


Review of "RAPSDI: Radiosonde Atmospheric Profiles from Ship and Island platforms during ORCESTRA, collected to Decipher the ITCZ" by Winkler et al. (2026).

This dataset, conducted by a collaborative team over ocean and island platforms, presents a potentially valuable resource for investigating fine-scale vertical atmospheric structures. The experiment itself appears both well-designed and scientifically engaging. Compared to other ocean-based sounding campaigns, the launch frequency in this study is notably higher in temporal density, which should offer more detailed perspectives for studying the Intertropical Convergence Zone (ITCZ). Overall, the paper is well-organized and provides thorough technical documentation. This research holds great potential, and the dataset itself possesses significant scientific value. I have benefited from the authors' academic rigor and would like to express my appreciation for their thoughtful work. I would recommend major revision to the manuscript prior to publication.

Comments:

1. As a data description paper, I found it quite difficult to access the data link provided in the Abstract. Many readers may not be familiar with the IPFS system. Providing an alternative HTTP address would be more appropriate. Since the author provides corresponding Python code later in the text, it might be better to include a brief explanation in the abstract.
2. To my knowledge, there have been many other Atlantic radiosonde launch campaigns, such as POLARSTERN, DBLK, HTXUH4H, among others. On an old hard drive, I discovered approximately 20,000 high-resolution radiosonde profiles launched over the ocean, most of which were conducted over the Atlantic. As an example, I have provided two screenshots of the data listing below. Although I have not systematically examined the spatial overlap between these data and the study area, it might be worthwhile to briefly introduce other oceanic radiosonde experiments in the introduction and provide a concise comparison. This would allow readers to gain a broader perspective on the full scope of Atlantic radiosonde campaigns.

ASFR3_2018031212	ASFR3_2018031318	ASFR3_2018031400	ASFR3_2018031512	ASFR3_2018031518	ASFR3_2018031618	ASFR3_2018031700
ASFR3_2018031712	ASFR3_2018031718	ASFR3_2018031800	ASFR3_2018031800	ASFR3_2018031818	ASFR3_2018031900	ASFR3_2018031912
ASFR3_2018031918	ASFR3_2018032000	ASFR3_2018032018	ASFR3_2018032018	ASFR3_2018032110	ASFR3_2018040118	ASFR3_2018040118
ASFR3_2018040100	ASFR3_2018041012	ASFR3_2018041018	ASFR3_2018041100	ASFR3_2018041112	ASFR3_2018041100	ASFR3_2018041500
ASFR3_2018041212	ASFR3_2018042118	ASFR3_2018042400	ASFR3_2018042418	ASFR3_2018042500	ASFR3_2018042518	ASFR3_2018042600
ASFR3_2018042612	ASFR3_2018042618	ASFR3_2018042700	ASFR3_2018042712	ASFR3_2018042800	ASFR3_2018042912	ASFR3_2018042918
ASFR3_2018042900	ASFR3_2018050912	ASFR3_2018051000	ASFR3_2018051012	ASFR3_2018051212	ASFR3_2018052518	ASFR3_2018052600
ASFR3_2018052618	ASFR3_2018052700	ASFR3_2018060318	ASFR3_2018060400	ASFR3_2018060412	ASFR3_2018060512	ASFR3_2018060600
ASFR3_2018060612	ASFR3_2018060818	ASFR3_2018061000	ASFR3_2018061012	ASFR3_2018061018	ASFR3_2018061900	ASFR3_2018101912
ASFR3_2018061918	ASFR3_2018062000	ASFR3_2018062018	ASFR3_2018062100	ASFR3_2018062110	ASFR3_2018062118	ASFR3_2018062122
ASFR3_2018062200	ASFR3_2018062212	ASFR3_2018062218	ASFR3_2018062300	ASFR3_2018062312	ASFR3_2018062318	ASFR3_2018062400
ASFR3_2018062412	ASFR3_2018062418	ASFR3_2018062500	ASFR3_2018062512	ASFR3_2018062518	ASFR3_2018062600	ASFR3_2018062612
ASFR3_2018062600	ASFR3_2018063012	ASFR3_2018063018	ASFR3_2018063030	ASFR3_2018063032	ASFR3_2018063038	ASFR3_2018063040
ASFR3_2018063012	ASFR3_2018063018	ASFR3_2018063030	ASFR3_2018063032	ASFR3_2018063038	ASFR3_2018063040	ASFR3_2018063042
ASFR3_2018063032	ASFR3_2018063042	ASFR3_2018063050	ASFR3_2018063052	ASFR3_2018063058	ASFR3_2018063059	ASFR3_2018063060
ASFR3_2018063059	ASFR3_2018063060	ASFR3_2018063062	ASFR3_2018063064	ASFR3_2018063066	ASFR3_2018063068	ASFR3_2018063069
ASFR3_2018063060	ASFR3_2018063072	ASFR3_2018063080	ASFR3_2018063082	ASFR3_2018063084	ASFR3_2018063090	ASFR3_2018063091
ASFR3_2018063072	ASFR3_2018063080	ASFR3_2018063088	ASFR3_2018063090	ASFR3_2018063092	ASFR3_2018063098	ASFR3_2018063100
ASFR3_2018063088	ASFR3_2018063090	ASFR3_2018063092	ASFR3_2018063094	ASFR3_2018063096	ASFR3_2018063098	ASFR3_2018063100
ASFR3_2018063090	ASFR3_2018063092	ASFR3_2018063094	ASFR3_2018063096	ASFR3_2018063098	ASFR3_2018063100	ASFR3_2018063100
ASFR3_2018063092	ASFR3_2018063094	ASFR3_2018063096	ASFR3_2018063098	ASFR3_2018063100	ASFR3_2018063100	ASFR3_2018063100
ASFR3_2018063094	ASFR3_2018063096	ASFR3_2018063098	ASFR3_2018063100	ASFR3_2018063100	ASFR3_2018063100	ASFR3_2018063100
ASFR3_2018063096	ASFR3_2018063098	ASFR3_2018063100	ASFR3_2018063100	ASFR3_2018063100	ASFR3_2018063100	ASFR3_2018063100
ASFR3_2018063098	ASFR3_2018063100	ASFR3_2018063100	ASFR3_2018063100	ASFR3_2018063100	ASFR3_2018063100	ASFR3_2018063100
ASFR3_2018063100	ASFR3_2018063100	ASFR3_2018063100	ASFR3_2018063100	ASFR3_2018063100	ASFR3_2018063100	ASFR3_2018063100
DBLK_2018010111	DBLK_2018011211	DBLK_2018011311	DBLK_2018012011	DBLK_2018012111	DBLK_2018012211	DBLK_2018012311
DBLK_2018012311	DBLK_2018012411	DBLK_2018012511	DBLK_2018012607	DBLK_2018012711	DBLK_2018012807	DBLK_2018012811
DBLK_2018012907	DBLK_2018012991	DBLK_2018013007	DBLK_2018013067	DBLK_2018013011	DBLK_2018013027	DBLK_2018013021
DBLK_2018020307	DBLK_2018020311	DBLK_2018020407	DBLK_2018020411	DBLK_2018020501	DBLK_2018020507	DBLK_2018020607
DBLK_2018020611	DBLK_2018020707	DBLK_2018020711	DBLK_2018020807	DBLK_2018020811	DBLK_2018020907	DBLK_2018020911
DBLK_2018021007	DBLK_2018021101	DBLK_2018021107	<img alt="DBLK logo" data-bbox="451 950 465			

