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Abstract

Drought events pose significant challenges to both ecosystems and human societies, requiring
precise methodologies for their detection and impact assessment. A key challenge is linking
physical drought indicators to socioeconomic consequences, such as the number of people
affected or economic losses. This study introduces a robust two-step framework that integrates
drought detection with impact analysis. In the first step, a clustering algorithm is used to
identify coherent drought events and extract key characteristics such as severity and spatial
extent. These events are tracked as spatially and temporally evolving objects. In the second
step, the drought events are linked to population and GDP exposure, as well as to impact data
from global disaster databases.

To characterize droughts, the study employs two widely used drought indices: the Standardized
Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI).
Precipitation and temperature data from the ERA5 reanalysis are used to compute these indices
at four different timescales (1, 3, 6, and 12 months). Drought events are identified for different
severity levels (-1, -1.5, and -2). The study also incorporates high resolution gridded datasets
of global population and economic activity, alongside disaster impact data on affected
populations and economic losses. The resulting drought dataset provides valuable information
on the association between drought characteristics, exposure, and recorded impacts.

The analysis shows that a relatively large buffer distance is needed to match the identified
drought events to impacts from disaster databases, and that more severe drought thresholds
isolate fewer but higher-impact events. Population exposure is found to be highest in Asia,
while GDP exposure is largest in North America. This integrated framework
(https://doi.org/10.5281/zenodo.17251815; Samantaray & Messori, 2025) bridges the gap
between physical drought characteristics, exposure, and documented impacts, supporting
vulnerability analyses, improved climate adaptation planning and disaster risk management.
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1) Introduction

Drought is a complex natural hazard that poses considerable challenges for accurate monitoring
and effective management (Wilhite, 2016). Unlike storms, temperature extremes or floods,
drought conditions often develop gradually and go unnoticed in their early stages, rather than
presenting a distinct onset (Mishra & Singh, 2010; Mishra & Singh, 2011). This creeping nature
makes drought challenging to detect and monitor in a timely manner; however, understanding
its key characteristics such as severity and duration is crucial for effective planning and risk
mitigation (Tsakiris et al., 2007). Drought can be classified into several types, which are
identified using different hydroclimatic variables (Mishra & Singh, 2010). For example,
precipitation deficits are used to identify meteorological drought, streamflow deficits to
identify hydrological drought, and low soil moisture or groundwater to identify agricultural
drought. This study focuses on meteorological drought.

To monitor and quantify meteorological droughts systematically, researchers often rely on
drought indices (Zargar et al., 2011) such as the Standardized Precipitation Index (SPI; McKee
et al., 1993) and the Standardized Precipitation Evapotranspiration Index (SPEI; Vicente-
Serrano et al., 2010). These indices provide consistent, objective measures of anomalies over
various temporal scales and serve as the foundation for assessing drought characteristics. One
widely used approach for characterizing droughts based on these indices is statistical run
theory, which defines drought events as periods during which hydrological variables remain
below predefined thresholds for consecutive time steps (Yevjevich, 1967). Within this
framework, drought severity is quantified by the cumulative water deficit over the duration of
the event, enabling precise identification of drought onset, persistence, and recovery phases
(Zhang, 2024).

Globally, droughts between 1998 and 2017 caused economic losses totalling approximately
USD $124 billion, demonstrating the vast scale of drought impacts (UNCCD, 2023). Over
recent years, drought events characterized by exceptional severity and prolonged durations
have been observed globally, significantly impacting the environment, economy, and society
(Buras et al., 2020; Pokhrel et al., 2021; Vicente-Serrano et al., 2022; Samantaray et al., 2022).
For instance, the 2014-2015 drought event in India affected around 330 million people,
resulting in extreme water scarcity and widespread agricultural losses, highlighting the region's
vulnerability (Kafle et al., 2022). South America, notably the Amazon basin, faced severe
drought conditions from 2022 to 2024, influenced by oceanic anomalies associated with El
Nifio events. This prolonged drought led to historically low river levels, disrupted
transportation, and increased wildfire frequency, profoundly altering the region's ecosystem
(Marengo et al., 2024). Europe also experienced severe drought conditions in 2022, primarily
caused by significant soil moisture deficits and low river discharges, exacerbated by
anthropogenic climate change. This event caused major agricultural losses, hydropower
reductions, and interruptions to river navigation (Bevacqua et al., 2024). Droughts also trigger
human migration, notably in Africa. Populations often move toward rivers and urban areas in
search of water and economic opportunities during drought periods, illustrating a clear link
between drought severity and human displacement (Ceola et al., 2023). Additionally, climate
models predict increased drought severity and frequency in several regions, including South
and North America (Penalba & Rivera, 2013; Cook et al., 2020; Samantaray et al., 2025).
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Recent studies have extensively used disaster databases, such as the Geocoded Disasters
Dataset (GDIS; Rosvold & Buhaug, 2021) dataset, to examine drought-related socio-economic
impacts at subnational scales. Kulkarni et al. (2024) evaluated multiple drought indices,
including a novel Combined Drought Indicator (CDI), and confirmed their effectiveness in
accurately identifying drought-affected regions and associated socioeconomic impacts.
Similarly, Kageyama & Sawada (2024) used the GDIS dataset to investigate global drought
events, emphasizing the relationship between drought severity and subsequent socio-economic
consequences, such as agricultural losses, displacement, and economic disruptions. Such
research underscores the critical importance of integrating comprehensive drought monitoring
and assessment methodologies with information on drought impacts, to plan and mitigate
socio-economic risks (Jdgermeyr & Frieler, 2018; Marengo et al., 2022; Petersen-Perlman et
al., 2022).

