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Abstract. From the perspective of the world, the basic mapping and investigation of the loess
sinkhole is far less extensive and in-depth than that of the karst sinkhole survey. To some extent,
this hinders people’s understanding of the morphological characteristics, development rules,
and formation mechanisms of the loess sinkholes. Chinese Loess Plateau (CLP) has the most
typical loess landform in the world, and tens of thousands of loess sinkholes have developed.
However, due to the lack of high-precision and high-resolution survey data, the identification,
characterization, and quantification of sinkholes in the Loess Plateau are basically blank, which
seriously hinders the in-depth study of loess sinkholes. We investigated a typical watershed on
the Chinese Loess Plateau using photogrammetry, airborne laser scanning, and handheld laser
scanner. Based on previous studies, this paper proposes indices and methods for the
morphological quantification of loess sinkholes and constructs the first dataset of loess sinkhole
morphology containing 1194 records at the basin scale. On this basis, we completed the spatial
mapping of loess sinkholes, analysis of distribution patterns, morphological analysis, size-
frequency analysis, fitting analysis of different parameters, estimation of subsurface soil erosion,
in-depth investigation of typical sinkholes, and quantification of the contributions of different
factors to sinkhole development. These efforts provide rich information for a deeper
understanding of the morphological characteristics and causes of loess sinkholes and offer data
support for comparative studies with sinkholes in other regions. More critically, we
preliminarily assessed that the subsurface soil erosion triggered by sinkholes in the study area
amounts to as high as 345,000 metric tons. This finding makes it increasingly clear that loess

sinkholes are not only a geological disaster process but also a serious soil loss process,
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highlighting their undeniable significance in regional soil erosion studies and laying a solid
foundation for subsequent research and disaster prevention efforts. Moreover, we believe that
the integration of airborne laser scanning and handheld laser scanning may represent a new
trend in the detailed investigation of sinkholes in the future. The dataset is available from

Zenodo platform (https://doi.org/10.5281/zenodo.14000267).

1 Introduction

It is widely recognized that soil erosion constitutes a global environmental problem with
significant societal and economic implications (Morgan, 2005; Poesen, 2018; Llena et al., 2024).
When the term ‘soil erosion’ is used, most people picture surface processes such as sheet, rill,
gully, or gravity erosion. However, subsurface mechanical erosion related to soil piping and the
associated surface collapse is widely overlooked (Bernatek-Jakiel and Poesen, 2018). The vast
international literature on soil erosion reveals an evident knowledge gap regarding soil piping
research. Soil piping refers to the formation of shallow conduits in soils and weakly
consolidated sediments by seepage, pipe flow, and mass movements (e.g., wall and roof
collapse) (Bernatek-Jakiel and Poesen, 2018). Soil pipes, due to their hidden nature and
complex patterns, are detected only once their collapse reaches the surface to form a sinkhole
(Donnelly, 2008; Bernatek, 2015; Bernatek-Jakiel et al., 2017). Ground instability associated
with sinkhole development poses threats to agriculture, transportation infrastructure, water
storage facilities, oil and gas pipelines, buildings, and other human assets and activities (Gibbs,
1945; Gutiérrez et al., 2003, 2014; Richards and Reddy, 2007; Peng et al., 2018; Hu et al., 2020).

Piping sinkholes cause soil erosion and can induce or favor hazardous processes such as ground
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collapse, landsliding, debris flows, or gullying (Peng et al., 2018; Li et al., 2020; Hu et al., 2022;
Wang et al., 2024). Therefore, gaining insight into the factors controlling piping-related
sinkholes, their morphometry and spatial distribution patterns is of prime scientific and practical
importance (Hofierka et al., 2018; Bernatek-Jakiel et al., 2019).

The identification of sinkholes and the production of comprehensive sinkhole inventories
are a fundamental and challenging task. In recent decades, several countries have conducted
extensive research on karst and piping sinkholes and developed national or regional
geodatabases (Gao et al., 2002, 2005; Farrant and Cooper, 2008; Rajabi, 2018; Vennari and
Parise, 2022; Hu et al., 2024). Traditional sinkhole mapping primarily relies on topographic
maps, digital elevation models (DEM), historical aerial photography, or satellite imagery
(Panno et al., 1997; Panno and Luman, 2013; De Carvalho Junior et al., 2014; Vajedian and
Motagh, 2019; Gokkaya et al., 2021). However, data acquired through conventional methods
are often hampered by poor spatial resolution, making them inadequate for the comprehensive
and accurate mapping and morphometric characterization of soil sinkholes, which are usually
small. Consequently, researchers have started to use unmanned aircraft systems (UAS)
equipped with optical lenses, LIDAR sensors, and thermal cameras to investigate piping
sinkholes (Lee et al., 2016; Wu et al., 2016; Hofierka et al., 2018; Hu et al., 2020; Li et al.,
2024). UAS technology can capture imagery and topographic data with high resolution and
accuracy, and may even allow for filtering vegetation in the case of LIDAR data. Despite the
variety of techniques and approaches currently available, each still carries inherent limitations

or shortcomings (Bernatek-Jakiel and Poesen, 2018). For instance, although UAS-based
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photogrammetry can yield high-resolution topographic models, those models do not allow the
reliable measurement of 3D morphometric parameters of piping sinkholes, such as depth or
volume (Li et al., 2024). Airborne LiDAR, while capable of partly penetrating vegetation to
reveal the underlying ground surface, typically employs orthogonal scanning, missing zones
along the vertical walls of collapsed pipes, and thus failing to capture the complete inner
morphology of the sinkholes (Jiang et al., 2024). The aforementioned mapping technologies
and methods are suitable for regional sinkhole surveys, but are not suitable for characterizing
the internal morphology of individual sinkholes. In recent years, handheld laser scanners based
on simultaneous localization and mapping (SLAM) technology have been developed and
successfully applied to forest surveys, archaeological studies, tunnel, and sinkhole
investigations (Jones and Beck, 2017; Konsolaki et al., 2020; Mokros et al., 2021; Yuan et al.,
2022; Hu et al., 2024; Jiang et al., 2024). When conducting non-destructive identification and
characterization of soil pipes and the associated sinkholes, it is essential to select the most
suitable investigation technique or to combine several complementary methods considering
factors such as the characteristics of the target features and the survey area (Bernatek-Jakiel and
Kondracka, 2016; Borah et al., 2022).

A recent review on soil piping (Bernatek-Jakiel and Poesen, 2018) provides a global
synthesis of current knowledge and delineates directions for future research. By collating data
from 230 documented piping sites worldwide, the authors produced the first global map of soil-
piping investigations, demonstrating that piping erosion occurs across all climate zones and

most soil types. Regrettably, the review reveals a striking paucity of research on soil pipes in

Earth System
Science

Data

suoIssnoasiq



https://doi.org/10.5194/essd-2025-644
Preprint. Discussion started: 13 January 2026
(© Author(s) 2026. CC BY 4.0 License.

107
108
109
110
111
112
113
114
115
116
117
118

119

Open Access

the Chinese Loess Plateau (CLP), with only two documented study sites. It is widely recognized
that the CLP, covering 64x10* km?, hosts the world’s most representative loess accumulation.
Due to the relatively high permeability, collapsibility, and wetness of loess deposits, together
with its porous and jointed structure, pipes and sinkholes can easily form under the presence of
water (Li et al., 2010; Geng et al., 2023). In recent years, some scholars in China have identified
loess sinkholes as a specific geological hazard and have called for increased focus and research
on this process with growing economic implications (Li et al., 2010, 2020; Peng et al., 2018).
The intensity map of sinkhole development in the Chinese Loess Plateau (Fig. 1) indicates that
the west region exhibits a higher intensity of sinkhole development compared to the east,
particularly in the Dingxi and Huining areas, where sinkhole densities typically reach 243 and
265 sinkholes per km?, respectively (polygon I in Figure 1) (Peng et al., 2018; Hu et al., 2020).
Notably, no regional morphometric datasets of piping sinkholes have yet been published,

limiting our understanding of their morphological characteristics and developmental patterns.
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Figure 1. Map showing the degree of piping-related sinkhole development in the Chinese
Loess Plateau, classified into five categories (Peng et al., 2018; Hu et al., 2020). The star
indicates the location of the study area within a region with very high degree of sinkhole

development.

