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Abstract 17 

Determining the large-scale Rubisco carboxylation maximum rate (Vc,max25) in relation to leaf age is 18 

essential for evaluating the photosynthetic capacity of canopy leaves in global forests. Young leaves (≤180 19 

days), which exhibit higher Vc,max25 compared to old leaves (>180 days), are key to controlling the seasonality 20 

of leaf photosynthetic capacity in tropical and subtropical evergreen broadleaved forests (TEFs). 21 

Nevertheless, quantifying the leaf photosynthetic capacity of different age across TEFs remains challenging, 22 

especially when considering continuous temporal variations at continental scales. In this study, we propose a 23 

novel methodology that leverages neighborhood pixels analysis with nonlinear least squares optimization to 24 

derive the Vc,max25 of the young leaves at 0.25° spatial resolution. This approach utilizes satellite-based solar-25 

induced chlorophyll fluorescence (SIF) products spanning from 2001 to 2018, which were reconstructed 26 

using both the TROPOMI (Tropospheric Monitoring Instrument) SIF and MODIS reflectance data (RTSIF). 27 

Validations against in situ observations demonstrate that the newly developed Vc,max25 products accurately 28 

capture the seasonality of young leaves in South America and subtropical Asia, with correlation coefficients 29 

of 0.84, 0.66, and 0.95, respectively. The Vc,max25 of the young leaves simulated from the RTSIF-derived gross 30 

primary production (GPP) is effectively correlated (R>0.51) with that dissolved from the global Orbiting 31 

Carbon Observatory-2 (OCO-2)-based SIF (GOSIF) GPP. Furthermore, the gridded Vc,max25 dataset for young 32 

leaves successfully detects the green-up regions during the dry seasons in the tropics. Overall, this study 33 

presents the first satellite-based Vc,max25 dataset specifically targeting photosynthetically efficient young 34 

leaves, providing valuable insights for modeling large-scale photosynthetic dynamics and carbon cycle in 35 

TEFs. Herein, we provide the Vc,max25 time series derived from RTSIF GPP as the primary dataset, 36 

supplemented by GOSIF-derived and FLUXCOM products. These Vc,max25 products are available at 37 

https://doi.org/10.5281/zenodo.14807414 (Yang et al., 2025). 38 

 39 
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 41 

1. Introduction 42 

The maximum carboxylation rate (Vc,max) is a critical leaf trait that strongly influences the seasonal 43 
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variations in canopy photosynthesis across tropical and subtropical evergreen broadleaved forests (TEFs; 44 

Chen et al., 2022a; Wu et al., 2018). This relationship stems from the high correlation between the Vc,max and 45 

nitrogen-related plant functional traits (Lu et al., 2020; Dechant et al., 2020) including leaf nitrogen and 46 

chlorophyll content (Lu et al., 2020). However, leaf nitrogen content varies substantially at a large scale due 47 

to the influence of multiple biotic and abiotic factors (Quebbeman and Ramirez, 2016), such as leaf lifespan 48 

(Onoda et al., 2017), leaf temperature (Verheijen et al., 2013), light intensity (Hikosaka, 2014) and species 49 

(Evans, 1989). Leaf nitrogen content inversion from remote sensing data at a large scale remains challenging 50 

(Knyazikhin et al., 2013), hindering the accurate mapping of Vc,max at regional to global scales. 51 

The Vc,max at 25℃ (hereafter denoted as Vc,max25) serves as a benchmark in most ecosystem models for 52 

simulating various Vc,max values at different temperatures. For instance, the Farquhar-von Caemmerer-Berry 53 

(FvCB) leaf photosynthetic model, widely adopted for simulating plant photosynthesis across ecosystems 54 

(Farquhar et al., 1980; Sun et al., 2015), relies on Vc,max25 as a key parameter in determining leaf 55 

photosynthetic capacity. However, Vc,max25 varies considerably among tree species, with even 2-3-fold 56 

differences observed within the same species (Orndahl et al., 2022). Research on this issue remains limited 57 

and inconclusive, largely due to the complex interplay of seasonal constraints such as water availability and 58 

light, which affect leaf flushing and shedding processes across different climatic zones (Brando et al., 2010; 59 

Yang et al., 2021). Recent advancements have led to the development of two independent satellite remote 60 

sensing approaches for estimating of Vc,max25 at a global scale. The first approach to deriving Vc,max25 is via 61 

leaf chlorophyll content (LCC) (Luo et al., 2019; Lu et al., 2020), as chlorophyll harvests light and provides 62 

energy for reactions in the Calvin-Benson-Bassham (CBB) cycle of photosynthesis (Luo et al., 2019). 63 

Moreover, chlorophyll harvests light energy and powers reactions in the CBB cycle (Luo et al., 2019), Vc,max25 64 

exhibits strong coordination with LCC as plants optimize their photosynthetic nitrogen resources (Croft et 65 

al., 2020; Xu et al., 2022a; Xu et al., 2022b). This LCC-based method enables reliable Vc,max25 estimation 66 

across various spatiotemporal scales. The second approach estimates Vc,max25 using solar-induced chlorophyll 67 

fluorescence (SIF) (Mohammed et al., 2019), which serves as a robust proxy for global gross primary 68 

production (GPP) mapping (Mohammed et al., 2019; Frankenberg et al., 2011). Both LCC- and SIF-derived 69 

Vc,max25 products present distinct advantages and limitations. Notably, multispectral satellite data can retrieve 70 

LCC at significantly higher spatial and temporal resolutions than SIF measurements (Chen et al., 2022a). 71 

Nevertheless, LCC retrieval from remote sensing data is susceptible to uncertainty in the vegetation structural 72 

parameters employed in the derivation (Luo et al., 2019). Converting LCC to Vc,max25 relies on empirical 73 

relationships for different plant functional types (PFTs), introducing substantial uncertainties (Chou et al., 74 

2020; Croft et al., 2017; Houborg et al., 2013; Houborg et al., 2015). In comparison, while SIF directly 75 

correlates with photosynthetic rates, most satellite-based SIF products suffer from relatively coarse spatial 76 

and temporal resolutions (Liu et al., 2024; Chen et al., 2022a). A recent study has demonstrated that 77 

TROPOMI SIF data, characterized by high spatial and temporal resolution, exhibit a linear relationship with 78 

GPP and contain robust signals for Vc,max25 (Chen et al., 2022a). Consequently, TROPOMI SIF has been 79 

extensively employed for modeling photosynthesis across various ecosystems (Yang et al., 2023). 80 

TEFs account for 40-50% of the carbon sinks in global forest ecosystems, playing a vital role in the 81 

global carbon cycle (Yang et al., 2023; Lu et al., 2021). Despite TEFs maintaining a perennial canopy cover, 82 

TEFs exhibit pronounced seasonal variability in photosynthetic activity (Wu et al., 2016). This seasonality is 83 

primarily attributed to shifts in canopy leaf age structure (Chen et al., 2021; Chen et al., 2022a), which are 84 

predominantly driven by climatic seasonality (Li et al., 2021b; Yang et al., 2021). Recent studies have 85 

revealed that young leaves (≤180 days) generally exhibit higher Vc,max25 than old ones (>180 days), thereby 86 

dominating the seasonal dynamics of leaf photosynthetic capacity in TEFs (Locke and Ort, 2014; Wu et al., 87 



3 
 

2016). Consequently, accurately mapping seasonality of Vc,max25 seasonality in young leaves is essential for 88 

modeling tropical and subtropical photosynthesis at continental scales. However, current satellite-based 89 

approaches face challenges in distinguishing Vc,max25 across leaf age cohorts, primarily due to the complex 90 

interactions between climate drivers and leaf phenology (Jensen et al., 2015; Song et al., 2020). These 91 

limitations hinder the seasonal characterization of Vc,max25 of young leaves. Additionally, Earth system models 92 

