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Abstract. For the development of a joint European capacity for monitoring CO2 emissions, we created the framework “CO2 

Monitoring Challenges City Mapbooks v1.0” (acronym CMC-CITYMAP). It includes a Jupyter notebook tool (Storm et al., 15 

2025a, https://doi.org/10.18160/P8SV-B99F) which we use to characterise and cluster cities based on aspects relevant for 

different CO2 monitoring challenges, including (a) determining background levels of CO2 inflow into a city (“background 

challenge”), (b) separating the anthropogenic emissions from the influence of the biosphere (“biogenic challenge”), (c) 

representing spatially and temporally non-uniform emissions in models (“modelling challenge”), and (d) implementing 

observation strategies not covered by the other challenges (“application-specific observational challenge”). We provide and 20 

discuss the challenges city-by-city basis, but our primary focus is on the relationships between cities: best practices and lessons 

learned from monitoring CO2 emissions in one city can be transferred to other cities with similar characteristics. Additionally, 

we identify cities with characteristics that strongly contrast with those of cities with existing urban monitoring systems.  

 

While the notebook tool includes 308 cities, this paper focuses on the results for 96 cities with more than 200,000 inhabitants, 25 

with a particular emphasis on Paris, Munich, and Zurich. These cities are pilot cities for the Horizon 2020-funded project Pilot 

Application in Urban Landscapes (“ICOS Cities”), where a range of urban CO2 monitoring methods are being implemented 

and assessed. According to our analyses, Zurich — and Munich especially — should be less challenging to monitor than Paris. 

Examining the challenges individually reveals that the most significant relative challenge is the “modelling challenge” (c) for 

Zurich and Paris. Complex urban topography adds to the challenge for both cities, and in Zurich, the natural topography further 30 

amplifies the challenge. Munich has low scores across all challenges, but with the greatest challenge anticipated from the 

“application-specific observational challenge” (d). Overall, Bratislava (Slovakia) and Copenhagen (Denmark) are among the 

most distant from Paris, Munich, and Zurich in our dendrogram resulting from numerical cluster-analysis. This makes them 
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strong candidates for inclusion in the ICOS Cities network, as they would potentially provide the most information on how to 

monitor emissions in cities that face different challenges. 35 

1 Introduction 

“Cities are where the climate battle will largely be won or lost,” stated United Nations Secretary-General António Guterres at 

the 2019 C40 Mayors Summit. Cities account for approximately 67-72% of global CO2-equivalent emissions (Lwasa et al., 

2022), and this share will increase as the urban population is projected to rise from 4.2 billion in 2018 to 6.7 billion by 2050 

(United Nations, 2018). In response, many cities in Europe are committed to the EU’s climate targets to achieve net-zero 40 

emissions by mid-century (European Commission, 2019). Often, they have joined forces in their efforts through initiatives 

such as C40 Cities (C40 Cities, n.d) and the Covenant of Mayors (Covenant of Mayors, n.d.), as well as inclusion in the 

European Union’s mission “100 Climate-Neutral and Smart Cities by 2030” (European Commission, Directorate-General for 

Research and Innovation, 2024). Cities can achieve climate neutrality by ensuring they remove as much greenhouse gases as 

they emit. To reach this goal, they have drawn up and committed themselves to implement climate action plans with various 45 

mitigation efforts. However, many cities lack the detailed and timely information on their emission history and trends, which 

is necessary to evaluate effective action (Hsu, 2020). While various options exist for obtaining this information, verifying 

emissions always require actual observations. Determining the most effective strategies for these observations is an active area 

of research. 