In view of the above, the principal objectives of this study include: (1) to conduct a
comprehensive and high-resolution survey of loess sinkholes in a representative basin of the
CLP by integrating UAS photogrammetry, airborne LiDAR, and a SLAM-based handheld laser
scanner (HLS); (2) to characterize the morphometric features of the sinkholes and produce an

open-access database comprising 1194 sinkhole records, complemented with data on multiple
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attributes; (3) to analyze the spatial distribution patterns of the sinkholes and their relationships
with other landforms in order to gain insight into the main controlling factors; (4) to carry out
an in-situ investigation inside a typical sinkhole using the HLS, evaluating the potential and
advantages of SLAM technology for full sinkhole characterization. Through these efforts, we
aim to partially fill the current knowledge gap on loess sinkholes in the CLP and identify
suitable surveying approaches. This will make available to the global soil-piping community
with a unique case-study dataset and will provide a scientific basis for assessing and managing
sinkhole risk in the region. The presented results reveal the strikingly large subsurface erosion
volume attributable to piping erosion, underscoring that soil-piping research merits intensified
attention, rather than continued neglect.
2 Study area

The study area is a small leaf-shaped watershed drained by the N-flowing Sunjiacha stream.
It is located in the southwestern sector of the Loess Plateau of China, approximately 5 km east
of Huining city (Figs. 2a-c). The drainage basin is approximately 2960 m long, 1280 m wide,
covers about 2.4 km?, and displays sparse grassland vegetation. The elevation ranges from 2070
m a.s.l. (highest point of the divide) to 1724 m a.s.l. (outlet), yielding a local relief of 346 m.
The region is characterized by a semi-arid temperate monsoon climate, with a mean annual
precipitation of 370 mm. Great part of the rainfall occurs between May and September and
frequent severe rainfall events can account for up to 96% of the monthly precipitation (Hu et
al., 2020). Sunjiacha stream is an ephemeral channel that carries water flow after storms or

rainy periods. Great part of the slopes in the basin, with the exception of some sectors in the
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lower part, have been transformed into a terraced landscape on loess deposits for cultivation
and to prevent soil erosion (Fig. 2b).

Form the geological perspective, the investigated zone is located in the Longxi Basin. Its
development began during the Yanshan orogeny (ca. 205~66 Ma), expanded further during the
Himalayan orogeny (ca. 50 Ma to present), and finally took shape as the Longxi graben basin
by the late Neogene. The basement of the basin is composed of Proterozoic metamorphic rocks,
Paleozoic volcano-sedimentary rocks, Caledonian intrusive rocks and Mesozoic-Cenozoic
sedimentary successions. Since the end of Neogene to Quaternary, the Longxi Basin has been
uplifted along with the Qinghai-Tibet Plateau and its surrounding mountains (Niu, 2023). The
tectonic uplift in the Quaternary has been accompanied by (Figs. 2b, ¢): (1) downcutting of the
drainage network into the Neogene sediments of the Gansu group; and (2) accumulation of
loess and terraces over the relatively flat Gansu group red beds, forming a thick loess-paleosoil
succession. The 1:200,000 scale regional geological map indicates that most slopes in the area
are underlain by the Q3 aeolian loess (Malan loess), while Q4 alluvial and colluvial deposits,
largely derived from the former, primarily occur in the valley floors (Fig. 2¢). Fig. 2d shows a
simplified log of the 333 m deep Huining #11 borehole drilled 2.6 km S of the Sunjiacha basin
by the China Geological Survey in 1972, indicating a Quaternary loess 43.5 m thick. In the
1960s, Liu (1964, 1965) observed a gradual NW-to-SE grain-size decrease in the loess in the
Loess Plateau, and divided it into three zones: sand loess, typical loess, and clayey loess. This
spatial pattern is attributed to factors such as the distance from the source area and the

southeastward weakening of winds in winter (Yang and Ding, 2017). Previous studies have
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shown that the Huining loess has both dust from inland desert areas and detritus generated
during the Pleistocene glaciations on the Qinghai-Tibet Plateau (Peng, 2014). Because Huining
is close to both source regions, relatively coarse sand and silt particles were deposited here by
the northwesterly winds. Thus, the large pore size characteristic of the Q3 Malan loess is
particularly pronounced in this area. The Q3 Malan loess is a light grey-yellow silt-dominated
deposit with relatively uniform particle distribution, loose granular texture and blocky
morphology. The grain size of the loess-paleosol sequence at Duanxian site (SO~L29; 62 km
north of our study area) studied by Niu (2023) is generally coarse, with a median particle size
ranging from 12 to 38.8 pm (silt size range: 2~50 um). Particles >32 yum and >63 pum represent
around 60% and 25% of the silt-dominated deposit, respectively (Niu, 2023).

The thickness of the Q3 Malan loess is highly variable, ranging from several meters to tens
of meters. Under the presence of infiltration water, the Q3 Malan loess, commonly affected by
vertical joints, is highly susceptible to hydrocompaction and piping, leading to the formation of
unique loess sinkhole landscapes. In fact, this area is widely recognized as having the highest
density of loess sinkholes in the vast Loess Plateau, covering 6370 km? (2.33% of the loess
accumulation in China) (Fig. 1). Average density of sinkholes in our study area is 498
sinkholes/km?. The investigated drainage basin, characterized by a dendritic gully network and
terraced slopes, displays a large number of loess-related ground instability features, including
1194 loess collapse sinkholes and 288 landslides (Fig. 3). The latter include slope movements
with deep and shallow sliding surfaces, typically induced by fluvial undercutting, artificial

excavations, and severe rainfall events.
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Plateau. (a) Location in the SW Loess Plateau in China. (b) 3D model of the Sunjiacha basin
generated by Structure from Motion Photogrammetry with UAS images. The QR code gives
access to an online panorama of the study area generated with drone images. (c) 1:200,000

scale regional geological map (data source: http://dcc.ngac.org.cn/); (d) Stratigraphic log of

the Huining #11 borehole drilled for coal exploration 2.6 km south of the study area (see

location in c) (data source: http://zk.cgsi.cn/).
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Figure 2. Geographic and geological setting of the Sunjiacha drainage basin within the Loess

Earth System
Science

Data

suoIssnasig



https://doi.org/10.5194/essd-2025-644
Preprint. Discussion started: 13 January 2026
(© Author(s) 2026. CC BY 4.0 License.

201
202

203

204

205
206
207
208
209
210
211
212
213

214

Open Access

Legend
@ Sinkholes (n=1194) £D Landslides (n=288) == | andslide-dam deposits National highway
<> Water divide == Main channel —~ Tributary ~ ™ Highway culvert == Terrace ¥ Knickpoint

Figure 3. Geomorphological map showing the distribution of loess sinkholes, landslides and

deposits accumulated upstream of a landslide dam in the Sunjiacha basin.

3 Methods

3.1 Technical procedure

The flow diagram in Figure 4 outlines the data acquisition and analysis approach followed
in this investigation, comprising several steps. Initially, we conducted surveys using an
unmanned aircraft system (UAS) equipped with optical cameras and LiDAR sensors, as well
as utilizing a handheld laser scanner (HLS). Subsequently, the data collected in the surveys
allowed the generation of a Digital Orthophoto Map (DOM), a bare-surface Digital Surface
Model (DSM), a Digital Elevation Model (DEM), and 3D terrain point clouds. The drone
imagery was processed using the Structure from Motion Photogrammetry software Pix4D

Mapper (https://www.pix4d.com/), while the open-source Cloud Compare software

(http://www.cloudcompare.org/) was utilized for analyzing the point clouds. ArcMap 10.5 was
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used to manually map the sinkholes and extract planimetric and three-dimensional
morphometric parameters by using the DOM, DEM and relief maps. This allowed the
construction of a cartographic sinkhole inventory including a number of categorical and
numerical attributes for the morphometric and statistical analysis of the sinkholes. 3D data of
the loess sinkholes such as elevation and depth were extracted from noise-filtered terrain point
clouds acquired with airborne LiDAR, rather than directly from the UAS-derived DSM,

significantly enhancing the accuracy of the parameters.
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223 Figure 4. Flow chart illustrating the data collection, processing and analysis approaches used

224
225 3.2 Field investigations

226  3.2.1 UAS survey

in this study.