3. The authors emphasize the ITCZ in their title, yet more detailed analysis of the ITCZ is not found in the main text. If feasible, providing a preliminary finding on the ITCZ could enhance the scientific contribution of this paper.
4. The abstract should include more details about the radiosonde dataset, such as the time range, release intervals, and balloon sampling frequency. Additionally, the R/V Meteor may be difficult to understand for readers unfamiliar with German scientific expeditions; for instance, I initially assumed it referred to a type of meteor radar.
5. The Introduction would benefit from a clearer explanation of the scientific motivation behind ORCESTRA. What were the key research questions or atmospheric processes that this campaign aimed to address?
6. It is recommended that the following content from page 2 be annotated within the main text. This citation format appears inconsistent with standard EGU citation style and caused some confusion. Additionally, page 3 contains similar phrasing such as “MAESTRO (mesoscale organization of tropical convection),” which duplicates the expression on page two.

¹<https://orcestra-campaign.org/orcestra.html>

²PERCUSION ≡ Persistent EarthCare underflight studies of the ITCZ and organized convection

³MAESTRO ≡ Mesoscale organisation of tropical convection

⁴BOWTIE ≡ Beobachtung von Ozean und Wolken – Das Trans ITCZ Experiment

⁵PICCOLO ≡ Process Investigation of Clouds and Convective Organization over the atLantic Ocean

⁶SCORE ≡ Sub-Cloud Observations of Rain Evaporation

7. Figure 1a: Why do some trajectory segments appear discontinuous in the lower-right part of the panel? This is unusual in my experience—could it be due to data loss? For panels (a) and (b), which represent land-based (“stationary”) platforms, adding launch coordinates to the figure would be helpful. Additionally, I made every effort to interpret Figure 1, as it is crucial for understanding the entire experiment. Unfortunately, despite over a decade of radiosonde experience, I find Figure 1 difficult to comprehend. The phrase “...both ascending and descending segments shown” is perplexing. Typically, descending balloons, as described in the main text, are called dropsondes, while ascending ones are radiosondes. I'm unclear on what exactly the “descending” values represent. Does “descending” refer to the period after balloon burst? A typical radiosonde profile (sampling rate = 1s) would produce a continuous curve rather than the scattered points shown in (b).
8. Given that Meteomodem and Vaisala radiosondes are well-established and widely documented technologies (e.g., in journals like AMT), the authors might consider reducing the technical details in favor of highlighting the unique scientific opportunities offered by the ORCESTRA campaign. What are the potential research themes enabled by this dataset? Which atmospheric processes could be better examined? Expanding the Summary to include such perspectives would increase the impact and value of the data.