
IVO 

2013-9496 5,353369065 -6,675278369 
Côte 

d'Ivoire 
Paraguay 2013 IVO 

 191 

One recurring issue is the presence of identical disaster numbers attributed to different 192 

countries across the two datasets. A notable example is disaster ID 2014-9580, which EM-193 

DAT attributes to Costa Rica, Nicaragua, and El Salvador, while GDIS associates with 194 

Venezuela – a country not mentioned in the EM-DAT entry. 195 

To resolve these discrepancies, a distance-threshold-based filtering approach is employed. 196 

Specifically, we measure the distance between the event coordinates recorded in GDIS and the 197 

centroid of the countries listed in EM-DAT. If this distance exceeds a predetermined threshold, 198 

the match is considered invalid. We tested several distance thresholds: 0 km, 100 km, 250 km, 199 

and 500 km to assess their impact on the number of mismatches. We found 9 mismatches at 200 

both 0 km and 100 km, and 7 at both 250 km and 500 km. Based on these results, we selected 201 

250 km as a balanced threshold that accounts for potential regional reporting variations while 202 

maintaining geographic specificity. Accordingly, the seven discrepant events (Table 1) were 203 

excluded from further analysis. 204 

3.2) Drought Indices 205 

We identify droughts through two widely-used indices: SPI and SPEI. Both offer a flexible, 206 

multi-scalar framework to assess drought conditions across temporal and spatial domains. The 207 

SPI, developed by McKee et al. (1993), relies solely on precipitation data and evaluates 208 

deviations from the long-term mean over user-defined accumulation periods. It allows for 209 

direct comparisons of drought severity across diverse climates and regions. However, it does 210 

not incorporate temperature, and therefore may underestimate drought severity in warming 211 

climates where evaporative demand is rising (Zarch et al., 2015). To address this limitation, 212 

the SPEI, developed by Vicente-Serrano et al. (2010), integrates both precipitation and 213 

potential evapotranspiration (PET) to calculate a climatic water balance (precipitation minus 214 

PET). The inclusion of temperature effects makes SPEI more sensitive to climate change and 215 

https://doi.org/10.5194/essd-2025-646
Preprint. Discussion started: 3 February 2026
c© Author(s) 2026. CC BY 4.0 License.



7 
 

better suited for detecting droughts driven by both precipitation deficits and increased 216 

atmospheric demand. In our analysis, we consider timescales of 1, 3, 6 and 12 months for both 217 

indices, and identify a gridpoint as being affected by drought using SPI and SPEI thresholds of 218 

-1, -1.5 and -2. 219 

3.3) Spatio-Temporal Drought Event Identification 220 

In GDIS, a single EM-DAT disaster number may correspond to multiple coordinates, which 221 

we refer to as target points. To detect spatiotemporal drought events, we begin by collecting 222 

all target points associated with each disaster number. We then calculate the distances between 223 

all pairs of target points to assess their geographic proximity and identify whether any points 224 

are distant from the rest. If a target point or set of target points has a nearest distance that 225 

exceeds a predefined maximum distance threshold (Dmax) from any other target points, the 226 

algorithm divides the target points into separate groups. After forming these initial groups, 227 

geographic bounding boxes are constructed around them. To include surrounding areas that 228 

may also be affected by drought, the bounding boxes are expanded outward in all four cardinal 229 

directions using a spatial buffer distance (Dbuffer) applied from the outermost coordinates of 230 

each group. The algorithm also allows for country-level analysis, instead of the bounding-box 231 

approach, by using country information from the same GDIS dataset. In this study, the 232 

bounding-box approach is applied, with Dbuffer set to half the value of Dmax to prevent overlap 233 

between different target point groups. However, the algorithm allows users to adjust these 234 

parameters based on their specific needs. 235 

Within each bounding box, the methodology applies a threshold to the drought index values 236 

such as the SPI or SPEI to identify affected grid cells. Grid points that fall below the threshold 237 

are classified as drought-affected. A land-sea mask is applied to exclude ocean regions. We 238 

then identify spatially contiguous clusters of drought-affected grid points using connected 239 

component analysis based on eight-point connectivity. This method, commonly used in image 240 

processing, defines connectivity by considering all eight immediate neighbors of a pixel 241 