227 On April 9, 2021, we engaged the professional company Feima Robotics to conduct a

228  detailed survey of the research area using a D2000 UAS (Figs. Sa-¢). We executed two flight
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missions at a height of 200 m utilizing the D-Lidar 2000 LiDAR sensor and the D-CAM2000
optical camera mounted on the drone. Images were taken with longitudinal and lateral overlaps
of 70% and 60%, respectively. Point clouds were taken with lateral overlap of 40%. A total of
11 ground control points (GCPs) were distributed across the area and measured with a DGPS.
Detailed  specifications of the UAS and its sensors are available at

http://www.feimarobotics.com/zhcn/productDetailD2000. The D-Lidar 2000 module employs

three-echo technology, ensuring effective penetration through vegetation to obtain more
accurate bare-ground data. After completing the field survey, we pre-processed the collected
data with the UAV Manager software to produce a 3 cm resolution Digital Orthophoto Map
(DOM) and a Digital Surface Model (DSM), along with raw point cloud data (40 GB; average
density of 192 points/m?). The modeling report from UAV Manager indicated that the average
RMSE (root-mean-square error) for the 11 ground control points (GCPs) was 0.0137 m, with
RMSEs of 0.012 m, 0.014 m and 0.015 m for the X, Y and Z coordinates, respectively. An
elevation accuracy assessment of 19 laser point cloud validation points measured with the

DGPS revealed an average RMSE of 0.029 m, with a maximum error of 0.058 m.
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Figure 5. Surveying of the study area with an UAS (Li et al., 2024) and a handheld laser
scanner: (a) Terrain model of the study area draped by a Google Earth image. Red lines
indicate the route of the UAS. Green paddle icons show the distribution of ground control
points (GCPs) used to improve the accuracy of the UAS models. Yellow stars indicate the
location of the handheld laser scanner surveys. (b-e) Unmanned aerial system field operations
with the control unit (c) and the drone (d), combined with GCPs (¢) measured with a DGPS
(d); (f) Using the GeoSLAM (ZEB Horizon) handheld laser scanner to scan the interior of a

sinkhole in a steep slope with an opening at the bottom.

3.2.2 Handheld laser scanner survey

We used a GeoSLAM ZEB Horizon handheld LiDAR scanner (https://geoslam.com/) with

a range of 100 m to carry out high-resolution scans of thirteen representative sinkholes (1
sinkhole in HLSOL1 site; 12 sinkholes in HLSO02 site; see location in Figures 5a, f). This device
utilizes SLAM (Simultaneous Localization and Mapping) technology, which can record point
cloud data of the terrain or objects in real-time obtaining accurate geographic coordinates. It
weighs 1.45 kg, and records 300,000 points per second with a measurement error of 6 mm to 3
cm. After the field survey, we pre-processed and post-processed the point cloud data using
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GeoSLAM Draw and Cloud Compare software and subsequently we obtained noise-filtered

terrain point clouds and DEMs of the representative sinkholes.

3.2.3 Surveying and mapping

Figure 6 illustrates some of the products derived from the UAS survey. We filtered the raw
point clouds using the Cloth Simulation Filter (CSF) developed by Zhang et al. (2016) in Cloud
Compare. The main parameter settings were: General parameter setting — check Steep slope
and Slop processing options; Advanced parameter setting — Cloth resolution 0.5 m, Maximum
iterations 999, Classification threshold 0.1 m. Figure 6a shows the terrain point cloud processed
in Cloud Compare with above-surface noise filtered out (buildings, people, vehicles, vegetation,
towers, and power lines). Figures 6b-f show enlarged views of the dashed boxes indicated in
Figures 6a, g-h. Figure 6b illustrates the largest landslide of the study area. Figures 6¢ and 6d
depict an orthoimage and a terrain point cloud of a gully with a string of sinkholes related to a
subsurface conduit created by internal erosion. Figures 6e and 6f display the 2D profile of the
terrain point cloud and an excerpt of the 3D point cloud of a gully with numerous sinkholes,
respectively. Figure 6g shows the 6.87 cm resolution Digital Orthophoto Map (DOM) derived
from the drone images. Figure 6h presents the 0.5 m resolution Digital Elevation Model (DEM)
generated from the terrain point cloud data in Figure 6a. Figure 6i depicts the 3D models
generated by Poisson Surface Reconstruction in Cloud Compare, based on LiDAR point-cloud
data from six sinkholes. These spatial data provide the basis for mapping and cataloging

sinkholes, identifying sediment-discharge holes, and extracting morphometric parameters.
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Figure 6. UAS survey results: (a) Bare-surface point cloud of the study area after filtering
above-surface objects; (b-f) Partial enlargements of (a); (b) Largest landslide of the study
area; (c-¢) Orthoimage, point cloud, and a point-cloud section of a row of loess sinkholes
(purple line in d) in a collapsed gully, respectively; (f) 3D perspective of (d); (g) Digital
orthophoto map (DOM) generated from images captured by the UAS survey; (h) Digital
elevation model (DEM) generated from bare-surface point clouds; (i) Poisson surface

reconstruction of sinkholes A-F in d.
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3.3 Basic morphometric parameters and extraction methods

Based on a literature review on studies about loess sinkholes and karst dolines worldwide,
we selected a number of morphometric parameters for the geometrical characterization of the
loess sinkholes (e.g., Day, 1983; Liu and Wang, 2008; De Waele and Gutiérrez, 2022 and
references therein). Table 1 presents the selected some parameters, their definition and the
approach used for their automatic computation. Key morphological parameters and their

interpretations are illustrated in Figure 7.
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296 Table 1 Index, definition and computing method of morphology of loess sinkholes.
Parameter Unit Computing method Explanation Reference
Calculate geometry X, Y coordinates of the
Coordinates ° in ArcMap attribute  centroid of the sinkhole
table polygon
Length of the major
Length of the fitted f‘;‘;lsmi‘;f’cn dtgt;i‘ze Kobal et al,
Length (L) m  minimum bounding P . 2015; Wu et al,
between the antipodal
rectangle . . 2016
points of the perimeter
Width perpendicular to
Width of the fitted  major axis, given by the Kobal et al,
Width (W) m  minimum bounding width of the fitted 2015; Wu et al,
rectangle minimum bounding 2016
rectangle
.. . B t al,
ArcMap Minimum Clockwise angle runocta
. . . 2008; Kobal et
Azimuth (A4zi) ° Bounding between the North and .
G trv tool th . . al, 2015; Oztiirk
eometry too € major axis etal, 2018
Maximum m Maximum elevation of
elevation (Emax) Extracted from the sinkhole perimeter
Minimum m point cloud data Minimum elevation at
elevation (Emin) using LAS Point the sinkhole bottom
. Statistics by Area  Average elevation of the
Average elevation . -
m tool in ArcMap 3D points that define the
(Eave) ! i
sinkhole depression
Maximum elevation De Waele and
Maximum depth Extracted from . .. Gutiérrez, 2022;
m . minus minimum .
(Dmax) point cloud data clevation Sevil and
Gutiérrez, 2023
Calculate geometry Planimetric length of the .
L
Perimeter (P) m  in ArcMap attribute mapped edge of the iuand Wang,
. 2008
table sinkhole
Calculate geometry Planimetric area Liu and Wan
Area (4) m?  in ArcMap attribute enclosed by the 2008 &
table perimeter
okk 1.
Volume of the 3D space 2((})(; L ?;,:\e)\;ailé:
Volume (V) m’ V=AXDmax corresponding to the ’
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ER=L/W or
ER=a/b, where L