(ESMs) often struggle to capture the seasonal variations in Vc,max25 across different leaf age categories (Atkin 93 

et al., 2014; Ali et al., 2016). A key unresolved challenge remains the insufficient understanding of how 94 

seasonal changes in water and light availability regulate leaf emergence and shedding patterns. 95 

To address the aforementioned gaps in mapping Vc,max25 of young leaves, we categorized the canopy 96 

foliage of TEFs into two distinct leaf age groups: young (≤180 days) and old (>180 days) leaves. We then 97 

proposed a novel neighbor-based approach to estimate the maximum carboxylation rate (Vc,max25) for young 98 

leaves cohort by assuming a constant for the older cohort (Yang et al., 2023). This assumption is supported 99 

by previous research indicating that Vc,max25 in old leaves exhibits minimal variation over time (Chen et 100 

al.,2019; Albert et al., 2018). This study aims to achieve three key objectives: (1) to develop a global gridded 101 

dataset capturing seasonal variability of Vc,max25 in young leaves across TEFs from 2001 to 2018; (2) to 102 

validate the dataset against ground-based measurements and dissolved Vc,max25 data from GOSIF-derived GPP 103 

datasets; (3) to analyze the spatiotemporal patterns of Vc,max25 in young leaves across TEFs. The resulting 104 

Vc,max25 dataset enhances our understanding of tropical and subtropical phenology by quantifying the 105 

photosynthetic seasonality of young leaves. Furthermore, it provides valuable insights for refining tropical 106 

phenological models within ESMs. 107 

 108 

2. Materials and methods 109 

2.1 Study area 110 

The studied TEFs were identified by selecting pixels marked as EBF (Evergreen Broadleaf Forest; Sulla-111 

Menashe et al., 2018) on MODIS MCD12C1 land cover maps at 0.05° spatial resolution (see Fig. 1). TEFs 112 

in South America are the largest tropical rainforests in the world and mainly located at 18°N ~22°S and 113 

40~90°W, followed by TEFs in tropical Africa (12°N~12°S, 2.5~37.5°E). TEFs in tropical Asia are mainly 114 

located in the Malay Archipelago, Asian Peninsula and northern Australia (30°N~14°S, 85~155°E). 115 

 116 

2.2 Data sources for mapping the Vc,max25 of young leaves  117 

The continental scale GPP (referred to as RTSIF-derived GPP) at a resolution of 0.125° and spanning 118 

from 2001 to 2018 was derived from TROPOMI (Tropospheric Monitoring Instrument) SIF data, according 119 

to the relationships between the SIF and GPP delineated by Chen et al. (2021), which used a constant value 120 

of 15.343 to transform the SIF to the GPP (see Sect. 2.4.1). Monthly meteorological data, including the air 121 

temperature (Tmean) from the ERA5-Land dataset (Zhao et al., 2020), vapor pressure deficit (VPD) from 122 

ERA5-Land (Yuan et al., 2019), and downward shortwave solar radiation (SW) provided by the Breathing 123 

Earth System Simulator (BESS; Ryu et al., 2018), were used to calculate the Michaelis–Menton constant for 124 

carboxylase (KC), the Michaelis–Menton constant for oxygenase (K0), the CO2 compensation point (ᴦ*), dark 125 

respiration (Rd), and thus to calculate the An parameter according to the equations in Table S1 (see the 126 

Supplement). All datasets were collected and harmonized to a spatial resolution of 0.125°. Further details 127 

regarding the satellite and input data are provided in Table 1. 128 

 129 

2.3 Data for validating the Vc,max25 of young leaves 130 

The Vc,max25 of the young leaves and canopy-averaged leaves from in situ observations were collected to 131 

validate the Vc,max25 seasonality simulated from RTSIF-derived GPP by the proposed model (Table S2). Field 132 
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measurements of monthly Vc,max25 for young leaves and canopy-averaged leaves were conducted at the 133 

Santarem Primary Forest Ecosystem Research Station (BR-Sa1) during August and December 2012 (Albert 134 

et al., 2018). Annual Vc,max25 observations for canopy-averaged leaves were acquired over a 12-months period 135 

from 2004 to 2016 at the Guyaflux Forest Ecosystem Research Station (GF-Guy) (Wang et al., 2022), from 136 

2003 to 2009 at the Dinghushan Forest Ecosystem Research Station (CN-Din) 137 

(https://fluxnet.org/data/fluxnet2015-dataset/), and in November 2012 at the Mbam–Djerem National Park 3 138 

(MDJ-03) (Ferreira Domingues et al., 2015). The Vc,max25 of young leaves and canopy-averaged leaves for 139 

the BR-Sa1 site were directly obtained from the literature, whereas for the remaining three sites, only existing 140 

literature was available, which reported only the Vc,max25 of canopy-averaged leaves. To evaluate the simulated 141 

Vc,max25 of young leaves, the dissolved method (see Sect. 2.5.1) was used to derived the true values of Vc,max25 142 

for young leaves, based on a monthly leaf-age-dependent leaf area index (Lad-LAI) product (Yang et al., 143 

2023). Furthermore, gross primary production retrieved from OCO-2 Solar induced chlorophyll fluorescence 144 

(referred to as GOSIF-derived GPP) data at a spatial resolution of 0.05° for the period 2001-2018, and gross 145 

primary production from eddy covariance flux tower measurements (referred to as FLUXCOM GPP) data at 146 

a spatial resolution of 0.5° for the period 2001-2013, were used to evaluate the uncertainty of the proposed 147 

model in simulating monthly gridded Vc,max25 of young leaves (Table 1). 148 

 149 

2.4 Methods for simulating the Vc,max25 of young leaves  150 

Fig. 2 shows the practical procedures applied to produce the seasonal dynamic product of the Vc,max25 of 151 

young leaves. The ‘leaf demographic-identical (LDO)’ hypothesis proposes that the leaf cohorts can be 152 

classified into three categories on the basis of their growth, development and lifespan: young leaf (less than 153 

60 days), mature leaf (between 60 days and 180 days), and old leaf (greater than 180 days) (Wu et al., 2017b). 154 

To ensure comparability between the observations and simulations and simplify the calculations, we 155 

categorized the leaf area index (LAI) and the corresponding net CO2 assimilation rate (An) into two groups 156 

based on leaf age: those with a leaf age greater than 180 days were considered ‘old’, and those with a leaf 157 

age less than 180 days were considered ‘young’ (Chen et al., 2020). Since the total GPP of the leaf cohort 158 

remained constant and the leaf cohorts were composed of leaves of different ages, we calculated the total 159 

GPP as a sum of the GPP of each leaf age cohort. The total GPP was simulated using the FvCB photochemical 160 

model by combining the LAI groups (young leaf LAIY vs. old leaf LAIO; Equation 1) and the corresponding 161 

net assimilation rates of CO2 (young An, sat_Y vs. old leaf An, sat_O ; Equation 1) (Farquhar et al., 1980). 162 