The above-discussed studies evidence that the impact of drought varies significantly across
both space and time. The association between drought indices and impact data is thus both
localized and temporally variable. This speaks to the need for analytical methods for
identifying spatially coherent drought-affected regions and tracking the droughts’ temporal
evolution. Ghasempour et al. (2022) employed clustering techniques to regionalize drought
areas based on satellite indices such as normalized difference vegetation index (NDVI).
Kageyama & Sawada (2022) used the GDIS dataset coupled with ERA5-Land reanalysis data
to demonstrate how drought hazards translate into socio-economic impacts at subnational
levels, emphasizing the value of precise local-scale data. Herrera-Estrada et al. (2017) used a
Lagrangian approach to monitor drought clusters' temporal and spatial progression, viewing
droughts as continuous spatiotemporal phenomena with complex propagation dynamics.

Understanding drought dynamics is critical, given their increasing frequency, severity, and
widespread socio-economic impacts across the globe. Despite significant advancements,
accurately identifying drought events and relating their characteristics to the associated impacts
remains a challenge (AghaKouchak et al., 2023). Specifically, we lack a globally consistent
framework that combines spatiotemporal drought clustering with high-resolution
socioeconomic exposure and impact data. This study addresses this challenge by pursuing three
primary objectives. First, it seeks to develop a robust clustering algorithm capable of
systematically identifying distinct spatio-temporal drought "objects," enabling automated
extraction of key drought characteristics such as severity and spatial extent. Second, the study
aims to assign population and economic exposure to the physical drought information as
identified through the clustering process. Third, the study relates drought characteristics to
impact data from the Emergency Events database (EM-DAT, Guha-Sapir et al., 2023). The
resulting dataset and the code used to generate it are made publicly available for research and
policy development purposes.

2) Data

We utilise precipitation and temperature data from the ERAS reanalysis (Hersbach et al., 2023)
provided by the European Centre for Medium-Range Weather Forecasts (ECMWEF). The data
has a horizontal resolution of 0.25° and we analyse the period from 1960 to 2018. To facilitate
drought index calculation, the daily data are aggregated to a monthly timescale. These climate
variables serve as the basis for computing the SPI and the SPEI drought indices at multiple
timescales.
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We also employ socioeconomic impact data from EM-DAT (Guha-Sapir et al., 2023) and
geographical locations from GDIS (Rosvold & Buhaug, 2021). EM-DAT offers quantitative,
categorical information on disaster impacts, including the number of people affected and total
economic losses. However, it reports disasters at country level and only indicates subnational
locations in non-standardised textual form. GDIS provides georeferenced information for a
subset of the disaster events reported in EM-DAT, covering the years 1960-2018, which
constitute our study period, facilitating a spatially explicit linkage between drought events and
their impacts. These impact data are integrated with the drought indices to examine the
relationship between drought characteristics and socioeconomic outcomes, as elaborated in
later sections. To illustrate the spatial heterogeneity of the drought events reported in GDIS,
we have plotted them in Figure 1. China displays the highest frequency, reporting over 30
drought events during the study period. Other countries with a high number of reported events
include the United States, Brazil, Argentina, Australia, and several nations in Southern and
Eastern Africa, each with between 15 and 25 recorded droughts. In contrast, the northern
latitudes, parts of Europe, and some equatorial regions exhibit relatively fewer drought reports,
reflecting potential underreporting or lower drought occurrence.

To assess socioeconomic exposure to drought, two high-resolution gridded datasets are
utilised. The first is a global Gross Domestic Product (GDP) dataset
(rast_gdpTot_1990 2022 5arcmin.tif) obtained from Kummu et al. (2023), which provides
estimates of total GDP in constant 2015 US dollars from 1990 to 2022 at a spatial resolution
of 5 arcminutes (approximately 10 km at the equator). GDP values are spatially disaggregated
using national GDP data combined with subnational economic proxies, offering a realistic
depiction of economic exposure at local scales. The second is the World Settlement Footprint
(WSF; Marconcini et al., 2020) population time series, obtained from the Copernicus
Emergency Management Service (CEMS). It provides gridded population estimates at a high
spatial resolution of 1 km, covering the period from 1975 to 2025 in 5-year intervals. The data
is derived through a combination of remote sensing (e.g., Landsat-based settlement detection),
census data, and modelling. The dataset is designed to reflect residential population distribution
and is particularly suited for applications in disaster risk assessment and humanitarian response
(Chen et al., 2024). For both the population and GDP datasets, we limit the analysis to 2018 to
match the end-date of GDIS, but the study periods nonetheless differ as neither dataset is
available from 1960.
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Figure 1. Global distribution of drought events reported in the GDIS dataset.

These datasets provide a comprehensive foundation for linking meteorological drought
conditions to real-world socioeconomic consequences. The subsequent methodology section
outlines the step-by-step process used to detect drought events, harmonize disaster records and
quantify the exposure of both populations and economies to drought hazards.

3) Methodology

The methodology of this study is designed to establish a systematic link between physical
drought indicators, population and GDP exposure, and socioeconomic impacts. First, a
matching process is conducted between the EM-DAT and GDIS datasets. Second, the SPI and
the SPEI are computed across multiple timescales and threshold values, and used to detect
spatio-temporally coherent drought-affected regions. Finally, the drought data is connected to
the population, GDP and impacts data.