(or a) and W (or b) Day, 1983;
Elongation ratio are the major and . . Basso et al.,
Length h
(ER) minor axes (length ength to width ratio 2013; Zumpano
and width) of the etal., 2019
sinkhole,
respectively
Ratio between the area
of the sinkhole and the
area of a theoretical
inkhole havi
Circularity index cirii?mf:r:nczvénlglaj to De Carvalho
y CLI = 41A/P? : q Janior et al.,
(CLD the perimeter of the 2014
actual sinkhole. The
lower the value below 1,
the further to a perfect
circular shape
tifies h h .
COI = A/Ac, Quantifies how much . 1604 Kim
. the shape of the sinkhole
where Ac is the erimeter is close to a and
Compactness area of the smallest . Anderson, 1984;
. . circle. The lower the .
index (COI) circle Lietal., 2013;
. . value below 1, the more
circumscribing the complex the sinkhole Zhu and
sinkhole perimeter P . Pierskalla, 2016
perimeter
Length to Depth Ratio between sinkhole
. LDr=L/D Day, 1983
ratio (LDr) r=L/Dmax length and depth W
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Figure 7. Diagrams showing the key morphometric parameters of the loess sinkholes: (a)

Open Access

Images of sinkholes; (b) Point clouds of sinkholes (located at HLS 02 in Figure 5a) in vertical

view; (c) Point clouds of sinkholes in oblique view; (d) Diagram of key morphometric

parameters of sinkholes.
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4 Results

4.1 Sinkhole mapping and inventorying

Given the utmost high-resolution of the data used for mapping, the inventory can be
considered as complete, even including small decimeter-scale holes. This information furnished
a database of 1194 loess sinkholes in the study area, including multiple attributes (Table 1 and
Data availability): topographic (coordinates, azimuth, maximum, minimum and average
elevation); morphometric (length, width, depth, perimeter, area, volume, geometrical indexes);
and geomorphic (soil loss). The inventory also differentiates 1162 single sinkholes, and 32
compound sinkholes resulting from the aggregation of two or more adjacent sinkholes. This
complete database serves as the basis for the morphometric-statistical analysis presented in this
work. For the detailed cataloging and the statistical parameters of these sinkholes, please refer
to Table 2 and Data availability. Additionally, 9 thematic maps were generated with some
parameters (length, maximum depth, perimeter, area, volume, elongation ratio, circularity index,
compactness index, length to depth ratio) to explore spatial patterns of different value ranges.
Table 2 presents the main statistics of the sinkholes separated into three categories: all, single

and compound.
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319 Table 2 Main statistics of different types of sinkholes.
Statistical indicators All sinkholes  Single sinkholes Compound sinkholes
(1194) (1162) 32)

Length (m)
Range 0.19~35.11 0.19~35.11 0.88~33.9
Mean 3.75 3.65 7.37
Median 228 226 3.69
Depth (m)
Range 0.42~29.60 0.42~29.60 2.05~18.50
Mean 655 6.48 8.36
Median 530 5214 7.76
Perimeter (m)
Range 0.60~104.14 0.60~98.92 2.67~104.14
Mean 10.75 10.45 2151
Median 643 6.40 10.47
Area (m?)
Range 0.03~662.18 0.03~662.18 0.50~635.75
Mean 17.75 16.42 66.19
Median 294 293 7.97
Volume (m?)
Range 0.21~19601.27 0.21~19601.27 2.66~8405.93
Mean 33475 310.79 1002.98
Median 42.78 42.10 81.28
Elongation ratio
Range 1~4.55 1~4.55 1.04~1.98
Mean 1.37 1.37 1.31
Median 130 130 128
Circularity index
Range 0.33~0.98 0.33~0.98 0.74~0.96
Mean 0.89 0.89 0.88
Median 0.92 0.92 0.90
Compactness index
Range 0.45~0.88 0.45~0.88 0.70~0.82
Mean 0.78 0.78 0.77
Median 0.78 0.78 0.76
Length to depth ratio
Range 0.11~6.06 0.11~6.06 0.30~2.56
Mean 0.84 0.87 0.87
Median 0.77 0.77 0.72
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4.2 Spatial distribution patterns

The spatial distribution patterns of the loess sinkholes have been analyzed considering
their relationships with other geomorphic features (Fig. 3) and using spatial analysis and
statistics tools (Fig. 8). The detailed geomorphological map of the Sunjiacha basin reveal that
sinkholes are preferentially distributed in the following zones (Fig. 3): (1) the margins of the
deeply entrenched lower-middle section of the Sunjiacha trunk stream; (2) tributary gully
systems in the lower-middle part of the Sunjiacha basin; (3) landslides (slid mass and crown),
mostly associated with the trunk channel; and (4) man-made terraces. The Kernel density model
in Figure 8a shows low densities mainly associated with upper part of the Sunjiacha basin,
where the drainage network shows lower degree of incision, and rounded divides characterized
by low local gradients. Overall, there is a good spatial correlation between sinkholes and areas
with high local topographic gradients and loess deposits disturbed by landslides. The hot spot
model based on sinkhole area shown in Figure 8b illustrates a pronounced cluster of small
sinkholes (cold spots in blue) associated with recent landslides in the lower sector of the basin.
Clustering of large sinkholes (hot spots in red) mainly occur along the main drainages of

tributary catchments in the lower part of the Sunjiacha basin.
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Figure 8. Spatial patterns of loess sinkholes: (a) Type and kernel density map (search radius:

100 m); (b) Hot spot map by sinkhole area (threshold distance: 100 m).
4.3 Morphometric analysis
Here below we analyze the spatial and morphometric parameters computed for the 1194
inventoried sinkholes (1162 single, 32 compound), their frequency-size distribution (Fig. 9), as

well as some spatial patterns based on the distribution of different value ranges (Fig. 10).
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Figure 9. Frequency distribution, represented as number of sinkholes and cumulative
frequency in percentage, of different spatial and morphometric parameters of the inventoried

sinkholes: (a) Azimuth; (b) Length; (c) Width; (d) Maximum elevation; (¢) Maximum depth;

(f) Perimeter; (g) Area; (h) Volume; (i) Elongation ratio; (j) Circularity index; (k)

Compactness index; (1) Length to Depth ratio.
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351  Figure 10. Spatial distribution of the sinkholes categorized into five value ranges: (a) Length;

352 (b) Maximum depth; (c) Perimeter; (d) Area; (e) Volume; (f) Elongation ratio; (g) Circularity

353 index; (h) Compactness index; (i) Length to Depth ratio.
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4.3.1 Spatial parameters

The analyzed spatial parameters include the orientation of the sinkholes (azimuth) and the
maximum elevation. The rose diagram in Figure 9a illustrates the frequency distribution of the
azimuth of the major axes of sinkholes, showing preferred N-S and W-E orientations. The
number of sinkholes in the Sunjiacha basin decreases as elevation increases (Fig. 9d). In the
relatively low elevation range of 1734~1860 m, there are 545 sinkholes (67.37%), while the
number of sinkholes in the relatively mid-elevation range of 1860~1960 m, and in the high-
elevation range of 1960~2071 m are 216 (26.58%), and 48 (6.05%), respectively.
Approximately 94% of the sinkholes are located in the more dissected mid and low elevation

areas, despite they represent 76% of the basin area.