𝐺𝑃𝑃𝑡𝑜𝑡𝑎𝑙 =  𝐿𝐴𝐼𝑌 × 𝐴𝑛,𝑠𝑎𝑡_𝑌 + 𝐿𝐴𝐼𝑂 × 𝐴𝑛,𝑠𝑎𝑡_𝑂                      (1) 163 

where LAIY represents the LAI of young leaves (≤180 days) and LAIO represents the LAI of old leaves (>180 164 

days). An, sat_Y and An, sat_O represent the net CO2 assimilation rates of young and old leaves, respectively. The 165 

sum of LAIY and LAIO was set as the total canopy LAI. GPPtotal refers to the total gross primary production of 166 

the canopy. 167 

The gridded GPP data over the whole TEFs were derived from SIF (denoted as RTSIF-derived GPP) 168 

using a linear SIF–GPP regression model (see Sect. 2.4.1), which was established based on in situ GPP from 169 

76 eddy covariance (EC) sites (Chen et al., 2022b). The majority of the TEFs retain leaves year-round, and 170 

their total LAI shows marginally small spatial and seasonal changes (Wu et al., 2016; Fig. S1). Therefore, 171 

previous modeling studies have assumed a constant value for the total LAI in TEFs (Cramer et al., 2001; 172 

Arora and Boer, 2005; De Weirdt et al., 2012). Based on this, we collected observed seasonal LAI dynamics 173 

in TEFs from previously published literature, which showed a constant value of LAI at around 6.0 (Fig. S1; 174 

Table S3). Consequently, we streamlined the data to assume that the seasonal LAI was broadly equivalent to 175 

6.0 in TEFs. This assumption was also found to be reasonable in the region of the TEFs by Yang et al. (2023). 176 

The Vc,max25 values for old leaves were set to 20 µmol m−2 s−1 according to previous ground-based 177 

https://fluxnet.org/data/fluxnet2015-dataset/
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observations (Chen et al., 2020; Zhou et al., 2015) in our method. The An, sat_O can be calculated according to 178 

the FvCB biochemical model (Farquhar et al., 1980; Bernacchi et al., 2003; see Sect. 2.4.2). An, sat_Y can be 179 

expressed as the function of Vc,max25 for young leaves (see Sect. 2.4.2). Consequently, only LAIY and Vc,max25 180 

of young leaves remains as the final parameters to be solved in Equation 1. 181 

The complexity of model is evident due to the two parameters that needed to be solved. To overcome 182 

the challenge of the calculation, we assumed that the four adjacent pixel points had homogeneous plant 183 

functional types (PFTs) and had consistent leaf age cohorts. The LAI and Vc,max25 of young leaves were 184 

estimated using nonlinear least squares and constraints on the basis of the GPP values with the four 185 

neighboring pixels according to Equation 1. The optimal Vc,max25 was determined by minimizing the residual 186 

while satisfying the positivity constraint (i.e., Vc,max25>0). The input gridded dataset consisted of the GPP 187 

obtained from the RTSIF and climatic data such as Tmean, VPD and SW. The spatial resolution of these data 188 

was homogeneously resampled to 0.125°, resulting in a spatial resolution of 0.25° for the map of the output 189 

Vc,max25 of young leaves. To further validate the robustness and reliability of our neighborhood pixel method, 190 

we conducted sensitivity analysis by systematically varying the number of neighborhood pixels, ultimately 191 

generating the Vc,max25 product with 0.5° spatial resolution. In the optimization process, an mean Vc,max25 value 192 

was determined by assuming that the leaf cohort was completely young. A reasonable adjustment for the 193 

Vc,max25 of young leaf value was then determined based on previously published literature (Chen et al., 2021; 194 

Yang et al., 2023) and the initial value. Importantly, the difference between the finely optimized Vc,max25 of 195 

young leaves and the initial value could often be significant and outside the margin of error. Therefore, an 196 

appropriate adjustment for the Vc,max25 of young leaves value needs to be carefully determined (He et al., 197 

2019). All analyses were performed using MATLAB (R2 version). 198 

 199 

2.4.1 Calculating the GPP (RTSIF-derived GPP) from TROPOMI SIF 200 

SIF is a widely used proxy for canopy photosynthesis (Yang et al., 2015; Dechant et al., 2020). Here, 201 

we used a long-term reconstructed TROPOMI SIF dataset (RTSIF; Chen et al., 2022b) to estimate GPP 202 

seasonality. Previous analyses showed that RTSIF was strongly linearly correlated to eddy covariance (EC) 203 

GPP and used 15.343 as a transformation coefficient to convert RTSIF to GPP (Chen et al., 2022b). We 204 

collected seasonal GPP data observed at four EC sites from the FLUXNET2015 tier 1 dataset (Table S4; 205 

Pastorello et al., 2020) and validated the Chen et al. (2022) simple SIF-GPP relationship (Fig. S2 in the 206 

Supplement). Results confirmed the robustness of the Chen et al. (2022b) simple SIF-GPP relationship for 207 

estimating the GPP seasonality in TEFs (R>0.49). Despite the potential overestimation (Fig. S2a) or 208 

underestimation (Fig. S2d) of the magnitudes, the RTSIF-derived GPP mostly captured the seasonality of the 209 

EC GPP at all four sites (dphase<0.29). 210 

 211 

2.4.2 Calculating the net CO2 assimilation rate 212 

The net CO2 assimilation rate is a significant parameter characterizing the photosynthetic rate. 213 

According to Farquhar’s (1980) biochemical model (FvCB), the net CO2 assimilation rate (An) depends on 214 

the most limiting conditions for photosynthesis (RuBisCO saturation Ac, RuBP saturation Aj, or TPU 215 

saturation Ap) and the intensity of dark respiration (Rd, Bernacchi et al., 2013). The net CO2 assimilation rate 216 

(either An, sat_Y or An, sat_O) can be expressed by the following equation: 217 

𝐴𝑛 = min(𝐴𝑐 , 𝐴𝑗 , 𝐴𝑝) − 𝑅𝑑                            (2) 218 

(1) Calculation of Ac 219 

When the CO2 pressure is low (Ci<300 μmol mol−1), the net photosynthesis rate is mainly constrained 220 

by the activity and quantity of the carboxylase RuBisCO. The Rubisco-limited photosynthetic rate Ac can be 221 

calculated using the following equation under a limited carboxylation rate: 222 
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               𝐴𝑐 = 𝑉𝑐max ×
𝐶𝑖−𝛤∗

𝐶𝑖+𝐾𝑐×(1+
𝑂

𝐾0
)
                             (3) 223 

where 𝛤∗represents the CO2 compensation point and 𝐶𝑖 is the intercellular CO2 pressure. 𝐾𝑐, 𝐾0, 𝑂, and 224 

𝛤∗  are estimated based on the leaf temperature using Equation 4 to calculate their values at the given 225 

temperature, which is used to convert from their values at 25°. 226 

𝑃 = 𝑃25 × 𝑒
(𝑇𝑘−298.15)×𝛥𝐻𝑝

𝑟×𝑇𝑘×298.15                               (4) 227 

where 𝑃 is the parameter at each temperature that varies with temperature, including the Michaelis constant 228 

for O2 ( 𝐾0 ), the Michaelis constant for CO2 ( 𝐾0 ), the intercellular concentration ( 𝑂 ) and the CO2 229 

compensation point (𝛤∗). 𝑃25 denotes the constant temperature dependence parameter at 25°C (Bernacchi 230 

et al., 2001); specifically, Kc, K0, 𝛤∗ and O at 25°C are equal to 404.9 μmol mol-1, 278.4 mmol mol-1, 42.75 231 

μmol mol-1, and 210 mmol mol-1, respectively. 𝛥𝐻𝑝is the activation energy and varies with the temperature 232 

and parameters. 𝑟 is the standard gas constant (8.314 J mol-1 K-1). 𝑇𝑘 is the leaf temperature (unit: K). 233 