 50 

Most cities that engage in emission monitoring use “bottom-up” approaches that usually do not include direct observations: 

activity data (such as traffic counts) are combined with emission factors (such as kgCO2/vehicle), and the sophistication of its 

implementation varies. Several public protocols are available for cities to develop self-reported inventories (SRIs), including 

those from ICLEI - Local Governments for Sustainability, and the Global Covenant of Mayors (ICLEI, n.d; Global Covenant 

of Mayors, 2023). The estimates resulting from using different protocols can show significant differences (e.g., Albarus et al., 55 

2023; Gurney et al., 2021; Gately and Hutyra 2017; Lian et al., 2023). For example, Gurney et al. (2021) found an average 

under-reporting of 18.3%, with a range from -145.5% to +63.5% when comparing the annual emission estimates for 48 U.S. 

cities with local SRIs to the common inventory “Vulcan”, which is consistent with observations (Gurney et al., 2020; Lauvaux 

et al., 2020; Basu et al., 2020). Uncertainties become even larger when estimating emissions at higher spatial and temporal 

resolutions (Super et al., 2021). For example, Lian et al. (2023, Fig. S10) showed particularly large discrepancies in individual 60 

1 km2 grid cells when comparing two emission inventories. 

 

In the “top-down” approach, various types of observations are used to verify and potentially refine the emission estimates. The 

observational methods available include—but are not limited to—measuring concentrations using sensors of varying accuracy 

and precision, observing total column concentrations through surface-based remote sensing and satellites, and measuring direct 65 
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fluxes with eddy covariance. However, these observations concern total CO2. To isolate the fossil fuel component, different 

types of observations should be used, including those of co-emitted trace gases such as CO (e.g. Turnbull et al., 2006; Nathan 

et al., 2018) and NOx (e.g. Lopez et al., 2013), co-located trace gases such as SF6 (e.g. Turnbull et al., 2006; Turnbull et al., 

2011), or isotopes like 14C in CO2 (e.g. Turnbull et al., 2006; Lopez et al., 2013; Miller et al, 2020). There are many different 

options for using observations to provide information on emissions, often synergistically to improve each other (Miles et al., 70 

2021). A comprehensive account of the options can be found in IG3IS “Urban Greenhouse Gas Emission Observation and 

Monitoring Good Research Practice Guidelines” (World Meteorological Organization, 2022). To produce spatially explicit 

maps with adjusted (bottom-up) emissions, inverse modelling is commonly applied. This approach relates the observations, or 

the observed upwind-downwind gradients (e.g. Bréon et al., 2015, Super et al., 2017; Staufer et al., 2016), to CO2 exchanges 

within the city using transport models. Next, the CO2 emissions are optimized to fit better with the observations. There are 75 

uncertainties also in the adjusted emissions, and a study period of at least a few years may be required to confirm a trend in 

the emissions with high confidence (Lauvaux et al., 2020). 

 

Several factors make monitoring CO2 emissions particularly challenging and prone to uncertainties. Based on a literature 

review of monitoring efforts in cities, we have identified four main areas of challenges. The first is to accurately represent the 80 

variability in boundary conditions, meaning the “background” concentration of air flowing into the city (the “background 

challenge”). This can significantly affect the results as the increase in concentrations from city emissions is relatively small, 

even for large cities. For example, in Indianapolis the enhancement is only about 3 ppm according to Lauvaux et al. (2016). 

Simply using models to represent the background can introduce errors that are larger than this enhancement, with Lian et al. 

(2021) reporting differences as large as 5 ppm for background concentration for Paris between two models. In addition, this 85 

may create seasonal biases (Sargent et al., 2018). The alternative is to use observations, which comes with the challenge of 

selecting spatially representative locations that have limited local flux contributions and well-understood atmospheric 

dynamics (Sargent et al., 2018). Seemingly homogeneous land cover classified as “cropland” may require extra attention, as 

the associated fluxes can vary significantly due to different management practices and crop rotation cycles. For example, in 

Miles et al., (2021) two background towers classified as “agricultural” gave significantly different values. 90 

 