4.3.2 Planimetric morphometric parameters

The analyzed planimetric morphometric parameters include length, width, perimeter, area,
elongation ratio, circularity index, and compactness index. The frequency distribution of the
length (Fig. 9b) and width (Fig. 9¢) of sinkholes exhibits a consistent pattern, characterized by
exponential decay as the values increase. The number of sinkholes with lengths and widths
ranging from 0 to 2 m is the highest, totaling 533 (44.64%) and 661 (55.36%), respectively.
Conversely, sinkholes exceeding 10 m in length and width account for only 7.45% and 4.19%
of the total sample, respectively. The map in Figure 10a reveals that sinkhole length shows some
spatial patterns, with smaller sinkholes preferentially occurring in areas with lower degree of
dissection (i.e., head of the basin and slopes close to the basin divides) and in recent landslides

associated with the trunk stream.
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Regarding the ratio between length and width (elongation ratio, ER), Basso et al. (2013)
and Zumpano et al. (2019) classified the plan shape of sinkholes into five categories: circular
(ER<1.05), sub-circular (1.05<ER<1.21), elliptical (1.21<ER<1.65), sub-elliptical
(1.65<ER<1.8), elongated (ER>1.8). Figures 9i and 10f show that sinkholes tend to have some
degree of elongation, but without showing any clear spatial pattern in relation to this parameter.
Elliptical shapes dominate in the study area, with 618 sinkholes (51.76%), followed by sub-
circular morphologies with 384 depressions (32.16%). Elongated sinkholes also represent a
considerable number, totaling 93 (7.79%). Circular and sub-elliptical sinkholes are relatively
infrequent, with 35 (2.93%) and 64 (5.36%), respectively. Similarly to length and width, the
frequency of sinkhole perimeter and area shows a general decreasing trend as the size increases
(Figs. 91, g). The maximum perimeter and area reach 104 m and 662 m?, respectively. Sinkholes
with a perimeter <4 m represent 21.9% (253) of the inventory, and 30.40% those with an area
<1 m?. In agreement with length and width, sinkholes with large perimeter and area tend to
occur un sectors of the basin where the drainage net shows a greater degree of entrenchment,
with the exception of some recent landslides (Figs. 8b, 10c, and 10d).

The circularity index (CLI) quantitatively assesses how much the shape of a sinkhole
deviates from a perfect circle. CLI is equal to 1 in the case of a perfect circular shape and attains
progressively lower values as it becomes less circular (e.g., elongated, irregular edge). The
circularity index statistics indicate that 89.87% (1073 sinkholes), 60.64% (724 sinkholes), and
10.30% (123 sinkholes) of the mapped sinkholes have a CLI greater than 0.8, 0.9, and 0.96,

respectively (Figs. 9j, 10g). The compactness index (COI) also quantifies how close is the shape
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of the sinkhole perimeter to a circle. The elongation and/or complexity of the sinkhole perimeter
contributes to reduce the COI below 1. The loess sinkholes with a COI greater than 0.6, 0.7,
and 0.8 represent 99.58% (1189 sinkholes), 96.40% (1151 sinkholes), and 27.72% (331
sinkholes) of the sinkholes, respectively (Figs. 9k, 10h). The statistics of both the CLI and COI
reveal that the perimeter of a great proportion of the sinkholes significantly deviates for a
circular shape, in agreement with the calculated elongation ratios. Moreover, these parameters
do not show any general cartographic pattern, with the exception of a high proportion of
sinkholes with low CLI and COI values in some landslides associated with the trunk stream
(Figs. 10g, h).
4.3.3 3D morphometric parameters

Three-dimensional parameters are those that incorporate the vertical dimension, including
maximum depth, volume, and Length to Depth ratio. Note that large-area and large-perimeter
sinkholes may have reduced volume if their depth is low. The frequency distribution of the
maximum depth of the sinkholes in the study area shows a positively skewed distribution (Fig.
9e). Sinkholes with depths ranging from 2 to 6 m represent 47.22% of the sample (382
sinkholes). Only 58 sinkholes exceed a maximum depth of 14 m, representing just 7.17% of the
total. The deepest sinkhole reaches and extraordinary value of 29.6 m and the average maximum
depth is 6.55 m. The frequency of the sinkhole volume decreases exponentially as the size
increases, with maximum and average values of 19,601 m® and 335 m?, respectively (Fig. 9h).
A total of 428 sinkholes (52.90%) have volumes of <50 m>. The maps in Figures 10b and 10e

show that deeper sinkholes and large-volume sinkholes (>500 m?) preferentially occur
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associated with deeply incised gullies.

To some extent, the length and depth of the sinkholes reflect the horizontal and vertical
development of the depressions, respectively. Thus, the Length to Depth ratio (LDr) indicates
whether sinkholes have greater horizontal (LDr > 1) or vertical LDr < 1) dimension. The relative
value of these parameters can be influenced by multiple factors and processes, some favoring
greater lengths (e.g., sinkhole expansion, sinkhole coalescence) and others greater depth (e.g.,
deep subsurface conduits, erosion at the floor of sinkhole with bottom outlet). The frequency
distribution of the LDr shows a positively skewed distribution, with 569 sinkholes (70.33%)
having a LDr lower than 1 (greater depth than length), while those with a LDr greater than 1
represent 29.67% (240) of the sinkholes with depth data (Fig. 91). These values indicate that
subsurface vertical erosion dominates in the formation of loess sinkholes in the study area,
largely due to the development of relatively deep pipes within the thick loess cover (Fig. 10i).
4.4 Frequency-size relationships

The semi-log graph in Figure 11 represents separately the length of the 1162 single
sinkholes and the 32 compound sinkholes mapped in the Sunjiacha basin, versus relative
cumulative frequency. The latter indicates the frequency of sinkholes equal or larger than a
given length. The length distribution of the single sinkholes, ranging from 35.1 m to 0.2 m and
covering 2.3 orders of magnitude (i.e., log Max/Min), shows a wider range than the compound
sinkholes, spanning 1.6 orders of magnitude from 33.9 m to 0.9 m. As expected, compound
sinkholes tend to reach larger dimensions (i.e., plotted to the right), with a length value for the

cumulative frequency of 0.5, 1.7 times larger than that of single sinkholes (3.8 m vs. and 2.2
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438 m).
439 In both cases, the empirical cumulative frequency-size distribution can be modelled
440  satisfactorily by logarithmic functions (natural logarithm) with a high goodness of fit (R? >0.97).
441  The regression of the compound sinkholes describes adequately the distribution for the whole
442 length range. In contrast, the empirical distribution of the single sinkholes deviates from the
443  fitted curve for both small (<0.4 m) and large dimensions (>12.7 m). These cut-off or rollover
444  points indicate lower empirical frequencies for the smaller sinkholes and higher empirical
445  frequencies for the larger sinkholes than those shown by the regression. Given the completeness
446  of the sinkhole inventory, the lower rollover can be attributed to physical constraints, such as
447  the minimum span of a pipe-roof required for a collapse to occur. The upper rollover could be
448  related to factors such as the expansion of single sinkholes and the depth distribution of
449  sinkhole-forming underground pipes, which in the study area can reach significant depths given
450  the high thickness of the loess cover. Note that sinkholes reach a maximum depth of 29.6 m.
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soils and environmental conditions (Tyskowa, Bieszczady Mountains, Poland; Valpalmas,

Ebro Basin, NE Spain).

4.5 Relationships between different parameters

The planimetric (Iength, width, perimeter, area) and three-dimensional (maximum depth,
volume) size parameters of the sinkholes were fitted pairwise in a matrix diagram showing
graphically and with regressions (power functions) the relationships between each pair of
morphometric parameters (Fig. 12). As expected, the regressions of pairs of planimetric
parameters have always high goodness of fit R>>0.94. In contrast, the relationship between
planimetric and 3D parameters is poorer. R? is always <0.6 in the case of maximum depth, and

lower than <0.9 in the case of volume.
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Figure 12. Matrix diagram showing pairwise fitting relationships of planimetric (length,

width, perimeter, area) and 3D (maximum depth, volume) morphometric parameters.
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4.6 Subsurface soil erosion

Sinkhole development, including cavity-roof collapse and expansion of sinkhole margins
by mass wasting processes, can contribute significantly to soil erosion, despite it is largely
overlooked worldwide. The complete and accurate sinkhole inventory constructed in the
Sunjiacha basin, including volumetric data, provides an excellent opportunity to assess the
impact of sinkhole-related soil erosion within the context of the Loess Plateau. We calculated
the soil loss associated with each sinkhole by multiplying the volume of each depression by the
soil's dry bulk density, as shown in Figure 13a. Figure 13b illustrates the frequency distribution
of'soil loss related to individual sinkholes: 0~1 t (389 sinkholes, 32.58%); 1~14 t (211 sinkholes,
17.67%); 14~177 t (361 sinkholes, 30.23%); 177~2014 t (194 sinkholes, 16.25%); 2014~24973
t (39 sinkholes, 3.27%). The aggregate volume of sinkholes (27.08x10* m?) multiplied by the
soil's dry bulk density (1.27 t/m?) yields a total soil loss for the basin of 34.50x10* t. Considering
the area of the basin (2400 ha), the specific soil erosion related to sinkholes can be estimated at
143.75 t/ha. Note that these values do not include hidden non-collapsed pipes. Figure 13a shows
that the impact of the process is quite uneven, with a much greater contribution in the lower

half of the basin and in the areas associated with deeply incised gullies.
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484 Figure 13. Soil loss by sinkholes. (a) Spatial distribution map indicating soil erosion related