3.1) Cross-Referencing Drought Events in EM-DAT and GDIS

While GDIS builds on EM-DAT, there are some geographic inconsistencies across the two
sources, including in country names. The first step in resolving these inconsistencies is the
development of a country correction dictionary, mapping former political entities to their
respective modern successor states. Additionally, the dictionary includes mappings for
countries that have undergone name changes in recent decades such as Swaziland to Eswatini
and standardizes naming variants like “Bolivia (Plurinational State of)” and “United States of
America” to their commonly used equivalents. This standardisation step is applied to both EM-
DAT and GDIS. Following the textual harmonization of country names, a geospatial
verification step is introduced to enhance the robustness of the matching process. Each drought
event record is geolocated using a global shapefile of national boundaries. The geospatially
derived country name is then compared against the standardized names from both GDIS and
EM-DAT.
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Table 1. Discrepancies in Reported Drought Event Locations Between GDIS and EM-DAT

Open Access

Disasterno Latitude Longitude GDIS EM-DAT | Year éSDOI?é
Costa Rica,
2014-9580 | 8,760251912 | -63,87780838 | Venezuela | Nicaragua, | 2015 VEN
El
Salvador

2012-9355 | -6,81120164 | -79,55017972 Peru Guatemala 2012 PER
2014-9277 | -6,81120164 | -79,55017972 Peru Guatemala 2014 PER
1997-9227 | 5,353369065 | -6,675278369 Cote . 1997

d'Ivoire Nicaragua IVO
1999-9404 | 5,353369065 | -6,675278369 Cote 1999

d'Ivoire Paraguay IVO
2012-9021 | 5,353369065 | -6,675278369 Céote 2012

d'Ivoi Paraguay IVO

voire

2013-9496 | 5,353369065 | -6,675278369 d'?\;)c;[?re Paraguay | 2013 IVO

One recurring issue is the presence of identical disaster numbers attributed to different
countries across the two datasets. A notable example is disaster ID 2014-9580, which EM-
DAT attributes to Costa Rica, Nicaragua, and El Salvador, while GDIS associates with
Venezuela — a country not mentioned in the EM-DAT entry.

To resolve these discrepancies, a distance-threshold-based filtering approach is employed.
Specifically, we measure the distance between the event coordinates recorded in GDIS and the
centroid of the countries listed in EM-DAT. If this distance exceeds a predetermined threshold,
the match is considered invalid. We tested several distance thresholds: 0 km, 100 km, 250 km,
and 500 km to assess their impact on the number of mismatches. We found 9 mismatches at
both 0 km and 100 km, and 7 at both 250 km and 500 km. Based on these results, we selected
250 km as a balanced threshold that accounts for potential regional reporting variations while
maintaining geographic specificity. Accordingly, the seven discrepant events (Table 1) were
excluded from further analysis.

3.2) Drought Indices

We identify droughts through two widely-used indices: SPI and SPEI. Both offer a flexible,
multi-scalar framework to assess drought conditions across temporal and spatial domains. The
SPI, developed by McKee et al. (1993), relies solely on precipitation data and evaluates
deviations from the long-term mean over user-defined accumulation periods. It allows for
direct comparisons of drought severity across diverse climates and regions. However, it does
not incorporate temperature, and therefore may underestimate drought severity in warming
climates where evaporative demand is rising (Zarch et al., 2015). To address this limitation,
the SPEI, developed by Vicente-Serrano et al. (2010), integrates both precipitation and
potential evapotranspiration (PET) to calculate a climatic water balance (precipitation minus
PET). The inclusion of temperature effects makes SPEI more sensitive to climate change and
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better suited for detecting droughts driven by both precipitation deficits and increased
atmospheric demand. In our analysis, we consider timescales of 1, 3, 6 and 12 months for both
indices, and identify a gridpoint as being affected by drought using SPI and SPEI thresholds of
-1,-1.5and -2.

3.3) Spatio-Temporal Drought Event Identification

In GDIS, a single EM-DAT disaster number may correspond to multiple coordinates, which
we refer to as target points. To detect spatiotemporal drought events, we begin by collecting
all target points associated with each disaster number. We then calculate the distances between
all pairs of target points to assess their geographic proximity and identify whether any points
are distant from the rest. If a target point or set of target points has a nearest distance that
exceeds a predefined maximum distance threshold (Dmax) from any other target points, the
algorithm divides the target points into separate groups. After forming these initial groups,
geographic bounding boxes are constructed around them. To include surrounding areas that
may also be affected by drought, the bounding boxes are expanded outward in all four cardinal
directions using a spatial buffer distance (Drutter) applied from the outermost coordinates of
each group. The algorithm also allows for country-level analysis, instead of the bounding-box
approach, by using country information from the same GDIS dataset. In this study, the
bounding-box approach is applied, with Dyufrer Set to half the value of Dmax to prevent overlap
between different target point groups. However, the algorithm allows users to adjust these
parameters based on their specific needs.

Within each bounding box, the methodology applies a threshold to the drought index values
such as the SP1 or SPEI to identify affected grid cells. Grid points that fall below the threshold
are classified as drought-affected. A land-sea mask is applied to exclude ocean regions. We
then identify spatially contiguous clusters of drought-affected grid points using connected
component analysis based on eight-point connectivity. This method, commonly used in image
processing, defines connectivity by considering all eight immediate neighbors of a pixel
(including diagonal ones). Additionally, clusters for which the minimum distance between the
two closest points in the clusters is less than a predefined merging distance (Dmerge), are
combined into single entities.