(including diagonal ones). Additionally, clusters for which the minimum distance between the 242 

two closest points in the clusters is less than a predefined merging distance (Dmerge), are 243 

combined into single entities.  244 

In addition to providing target points for each disaster number, GDIS also provides a single 245 

year of occurrence, referred to as the target year. For each GDIS disaster number, our algorithm 246 

returns all clusters that match the target points and target year. The algorithm is highly flexible 247 

and also provides the option to use the start year, start month, end year, and end month 248 

information from EM-DAT for the analysis. To help the reader better understand this 249 

workflow, a visual summary is provided in Figure 2. To illustrate the temporal evolution of 250 

drought clusters, we randomly selected a single drought event (disaster number: 2000-9860), 251 

and present its monthly progression over twelve consecutive months in Figure 3. Each sub-252 

panel corresponds to a specific month, visualizing how the drought-affected region expands, 253 

contracts, and shifts spatially within Central America. In the early months (January to April), 254 

pronounced drought clusters are concentrated predominantly in the northern parts of Central 255 

America. As the year progresses (May to August), the clusters expand and shift toward 256 

southern regions. Toward the end of the year (September to December), the spatial distribution 257 

becomes more fragmented, with smaller and more isolated clusters. The monthly cluster 258 

https://doi.org/10.5194/essd-2025-646
Preprint. Discussion started: 3 February 2026
c© Author(s) 2026. CC BY 4.0 License.



8 
 

patterns demonstrate that drought conditions exhibit significant variability over short periods, 259 

influenced by climatic variability and other regional factors.  260 

3.4) Connecting Drought Events to Exposure and Impact Data 261 

We compute both population and GDP exposure for the drought clusters identified as matching 262 

drought events reported in GDIS, using the WSF population dataset and a gridded GDP dataset. 263 

To compute the exposure, we consider the population and GDP values across all pixels which 264 

lie in a drought cluster for at least one month during the target year. In addition to total 265 

exposure, this study employs a weighted exposure metric that accounts for both frequency and 266 

severity of drought at each pixel. Frequency weighting (WF) is defined as the number of 267 

months a pixel experiences drought divided by the total number of months in a year (12). 268 

Severity weighting (WS) is applied linearly on a continuous scale from 0 to 1, corresponding 269 

to average severity values ranging from 0 to -2. The maximum value of 1 is assigned to severity 270 

values ≤ -2 to avoid overestimation from locally extreme drought conditions. The combined 271 

weight is calculated as the product of WF and WS, following the widely accepted risk 272 

formulation: Risk = Frequency × Severity. Importantly, the algorithm also allows users to 273 

define and apply custom weighting schemes as needed. The results of both the total and 274 

weighted population exposure analyses are presented in the Results section. 275 

We use impact data, specifically, the number of people affected and total economic losses, 276 

from the EM-DAT database to assess the consequences of drought events. Since our algorithm 277 

links drought clusters to GDIS event locations, it is sufficient to match each GDIS entry to its 278 

corresponding EM-DAT entry (see Sect. 3.1).  279 

 280 

Figure 2. Flowchart summarizing the methodological framework for identifying drought 281 

clusters. 282 
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 283 

 284 

Figure 3. Spatial evolution of drought clusters over twelve consecutive months for a selected 285 

drought event (Disaster No. 2000-9860) in Central America. The bounding box is shown in 286 

dark grey. Different clusters are shown in different colours. The red dots (same in each panel) 287 

represent the original target points obtained from the GDIS dataset, while the blue dots indicate 288 

the mean location calculated from the target points, providing a representative geographic 289 

centroid. 290 

4) Results 291 

4.1) Matching Drought Events to Impact Data 292 

We first investigate the percentage of drought events in the GDIS dataset for which one or 293 

more drought clusters are identified, as a function of the chosen SPI threshold (-1, -1.5, and -294 

2), buffer distance (100 km, 250 km, and 500 km), and SPI timescale (1, 3, 6, and 12 months). 295 