A second challenge is correctly attributing the fossil fuel CO2 (ffCO2) component in observed total CO2 (the “biogenic 

challenge”). Correlated and co-emitted trace gases, as well as 14C in CO2, have already been mentioned as useful observations 

for this purpose. These observations can be used to optimize modelled prior biogenic fluxes in addition to the anthropogenic 

emissions (e.g. Miller et al., 2020). Historically, biogenic flux models have been unable to resolve urban vegetation and its 95 

associated fluxes. For example, Lian et al. (2023) found that their biogenic model only resolved the two largest parks within 

the Île-de-France region. They were not optimizing the biogenic fluxes and instead saw large adjustments to their prior ffCO2 

emissions, especially during the growing seasons. One alternative strategy has been to study only the dormant season and 

assume biogenic exchange to be insignificant (e.g. Lauvaux et al., 2016). Recent developments, including Urban-VPRM 
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(Hardiman et al., 2017) and the flux product used in this paper, can better resolve sub-kilometre patches of vegetation. Their 100 

improvement stem mainly from the use of high-resolution satellite products, but they are still parametrized with rural flux data 

and assumed to function in the same way also in urban area.  However, urban management practices have been shown to 

violate this assumption. For example, Smith et al. (2019) found urban trees to have growth rates up to four times compared to 

those observed in a nearby forest. A more recent study from Havu et al., 2024, describes a significant CO2 uptake for the city 

of Helsinki. This may potentially be attributed to higher ambient CO2 mole fractions, nutrient variability, and water availability 105 

from irrigation. However, there are also urban studies where lower CO2 uptake and decreased productivity are observed due 

to factors such as pollutant loads or poor soil conditions (Roman and Scatena 2011; Ainsworth et al. 2012). Correctly 

representing these responses in biogenic flux models is especially important when the biogenic component is large compared 

to anthropogenic emissions. Many studies have reported estimates for this, with the significance varying greatly depending on 

the city, season, and time of the day (e.g., Turnbull et al., 2015; Gurney et al., 2017; Sargent et al., 2018; Winbourne et al., 110 

2022). In studies focused on Boston by Sargent et al. (2018) and the Washington, DC/Baltimore area by Winbourne et al. 

(2022), the influence of biogenic fluxes to the city’s net flux is sometimes similar to that of the anthropogenic emissions. 

 

The third challenge is representing the urban carbon landscape in models (the “modelling challenge”). While the biogenic 

fluxes are discussed separately, additional challenges arise from the highly non-Gaussian variability of emissions across both 115 

time and space. About 50% of emissions in Europe stem from large point sources, which are required to report their emissions 

under the EU ETS (European Union Emissions Trading Scheme) and the E-PRTR (European Pollutant Release and Transfer 

Register). Although many of these facilities report hourly emissions with high accuracy, most models are unable to use facility-

specific data, relying instead on standard temporal profiles to scale annual totals. This can introduce large uncertainties, as 

demonstrated in studies by Super et al. (2020; 2021). These uncertainties are further increased close point sources, where it 120 

becomes difficult to represent the emission plume correctly due to the well-mixed assumption in most models (Lauvaux et al., 

2016). Furthermore, as most emissions from point sources are released from a stack, models need to incorporate realistic 

vertical profiles (Brunner et al., 2019; Maier et al., 2022). Another challenge for transport models in the urban environment is 

to accurately represent airflow, which is complicated by variable topography and tall urban structures. There are models that 

can do this with some accuracy (e.g. Berchet et al., 2017; Gaudet et al., 2017), but they are computationally expensive to run. 125 

For example, to overcome this challenge, Berchet et al. (2017) use a catalogue-based approach where a set of pre-computed 

steady-state flow and dispersion patterns is matched hourly to actual meteorological observations. These models require highly 

spatiotemporally resolved input data, including both biogenic fluxes and anthropogenic emissions. 

 

The fourth challenge within the scope of this paper is the “application-specific observational challenge”. Many challenges 130 

associated with implementing a basic observational network— such as high precision CO2 in-situ observations on tall towers, 

low- and mid-cost sensors, ground based total column FTIRs (Fourier Transform Infrared Spectroscopy), and eddy flux towers 

— are inherently intertwined with, and at least partially addressed, by the other discussed challenges. Here, we additionally 

https://doi.org/10.5194/essd-2025-63
Preprint. Discussion started: 14 April 2025
c© Author(s) 2025. CC BY 4.0 License.