Using the stomatal conductance model, the internal CO2 concentration (Ci, Equation 5) was estimated 234 

to depend on the atmospheric CO2 concentration instead of the ambient relative moisture (Xu et al. 2017; Lin 235 

et al., 2015; Medlyn et al., 2011). 236 

𝐶𝑖 = 380 × (1 −
1

1.6×(1+
3.77

√𝑉𝑃𝐷
)
)                          (5) 237 

where 𝐶𝑖 represents the internal CO2 concentration. 238 

(2) Calculation of Aj 239 

When the concentration of CO2 is high, leaf photosynthesis is constrained by RuBP regeneration. The 240 

photosynthetic rate (Aj) is then limited by electron transport and calculated using the following equation: 241 

𝐴𝑗 = 𝐽 ×
𝐶𝑖-𝛤

*

4×（𝐶𝑖+2×𝛤*）
                              (6) 242 

where 𝐽 is the electron transport rate for leaf photosynthesis. It is a quadratic function of the full electron 243 

transfer rate (𝐽𝑒) and maximum electron transfer rate (𝐽max) (Luo et al., 2001; Bernacchi et al., 2013). The 244 

maximum electron transport rate ( 𝐽max ), the maximum carboxylation rate (Vc,max25), and the CO2 245 

compensation point in the absence of mitochondrial respiration (ᴦ*) were used to determine the Michaels–246 

Menten constants for oxygenation and carboxylase. For the detailed calculation process, refer to Equations 247 

7-9. 248 

𝐽 =
𝐽𝑒+𝐽max−√(𝐽𝑒+𝐽max)2−4×𝐽𝑒×𝐽max×𝜃

2×𝜃
                        (7) 249 

𝐽𝑒 = 𝑃𝐴𝑅𝑡𝑜𝑡𝑎𝑙 × 𝜕 × 𝜑 × 𝜅                           (8) 250 

𝐽max = 𝐽max,25 × 𝑒((
25−𝑇𝑜𝑝𝑡

𝛷
)2-(

𝑇𝑘−273.15−𝑇𝑜𝑝𝑡

𝛷
)
2)

                     (9) 251 

where 𝐽max denotes the maximum electron transfer rate at a given temperature and varies with temperature. 252 

𝐽max,25 is the maximum electron transfer rate at 25°C, is usually assigned 1.67×Vc,max25 in TEFs. 𝑇𝑜𝑝𝑡 is the 253 

optimum temperature for electron transfer. 𝐽𝑒 is a function of canopy photosynthetically active radiation 254 

(𝑃𝐴𝑅𝑡𝑜𝑡𝑎𝑙) and can be calculated by inputting SW and LAI; for details, refer to Weiss and Norman (1985) 255 

and Ryu et al. (2018). 𝜃, 𝜕, 𝜑, and 𝛷 are constants and equal to 0.7, 0.85, 0.5, and 0.85, respectively (Xu 256 

et al., 2017; Yang et al., 2023). 𝜅 is a function of the optimal temperature, which represents the maximum 257 

quantum efficiency of PSII photochemistry. 258 

(3) Calculation of Ap 259 

The rate of photosynthesis is limited by the export of triose phosphate. Ap represents the photosynthetic 260 

capacity to export or utilize the photosynthetic products for the different LAI cohorts, as determined by 261 

multiple field observations. 262 

𝐴𝑝 = 𝑐 × 𝑉𝑐,𝑚𝑎𝑥25                                 (10) 263 

The ratio of the interior foliar CO2 concentration to the environmental CO2 concentration was fixed at 264 
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0.5 for C3 species and 0.7 for C4 species based on previous investigations (Fabre et al., 2019; Mcclain and 265 

Sharkey, 2019; Yang et al., 2016). 266 

 267 

2.5 Methods for evaluating the simulated Vc,max25 of young leaves 268 

This study assessed the proposed algorithms in three ways: (1) monthly in situ Vc,max25 observations 269 

obtained from the literature; (2) annually dissolved Vc,max25 from the GOSIF-derived GPP; and (3) a monthly 270 

Lad-LAI product covering the entire TEF region, derived from the RTSIF product by Yang et al. (2023). 271 

However, in situ Vc,max25 observations of young leaves remain scarce, with only one site (BR-Sa1; see Sect. 272 

2.3) providing monthly Vc,max25 data. To compensate for the lack of ground-based validation, seasonal Vc,max25 273 

of canopy-averaged leaves was collected from three additional sites (GF-Guy, MDJ-03 and CN-Din), and the 274 

Vc,max25 of young leaves at these sites was estimated using the dissolved method (see Sect. 2.5.1) based on 275 

the Lad-LAI product (Yang et al., 2023). To evaluate the efficiency and reliability of the newly proposed 276 

methodology, we compared the gridded Vc,max25 of young leaves simulated from RTSIF-derived GPP using 277 

the proposed method with that estimated from GOSIF-derived GPP and the Lad-LAI product using dissolved 278 

method. To investigate the reliability of the neighborhood-based subdivision technique, we conducted a 279 

comparative analysis for the Vc,max25 of young leaves derived from RTSIF-derived GPP using 2×2 (0.25° 280 

resolution) and 4×4 (0.5° resolution) neighboring pixels. To assess the uncertainties stemming from the 281 

estimation of gross primary production, we incorporated two additional GPP products, GOSIF-derived and 282 

FLUXCOM GPP (Jung et al., 2019; Yang et al., 2023), along with the original RTSIF-derived GPP, resulting 283 

in three distinct versions of the Vc,max25 of young leaves products. 284 

 285 

2.5.1 Dissolved method for evaluating the Vc,max25 of young leaves  286 

The total GPP can be expressed as the sum of the GPP of the young and old cohorts. The GPP of each 287 

leaf age cohort is a function of the corresponding LAI cohort and net CO₂ assimilation rate. In accordance 288 

with related studies, the Vc,max25 of old leaves is presumed to be a constant value (Chen et al., 2020). When 289 

the LAI of different leaf ages is known, only the Vc,max25 of the young leaves remains unknown in Equation 290 

1. The value of the Vc,max25 of the young leaves can be determined by solving the aforementioned Equation 291 

1. This method involves dividing GPP into young and old cohort according to leaf age, with the Vc,max25 of 292 

young leaves being directly solved by using the Lad-LAI product, hence the term 'dissolved method'. At 293 

present, there is a lack of available data regarding the ground Vc,max25 of different leaf ages. The dissolved 294 

method is employed to validate the reasonableness of the proposed algorithm. 295 

 296 

2.5.2 K-means method for classification 297 

We analyzed the spatial patterns of Vc,max25 across TEFs using the K-means clustering analysis. K-means 298 

algorithm is an iterative algorithm that tries to partition the dataset into K predefined distinct non-overlapping 299 

subgroups (clusters) where each data point belongs to only one group (Ikotun et al., 2023). It tries to make 300 

the intra-cluster data points as similar as possible while also keeping the clusters as different as possible. It 301 

assigns data points to a cluster such that the sum of the squared distance between the data points and the 302 

cluster’s centroid (arithmetic mean of all the data points that belong to that cluster) is at the minimum. Intra-303 

cluster homogeneity increases as variation decreases, indicating greater similarity among constituent data 304 

points. The way k-means algorithm works is as follows: 305 

(1) Specify number of clusters K. 306 

(2) Initialize centroids by first shuffling the dataset and then randomly selecting K data points for the 307 

centroids without replacement. 308 
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(3) Iterate until convergence (i.e., cluster assignments remain unchanged between iterations). 309 

(4) Compute the sum of the squared distance between data points and all centroids. 310 

(5) Assign each data point to the closest cluster (centroid). 311 

(6) Compute the centroids for the clusters by taking the average of all points that belong to each cluster. 312 