Across all SPI timescales, higher detection percentages are generally associated with larger 296 

buffer distances and less severe event thresholds (Figure 4). The highest match percentages, 297 

often in the range of 90%, are observed when using a 500 km buffer distance and a -1 SPI 298 

threshold. These drop below 60% for more stringent parameter sets. This large variability 299 

highlights the importance of users selecting parameter combinations tailored to their specific 300 

applications. We evaluate the detection percentage again using SPEI data (Figure S1). The 301 

results remain similar to those of SPI. However, for any given threshold and timescale, the 302 

detection percentage is consistently higher with SPEI compared to SPI. 303 
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 304 

Figure 4. Percentage of drought events reported in the GDIS dataset which match one or more 305 

drought clusters for different SPI timescales (1, 3, 6, and 12 months), SPI threshold values (-1, 306 

-1.5, -2) and buffer distances (Dbuffer = 100 km, 250 km, 500 km). 307 

4.2) Population Exposure Based on Gridded Population Density  308 

Figure 5 presents data across five continents: Asia, North America, Africa, South America, and 309 

Europe, at the SPI‑1 (1‑month) timescale. Australia is omitted due to the low number of 310 

reported events. Asia generally shows the highest population exposure across all drought time 311 

scales, except at lower thresholds, where Europe shows the highest exposure. Under a 500 km 312 

buffer distance and threshold -1, up to 0.6 billion people are exposed, primarily due to the 313 

region’s dense population, as noted by Khan et al. (2018) and Mondal et al. (2021). Europe, 314 

North America and Africa follow, with approximately 150-750 million people exposed, while 315 

South America reports around 60 million under the same algorithm parameter set. As the 316 

drought severity threshold becomes more stringent, the areal extent of drought clusters declines 317 

across all continents, consistent with the severity–area relationship (Mishra & Singh, 2009; 318 

Kumar et al., 2021). Consequently, reduced drought area leads to lower population exposure. 319 
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 320 

Figure 5. Population exposure to drought events based on SPI-1 (1-month timescale) across 321 

five continents: Asia, North America, Africa, South America and Europe using the WSF 322 

population dataset. 323 

In terms of affected area, North America leads with up to 2 million km² at threshold -1, 324 

followed closely by Asia. South America, Europe, and Africa, with areas between 0.5 and 325 

1 million km². At more severe thresholds, the same ranking holds, though the absolute 326 

differences shrink. This suggests that, for some large-area events at threshold -1, the majority 327 

of affected areas experience moderately severe drought conditions (see Figure 5). The most 328 

severe droughts (severity < -3) occur primarily in Asia, North America and Africa, while the 329 

most extreme events in other continents typically have severity around or slightly below -2.8. 330 

Overall, the relationships among drought severity and area at the SPI‑1 scale are highly 331 

heterogeneous. 332 

When comparing population exposure across SPI timescales of 1 (Figure 5), 3 (Figure S2), 6 333 

(Figure S3), and 12 (Figure S4) months, no consistent pattern emerges. Table S1 presents 334 

comparisons of areal extent between Scale 1 vs. Scale 3, Scale 3 vs. Scale 6, and Scale 6 vs. 335 

Scale 12. Each cell (e.g., “1vs3”) summarizes the median, maximum, and the percentage of 336 

drought events in which the areal extent at the first scale (e.g., Scale 1) is greater than at the 337 

second scale (e.g., Scale 3). The supplementary table file provides a detailed explanation of 338 

how to interpret the tables. At shorter timescales, the maximum affected area is generally 339 

smaller, whereas the median areal extent is higher. This means that, for example, the maximum 340 

affected area across all events is smaller at Scale 1 compared to Scale 3, but the median affected 341 

area across all events is higher at Scale 1. The percentage of events with a larger median 342 

affected area at lower scales nonetheless varies considerably across continents and drought 343 
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thresholds and for some parameter sets, the areal extent at longer timescales exceeds that at 344 

shorter timescales. For example, for a threshold of -2 and a buffer distance of 100 km, only 345 