In addition to providing target points for each disaster number, GDIS also provides a single
year of occurrence, referred to as the target year. For each GDIS disaster number, our algorithm
returns all clusters that match the target points and target year. The algorithm is highly flexible
and also provides the option to use the start year, start month, end year, and end month
information from EM-DAT for the analysis. To help the reader better understand this
workflow, a visual summary is provided in Figure 2. To illustrate the temporal evolution of
drought clusters, we randomly selected a single drought event (disaster number: 2000-9860),
and present its monthly progression over twelve consecutive months in Figure 3. Each sub-
panel corresponds to a specific month, visualizing how the drought-affected region expands,
contracts, and shifts spatially within Central America. In the early months (January to April),
pronounced drought clusters are concentrated predominantly in the northern parts of Central
America. As the year progresses (May to August), the clusters expand and shift toward
southern regions. Toward the end of the year (September to December), the spatial distribution
becomes more fragmented, with smaller and more isolated clusters. The monthly cluster
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patterns demonstrate that drought conditions exhibit significant variability over short periods,
influenced by climatic variability and other regional factors.

3.4) Connecting Drought Events to Exposure and Impact Data

We compute both population and GDP exposure for the drought clusters identified as matching
drought events reported in GDIS, using the WSF population dataset and a gridded GDP dataset.
To compute the exposure, we consider the population and GDP values across all pixels which
lie in a drought cluster for at least one month during the target year. In addition to total
exposure, this study employs a weighted exposure metric that accounts for both frequency and
severity of drought at each pixel. Frequency weighting (WF) is defined as the number of
months a pixel experiences drought divided by the total number of months in a year (12).
Severity weighting (WS) is applied linearly on a continuous scale from 0 to 1, corresponding
to average severity values ranging from 0 to -2. The maximum value of 1 is assigned to severity
values < -2 to avoid overestimation from locally extreme drought conditions. The combined
weight is calculated as the product of WF and WS, following the widely accepted risk
formulation: Risk = Frequency x Severity. Importantly, the algorithm also allows users to
define and apply custom weighting schemes as needed. The results of both the total and
weighted population exposure analyses are presented in the Results section.

We use impact data, specifically, the number of people affected and total economic losses,
from the EM-DAT database to assess the consequences of drought events. Since our algorithm
links drought clusters to GDIS event locations, it is sufficient to match each GDIS entry to its
corresponding EM-DAT entry (see Sect. 3.1).

Drought Indices
(SPI and SPEI)

A 4
Time scales Ly zc.mdcx. L Perform clustering:
({53,612 oanEco —» spatial proximity
CEa below threshold .
months) metrics
values

A

Threshold values
(-1, -1.5,-2)

Figure 2. Flowchart summarizing the methodological framework for identifying drought
clusters.
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Cluster Analysis of disaster number: 2000-9860

Target Points ¢ Mean Target Location

January February
EEE RN T

Figure 3. Spatial evolution of drought clusters over twelve consecutive months for a selected
drought event (Disaster No. 2000-9860) in Central America. The bounding box is shown in
dark grey. Different clusters are shown in different colours. The red dots (same in each panel)
represent the original target points obtained from the GDIS dataset, while the blue dots indicate
the mean location calculated from the target points, providing a representative geographic
centroid.

4) Results

4.1) Matching Drought Events to Impact Data

We first investigate the percentage of drought events in the GDIS dataset for which one or
more drought clusters are identified, as a function of the chosen SPI threshold (-1, -1.5, and -
2), buffer distance (100 km, 250 km, and 500 km), and SPI timescale (1, 3, 6, and 12 months).
Across all SPI timescales, higher detection percentages are generally associated with larger
buffer distances and less severe event thresholds (Figure 4). The highest match percentages,
often in the range of 90%, are observed when using a 500 km buffer distance and a -1 SPI
threshold. These drop below 60% for more stringent parameter sets. This large variability
highlights the importance of users selecting parameter combinations tailored to their specific
applications. We evaluate the detection percentage again using SPEI data (Figure S1). The
results remain similar to those of SPI. However, for any given threshold and timescale, the
detection percentage is consistently higher with SPEI compared to SPI.
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SPl Scale 1 SPI Scale 3
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-
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Figure 4. Percentage of drought events reported in the GDIS dataset which match one or more
drought clusters for different SPI timescales (1, 3, 6, and 12 months), SPI threshold values (-1,
-1.5, -2) and buffer distances (Dputter = 100 km, 250 km, 500 km).

4.2) Population Exposure Based on Gridded Population Density

Figure 5 presents data across five continents: Asia, North America, Africa, South America, and
Europe, at the SPI-1 (1-month) timescale. Australia is omitted due to the low number of
reported events. Asia generally shows the highest population exposure across all drought time
scales, except at lower thresholds, where Europe shows the highest exposure. Under a 500 km
buffer distance and threshold -1, up to 0.6 billion people are exposed, primarily due to the
region’s dense population, as noted by Khan et al. (2018) and Mondal et al. (2021). Europe,
North America and Africa follow, with approximately 150-750 million people exposed, while
South America reports around 60 million under the same algorithm parameter set. As the
drought severity threshold becomes more stringent, the areal extent of drought clusters declines
across all continents, consistent with the severity—area relationship (Mishra & Singh, 2009;
Kumar et al., 2021). Consequently, reduced drought area leads to lower population exposure.
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Population Exposure — SPI Scale 1
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Threshold = -1.0
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Figure 5. Population exposure to drought events based on SPI-1 (1-month timescale) across
five continents: Asia, North America, Africa, South America and Europe using the WSF
population dataset.