5 

 

include the challenges associated with the use of the isotope 14C in CO2 and making satellite observations. 14C (radiocarbon), 

can be used to estimate the amount of ffCO2 in a sample. However, high costs limit the spatial and temporal coverage of 135 

radiocarbon observations, and therefore co-emitted species such as CO are often used to fill the gaps. Calibration with co-

located radiocarbon observations remains necessary. A key challenge with radiocarbon observations is accounting for the 

contribution to the atmospheric signal by radiocarbon emissions from nuclear facilities (e.g. Levin et al., 2003; Graven and 

Gruber, 2011; Bozhinova et al., 2014; Maier et al., 2023). Depending on the proximity of sampling locations to nuclear 

facilities, unaccounted emissions were estimated to mask about 15% of ffCO2 emissions in flask samples collected at seven 140 

Integrated Carbon Observation System (ICOS) stations (Maier et al., 2023). Even when considered in the ffCO2 estimates, 

obtaining the appropriate temporal resolution for these emissions is difficult, which increases uncertainties in 14C-based ffCO2 

estimates (Maier et al., 2023).  

 

Another type of observations considered within the scope the fourth challenge is column-averaged CO2 dry air mole fraction 145 

(XCO2) from satellites. These observations require a clear sky for accurate overpass measurements which can significantly 

limit the number of samples collected. For example, in a synthetic study for Berlin, Kuhlmann et al. (2019) found that only 

about 50 out of 365 plumes per year could be observed for CO2 emission monitoring purposes due to unfavourable 

meteorological conditions. Furthermore, the collected samples were higher (18%) than the daily means, requiring temporal 

profiles to correct for this sampling bias. However, as shown in Super et al. (2020), temporal profiles come with sometimes 150 

large additional uncertainties. Yet another challenge with satellite observations is that only large quantities of emissions 

provide a sufficient signal-to-noise ratio in the observed XCO2 enhancement over the city. Wang et al. (2020) suggested that 

emissions larger than 7.33 MtCO2 yr-1 (2 MtC yr-1) from a city or a power plant might be monitored from space with the CO2M 

instrument which has a planned launch in 2026. 

 155 

In this study, we quantify the relative difficulty posed by the four challenges by relating them to information gathered from 

relevant spatial data layers. This is done using various Geographical Information Science (GIS) techniques to condense 

information from multiple data layers into 18 city metrics. These metrics represent specific characteristics of the city, which 

are then weighted based on factors that are deemed to make emission monitoring challenging. The analyses are conducted 

systematically for 96 large cities in Europe. Maps showing structures of the cities with regards to the input datasets, as well as 160 

presentation of the results are published along with the study in so-called “mapbooks”. These may be exploited by any of the 

96 individual cities covered, or in national or pan-European monitoring strategies, such as targeted with ICOS (Integrated 

Carbon Observation System), satellite missions, and Copernicus’ monitoring and verification system (MVS). The full 

framework we created is called “CO2 Monitoring Challenges City Mapbooks v1.0” (CMC-CITYMAP) and also includes an 

interactive Jupyter notebook that can be downloaded or run on the ICOS Jupyter service. It allows users to update the analyse 165 

presented in this study and explore additional available metrics.   
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After an overview of our study area and the selected cities (Sect. 2.1), the development of the 18 metrics is outlined: Sect. 2.2 

explains our method of quantification of the metrics from the different data sources, while Sect. 2.3 connects the metrics to the 

four monitoring challenges. Sect. 2.4 is detailing the methodology of integration of the metrics and their analysis. The results 170 

are then presented in four sections. They begin with the characteristics of individual cities (Sect. 3.1), proceed to city 

comparisons (Sects. 3.2 and 3.3), and conclude with a cluster analysis focusing on the implications for a joint European urban 

monitoring capacity. A discussion of the results follows (Sect. 4), and the study is concluded in Sect. 6. Section 5 provides 

links to relevant resources for the study, including its associated Jupyter notebook tool and mapbooks. 