 313 

2.5.3 Random forests regression 314 

Random Forests (RF) is a widely used ensemble learning method that constructs multiple decision trees 315 

through bootstrapped sampling of the training data and aggregates their predictions to enhance model 316 

robustness in regression tasks (Yang et al., 2022). This method is particularly effective in capturing non-317 

linear relationships and interactions among predictor variables, making it well-suited for complex ecological 318 

datasets. In this study, we employed RF regression to identify the dominant climatic drivers of tropical forest 319 

dynamics across the entire tropical region as well as within three major tropical forest regions. The model 320 

was trained using climate variables as predictors and Vc,max25 of young leaves as dependent variables. We 321 

utilized the feature importance scores derived from RF to rank the influence of three climatic variables on 322 

forest dynamics across different regions, providing insights into the spatial heterogeneity of climate-forest 323 

interactions. 324 

 325 

2.5.4 Precision evaluation index 326 

Both the root mean square error (RMSE, Equation 11) and Pearson's correlation coefficient (R, 327 

Equation 12) were employed to evaluate the model capabilities. 328 

𝑅𝑀𝑆𝐸 = √∑ (𝑉𝑖−𝑈𝑖)2𝑁

𝑖=1

𝑁
                             (11) 329 

𝑅 =
∑ (𝑉𝑖−𝑉)(𝑈𝑖−�̅�)

𝑁

𝑖=1

√∑ (𝑉𝑖−𝑉)2𝑁

𝑖=1
√∑ (𝑈𝑖−�̅�)2𝑁

𝑖=1

                         (12) 330 

𝑆𝐷𝑆 =  √
1

𝑁
∑ (𝑉𝑖 − �̅�)2𝑛

𝑖=1                             (13) 331 

𝑆𝐷𝑚 =  √
1

𝑁
∑ (𝑈𝑖 − �̅�)2𝑛

𝑖=1                             (14) 332 

𝐿𝐶𝑆 =  2𝑆𝐷𝑆𝑆𝐷𝑚(1 − 𝑅)                            (15) 333 

where 𝑁 is the total point extracted from the Vc,max25 products simulated from RTSIF-derived GPP; 𝑉𝑖and 334 

𝑈𝑖 represent the monthly simulated and observed Vc,max25 in situ measurements, respectively; and �̅�and �̅� 335 

are the mean values of the simulated and observed Vc,max25 in situ measurements. Moreover, the continental 336 

Vc,max25 simulated from the proposed model was compared against that the dissolved from GOSIF-derived 337 

GPP and Lad-LAI in TEFs. SDS, SDm, and LCS represent the standard deviation of the simulation, standard 338 

deviation of the measurement, and the lack of correlation weighted by the standard deviations (phase-related 339 

difference; dphase), respectively. 340 

 341 

2.6 Quality control (QC) for young leaves Vc,max25 product 342 

We provided information on data quality control (QC) along with the Vc,max25 of young leaves product 343 

(Fig. S3). In the QC system (Table S5), data quality was divided into four levels: Level 1 represents the 344 

highest quality, Level 2 and Level 3 represent good and acceptable quality, respectively, and Level 4 should 345 

be used with caution. This QC product was generated based on Pearson’s correlation coefficients (R) and the 346 

root mean square error (RMSE), which were obtained by comparing the seasonal Vc,max25 estimated from 347 

RTSIF- and GOSIF-derived GPP. 348 
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 349 

3. Results 350 

3.1 Validation of the gridded Vc,max25 seasonality of young leaves using in situ observations 351 

The seasonality of simulated mean Vc,max25 for both all canopy leaves and young leaves was evaluated 352 

with in situ measurements at 4 sites: CN-Din site in southern China (23.17°N, 112.54°E), MDJ-03 site in 353 

Congo (5.98°S, 12.87°E), BR-Sa1 (2.86°S, 54.96°W) and GF-Guy (5.28°N, 52.93°W ) sites in southern 354 

America. Overall, the estimated mean Vc,max25 of canopy-averaged leaves (black line) ranged from 20 μmol 355 

m-2 s-1 to 60 μmol m-2 s-1, and their seasonal fluctuations agreed well with the in situ mean Vc,max25 (red dots) 356 

(Fig. 3). In contrast, Vc,max25 of the young leaves (green line) exhibited higher values compared with those of 357 

canopy-averaged leaves, ranging from between 40 and 80 μmol m-2 s-1. This finding is consistent with 358 

previous studies that young leaves were more photosynthetically effective than old leaves (Urban et al., 2008; 359 

Albert et al., 2018; Menezes et al., 2022). Specifically, our simulations can capture well the seasonal patterns 360 

of Vc,max25 across different sites. At the BR-Sa1 site, the estimates were correlated well with the observed 361 

mean Vc,max25 for all (R=0.85) and young leaves (R=0.84), which both increased during the dry season 362 

(approximately between June and December) (Fig. 3a, 3b). At the GF-Guy site, in situ mean Vc,max25 of all 363 

canopy leaves showed considerable seasonality, while the Vc,max25 of young leaves remain more stable (Fig. 364 

3c). Our estimations also performed well in simulating the Vc,max25 of all canopy leaves (R=0.95) and that of 365 

young leaves (R=0.66) (Fig. 3d). In contrast, at the Din site in subtropical Asia, both Vc,max25 for canopy-366 

averaged leaves and young leaves increased during the wet-season period, with the highest precipitation 367 

occurring in June or July (Fig. 3e). This is similar in the MDJ-03 site, where both Vc,max25 for all canopy 368 

leaves and young leaves also increased during the wet-season period but with larger seasonal variations. Our 369 

model showed the best simulations of Vc,max25 of young leaves at Din site (canopy-averaged leaves: R=0.84; 370 

young leaves: R=0.95). Nevertheless, many more long-term in situ measurements are needed to determine 371 

the reliability of these time series fluctuations.  372 

Then, we analyzed the spatial patterns of Vc,max25 across TEFs using the K-means clustering analysis. 373 

Results showed that Vc,max25 for young leaves cohorts had evident seasonal dynamics, bringing influences on 374 

canopy photosynthesis. Fig. S4 shows the timeseries fluctuations in Vc,max25 for the young leaves in ten 375 

individual regions, as clustered using K-means analysis. Results show the amplitude of Vc,max25 for young 376 

leaves is smaller in regions closer to the equator and larger in regions farther away from the equator. 377 

 378 

3.2 Validation of the Vc,max25 of young leaves simulated from RTSIF-derived GPP against 379 

that dissolved from GOSIF-derived GPP 380 

The Vc,max25 of young leaves simulated from RTSIF-derived GPP demonstrated significant correlations 381 

(R ranges from 0.51 to 0.87) with those dissolved from GOSIF-derived GPP (Fig. 4). Across the Amazon, 382 

more than 69.78% of pixels have a high EBF fraction (>90%). The spatial clustering pattern aligns with the 383 

onset of the dry season (cf. Tang and Dubayah, 2017), suggesting that the clustering analysis effectively 384 

differentiates climate regions within the Amazon. The relatively homogeneous environmental conditions 385 

across these sub-regions create similar plant growth environments, leading to a more constrained range of 386 

Vc,max25 values and pronounced clustering effects in sub-regions A1–A5. Notably, sub-region A3, located in 387 

the northwestern Amazon near coastal and mountainous areas, forms two distinct clustering zones. Statistical 388 

analysis revealed strong seasonal correlations between the Vc,max25 of young leaf simulated from RTSIF-389 

derived and GOSIF-derived GPP, with R>0.80 occupy 91.68% (Fig. 5a-c) and RMSE<11.59 occupy 91.68% 390 