485 to individual sinkholes; (b) Frequency distribution histogram and cumulative frequency (Cf)

486 curve of soil loss by individual sinkholes.
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4.7 In-depth investigation of a complex sinkhole

Point clouds captured by airborne LiDAR surveys cover most of the sinkhole topography,
thanks to the vertical orientation of the sensors. However, obtaining comprehensive point
clouds of the interior of sinkholes proves challenging due to obstructions and complex
morphology. To address the limitations of airborne LiDAR scanning, we employed a handheld
laser scanner to conduct an in-depth investigation in the interior of thirteen representative
sinkholes. Figures 14a-j shows the field photographs and 3D models of a loess sinkhole
(HLSO01). Morphometric measurements indicate that the perimeter of the sinkhole at the land
surface is 49.7 m, with an area of 179.6 m? and a maximum vertical depth of 20.1 m. We adopted
both the traditional method and the point cloud slicing algorithm to estimate the volume of this
sinkhole. The results show a volume and soil loss of 3610 m* and 4585 t calculated by the
former method, while the latter yielded values of 1750 m> and 2223 t, respectively (Table 3).
Due to the fact that the sinkhole has an inclined top opening and a sloping bottom underlain by
deposits (Figs. 14a, d), the volume calculated by the traditional method was twice higher than
the actual volume. This also proves that handheld laser scanning can capture more accurately

the whole geometry of the sinkhole, overcoming the technical shortcomings of airborne LiDAR.
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bottom (see Figs. 5a and f): (a) Location, general field view, and landforms; (b) 3D model
generated from GeoSLAM point clouds, labelled with morphometric measurements; (c)
Model slice along the AD profile line, labelled with morphometric measurements; (d)
Photograph of the sinkhole bottom; (e) Photograph of the pipe; (f) Sinkhole outlet; (g-h)
Bedrock exposed in the sinkhole wall; (i) Photograph of the pipe top; (j) Poorly-sorted

deposits including angular loess clasts accumulated in the sinkhole floor by collapse and mass

wasting processes.

Table 3 Comparison of volume and soil loss calculated by traditional method and point cloud

slicing algorithm.

Traditional method

Point cloud slicing algorithm

Data source Airborne LiDAR GeoSLAM LiDAR
Visualization
Vertical scanning by the UAS | Multidirectional scanning by the
LiDAR handheld laser scanner.
Volume Volume= AreaxMaximum depth
calculation (Gokkaya et al., 2021; De Waele
principle and Gutiérrez, 2022) The convex hull algorithm is used to
slice the point clouds at a thickness of
0.2 m. The volume of each slice is
calculated and then summed up to
obtain the total volume.
Soil loss (SL) | SL=pxV, where p is the dry density of soil, V is the volume of the sinkhole.
01 3 (shaft 1 3, pipe 144
_— V- 3610 m3 :13) 750 m” (shaft 1606 m’, pipe
SL: 4585t SL: 2223 ¢
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Interestingly, most sinkholes examined in the field display dominant vertical development,
while this particular sinkhole exhibits a complex three-dimensional morphology comprising a
vertical shaft connected to a subhorizontal pipe. The upper shaft-like portion of the sinkhole
(20 m length x 14 m width x 20.1 m depth) is situated in loess deposits, while the lower portion
(14 m length x 3.2 m width x 5.4 m height) is a gently inclined ellipsoidal conduit carved into
horizontally bedded and jointed reddish sandstone. This lower conduit ends at the sinkhole
outlet perched 8 m above the valley floor (Fig. 14a). We interpret that the development of this
complex sinkhole started as a backward propagating conduit at the foot of the slope, associated
with a seepage outlet point controlled by joints in the loess cover and the bedrock (Figs. 14d-
h). Eventually, the enlarging conduit reached a sufficiently large span to initiate upward roof
collapse, ultimately originating the sinkhole. At present, five distinct ceiling cupolas can be
clearly observed at the top of this pipe (Figs. 14b, ¢ and 1), indicating sites of upward roof
propagation (stoping). The incision of the drainage network within a context of rapid crustal
uplift resulted in the sinkhole outlet being hanged 8 m above the current thalweg.

Additionally, we observed a significant accumulation of horizontally stratified flood
deposits resting atop the aeolian loess on the fluvial strath terrace (Fig. 14a). The interior of the
sinkhole is relatively cool and damp, with the bottom underlain by collapsed soil. We found
remnants of past flash-flood or debris-flow deposits on the sinkhole floor, as well as on the
walls and outlet ceiling of the connected lateral pipe (Figs. 14d, f, j). These sediments may
include: (1) Horizontally bedded deposits accumulated during floods in the drainage, with a

stage high enough to cause the penetration of flood waters into the sinkhole outlet
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(backflooding); (2) Massive to poorly stratified deposits derived from collapse and mass

wasting processes acting primarily in the pipe roof and sinkholes margins, respectively.

5 Discussion

5.1 Contributions of different factors to the sinkhole development

The development of loess sinkholes is influenced by multiple factors of different nature,
such as topography, climate, hydrology, soil texture, joints and fissures, animal activity, plant
root systems, human activity (Bernatek-Jakiel and Poesen, 2018; Peng et al., 2018; Geng et al.,
2021; Hu et al., 2022; Kariminejad et al., 2023; Li et al., 2024). At the scale of a small basin,
climate exhibits minimal variation. We focus our analysis on the relationships between loess
sinkholes and variables related to catchment topography, geomorphology, hydrology, and land
use. In order to better understand the controlling factors, a number of topographic and
geomorphic indices and variables, such as Slope, Total Catchment Area (TCA), Topographic
Wetness Index (TWI), Valley Depth (VD), Channel Network Distance (CND), Landslides, and
Landuse, were computed with the open-source SAGA GIS platform and subsequently mapped
in ArcMap 10.5 (Figs. 15a-g). The selection of these indices and variables is primarily based
on the following considerations: (1) Slope provides the inherent hydraulic gradient conditions
for rainfall infiltration and surface runoff concentration, controlling the piping process leading
to sinkhole development; (2) Total Catchment Area is the upslope land surface that contributes
surface and near-surface flow to a given outlet, pixel, or stream segment (Gallant and
Hutchinson, 2011). It is a proxy for the potential volume of water that can reach a pipe or a

sinkhole site, having influence on their initial formation and subsequent morphological
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evolution; (3) Topographic Wetness Index is a steady-state, terrain-based proxy for soil
moisture and surface saturation potential. It quantifies the tendency of water to accumulate at
any location by integrating local slope with the upslope contributing area (Moore et al., 1991);
(4) Valley Depth is a measure of the vertical distance from a valley’s highest ridges down to its
lowest points. It is a proxy of the degree of dissection; (5) Channel Network Distance represents
the vertical height from a location to the nearest stream. Its value on valley margins depends on
both gradient and planimetric distance to the nearest drainage; (6) Landslides can remodel the
local topography and significantly disturb loess deposits, reducing their mechanical strength
and increasing their permeability, which in turn favor piping and sinkhole development; (7)
Landuse mainly reflects the impact of human activity, notably terracing, on piping and sinkhole
development.

In order to assess the spatial relationships between sinkholes and the different indices and
variables, we calculated normalized frequencies for different intervals. This normalized
frequency (F,) is given by the ratio between the proportion of sinkholes in the interval and the
proportion of the area of that interval. The higher the value of this ‘likelihood ratio’, the higher
the spatial concurrence between sinkholes and the areas with values within the interval (Figs.
15al-gl). These data, together with the findings presented in the results contribute to shed light
into the formation and spatial distribution of the loess sinkholes.