2 Methods 175 

City characteristics are derived from a set of spatial information layers. These come from different sources, are presented at 

various resolutions, and are analysed in different ways (see Table 1). The geographical extent of the individual cities, defined 

by their boundaries, are used to subset the layers. Next, statistical properties and derived indices are aggregated to comparable 

characteristics for the cities. In some cases, several layers are combined to arrive at the characteristics, such as to estimate the 

influence of biospheric activity on the cities’ total carbon budgets (see Sect. 2.2.3). When applicable, the selected time period 180 

for deriving a metric is limited to the dormant season and daytime. This helps reduce the influence of the biosphere, which is 

why inverse modelers often use observations collected during these times. The resulting characteristics are weighted to reflect 

their perceived relative importance in determining the difficulty of the individual challenges before being used in further 

analyses. 

2.1 Cities and their surroundings   185 

The borders representing our cities were downloaded from Eurostat’s GISCO service (Eurostat, 2024). These include only 

cities within the European Union and the definition of a city is provided by the OECD (Organisation for Economic Co-

operation and Development). Fine-grained population data was used to delineate urban centres, defined as contiguous areas of 

high population density (>1500 residents per km²) with a total population of at least 50,000 residents. In turn, the urban centres 

were associated with local administrative units, and if more than 50% of the population within a unit lived in the urban centre, 190 

the local administrative unit was defined as a city. In cases where adjacent local administrative units met the city criteria, they 

were merged to form a single city (Dijkstra et al., 2019). 

 

A total of 308 cities in the European Union fall within our study region spanning from 2ºW to 19ºE and from 47ºN to 56ºN. 

This is the area where one of our key data sources—the high-resolution emission data from TNO (the Dutch Organization for 195 

Applied Scientific Research)—is available. TNO is looking into the computational feasibility to extend the emissions data to 

cover the whole of Europe. At that point, our study region may also be expanded. For our study we have considered only cities 

with over 200,000 residents, resulting in 96 cities depicted in Fig. 1. Most are found in Germany (43), the Netherlands (15), 
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France (13) and Poland (9). The surroundings of the cities are considered when deriving some of the metrics and are defined 

as the area extending 20 km beyond the city boundaries. Additionally, the surrounding area in the dominant 30-degree wind 200 

direction sector is used to subset data for separately weighted metrics (see Table 1; Sect. 2.2.1). This puts higher significance 

on the characteristics of the area upwind of the city.  

 

 

Figure 1: Overview of the 96 characterised cities. The points represent cities, and their colours indicate which of the four challenges 205 
has the highest score. The size of the points increases with the anticipated overall challenge to monitor emissions in them after 

weighing the individual challenges equally (see Sect. 2.4.1). 

2.2 Extraction of city characteristics 

Table 1 lists all the input datasets along with brief information on how they are analysed to derive metrics for the cities, which 

are used in further analyses. Sections 2.2.1 through 2.2.6 focus on the datasets and how they are used to derive the metrics, 210 

particularly the more complex ones. Sections 2.3.1 through 2.3.4 motivate how the data layers are associated with the individual 

challenges to estimate their relative difficulty. 

 

Data (section) Resolution Reference 

year data 

Reference Metric Metric 

implication 

Challenge 

(weight) 
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Wind (2.2.1) 0.25° x 025° 2018 ERA5 reanalysis 

(Hersbach et al., 

2023) 

Share of wind from 

dominant wind 

direction (limited to 

>2 m s−1) 

Expected 

constancy of 

concentration 

footprint 

 

Background 

(30%)* 

Share of wind >2 m 

s−1 

Stagnant flow 

conditions 

Background 

(10%)* 

ffCO2 

emissions by 

sector and 

source type 

(2.2.2) 

1/60° x 

1/120° 

2018 TNO high 

resolution 

emission 

inventory 

(Kuenen et al., 

2022) 

Emission intensity 

buffer 

Non-city 

emissions within 

the expected 

footprint 

Background 

(20%) 

Emission intensity 

buffer dominant 

wind direction 

(limited to >2 m s−1) 