(Fig. 5d-f) of the TEFs. The K-means spatial clustering analysis revealed strong agreement between the 391 

Vc,max25 of young leaves simulated by RTSIF-derived and GOSIF-derived GPP in the low-latitudes (Amazon 392 

R1: R=0.90; Amazon R2: R=0.94; Amazon R4: R=0.87; Amazon R5: R=0.77; Congo R6: R=0.91; Congo 393 
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R7: R=0.97; Asia R8: R=0.86; Asia R9: R=0.84; Fig. S5) compared to higher-latitude areas (Amazon R3: 394 

R=0.60; Amazon R10: R=0.50; Fig. S5). This latitudinal gradient was similarly reflected in RMSE values, 395 

with lower errors in equatorial regions (Amazon R1: RMSE=1.78; Amazon R2: RMSE=2.17; Amazon R4: 396 

RMSE=4.67; Congo R6: RMSE=3. 26; Congo R7: RMSE=4.73; Asia R8: RMSE=3.38; Asia R9: 397 

RMSE=5.86; Fig. S6) versus higher-latitude zones (Amazon R5: RMSE=14.85; Amazon R10: RMSE=6.92; 398 

Fig. S6).  399 

 400 

3.3 Comparison of the seasonal Vc,max25 of young leaves with the leaf age product  401 

While field measurements have identified distinct seasonal patterns in the Vc,max25 of young leaves across 402 

TEFs, the sparse distribution of observation sites hinders comprehensive assessment of these variations. To 403 

address this issue, we conducted K-means clustering analysis on simulated Vc,max25 maps to evaluate their 404 

spatial coherence relative to the leaf age product developed by Yang et al. (2023).  405 

The spatial distribution of clustered Vc,max25 of young leaves, derived from satellite vegetation signals 406 

(Fig. 6a-c), closely aligned with climate-based classifications from Chen et al. (2021) (Fig. 6d-f). These 407 

patterns showed strong correspondence with the Lad-LAI clusters based on endogenous climate variables 408 

reported by Yang et al. (2023) (Fig. 6g-i). Collectively, these results demonstrate similar spatial clustering 409 

patterns. In the middle (R2) and northern (R3) Amazon (Fig. 7a), the seasonal variation in the Vc,max25 of 410 

young leaves (Fig. 8b, c) was consistent with that of the BR-Sa1 and GF-Guy sites, where young leaves 411 

increase during the dry seasons. Moreover, the seasonality of the Vc,max25 of young leaves in subtropical Asia 412 

(Fig. 8f) mirrored patterns observed at the CN-Din site, where young leaves conversely increase during the 413 

wet seasons. The Vc,max25 of young leaves peaked in July in sub-region R10, which was located between sub-414 

regions R8 and R9, where the Vc,max25 of young leaf exhibited a bidirectional phenology (Fig. 8j). The four 415 

equatorial sub-regions (R1, R2, R7, and R8) exhibited distinct phenological patterns compared to areas near 416 

Tropic of Capricorn and Cancer. These equatorial regions demonstrated significantly dampened seasonal 417 

variation in the Vc,max25 of young leaves, with characteristic bidirectional peaks occurring in March and 418 

August (Fig. 8a,d,e,g). This bimodal pattern contrasts sharply with the unimodal seasonality observed at 419 

regions far from equator, consistent with previous findings by Li et al. (2021a). 420 

 421 

3.4 Partial correlations between the seasonal Vc,max25 of young leaves and individual 422 

climatic factors 423 

To assess the climatic controls on Vc,max25 of young leaves, we performed spatial partial correlation 424 

analyses on climate drivers such as vapor pressure deficit (VPD), air temperature (Tmean), and downward 425 

shortwave solar radiation (SW) (Fig. 9), previously established as critical determinants of leaf phenology in 426 

TEFs (Yang et al., 2023; Yang et al., 2021; Li et al., 2021a). The Vc,max25 of young leaves exhibited a strong 427 

correlation with the three climate drivers (Fig. 9). We then analyzed the relative importance of three climate 428 

drivers in influencing Vc,max25 using the machine-learning model of the Random Forests (RF) method (Fig. 429 

10, section 2.5.3). Shortwave radiation exhibited particularly notable positive correlations (R>0.34) with 430 

Vc,max25 across almost all regions with the exception of Amazon sub-region R4 (R=0.17) (Fig. S8), and the 431 

shortwave radiation was also the most contributing factor (Fig. 10a). This underscoring the dominant role of 432 

radiation in regulating canopy photosynthesis in TEFs. Although seasonal temperature fluctuations were 433 

modest (Fig. S7), likely due to minor temperature gradients, Tmean still exhibited a positive correlation with 434 

Vc,max25 of young leaves. However, at the global scale, Tmean had the least influence compared to VPD and 435 

SW (Fig. 10a). Notably, in the Asia region, Tmean emerged as the primary driver of Vc,max25 variability and 436 

showed a strong positive correlation in the Asia sub-region R10 (R = 0.88, Fig. S8). Notably, VPD and Tmean 437 

exhibited negative correlations with Vc,max25 across Congo, with VPD showing a strong negative relationship 438 
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in sub-region Congo R7 (R=-0.70) and Tmean in sub-region Congo R6 (R=-0.64) (Fig. S8). These two factors 439 

primarily governed the spatial variability of Vc,max25 across the Congo (Fig. 10 c). This variability primarily 440 

stems from the canopy turnover patterns, where leaf aging during rainy seasons reverses during dry periods 441 

(Li et al., 2021a; Yang et al., 2023; Yang et al., 2021). As a result, the seasonality of leaf photosynthetic 442 

capacity tended to show an inverse trend to the seasonality of the leaf age, as expected Chen et al. (2020).  443 

 444 

3.5 Evaluating potential uncertainties in the Vc,max25 of young leaves 445 

The seasonal variations in the Vc,max25 of young leaves using 4×4 neighboring pixels were closely aligned 446 

with those observed in the 0.25° products utilizing a grid of 2×2 pixels (Fig. S9). Results showed a highly 447 

linear correlation between the simulated 0.25° resolution and 0.5°resolution consistent (R>0.99), with the 448 

root mean square error (RMSE) being maintained below 0.66 (Fig. 11). This evidence demonstrating that the 449 

neighbor-based decomposition approach reliably generates the consistent Vc,max25 products across different 450 

spatial scales. 451 

Three distinct versions for the gridded Vc,max25 of young leaves products from RTSIF- and GOSIF-452 

derived GPP and FLUXCOM GPP at various spatial resolutions (Figs. S10-S12) were produced in this study. 453 

While minor differences existed among these products, they showed strong spatial consistency (Fig. 12) and 454 

high similarity in geographic distribution patterns (R: 0.87~0.96, P<0.001; Fig. 13). All three GPP-derived 455 

Vc,max25 products exhibited consistent seasonal patterns across the ten sub-regions (Fig. 12). Validation against 456 

in situ measurements demonstrated that the RTSIF-derived product achieved optimal performance, showing 457 

both the highest correlation (R=0.85) and minimal deviation (RMSE=13.69) with ground observations (Fig. 458 