35.3% of the total events have a smaller affected area at SPI 3 compared to SPI 1. This occurs 346 

when regions not classified as drought-affected at shorter timescales are classified as drought-347 

affected at longer timescales, because of drought conditions from preceding or subsequent 348 

months that are incorporated into the longer timescale calculation. We also find that at shorter 349 

timescales, droughts often correspond to lower severity values compared to longer timescales 350 

(Table S2). For example, in Europe at a 250 km buffer distance, 77.8% of drought events have 351 

higher severity at scale 12 compared to scale 6. Population exposure (Table S3) shows a clear 352 

relationship across scales: lower SPI timescales generally correspond to higher exposure 353 

values, reflecting their tendency to cover larger areas (Table S1). As area increases, population 354 

exposure typically increases as well. Nevertheless, a few cases show the opposite. This can be 355 

attributed to the highly uneven distribution of population, where a smaller area containing high 356 

population pixels may result in greater exposure than a larger but sparsely populated areas. 357 

Overall, our analysis highlights that the relationship between the different drought 358 

characteristics and between drought characteristics and population exposure presents some 359 

general patterns but is ultimately event-specific. 360 

The SPEI results (Scale 1: Fig. 6; Scale 3: Fig. S5; Scale 6: Fig. S6; Scale 12: Fig. S7) show 361 

patterns broadly similar to those for SPI, except that Africa ranks second overall but moves to 362 

first at lower thresholds. Asia generally shows the highest population exposure across almost 363 

all thresholds and buffer distances, and shorter drought timescales often correspond to higher 364 

values in both areal extent (Table S4) and population exposure (Table S6), but lower severity 365 

levels (Table S5). Comparing SPI and SPEI in terms of areal extent (Table S7) at the same 366 

timescale, Africa and North America consistently show higher values for SPEI across all buffer 367 

distances. Regarding severity, SPEI typically identifies events as more severe than SPI (Table 368 

S8), with the exception of severity threshold -1, particularly in North America, South America, 369 

and Europe. Population exposure (Table S9) patterns mirror those of areal extent. SPI tends to 370 

identify lower population exposure in Asia and Africa, while in North America, South America 371 

and Europe, SPI often shows higher values than SPEI.  372 

We next consider the weighted population exposure for SPI, which accounts for both drought 373 

severity and frequency. By definition, weighted exposure is smaller or equal to absolute 374 

exposure, as the weighting factors range between 0 and 1 (Sect. 3.4). The extent of the reduction 375 

in weighted exposure relative to absolute exposure provides insights into the nature of drought 376 

conditions. The largest reductions are observed in Asia, suggesting that droughts in this region 377 

may be less severe or less frequent within a given year than in other continents (Scale 1: Figure 378 

S8; Scale 3: Figure S9; Scale 6: Figure S10; Scale 12: Figure S11). Figures S12-S14 show both 379 

absolute and weighted population exposures at thresholds of -1, -1.5, and -2, respectively, for 380 

SPI scale 1. The degree of reduction again varies substantially across events and continents. 381 

North America, Africa and South America, in particular, show relatively smaller disparities 382 

between population exposure and weighted population exposure across thresholds, especially 383 

at a 500 km buffer distance. This disparity further diminishes across all continents as the buffer 384 

distance decreases, suggesting that at smaller distances, the algorithm captures more 385 

prolongued and severe drought events due to proximity to the target points. Figure S13 also 386 

suggests that disparity is usually greatest for events with higher absolute exposure, reinforcing 387 
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the observation that widespread drought events are often associated with lower severity, shorter 388 

duration, or both. Similar observations are found at other scales (Figures S15–S23). 389 

 390 

Figure 6. Population exposure to drought events based on SPEI-1 (1-month timescale) across 391 

five continents: Asia, North America, Africa, South America and Europe using the WSF 392 

population dataset. 393 

In the weighted population estimates, the relative differences among continents are smaller 394 

than for absolute exposure. For example, at a 500-kilometer buffer distance, the variation 395 

across continents drops from a range of 650-60 million to 150-15 million. The relationships 396 

between exposure and drought characteristics, such as average areal extent (Table S10) and 397 

average severity (Table S11) across different temporal scales (Table S12) remain consistent 398 

with those observed for absolute population exposure. 399 

The weighted population exposure based on SPEI shows the largest reductions in Asia, 400 