Background 

(20%) 

Share point source 

emission 

 Modelling 

(30%) 

Non-point-source 

emission spatial 

aggregation  

Expected ffCO2 

signal 

aggregation 

Modelling 

(20%) 

Land cover 

(2.2.3) 

10m x 10m 2021 ESA 

Worldcover v.2 

(Zanaga et al., 

2022) 

Vegetation 

heterogeneity  

Expected 

separation of 

biogenic signal 

Biogenic 

(30%) 

Share cropland in 

buffer 

Non-city 

cropland within 

the expected 

footprint 

Background 

(10%) 

Share cropland in 

buffer dominant 

wind direction 

(limited to >2 m s−1) 

Background 

(10%) 

Net Ecosystem 

Exchange 

(NEE) (2.2.3) 

500m x 

500m 

2018 VPRM 

(Mahadevan et 

al., 2008; 

Glauch, 2024) 

NEE relative to 

ffCO2 

Signal-to-noise 

potential of 

ffCO2 

Biogenic 

(40%) 

Average NEE  Biogenic 

(30%) 

Building 

height (2.2.4) 

100m x 

100m 

2018 GHSL: Global 

building heights 

(Pesaresi and 

Politis, 2023) 

Average building 

height 

Expected 

complexity of 

urban 

topography 

Modelling 

(20%) 

Landform 

(2.2.4) 

90m x 90 m 2015 Global SRTM 

Landforms 

(Theobald et al., 

2015) 

Share of flat areas Expected 

complexity of 

natural 

topography 

Modelling 

(15%)* 

Topography 

(2.2.4) 

25m x 25m 2011 EU-DEM v1.1 

(European 

Environment 

Agency, 2016) 

Topographic 

heterogeneity  

Modelling 

(15%) 

Emissions 

from nuclear 

facilities 

(2.2.5) 

Exact 

locations 

2021 Annual emission 

totals of 14CO2 

from nuclear 

facilities 

Potential nuclear 

masking (see Eq. 1) 

Expected 

interference of 

nuclear 

emissions when 

Observational 

(25%) 

Nuclear sample 

selection bias 

Observational 

(25%) 
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(Storm et al., 

2024b) 

sampling 

radiocarbon 

Cloud cover 

(2.2.6) 

0.25° x 025° 2018 ERA5 reanalysis 

(Hersbach et al., 

2023) 

Share of days with 

>30% cloud cover 

summer 

Expected 

potential for 

satellite 

observations 

Observational 

(25%) 

Share of days with 

>30% cloud cover 

winter 

Observational 

(25%) 

* Values are inverted to make a higher value mean a greater monitoring challenge (see Sect 2.4).  

Table 2: An overview of the different input data layers, the metrics they are used to derive, and the specific challenges they contribute 215 
to estimating. Their weights in their contributions to the challenges are provided as percentages. For the overall challenge, the four 

individual challenges are equally weighted. 

2.2.1 Wind 

For the metrics related to wind, data from European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 

(ERA5; Hersbach et al., 2023) have been considered. This includes the eastward and northward wind components at 10 meters. 220 

Data during daytime hours (09:00 to 18:00 UTC) in the winter months (January and February) of 2018 was used for the 

analyses. One of the derived metrics is the share of times the wind speed is above 2 m s−1 at the centroid of the city boundary. 

The 2 m s−1 threshold is also used to filter out low wind speeds when calculating the fraction of time the wind is from the 

dominant wind direction. 

 225 

The dominant wind direction is determined by aggregating the wind direction into 30-degree bins, where north is defined as 

ranging from 345 to 15 degrees. The bin found to represent the dominant wind direction for a city is used in several metrics,  

including estimating the emission intensity and share of cropland surrounding the city with an emphasize on the surrounding 

area in the dominant wind direction. 