In terms of affected area, North America leads with up to 2 million km? at threshold -1,
followed closely by Asia. South America, Europe, and Africa, with areas between 0.5 and
1 million km2. At more severe thresholds, the same ranking holds, though the absolute
differences shrink. This suggests that, for some large-area events at threshold -1, the majority
of affected areas experience moderately severe drought conditions (see Figure 5). The most
severe droughts (severity <-3) occur primarily in Asia, North America and Africa, while the
most extreme events in other continents typically have severity around or slightly below -2.8.
Overall, the relationships among drought severity and area at the SPI-1 scale are highly
heterogeneous.

When comparing population exposure across SPI timescales of 1 (Figure 5), 3 (Figure S2), 6
(Figure S3), and 12 (Figure S4) months, no consistent pattern emerges. Table S1 presents
comparisons of areal extent between Scale 1 vs. Scale 3, Scale 3 vs. Scale 6, and Scale 6 vs.
Scale 12. Each cell (e.g., “1vs3”) summarizes the median, maximum, and the percentage of
drought events in which the areal extent at the first scale (e.g., Scale 1) is greater than at the
second scale (e.g., Scale 3). The supplementary table file provides a detailed explanation of
how to interpret the tables. At shorter timescales, the maximum affected area is generally
smaller, whereas the median areal extent is higher. This means that, for example, the maximum
affected area across all events is smaller at Scale 1 compared to Scale 3, but the median affected
area across all events is higher at Scale 1. The percentage of events with a larger median
affected area at lower scales nonetheless varies considerably across continents and drought
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thresholds and for some parameter sets, the areal extent at longer timescales exceeds that at
shorter timescales. For example, for a threshold of -2 and a buffer distance of 100 km, only
35.3% of the total events have a smaller affected area at SPI1 3 compared to SPI 1. This occurs
when regions not classified as drought-affected at shorter timescales are classified as drought-
affected at longer timescales, because of drought conditions from preceding or subsequent
months that are incorporated into the longer timescale calculation. We also find that at shorter
timescales, droughts often correspond to lower severity values compared to longer timescales
(Table S2). For example, in Europe at a 250 km buffer distance, 77.8% of drought events have
higher severity at scale 12 compared to scale 6. Population exposure (Table S3) shows a clear
relationship across scales: lower SPI timescales generally correspond to higher exposure
values, reflecting their tendency to cover larger areas (Table S1). As area increases, population
exposure typically increases as well. Nevertheless, a few cases show the opposite. This can be
attributed to the highly uneven distribution of population, where a smaller area containing high
population pixels may result in greater exposure than a larger but sparsely populated areas.
Overall, our analysis highlights that the relationship between the different drought
characteristics and between drought characteristics and population exposure presents some
general patterns but is ultimately event-specific.

The SPEI results (Scale 1: Fig. 6; Scale 3: Fig. S5; Scale 6: Fig. S6; Scale 12: Fig. S7) show
patterns broadly similar to those for SPI, except that Africa ranks second overall but moves to
first at lower thresholds. Asia generally shows the highest population exposure across almost
all thresholds and buffer distances, and shorter drought timescales often correspond to higher
values in both areal extent (Table S4) and population exposure (Table S6), but lower severity
levels (Table S5). Comparing SPI and SPEI in terms of areal extent (Table S7) at the same
timescale, Africa and North America consistently show higher values for SPEI across all buffer
distances. Regarding severity, SPEI typically identifies events as more severe than SPI (Table
S8), with the exception of severity threshold -1, particularly in North America, South America,
and Europe. Population exposure (Table S9) patterns mirror those of areal extent. SPI tends to
identify lower population exposure in Asia and Africa, while in North America, South America
and Europe, SPI often shows higher values than SPEI.

We next consider the weighted population exposure for SPI, which accounts for both drought
severity and frequency. By definition, weighted exposure is smaller or equal to absolute
exposure, as the weighting factors range between 0 and 1 (Sect. 3.4). The extent of the reduction
in weighted exposure relative to absolute exposure provides insights into the nature of drought
conditions. The largest reductions are observed in Asia, suggesting that droughts in this region
may be less severe or less frequent within a given year than in other continents (Scale 1: Figure
S8; Scale 3: Figure S9; Scale 6: Figure S10; Scale 12: Figure S11). Figures S12-S14 show both
absolute and weighted population exposures at thresholds of -1, -1.5, and -2, respectively, for
SPI scale 1. The degree of reduction again varies substantially across events and continents.
North America, Africa and South America, in particular, show relatively smaller disparities
between population exposure and weighted population exposure across thresholds, especially
at a 500 km buffer distance. This disparity further diminishes across all continents as the buffer
distance decreases, suggesting that at smaller distances, the algorithm captures more
prolongued and severe drought events due to proximity to the target points. Figure S13 also
suggests that disparity is usually greatest for events with higher absolute exposure, reinforcing
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the observation that widespread drought events are often associated with lower severity, shorter
duration, or both. Similar observations are found at other scales (Figures S15-S23).
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Figure 6. Population exposure to drought events based on SPEI-1 (1-month timescale) across
five continents: Asia, North America, Africa, South America and Europe using the WSF
population dataset.