consistent with the pattern observed in SPI-based weighted exposure, particularly at buffer 401 

distances of 250 and 500 kilometers (Figures S24- S27). These reductions are more pronounced 402 

for drought events with higher absolute population exposure (Figures S28-S39). The 403 

relationships observed across different timescales in the SPEI-based weighted exposure are 404 

generally consistent with those seen in the unweighted SPEI population exposure data, except 405 

in some cases in Africa and South America (Tables S13-S15). Additionally, the relationship 406 

between weighted SPI and weighted SPEI population exposure closely mirrors that of the 407 

unweighted comparison (Tables S16-S18). 408 

4.3) GDP Exposure Based on Gridded GDP  409 

We next consider direct economic exposure to drought events in terms of GDP (Figure 7), 410 

again grouping results by continent. North America consistently exhibits the highest GDP 411 
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exposure across all drought severity thresholds, as also reported by Gao et al. (2019). At a high 412 

buffer distance of 500 kilometers and threshold -1, GDP exposure reaches up to 15 trillion 413 

USD, primarily due to the concentration of high-value economic zones. Europe, Asia, and 414 

South America follow, with exposures ranging from approximately 1 to 10 trillion USD, while 415 

Africa reports about 0.4 trillion USD under the same buffer and severity values. This aligns 416 

with the findings of Sun et al. (2022), who observed that GDP exposure to droughts is highest 417 

in upper-middle-income countries and lowest in low-income, lower-middle-income, and low- 418 

to middle-income countries. Previous studies have also found that drought-affected GDP 419 

exposures usually exhibit similar patterns to population exposure and are highly correlated 420 

(O’Neill et al., 2014; Gu et al., 2020). However, in our analysis, population exposure and GDP 421 

exposure differ, reflecting the fact that pixel-level GDP exposure and population exposure 422 

values are not always well-correlated. 423 

As the drought severity threshold becomes more severe, the areal extent of drought clusters 424 

and GDP exposure both decrease across all continents, a pattern similar to that observed for 425 

population exposure. When comparing GDP exposure across SPI timescales of 1, 3 (Figure 426 

S40), 6 (Figure S41), and 12 (Figure S42) months, drought characteristics show a mixed 427 

pattern. The changes in areal extent (Table S19) and severity (Table S20) across timescales 428 

closely resemble the median and maximum patterns observed for population exposure, with 429 

the differences being due to the different timeperiods over which the two analyses are 430 

conducted. The magnitude of these percentages is however generally lower compared to those 431 

for population exposure. Generally, as affected area increases, GDP exposure (Table S21) tends 432 

to rise accordingly, with few exceptions (cf. Table S19 and Table S21). These cases occur when 433 

a smaller area includes economically dense regions, resulting in higher GDP exposure than a 434 

larger area with low GDP. 435 

The SPEI results (Scale 1: Figure 8; Scale 3: Figure S43; Scale 6: Figure S44; Scale 12: 436 

Figure S45) exhibit a broadly similar continental pattern to those observed for SPI. North 437 

America consistently shows the highest GDP exposure across all thresholds and buffer 438 

distances. This is followed by Asia, Europe, Africa and South America. When comparing 439 

drought characteristics across time scales, shorter timescales typically show a larger areal 440 

extent (Table S22) and higher GDP exposure (Table S24), but lower severity values 441 

(Table S23), which is consistent with the population exposure results. Compared to SPI data, a 442 

higher percentage of drought events show greater GDP exposure (Table S27) and larger areal 443 

extent (Table S25), along with more negative severity values (Table S26). 444 

Weighted GDP exposure based on SPI has been computed for multiple scales (Scale 1: Figure 445 

S46; Scale 3: Figure S47; Scale 6: Figure S48; Scale 12: Figure S49), and comparative plots of 446 

weighted versus raw GDP exposure across various thresholds and scales are presented in 447 