13). These results collectively indicate that the Vc,max25 of young leaves products reliably capture 459 

photosynthetic seasonality across the ten sub-regions. 460 

 461 

4. Discussion  462 

Tropical forests, marked by no obvious seasonal shifts in greenness but distant variations in leaf age 463 

cohorts (Wu et al., 2016; Chen et al., 2020; Chavana-Bryant et al., 2017), show distinct leaf phenology 464 

compared with temperate and boreal forests. The young leaves are the main leaf cohort to influence 465 

photosynthesis (Oliveira et al., 2023; Sharma et al., 2017; Menezes et al., 2022), as photosynthetic capacity 466 

declines with leaf aging (Menezes et al., 2022; Wang et al., 2020). Understanding the leaf age-photosynthesis 467 

relationships is therefore critical for assessing plant growth, ecosystem productivity, and carbon cycling in 468 

evergreen forests (Albert et al., 2018). The leaf maximum carboxylation capacity (Vc,max25) serves as a key 469 

parameter for modeling photosynthetic CO2 absorption in Earth System Models (ESMs). However, most 470 

ESMs typically employ static or annual mean Vc,max25 values for each plant functional type (Stocker et al., 471 

2020; Atkin et al., 2015). This empirical practice causes uncertainties in tropical forest biomes, which are 472 

characterized by their extensive plant functional diversity (Echeverría-Londoño et al., 2018; Spicer et al., 473 

2022) and variable photosynthetic capacity (Piao et al., 2019; Wu et al., 2017a). Furthermore, the Vc,max25 474 

varies substantially within species due to leaf age, ambient growth temperatures, and the availability of water 475 

and nutrients (Stefanski et al., 2020; Lu et al., 2022; Crous et al., 2022). Photosynthesis seasonality in tropical 476 

evergreen forests is thus impacted by the replacement of old leaves with younger and more photosynthetically 477 

active foliage (Wu et al., 2016; Chen et al., 2020; Chavana-Bryant et al., 2017). These findings underscore 478 

the importance of accurately quantifying the leaf age and integrating the leaf age information into Vc,max25 479 

estimation to enhance simulation of the leaf CO2 assimilation in tropical forests. Currently, there is no 480 

comprehensive continental-scale data are available on the leaf age-dependent Vc,max25 variations throughout 481 

tropical evergreen forests. This data gap remains because the insufficient field observations for adequate 482 

mapping (Hakala et al., 2019) and limitations in Earth System Models (ESMs) that rely on uncertain climatic 483 



12 
 

parameters (Brunner et al., 2021). These challenges hinder the application of remote sensing and land surface 484 

models (LSMs) to accurately model the seasonality of large-scale photosynthesis (Krause et al., 2022). 485 

This study presents a novel continental-scale monthly gridded Vc,max25 of young leaves. The newly 486 

developed dataset was validated at four sites (CN-Din in southern China, MDJ-03 in Congo, BR-Sa1, and 487 

GF-Guy in South America) using the field measurements of the Vc,max25. We assessed the reliability of the 488 

gridded Vc,max25 of young leaf across the entire TEFs through pixel-by-pixel validation against GPP-derived 489 

estimates using the dissolved method and leaf age data from Yang et al. (2023). The results reveal substantial 490 

age-dependent variation in Vc,max25 (40-90 μmol m-2 s-1), consistent with the ranges reported for tropical and 491 

subtropical regions in current Earth System Models (Rogers, 2014). These findings highlight the necessity 492 

of incorporating leaf-age information in future ESM designs. Moreover, the Vc,max25 estimates successfully 493 

captured the dry-season canopy greening patterns in the north of the equator, demonstrating prominent 494 

advances in our ability to promptly monitor the photosynthetic capacity in tropical forests. Both direct and 495 

indirect evaluations confirm the robustness of these new photosynthetic products. In equatorial regions with 496 

high annual rainfall and minimal dry seasons, canopy phenology exhibits subtler variations compared to 497 

those forests near Tropic of Capricorn and Cancer (Yang et al., 2021). The new photosynthetic product 498 

successfully captures the characteristic bimodal patterns of Vc,max25 with limited seasonal amplitude in these 499 

areas. To converts the SIF data into GPP, a constant coefficient was used, and Vc,max25 was assumed to be 500 

uniformly distributed across all tropical evergreen forests, potentially introducing further uncertainties. This 501 

assumption was reflected in the MSD assessment, where the bias component was predominant, especially 502 

near the equator. Nevertheless, the impact of this on the seasonality of photosynthesis was minima; because 503 

the phase-dependent component of the RMSE remained relatively insignificant. 504 

The “leaf demographic-identical (LDO)” hypothesis categorizes the leaf cohorts into three distinct age 505 

classes: new leaves (from 1 to 60 days), mature leaves (from 60 to 180 days), and old leaves (larger than 180 506 

days), with corresponding mean Vc,max25 values as reported by Wu et al. (2016). To enhance comparability 507 

between observations and models, we further grouped leaves into two age classes. Leaf ages greater than 6 508 

months are classified as a distinct old leaf class, while leaf ages less than 6 months are combined into a single 509 

young leaf class. Menezes et al. (2022) reported that mature leaves (60-180 days) exhibited the highest 510 

average Vc,max25, whereas older leaves (234–612 days) showed lower values (30.4 ± 1.2). The young leaves 511 

displayed a 23% higher Vc,max25 than old leaves, with minimal variation in the latter. Notably, the link between 512 

the older leaves and Vc,max25 remains poorly understood in TEFs due to limited field data (Chen et al., 2020). 513 

To address these simulation challenges, we treated Vc,max25 of old leaves as a static value; potentially 514 

introducing errors in photosynthetic performance predictions. This simplification may also affect the 515 

accuracy of Vc,max25 and GPP seasonality in ESMs (De Weirdt et al., 2012). Moreover, additional uncertainties 516 

stem from assumptions that neglect the spatial and temporal variations driven by the plant functional type 517 

diversity, which shifts with seasonal climate anomalies and high heterogeneity in diverse forest ecosystems. 518 

These generalizations could also introduce inaccuracies in simulating seasonal variations in Vc,max25. 519 

Reflecting the inherent variability in photosynthetic behavior across leaf ages, the data revealed two distinct 520 

responses: (1) certain species, such as P. tomentosa and P. caimito, exhibited marked reductions in Vc,max25 521 

with age, whereas (2) others, such as M. angularis and V. parviflora, maintained consistent Vc,max25 values 522 

after reaching their peak. Menezes et al. (2022) identified a modest but significant correlation between the 523 

Vc,max25 and leaf age due to these divergent patterns. Variations in the photosynthetic capacity at the ecosystem 524 

level could be influenced by species composition and the distribution of plant functional groups within forests. 525 

Furthermore, the seasonal fluctuations in Vc,max25 of young leaves are closely associated with both plant 526 

growth strategies and environmental factors. Higher Vc,max25 values in young leaves during the early growing 527 
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season may reflect an adaptive strategy to quickly establish photosynthetic capacity, especially beneficial in 528 

competitive environments like tropical and subtropical forests. These seasonal variations directly impact a 529 

plant’s carbon uptake capacity, potentially leading to increased carbon sequestration within plant biomass 530 

and influencing atmospheric CO2 concentrations, which could create feedback loops within the climate 531 

system. 532 

In summary, we present a novel approach to develop a gridded dataset that incorporates leaf-age 533 

sensitivity into the photosynthesis parameters for TEFs at a continental scale. While some uncertainties 534 

persist, we provide a monthly gridded Vc,max25 of young leaves dataset. This innovation facilitates the 535 

comprehensive phenological modeling in ESMs, which typically operate at coarser resolutions. These 536 

improvements substantially enhance our ability to monitor and mechanistically interpret the spatiotemporal 537 

variations in the Vc,max25 of young leaves, providing essential data for the parameterization and assessment in 538 