In the weighted population estimates, the relative differences among continents are smaller
than for absolute exposure. For example, at a 500-kilometer buffer distance, the variation
across continents drops from a range of 650-60 million to 150-15 million. The relationships
between exposure and drought characteristics, such as average areal extent (Table S10) and
average severity (Table S11) across different temporal scales (Table S12) remain consistent
with those observed for absolute population exposure.

The weighted population exposure based on SPEI shows the largest reductions in Asia,
consistent with the pattern observed in SPI-based weighted exposure, particularly at buffer
distances of 250 and 500 kilometers (Figures S24- S27). These reductions are more pronounced
for drought events with higher absolute population exposure (Figures S28-S39). The
relationships observed across different timescales in the SPEI-based weighted exposure are
generally consistent with those seen in the unweighted SPEI population exposure data, except
in some cases in Africa and South America (Tables S13-S15). Additionally, the relationship
between weighted SPI and weighted SPEI population exposure closely mirrors that of the
unweighted comparison (Tables S16-S18).

4.3) GDP Exposure Based on Gridded GDP
We next consider direct economic exposure to drought events in terms of GDP (Figure 7),
again grouping results by continent. North America consistently exhibits the highest GDP
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exposure across all drought severity thresholds, as also reported by Gao et al. (2019). At a high
buffer distance of 500 kilometers and threshold -1, GDP exposure reaches up to 15 trillion
USD, primarily due to the concentration of high-value economic zones. Europe, Asia, and
South America follow, with exposures ranging from approximately 1 to 10 trillion USD, while
Africa reports about 0.4 trillion USD under the same buffer and severity values. This aligns
with the findings of Sun et al. (2022), who observed that GDP exposure to droughts is highest
in upper-middle-income countries and lowest in low-income, lower-middle-income, and low-
to middle-income countries. Previous studies have also found that drought-affected GDP
exposures usually exhibit similar patterns to population exposure and are highly correlated
(O’Neill et al., 2014; Gu et al., 2020). However, in our analysis, population exposure and GDP
exposure differ, reflecting the fact that pixel-level GDP exposure and population exposure
values are not always well-correlated.

As the drought severity threshold becomes more severe, the areal extent of drought clusters
and GDP exposure both decrease across all continents, a pattern similar to that observed for
population exposure. When comparing GDP exposure across SPI timescales of 1, 3 (Figure
S40), 6 (Figure S41), and 12 (Figure S42) months, drought characteristics show a mixed
pattern. The changes in areal extent (Table S19) and severity (Table S20) across timescales
closely resemble the median and maximum patterns observed for population exposure, with
the differences being due to the different timeperiods over which the two analyses are
conducted. The magnitude of these percentages is however generally lower compared to those
for population exposure. Generally, as affected area increases, GDP exposure (Table S21) tends
to rise accordingly, with few exceptions (cf. Table S19 and Table S21). These cases occur when
a smaller area includes economically dense regions, resulting in higher GDP exposure than a
larger area with low GDP.

The SPEI results (Scale 1: Figure 8; Scale 3: Figure S43; Scale 6: Figure S44; Scale 12:
Figure S45) exhibit a broadly similar continental pattern to those observed for SPI. North
America consistently shows the highest GDP exposure across all thresholds and buffer
distances. This is followed by Asia, Europe, Africa and South America. When comparing
drought characteristics across time scales, shorter timescales typically show a larger areal
extent (Table S22) and higher GDP exposure (Table S24), but lower severity values
(Table S23), which is consistent with the population exposure results. Compared to SPI data, a
higher percentage of drought events show greater GDP exposure (Table S27) and larger areal
extent (Table S25), along with more negative severity values (Table S26).

Weighted GDP exposure based on SPI has been computed for multiple scales (Scale 1: Figure
S46; Scale 3: Figure S47; Scale 6: Figure S48; Scale 12: Figure S49), and comparative plots of
weighted versus raw GDP exposure across various thresholds and scales are presented in
Figures S50-S61. The degree of reduction from absolute to weighted GDP exposure varies by
continent. Africa and South America, in particular, show comparatively small disparities
between GDP and weighted GDP exposure across thresholds, especially at a 500 km buffer
distance. This disparity further diminishes across all continents as the buffer distance decreases,
mirroring the patterns observed in weighted population exposure. Notably, the extent of
reduction is generally less pronounced in GDP exposure compared to population exposure.
This difference may stem from the distribution of GDP values across grid cells, which for many
droughts is more spatially uniform than population data. In such cases, a few high-density
population pixels can significantly inflate exposure values, and when these are down-weighted,
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it leads to a large decrease in exposure. Additionally, the relationship across timescales is
similar for weighted GDP exposure (Table S30) compared to raw GDP exposure (Table S21).
However, the number of events where GDP exposure is higher at shorter timescales than at
longer ones decreases after weighting is applied.
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Figure 7. GDP exposure to drought events based on SPI-1 (1-month timescale) across five
continents: Asia, North America, Africa, South America and Europe, using data from the global
GDP dataset

The weighted GDP exposure (Scale 1: Figure S62; Scale 3: Figure S63; Scale 6: Figure S64;
Scale 12: Figure S65) based on SPEI maintains the same continental ranking as the absolute
GDP exposure. As for SPI, the reduction in GDP is more pronounced for events with higher
raw GDP exposure (Figures S66-S77). Across timescales, a higher percentage of drought
events exhibit greater GDP exposure at Shorter timescales, consistent with the pattern observed
for absolute exposure (Table S34). However, the percentage decreases in a manner similar to
the weighted GDP based on SPI. For the majority of events SPEI results in greater weighted
GDP exposure than SPI, except for a few cases in Europe (Table S36).