Figures S50–S61. The degree of reduction from absolute to weighted GDP exposure varies by 448 

continent. Africa and South America, in particular, show comparatively small disparities 449 

between GDP and weighted GDP exposure across thresholds, especially at a 500 km buffer 450 

distance. This disparity further diminishes across all continents as the buffer distance decreases, 451 

mirroring the patterns observed in weighted population exposure. Notably, the extent of 452 

reduction is generally less pronounced in GDP exposure compared to population exposure. 453 

This difference may stem from the distribution of GDP values across grid cells, which for many 454 

droughts is more spatially uniform than population data. In such cases, a few high-density 455 

population pixels can significantly inflate exposure values, and when these are down-weighted, 456 
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it leads to a large decrease in exposure. Additionally, the relationship across timescales is 457 

similar for weighted GDP exposure (Table S30) compared to raw GDP exposure (Table S21). 458 

However, the number of events where GDP exposure is higher at shorter timescales than at 459 

longer ones decreases after weighting is applied. 460 

 461 

Figure 7. GDP exposure to drought events based on SPI-1 (1-month timescale) across five 462 

continents: Asia, North America, Africa, South America and Europe, using data from the global 463 

GDP dataset  464 

The weighted GDP exposure (Scale 1: Figure S62; Scale 3: Figure S63; Scale 6: Figure S64; 465 

Scale 12: Figure S65) based on SPEI maintains the same continental ranking as the absolute 466 

GDP exposure. As for SPI, the reduction in GDP is more pronounced for events with higher 467 

raw GDP exposure (Figures S66-S77). Across timescales, a higher percentage of drought 468 

events exhibit greater GDP exposure at Shorter timescales, consistent with the pattern observed 469 

for absolute exposure (Table S34). However, the percentage decreases in a manner similar to 470 

the weighted GDP based on SPI. For the majority of events SPEI results in greater weighted 471 

GDP exposure than SPI, except for a few cases in Europe (Table S36). 472 
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 473 

Figure 8. GDP exposure to drought events based on SPEI-1 (1-month timescale) across five 474 

continents: Asia, North America, Africa, South America and Europe, using data from the global 475 

GDP dataset 476 

4.4) Population Impacted based on EM-DAT 477 

We next examine drought impacts as reported in the EM DAT dataset. Figure 9 illustrates the 478 

number of persons affected for SPI-1 across four continents: Asia, North America, Africa and 479 

South America under three severity thresholds (-1, -1.5, -2) and buffer distances (100 km, 250 480 

km, 500 km). Data for Europe and Australia are excluded due to small sample sizes. The 481 

affected population varies notably across continents. In Asia it reaches up to 200 million 482 

people, particularly at the 500 km buffer distance. Africa, South America and North America 483 

follow. This ranking is maintained across thresholds and scales. This contrasts with the 484 

exposure‑based rankings, where North America shows higher population exposure than Africa 485 

and South America (Figure 1). However, both exposure and impact data consistently identify 486 

Asia as the most exposed and impacted continent. Interestingly, the affected population values 487 

remain nearly constant across thresholds and scales for each continent. This suggests that 488 

impacts are highly localised and associated with the gridpoints that satisfy the more stringent 489 

drought criteria. When examining drought area and severity across scales, often as the 490 

timescale increases (Figure S78-80), the magnitude of affected area (Table S37) decreases 491 

while drought severity (Table S38) increases. 492 
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 493 

Figure 9. Population affected by drought events based on SPI-1 (1-month timescale) across 494 

four continents: Asia, North America, Africa, and South America, using data from the EM-495 

DAT database. 496 

Figures S12–S23 present event-level impact data (total affected) alongside both absolute and 497 

weighted population exposure estimates. Across different drought scales and thresholds, 498 

impact data generally co-varies with weighted exposure data, with few exceptions. In some 499 

cases, absolute exposure is smaller than the corresponding reported impact (Figure S94-S101). 500 

This is particularly evident in Asia (Figure S94), but isolated occurrences are also found in 501 

other continents. Indeed, Asia exhibits the weakest correlation between (weighted) exposure 502 

and impact among all continents (Figures S81–S82). Impact to exposure ratios above one 503 

indicate an inconsistency in the data sources that we use, either due to data errors or to 504 

discrepant definitions of drought. In fact, EM-DAT does not use physical indicators to define 505 

a disaster, but instead relies on its impacts and declarations of states of emergency. 506 