Overall, the normalized frequency graphs show that the distribution of sinkholes is
primarily controlled by hydrological, topographic and geomorphic factors. Water availability is

an essential factor, in as much as subsurface flow is the geomorphic agent responsible for piping
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development. This is illustrated by the higher normalized frequencies of sinkholes in areas with
high Total Catchment Area (>100 m? F,=2.97) and high Topographic Wetness Index (>9;
F,=4.92). Slope is the main governing topographic factor, which largely determines hydraulic
gradient and the erosional capability of subsurface flow. Sinkholes preferentially occur in high
gradient areas and close to incised gullies, with high Slope (>40°; F,,=1.82), high Valley Depth
(>10 m; F,=1.98), low Channel Network Distance (<1 m; F,=1.98), and areas primarily
classified as erosional gullies (F,=2.53). A good spatial correlation is also observed between
sinkholes and landslides, with a normalized frequency of sinkholes within landslides (F,,=3.42).
These spatial patterns are clearly recognizable in the detailed geomorphological map (Fig. 3)
and the Kernel density (Fig. 8a) and hot spot maps (Fig. 8b). The latter shows that sinkholes
developed on landslides tend to be smaller. This could be attributed to a younger age of those
sinkholes, developed on a more recent geomorphic surface.

The vast majority of the sinkholes occur in erosional gullies (71.44%, 853 sinkholes). This
pattern is consistent with findings reported for soil pipes in other regions worldwide (Verachtert
et al., 2010; Kariminejad et al., 2023). Incised gullies may foster the development of pipes and
sinkholes through various mechanisms (Bernatek-Jakiel and Poesen, 2018; Peng et al., 2018):
(1) create steep hydraulic gradients; (2) guide converging surface and subsurface drainage; (3)
favor the development of inlet points (e.g., unloading cracks) and outlet points for seepage flow.
As shown in Figures 6¢-f, rows of sinkholes occur along the bottom of erosional gullies. These
sinkholes can be connected through groundwater seepage channels, as confirmed by electrical

resistivity tomography surveys in previous studies (Hu et al., 2022). It can be anticipated that,
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with the expansion and coalescence of the sinkholes, the gully will experience significant
entrenchment and will turn into a drainage dominated by surface flow.

Another interesting feature is the close association between landslides and sinkholes in the
Sunjiacha basin. Previous studies have shown that soil pipes in slopes favor efficient drainage
and, to some extent, help maintain slope stability (Pierson, 1983; Uchida et al., 2001; Sidle and
Bogaard, 2016). However, the sinkholes mapped on the landslides have mostly formed after the
development of the slope movements. The greater susceptibility of landslide ground to piping
and sinkhole development can be attributed to several factors: (1) landsliding contributes to
weaken the loess deposits; (2) the internal deformation of the landslide mass typically involves
a bulking effect (dilation and volume expansion) accompanied by a permeability increase; and
(3) fissures and other pathways for focused water infiltration are common on landslides (Hu et
al., 2020, 2022). At some sites, a causal relationship between landslides and sinkholes can be
inferred, showing a cascading geomorphic effect. Figures 15f and f1 illustrate that landslides
play an important role in the development of sinkholes. The distance to landslides seems to
control the development of sinkholes, but this control effect gradually decays with increasing
distance from the landslide boundary. Statistics show that as many as 251 sinkholes (accounting
for 21%) have developed within the landslides, making the landslide interior the second largest
contributor to sinkhole formation (F,=3.42). Approximately 43% of sinkholes are distributed
within the landslide and its outward 20m buffer zone (F,=1.87). The size of the sinkholes (e.g.,
length, area and volume), which can be considered as a proxy for their age, seems to be

influenced by the age of the geomorphic surface. Mature sinkholes tend to be larger due to
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expansion and coalescence, and they usually occur on old geomorphic surfaces (such as old
gullies, river terraces and ancient landslides). Conversely, sinkholes developed on landslides
that have occurred in the past few years or decades tend to be smaller. This pattern is clearly
depicted in the hot spot map shown in Figure 8b.

In recent decades, due to a significant decrease in the local agricultural population and the
implementation of policies that promote the conversion of farmland back to forests and
grasslands, approximately 74% of the terraced fields have been abandoned for cultivation. The
landuse map (Figs. 15g, gl) shows that abandoned terraces have evolved into grasslands in the
Sunjiacha basin. Abandoned terraces (25.63%, 306 sinkholes) appear to be more prone to
sinkhole formation than cultivated terraces (2.51%, 30 sinkholes). This can be related to more
favorable conditions in the abandoned terraces and the lower preservation potential of the
sinkholes in the cultivated terraces, where sinkholes tend to be filled soon after their formation.
Without a doubt, pipe collapses and gully development pose threats to land productivity,
agricultural sustainability, soil nutrient levels, and the carbon cycle, while also potentially
destabilizing socio-economic conditions (Llena et al., 2024). By contrast, roads, bare land, and

settlement sites seem to exert almost no influence on sinkhole occurrence.
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Figure 15. Spatial relationships between sinkholes and different indices and variables

expressed as maps (a-g) and normalized frequency graphs. (al-gl).
5.2 Spatial and morphological features

Sinkholes tend to be elongated and preferentially oriented in the Sunjiacha basin (Figs. 9a,
i). The majority of the major axes of the sinkholes align closely with the directions of the trunk
(N-S) and secondary (E-W) channels in the watershed (Fig. 3). These directions tend to guide:
(1) subsurface water flow and the trend of pipes generated by internal erosion, and (2) the
orientation of unloading cracks (e.g., scarped channel margins) through which water can
infiltrate. Both the pipes and the cracks influence the horizontal development of the sinkholes
by mass wasting processes acting in the margins and coalescence (e.g., merging of aligned
sinkholes connected to a common pipe).

The altitudinal distribution of sinkholes (Fig. 9d) may be governed by several factors: (1)
the density and entrenchment degree of the drainage network is higher at lower elevations; (2)
ground disturbed by landslides chiefly occurs at low elevation areas associated with the trunk
Sunjiacha stream; (3) high-elevation zones (e.g., rounded drainage divides) generally have
lower topographic gradient, lower degree of dissection, thinner loess cover, and more restricted
runoff contributing areas.

The deeper and larger sinkholes tend to be distributed in the deeper valleys (Figs. 10b, e).
This pattern can be attributed to the development of deeper subsurface pipes in areas with
thicker loess, greater topographic gradient and lower local base level. Thicker loess tends to
accumulate in paleotopographic lows, which subsequently guide gully networks.

The goodness of fit between the planimetric and 3D parameters of the sinkholes is
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relatively poor (Fig. 12). This indicates a limited dependence between the horizontal and
vertical dimensions of sinkholes, in agreement with the wide range shown by the Length to
Depth ratio (0~6). That is, sinkholes with small area can have significant depth and volume,
and sinkholes with limited volume can reach relatively large areas. This is also reflected by the
relatively poor fit shown between the two 3D parameters (volume and maximum depth;
R?=0.66). Even so, the fitting equations presented in Figure 12 provide preliminary empirical
support for characterizing and predicting scaling relationships for sinkholes in the Loess Plateau.
5.3 Frequency-size relationships of sinkholes in different soils and environments

The cumulative frequency-size graph in Figure 11 shows that the length distribution of the
compound sinkholes (red) is clearly displaced towards larger dimensions with respect to the
single sinkholes (green). The average length of the compound and single sinkholes are 7.37 m
and 3.65 m, respectively. This expected deviation in the size distribution can be explained by
the different sets of processes that operate in the development of the two sinkhole populations.
The size of the single sinkholes is related to pipe-roof collapse and the subsequent expansion
of the scarped edge of the depressions by erosional processes, mainly mass wasting and gullying.
The size tends to increase with the time elapsed since the initial collapse, as the sinkhole edge
recedes. Compound sinkholes result from the coalescence of adjoining and expanding sinkholes
and/or the occurrence of a new sinkhole intersecting a pre-existing one, leading to the sudden
enlargement of the depressions. The contribution of these processes (coalescence, intersection)
is influenced by the density and clustering degree of the sinkholes, in as much as the likelihood

of sinkhole aggregation is greater in tightly clustered sinkhole populations (Bernatek-Jakiel et
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al., 2019; De Waele and Gutiérrez, 2022; Sevil and Gutiérrez, 2023). Moreover, sinkhole
merging entails a decrease in sinkhole density by number and a substantial increase in sinkhole
size.