15

Earth System
Science

Data

suoIssnoasiq



https://doi.org/10.5194/essd-2025-646
Preprint. Discussion started: 3 February 2026
(© Author(s) 2026. CC BY 4.0 License.

473

474
475
476

477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492

Open Access

GDP Exposure — SPE| Scale 1
Buffer Distance
100 km s 250 km e 500km
Asia North America Africa South America Europe

1.0

&3]
le13
lel3
lel3

15
1.0
0.5

o/ 600000
15 %/ 400000
—l4, 5 200000

Threshold
GDP Exposed

lel2
lel3
lel3

600000
o, 400000
= 2—5.09 200000

Threshold = -1.5
GDP Exposed ($)

lel2
lel2

Threshold = -2.0
GDP Exposed ($)
|

N3 275 5o
2 A =225
& Avg g,

\s PEL 5

verig,

Figure 8. GDP exposure to drought events based on SPEI-1 (1-month timescale) across five
continents: Asia, North America, Africa, South America and Europe, using data from the global
GDP dataset

4.4) Population Impacted based on EM-DAT

We next examine drought impacts as reported in the EM DAT dataset. Figure 9 illustrates the
number of persons affected for SPI-1 across four continents: Asia, North America, Africa and
South America under three severity thresholds (-1, -1.5, -2) and buffer distances (100 km, 250
km, 500 km). Data for Europe and Australia are excluded due to small sample sizes. The
affected population varies notably across continents. In Asia it reaches up to 200 million
people, particularly at the 500 km buffer distance. Africa, South America and North America
follow. This ranking is maintained across thresholds and scales. This contrasts with the
exposure-based rankings, where North America shows higher population exposure than Africa
and South America (Figure 1). However, both exposure and impact data consistently identify
Asia as the most exposed and impacted continent. Interestingly, the affected population values
remain nearly constant across thresholds and scales for each continent. This suggests that
impacts are highly localised and associated with the gridpoints that satisfy the more stringent
drought criteria. When examining drought area and severity across scales, often as the
timescale increases (Figure S78-80), the magnitude of affected area (Table S37) decreases
while drought severity (Table S38) increases.
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Figure 9. Population affected by drought events based on SPI-1 (1-month timescale) across
four continents: Asia, North America, Africa, and South America, using data from the EM-
DAT database.

Figures S12-S23 present event-level impact data (total affected) alongside both absolute and
weighted population exposure estimates. Across different drought scales and thresholds,
impact data generally co-varies with weighted exposure data, with few exceptions. In some
cases, absolute exposure is smaller than the corresponding reported impact (Figure S94-S101).
This is particularly evident in Asia (Figure S94), but isolated occurrences are also found in
other continents. Indeed, Asia exhibits the weakest correlation between (weighted) exposure
and impact among all continents (Figures S81-S82). Impact to exposure ratios above one
indicate an inconsistency in the data sources that we use, either due to data errors or to
discrepant definitions of drought. In fact, EM-DAT does not use physical indicators to define
a disaster, but instead relies on its impacts and declarations of states of emergency.

SPEI captures larger affected populations, particularly in Asia, compared to SPI (Fig. 10),
indicating that SPI may miss some high-impact events. Similar to the population exposure
results, compared to SPI, SPEI shows a higher percentage of drought events with larger
affected areas at shorter timescales (Table S39), while a lower percentage of events exhibit
greater severity at shorter scales (Table S40). Because we use the same impact data for both
drought indices, the relationship between SPI and SPEI for impacts remains similar to that
observed for exposure (Tables S41-S42). Figures S29-S39 display event-level impact data
alongside absolute and weighted population exposure estimates using SPEI. In Asia, several
events again show impact-to-exposure rations above one (Figure S94). Nonetheless, in most
cases impacts are lower than absolute exposure. Consequently, for SPEI the correlation
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between exposure and impact is higher than for SP1 (Figure S82). This likely reflects the SPEI’s
broader detection of drought-affected areas, increasing exposure estimates.
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Figure 10. Population affected by drought events based on SPEI-1 (1-month scale) across four
continents: Asia, North America, Africa, and South America, using data from the EM-DAT
database.

4.5) Economic impact based on EMDAT

As a final step, we consider total economic damage in USD as recorded in the EM-DAT dataset
across three continents: Asia, North America, and South America, at the SPI-1 (1-month)
timescale (Figure 11). Africa, Europe, and Australia are excluded from the analysis due to
limited economic damage data available in EM-DAT. At the -1 threshold, North America
records the highest total damages, reaching up to 2.5 x 107 USD at a 500 km buffer distance,
followed by Asia and South America. This same ranking is also observed in absolute and
weighted GDP exposure. Total damage values remain nearly constant across thresholds and
scales for each continent, with few exceptions, as the algorithm continues to register drought
in grid cells associated with the highest economic impacts. Changes in economic damage
across different scales, thresholds, and buffer distances are shown in Figures S86-S88.

Figures S50-S61 compare event-level impact data (total economic damage) with both absolute
and weighted GDP exposure estimates using SPI. Across scales and thresholds, the damage
data generally co-varies with the weighted exposure closely, except for a few high-GDP
exposure events in Asia and North America which correspond to low economic impacts. There
are no cases where the ratio of total damage to GDP exceeds one (Figure S102-S107).
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Generally South America shows a higher correlation between (weighted) exposure and damage
compared to Asia and North America (Figures S89-S90).
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Figure 11. Total damage due to drought events based on SPI-1 (1-month timescale) across
three continents: Asia, North America and South America, using data from the EM-DAT
database.