SPEI captures larger affected populations, particularly in Asia, compared to SPI (Fig. 10), 507 

indicating that SPI may miss some high-impact events. Similar to the population exposure 508 

results, compared to SPI, SPEI shows a higher percentage of drought events with larger 509 

affected areas at shorter timescales (Table S39), while a lower percentage of events exhibit 510 

greater severity at shorter scales (Table S40). Because we use the same impact data for both 511 

drought indices, the relationship between SPI and SPEI for impacts remains similar to that 512 

observed for exposure (Tables S41–S42). Figures S29–S39 display event-level impact data 513 

alongside absolute and weighted population exposure estimates using SPEI. In Asia, several 514 

events again show impact-to-exposure rations above one (Figure S94). Nonetheless, in most 515 

cases impacts are lower than absolute exposure. Consequently, for SPEI the correlation 516 
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between exposure and impact is higher than for SPI (Figure S82). This likely reflects the SPEI’s 517 

broader detection of drought-affected areas, increasing exposure estimates. 518 

 519 

Figure 10. Population affected by drought events based on SPEI-1 (1-month scale) across four 520 

continents: Asia, North America, Africa, and South America, using data from the EM-DAT 521 

database. 522 

4.5) Economic impact based on EMDAT 523 

As a final step, we consider total economic damage in USD as recorded in the EM-DAT dataset 524 

across three continents: Asia, North America, and South America, at the SPI-1 (1-month) 525 

timescale (Figure 11). Africa, Europe, and Australia are excluded from the analysis due to 526 

limited economic damage data available in EM-DAT. At the -1 threshold, North America 527 

records the highest total damages, reaching up to 2.5 × 10⁷ USD at a 500 km buffer distance, 528 

followed by Asia and South America. This same ranking is also observed in absolute and 529 

weighted GDP exposure. Total damage values remain nearly constant across thresholds and 530 

scales for each continent, with few exceptions, as the algorithm continues to register drought 531 

in grid cells associated with the highest economic impacts. Changes in economic damage 532 

across different scales, thresholds, and buffer distances are shown in Figures S86–S88. 533 

Figures S50–S61 compare event-level impact data (total economic damage) with both absolute 534 

and weighted GDP exposure estimates using SPI. Across scales and thresholds, the damage 535 

data generally co-varies with the weighted exposure closely, except for a few high-GDP 536 

exposure events in Asia and North America which correspond to low economic impacts. There 537 

are no cases where the ratio of total damage to GDP exceeds one (Figure S102-S107). 538 
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Generally South America shows a higher correlation between (weighted) exposure and damage 539 

compared to Asia and North America (Figures S89–S90). 540 

 541 

Figure 11. Total damage due to drought events based on SPI-1 (1-month timescale) across 542 

three continents: Asia, North America and South America, using data from the EM-DAT 543 

database. 544 

Across all timescales, SPEI consistently corresponds to higher total economic damages from 545 

drought events than SPI. At the 1-month timescale (Figure 12), North America shows damage 546 

exceeding $2 × 10⁷ USD, higher than equivalent SPI-based estimates, and Asia exhibits similar 547 

levels. SPEI preserves the same continental ranking as SPI across thresholds and scales 548 

(Figures S91-S93). The relationships among absolute GDP exposure, weighted GDP exposure, 549 

and total damage for SPEI remain consistent with the SPI-based patterns (Figures S66–S77). 550 

Overall, the correlation between (weighted) exposure and impact is found to be higher for SPEI 551 

than for SPI across all continents (Figures S89- S90). 552 
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 553 

Figure 12. Total damage due to drought events based on SPEI-1 (1-month timescale) across 554 

three continents: Asia, North America and South America, using data from the EM-DAT 555 

database. 556 

5) Data and code availability 557 

The replication package (code, configuration files, derived outputs, and supplementary 558 

materials) is archived on Zenodo: https://doi.org/10.5281/zenodo.17251815. The record is 559 

currently restricted; editors and reviewers have access via a private link provided to the journal. 560 