Figure 11 shows the cumulative frequency-length distribution of the single and compound
sinkholes mapped in the Sunjiacha basin, together with the single sinkholes inventoried in two
catchments with contrasting geological and climatic conditions (Bernatek-Jakiel et al., 2019):
Valpalmas in the Ebro Cenozoic Basin (NE Spain), and Tyskowa in the Bieszczady Mountains
of the Outer Eastern Carpathians (Poland). The pipe collapses in Valpalmas occur in Holocene
valley-fill alluvium consisting of indurated and Na-rich cohesive clayey silt that reaches around
8 m in thickness. Here, the climate is semiarid (mean precipitation 500 mm) and sinkholes tend
to occur associated with the edge of erosional scarps, showing a tightly clustered distribution.
The pipe collapses in the Tyskowa catchment can be considered as a representative sample of
those inventoried in several catchments of the Biezszczady Mts., characterized by a humid
climate (mean precipitation 900 m; Bernatek-Jakiel et al., 2019). Here, sinkholes occur on
relatively thin slope deposits with some eolian component consisting of poorly indurated clayey
silt. The single sinkholes in Valpalmas (orange) show a similar size to the single sinkholes in
Sunjiacha for the central cumulative frequencies (i.e., Fc 0.5~0.6). Nonetheless, single
sinkholes in Valpalmas display a much narrower length range (1.1. vs. 2.3 orders of magnitude,
steeper curve) and significantly smaller maximum dimensions (6.5 m vs 35.1 m). The more
restricted size range of the small sinkholes can be attributed to the fact that the inventory in

Valpalmas was restrictired to sinkholes with lengths = 0.5 m. The differences between
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Sunjiacha and Valpalmas can be ascribed to factors such as the greater morpho-sedimentary
diversity of Sunjiacha, where sinkholes occur in a broad range of deposits and geomorphic
settings (e.g., loess, colluvium, alluvium), and the wide depth range of sinkhole-forming pipes,
substantiated by the measured maximum depth of the sinkholes, ranging from 29.6 to 0.42 m
(Figs. 9e, 10b and 14c). Single sinkholes in the humid Biezszczady Mts. of Poland are much
smaller, mainly because they occur on thinner and mechanically weaker deposits. The weaker
the soils, the smaller the largest span that can reach cavities before collapse. Induration of the
deposits by secondary carbonate (i.e., cementation) in this humid environment is less significant
that in the semiarid environments of Valpamas and the Loess Plateau.
5.4 Limitations and prospects

Extensive field surveys reveal that loess sinkholes possess highly complex three-
dimensional morphologies, rather than a simple cylindrical or conical shape (Figs. 61, 7c, 14b
and 16; Hu et al., 2024). This is illustrated by the high-resolution scanning of 142 sinkholes
with a handheld laser device carried out in 2021 in a small basin, named Laozigou, east of our
study area (Hu et al, 2024; Jiang et al., 2024). The data can be accessed at

https://doi.org/10.1016/j.geomorph.2024.109404. As shown in Table 3, volume estimates based

on airborne LiDAR point clouds and simplified volume estimation methods can lead to highly
inaccurate approximations. The aggregate volume, and hence the inferred soil loss reported in
our study area may therefore be overestimated. Several factors may contribute to the deviation
between the actual volume and the volume calculated, leading to over- or under-estimations: (1)

volumes are calculated using maximum depth and assuming a cylindrical geometry, but
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sinkholes may be conical (overestimation) or the actual depth may be deeper (underestimation);
(2) sinkholes may be connected to conduits that cannot be imaged in airborne surveys, resulting
in underestimations.

Encouragingly, the comprehensive point clouds acquired by the handheld scanner enable
us to develop far more precise cloud-slicing and volumetric-integration algorithms for exact
volume computation (Hu et al., 2024). This will enable us to develop a more reliable fitting
formula relating sinkhole area and volume, which could be used for refining the results obtained
from the UAS surveys. We conducted a survey of a gully by jointly employing UAS-LiDAR
and HLS--LiDAR technologies and found that the integrated point cloud data can effectively
delineate the internal structure and connectivity of sinkholes, as they overcome the limitations
of a single LiDAR technology. Meanwhile, machine-learning approaches for the automatic
detection and delineation of sinkholes are rapidly emerging and showing promising results (Zhu
et al., 2016, 2020; Jiang et al., 2024; Li et al., 2024; Coskuner et al., 2025; Creati et al., 2025).
Indeed, we have already implemented an end-to-end workflow that couples airborne LiDAR
point clouds with deep-learning models to achieve automatic sinkhole identification, instance

segmentation, feature extraction, cataloguing, and mapping (L1 et al., 2025, in press).
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Figure 16. Sinkhole investigations by jointly using UAS-LiDAR and HLS-LiDAR: (a) The
survey areas of the two LiDAR devices; (b) The mesh model generated from the merged point
cloud data; (c) The side view of mesh model of HLS-LiDAR survey area; (d) The bottom

view of c.
6 Data availability
The dataset supporting this study is openly available on Zenodo at

https://doi.org/10.5281/zenodo.14000267 (Hu et al., 2025).

7 Conclusions

High-resolution models derived from photographs and LiDAR data captured with a UAS
have allowed the production of a comprehensive cartographic inventory of loess sinkholes in a
catchment (2,4 km?) of the Chinese Loess Plateau with a high density of sinkholes (ca. 500
sinkholes/km?). The spatial data, including a bare-surface digital surface model and a 3D terrain
point cloud, was appropriate for accurately mapping the sinkholes, differentiating between
single (1194) and compound depressions (288), and extracting precise planimetric
morphometric parameters. This is the first morphometric dataset available for the piping-related
sinkholes of the Chinese Loess Plateau. Three dimensional parameters such as depth and
volume can be also extracted or estimated, although with much higher uncertainty. Rough
cumulative volume estimates yield sinkhole-related soil erosion values of around 140 t/ha. The
work illustrates that the limitations of the airborne data for measuring 3D morphometric
parameters can be overcome by using SLAM-based handheld scanners. The 3D point clouds
obtained with these devices at specific sinkholes, although labor intensive, allow measuring

precisely the volume of the scanned voids. Nonetheless, hidden pipes, which may account for
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a significant volume of subsurface erosion, remain elusive for these direct surveying techniques.

The sinkholes in the analyzed catchment tend to be elongated (52% with elongation ratio
1.21-1.65) and preferentially oriented following the dominant trends of the drainage network.
They show a broad range of dimensions, ranging from 0.19 to 35.11 m in length (2.3 orders of
magnitude). As expected, compound sinkholes tend to be significantly larger that single
sinkholes (7.37 m versus 3.65 m in average length, respectively), although the degree of
coalescence is rather moderate (single 97.3%; compound 2.7%). A remarkable feature of the
investigated sinkholes is their large vertical dimension. Around 70% of the sinkholes are deeper
than longer. The average and maximum depths are 6.5 m and 29.6 m, respectively, indicating
the development of deep-seated pipes in thick loess cover or even within the jointed and friable
sandstone bedrock. Comparison with other morphometric datasets from semiarid Spain (fine
grained alluvium) and humid Poland (thin loess-rich colluvium) reinforces the large size of the
studied sinkholes in the Chinese loess, developed on much thicker loess and generally rooted
in deeper pipes. The frequency-size relationships produced could be transformed in sinkhole
hazard curves incorporating the time dimension (i.e., timing of sinkhole occurrence).

The spatial relationships between the sinkholes and other geomorphic features and various
topographic and hydrologic indices reveal that their development is mainly controlled by the
amount of water available for subsurface flow (i.e., runoff contributing area) and topographic
gradient. Sinkhole preferentially occur associated with the steep margins of deeply incised
streams and gully networks. Recent landslides, underlain by weakened and more porous

disturbed loess deposits are also identified as areas especially prone to piping and sinkhole
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