Across all timescales, SPEI consistently corresponds to higher total economic damages from
drought events than SPI. At the 1-month timescale (Figure 12), North America shows damage
exceeding $2 x 107 USD, higher than equivalent SPI-based estimates, and Asia exhibits similar
levels. SPEI preserves the same continental ranking as SPI across thresholds and scales
(Figures S91-S93). The relationships among absolute GDP exposure, weighted GDP exposure,
and total damage for SPEI remain consistent with the SPI-based patterns (Figures S66-S77).
Overall, the correlation between (weighted) exposure and impact is found to be higher for SPEI
than for SPI across all continents (Figures S89- S90).
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Figure 12. Total damage due to drought events based on SPEI-1 (1-month timescale) across
three continents: Asia, North America and South America, using data from the EM-DAT

. SPEI Scale 1
Buffer Distance
100 km e 250 km ¢ 500 km
['Asia'] ['North America'l ['South America']

—_— ®

iﬂ} ©
-~ [
[} -
(=
S E
o @
58
=)
=¥
nH ~ ©
e e =
e 2
SE 1
=¥
f=¥a)
v _
g 800000
=] 600000

2.4 400000
22,4 200000

I
~Z
Yo
g

©
SE
O ©
f=¥a)
w_
[<lc]

2
=

Ay,

database.

5) Data and code availability

The replication package (code, configuration files, derived outputs, and supplementary
materials) is archived on Zenodo: https://doi.org/10.5281/zenodo.17251815. The record is
currently restricted; editors and reviewers have access via a private link provided to the journal.

Upon acceptance, the record will be made public under the same DOI.

Third-party source datasets:

ERADS climate reanalysis (precipitation, temperature; 0.25°): Copernicus Climate Data

Store- https://cds.climate.copernicus.eu/
GDIS (Geocoded Disasters): https://doi.org/10.7927/zz3b-8y61

EM-DAT (Emergency Events Database): CRED- https://public.emdat.be/ (registration

required; enable “Include historical events (pre-2000)”)

Global GDP (1990-2022, 5-arcmin GeoTIFF): Kummu et al. (2023); Zenodo:

https://zenodo.org/records/13943886

WSF Population Time Series (1975-2025): Marconcini et al., 2020; Zenodo:

https://zenodo.org/records/13943886
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6) Conclusions

This study presents a comprehensive analysis of global drought exposure and impacts using an
integrated framework that combines meteorological drought indices (SPI and SPEI), spatial
clustering techniques, and data on population, GDP, affected people and economic damage. By
examining multiple drought timescales (1, 3, 6, and 12 months) and thresholds (-1, -1.5, and -
2) and applying various buffer distances (100 km, 250 km, and 500 km) to connect droughts to
their impacts, the methodology captures the evolution and spatial footprint of drought events
and integrates them with exposure and impacts. We view this as a key step towards planning
and risk mitigation for droughts.

We highlight that the impact analyses in this study are based on the EM-DAT and GDIS
databases, and are therefore subject to the datasets’ reporting biases. As EM-DAT relies on
national and international disaster reporting mechanisms, underreporting or inconsistencies
may affect the completeness and accuracy of the recorded drought impacts. Consequently,
interpretation of the results should be undertaken with caution, and findings should be
considered within the context of potential data limitations.

Our key conclusions are as follows:

e The sensitivity analysis shows that the proportion of drought events recorded in GDIS
for which drought clusters have been detected, decreases with increasing scale,
decreasing buffer distance, and more stringent thresholds for both SPI and SPEI.
Additionally, for a given threshold, buffer distance, and timescale, detection
percentages are consistently higher for SPEI than for SPI.

o No consistent relationship between drought characteristics (such as severity or area)
and drought timescale emerges for either SPI or SPEI.

e Asiashows the highest population exposure across almost all the scales and thresholds,
for both the SPI and SPEI indices. North America shows the highest GDP exposure
across nearly all drought timescales and thresholds, for both the SPI and SPEI indices.

e SPEI-based droughts generally cover larger areas than SPI-based droughts, resulting in
greater population and GDP exposures

o No consistent relationship is observed when comparing GDP and population exposure
across different timescales. However, for the majority of events, both population
exposure and weighted population exposure, as well as GDP exposure and weighted
GDP exposure, decrease with increasing timescale and more stringent thresholds.

e Asia and North America show the highest numbers of people affected and the greatest
total damage for both SPI and SPEI, respectively, in line with the fact that they also
show the highest exposures. These impacts remain consistently large across different
drought timescales and severity thresholds, indicating that the highest-impact events
are long-lasting and particularly severe droughts.

e The correlation between (weighted) population exposure and total affected, varies
across continents and is lowest in Asia. In Asia, the total affected population is
sometimes higher than the exposed population, pointing to inconsistencies in the data
used here.

o Similarly, the correlation between (weighted) GDP exposure and total damage, varies
across continents. However, unlike total affected, total damage rarely exceeds absolute
GDP exposure for the events considered.
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This study highlights the varied physical characteristics of drought and exposure and impacts
of drought across different continents. It further elucidates the sensitivity to the choice of
indices, timescales, and severity thresholds used to define drought. Integrating physical drought
indicators with socio-economic exposure and impact data can significantly improve drought
risk planning and mitigation efforts.
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