ESMs. Furthermore, as remote sensing technologies advance, we anticipate that the enhanced temporal and 539 

spatial resolution of RTSIF-derived GPP will facilitate more accurate mapping of the photosynthesis products 540 

in future studies. 541 

 542 

5. Data availability 543 

The 0.25 degree time-series Vc,max25 data from 2001-2018 is presented in this paper as the main dataset. 544 

We also provided another two versions of Vc,max25 generated from GOSIF-derived GPP and FLUXCOM GPP, 545 

respectively. The three datasets are available at https://doi.org/10.5281/zenodo.14807414 (Yang et al., 2025). 546 

These datasets are compressed in a GeoTiff format, with a spatial reference of WGS84. Each file in these 547 

datasets is named as follows: “Vcmax25_{GPP source}derived_{YYYYMM}.tif”. 548 

 549 

6. Conclusions 550 

This study develop a novel monthly gridded dataset of Vc,max25 in combination with ontogeny-dependent 551 

leaf age changes. The new Vc,max25 of young leaves performs reasonably well in validating against three 552 

independent datasets: including (1) in situ observations of the monthly Vc,max25 records; (2) the Vc,max25 product 553 

dissolved from the GOSIF-derived GPP; (3) the leaf-age-dependent leaf area index product. Our results 554 

demonstrate that the seasonal dynamics in Vc,max25 of young leaves are governed by distinct climate-555 

phenology regimes across tropical and subtropical evergreen broadleaved forests. Specifically, in the central 556 

and southern Amazon, the Vc,max25 of young leaves decreased during dry season onset (approximately 557 

February) but increased during wet season onset (approximately June). Conversely, the Vc,max25 of young 558 

leaves in subtropical Asia exhibited peak during the wet season (June or July), coinciding with maximum 559 

rainfall. Near the equator, the Vc,max25 of young leaves showed a bimodal seasonality with very slight 560 

variations. The Vc,max25 of young leaves products offer valuable insights into the adaptations of tropical and 561 

subtropical forest to the ongoing climate change, while also serving to improve phenology parameterization 562 

in land surface models (LSMs). 563 
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Table 923 

 924 

Table 1. Data sources for mapping the Vc,max25 of young leaves across tropical and subtropical evergreen 925 

broadleaved forests 926 

Data name 

(Abbr.) 
Source Usage 

Spatial 

resolution 

Temporal 

resolution 

Temporal 

coverage 

Temperature 

(Tmean) 
ERA5-Land 

Calculate the 

KC, K0, ᴦ*, 

and Rd for An 

0.1°×0.1° Monthly 2001.1-2018.12 

Shortwave solar radiation 

(SW) 
BESS 

Calculate the 

Je for An 
0.05°×0.05° Monthly 2001.1-2018.12 

Vapor pressure deficit 

(VPD) 
ERA5-Land 

Calculate the 

Ci for An 
0.1°×0.1° Monthly 2001.1-2018.12 

Sun induced chlorophyll 

fluorescence 

(RTSIF) 

TROPOMI SIF 
RTSIF-

derived GPP 
0.05°×0.05° Monthly 2001.1-2018.12 

Gross primary production 

retrieved from OCO-2 Solar 

induced chlorophyll 

fluorescence 

(GOSIF) 

GOSIF 
GOSIF-

derived GPP 
0.05°×0.05° Monthly 2001.1-2018.12 

Gross primary production 

from eddy covariance flux 

tower measurements 

(FLUXCOM) 

FLUXCOM 
FLUXCOM 

GPP 
0.5°×0.5° Monthly 2001.1-2013.12 

Leaf-age-dependent 

leaf area index 

(Lad-LAI) 

Yang et al., 

2023 

Dissolved 

Vc,max25 from 

GOSIF-

derived GPP 

0.25°×0.25° Monthly 2001.1-2018.12 
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Figures 929 

 930 

 931 
Figure 1. Tropical and subtropical evergreen broadleaved forests (TEFs) and in situ observation sites. The 932 

TEFs is determined as those labeled as evergreen broadleaf forest (EBF) from the MODIS land cover maps 933 

at a 0.05° spatial resolution. The red dots are in situ observation sites of Vc,max25. 934 

 935 

 936 
Figure 2. Procedures for mapping the Vc,max25 of young leaves using a neighbor-based approach. 937 

 938 
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 939 
Figure 3. Validations of simulated seasonal Vc,max25 for all canopy leaves and young leaves with in situ 940 

observations. The green lines and green dots are the seasonal Vc,max25 of young leaf simulated from RTSIF 941 

derived GPP and in situ observations, respectively. The black dotted line and red dots are the Vc,max25 of 942 

canopy-averaged leaves from the simulations and in situ observations, respectively. Simulated Vc,max25 943 

denoted as the Vc,max25 of young leaf simulated from RTSIF-derived GPP by using the new proposed method.  944 

 945 
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 946 

Figure 4. Comparisons of the Vc,max25 of young leaves simulated from RTSIF-derived GPP against that 947 

dissolved from GOSIF-derived GPP. 948 

 949 

 950 

Figure 5. The root mean square error (RMSE) and correlation coefficient (R) between the Vc,max25 of young 951 

leaves derived from RTSIF-derived GPP and that dissolved from GOSIF-derived GPP. 952 
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 953 

 954 

Figure 6. Comparison of sub-regions of the Vc,max25 of young leaves (a-c) with those of climatic factors 955 

classified by the K-means clustering analysis (d-f) analyzed by Chen et al. (2021), and those of the Leaf-age-956 

dependent leaf area index product (Lad-LAI) (g-i) developed by Yang et al. (2023). 957 

 958 

 959 

Figure 7. Spatial maps of the correlation coefficient (R) between the monthly simulated Vc,max25 and the Leaf-960 

age-dependent leaf area index seasonality product (Lad-LAI) developed by Yang et al. (2023). 961 

 962 

 963 
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 964 

Figure 8. Seasonality of the simulated Vc,max25 of young leaves in comparison with the Leaf-age-dependent 965 

leaf area index product (Lad-LAI) developed by Yang et al. (2023). 966 

 967 

 968 

Figure 9. Spatial maps of correlation coefficient (R) between the SIF-simulated monthly Vc,max25 and vapor 969 

pressure deficit (VPD, a-c), air temperature (Tmean, d-f), and downward shortwave solar radiation (SW, g-i). 970 

 971 
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 972 

Figure 10. Climatic drivers of spatial variations in average Vc,max25 of young leaves across the TEFs (a) and 973 

three major tropical forests regions (b-d). Contributions (∅) of three climate factors to the multiple-year-974 

average Vc,max25 using the random forest (RF) algorithm. R2 represents the coefficient of determination 975 

between simulated- and observed- Vc,max25. RMSE indicates the root mean standard error. Partial dependence 976 

plots (PDP) of the relationships between three climate drivers [Tmean (K), SW (W m-2), VPD (hPa)] and 977 

Vc,max25. Relations for each pixel are displayed in black lines and relations on regional average are shown in 978 

red lines. 979 

 980 

 981 

Figure 11. Scatter plots between the simulated Vc,max25 of young leaves simulated using the 2×2 (0.25° 982 

resolution) and 4×4 (0.5° resolution) neighboring pixels in the above-mentioned ten clustered sub-regions. 983 



29 
 

  984 

Figure 12. Seasonality of the simulated Vc,max25 of young leaf derived from RTSIF-, GOSIF- and FLUXCOM 985 

GPP in the ten clustered sub-regions. 986 

 987 

 988 

Figure 13. Comparison of Vc,max25 derived from three GPP products (i.e., GPPRTSIF, GPPGOSIF, GPPFLUXCOM) 989 

and in situ observations. (a) Correlation coefficients (R); (b) Root mean square error (RMSE). 990 
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