Upon acceptance, the record will be made public under the same DOI.  561 

Third-party source datasets: 562 

• ERA5 climate reanalysis (precipitation, temperature; 0.25°): Copernicus Climate Data 563 

Store- https://cds.climate.copernicus.eu/ 564 

• GDIS (Geocoded Disasters): https://doi.org/10.7927/zz3b-8y61  565 

• EM-DAT (Emergency Events Database): CRED- https://public.emdat.be/ (registration 566 

required; enable “Include historical events (pre-2000)”) 567 

• Global GDP (1990–2022, 5-arcmin GeoTIFF): Kummu et al. (2023); Zenodo: 568 

https://zenodo.org/records/13943886  569 

• WSF Population Time Series (1975–2025): Marconcini et al., 2020; Zenodo:  570 

https://zenodo.org/records/13943886 571 
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6) Conclusions 572 

This study presents a comprehensive analysis of global drought exposure and impacts using an 573 

integrated framework that combines meteorological drought indices (SPI and SPEI), spatial 574 

clustering techniques, and data on population, GDP, affected people and economic damage. By 575 

examining multiple drought timescales (1, 3, 6, and 12 months) and thresholds (-1, -1.5, and -576 

2) and applying various buffer distances (100 km, 250 km, and 500 km) to connect droughts to 577 

their impacts, the methodology captures the evolution and spatial footprint of drought events 578 

and integrates them with exposure and impacts. We view this as a key step towards planning 579 

and risk mitigation for droughts.  580 

We highlight that the impact analyses in this study are based on the EM-DAT and GDIS 581 

databases, and are therefore subject to the datasets’ reporting biases. As EM-DAT relies on 582 

national and international disaster reporting mechanisms, underreporting or inconsistencies 583 

may affect the completeness and accuracy of the recorded drought impacts. Consequently, 584 

interpretation of the results should be undertaken with caution, and findings should be 585 

considered within the context of potential data limitations. 586 

Our key conclusions are as follows: 587 

• The sensitivity analysis shows that the proportion of drought events recorded in GDIS 588 

for which drought clusters have been detected, decreases with increasing scale, 589 

decreasing buffer distance, and more stringent thresholds for both SPI and SPEI. 590 

Additionally, for a given threshold, buffer distance, and timescale, detection 591 

percentages are consistently higher for SPEI than for SPI. 592 

• No consistent relationship between drought characteristics (such as severity or area) 593 

and drought timescale emerges for either SPI or SPEI.  594 

• Asia shows the highest population exposure across almost all the scales and thresholds, 595 

for both the SPI and SPEI indices. North America shows the highest GDP exposure 596 

across nearly all drought timescales and thresholds, for both the SPI and SPEI indices. 597 

• SPEI-based droughts generally cover larger areas than SPI-based droughts, resulting in 598 

greater population and GDP exposures 599 

• No consistent relationship is observed when comparing GDP and population exposure 600 

across different timescales. However, for the majority of events, both population 601 

exposure and weighted population exposure, as well as GDP exposure and weighted 602 

GDP exposure, decrease with increasing timescale and more stringent thresholds. 603 

• Asia and North America show the highest numbers of people affected and the greatest 604 

total damage for both SPI and SPEI, respectively, in line with the fact that they also 605 

show the highest exposures. These impacts remain consistently large across different 606 

drought timescales and severity thresholds, indicating that the highest-impact events 607 

are long-lasting and particularly severe droughts. 608 

• The correlation between (weighted) population exposure and total affected, varies 609 

across continents and is lowest in Asia. In Asia, the total affected population is 610 

sometimes higher than the exposed population, pointing to inconsistencies in the data 611 

used here. 612 

• Similarly, the correlation between (weighted) GDP exposure and total damage, varies 613 

across continents. However, unlike total affected, total damage rarely exceeds absolute 614 

GDP exposure for the events considered. 615 
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This study highlights the varied physical characteristics of drought and exposure and impacts 616 

of drought across different continents. It further elucidates the sensitivity to the choice of 617 

indices, timescales, and severity thresholds used to define drought. Integrating physical drought 618 

indicators with socio-economic exposure and impact data can significantly improve drought 619 

risk planning and mitigation efforts. 620 
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