2.2.2 Anthropogenic CO2 emissions 230 

The bottom-up emission inventory of CO2 used in this paper originates from TNO and includes emissions from different 

sectors distributed on a 1/60° x 1/120° degree grid (approx. 1 km2), or to their exact location in case of power plants and 

industrial facilities as derived from input datasets including E-PRTR (Kuenen et al., 2022, Table 1). Standard temporal profiles 

(updated from Denier van der Gon et al., 2011) are applied to distribute the annual emissions to hourly emissions using sector-

specific scaling factors for the individual months, days of the week, and hours of the day. These profiles are used to get data 235 

comparable to biogenic activity at specific times (see Sect. 2.2.3).  

 

In addition to metrics related to emission intensity and shares, there is a metric called “non-point-source emission spatial 

aggregation”. It is defined as the share of the city’s total area with the highest emission intensity that in combination hold 50% 
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of the total emissions from non-point sources. Higher values therefore mean that remaining emissions are more evenly 240 

distributed in the city. 

2.2.3 Biospheric CO2 exchange 

The biospheric CO2 fluxes were provided by Heidelberg University. Their calculation of NEE (Net Ecosystem Exchange) is 

based on a new implementation of the Vegetation Photosynthesis and Respiration Model (VPRM; Mahadevan et al., 2008). 

The implementation uses the pyVPRM tool (Glauch, 2024; https://github.com/tglauch/pyVPRM, last access 2024-10-22). 245 

VPRM is a simple diagnostic model that uses remote sensing and meteorological data to estimate the NEE at high 

spatiotemporal resolution. This implementation uses MODIS Terra MOD09A1 Collection 6.1 8-day data (Vermote, E., 2021) 

at 500 m resolution and hourly ERA5 meteorological data with a resolution of 0.25 degrees to retrieve the two-meter 

temperature and the solar irradiance (Hersbach et al., 2023). Snow, cloud, and data quality cuts are applied to remove pixels 

that are unusable for the detection of the plant phenology. In addition, land cover information from the Copernicus Land Cover 250 

Service is used at 100m resolution (Buchhorn et al., 2020). This implementation significantly improves the vegetation detection 

around cities compared to older versions that used the 1-km SYNMAP vegetation map (Jung et al., 2006). VPRM model 

parameters have been fitted using measurements from 73 eddy covariance stations across Europe from FLUXNET (Pastorello 

et al., 2020) and ICOS Ecosystem data (ICOS RI, ICOS ETC, 2023) between 2012 and 2022.  

 255 

For the metric related to the general biogenic activity in the city, average NEE at 15:00 UTC during winter (January and 

February) has been calculated. In the metric comparing it to the emissions, the ratio between average city-wide NEE and 

anthropogenic ffCO2 at 15:00 UTC in winter is used.  If this is a challenge during this time of year, when the biosphere is 

dormant, it will also be a challenge during the rest of the year. To estimate how coherent the biogenic active areas are within 

the city, an “edge-to-area ratio” for vegetation is applied. Based on the European Space Agency (ESA) Worldcover dataset v2 260 

(Zanaga et al., 2022), each 10m resolution cell attributed to vegetation (classes 10, 20, 30, 40, 90, and 100) is selected. “Edge” 

cells, defined as having one or more neighbouring cells that are not vegetated, are identified. The final metric is the percentage 

of the vegetated area that is classified as edge cells.  

2.2.4 Natural and built-up topography   

The landform dataset by Theobald et al. (2015) is used to calculate the share of flat areas (classes 24 and 34) within the city, 265 

while average building heights are derived from the dataset by Pesaresi and Politis (2023) which is on 100x100 meter 

resolution. Although the coarse average building height resolution does not capture the fine-grain variability between building 

structures, it is adequate for a city-wide average and indicates whether the city has many tall buildings. 

 

The spatial variability in the natural topography – the “spatial heterogeneity” metric – is captured by averaging the Terrain 270 

Ruggedness Index (TRI) for each 25m x 25m grid cell in the EU-DEM v1.1 (European Environment Agency, 2016). The TRI 
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is calculated using the methodology outlined in Riley et al. (1999): each cell's value is determined by taking the square root of 

the squared and averaged elevation differences with its eight adjacent cells.  

2.2.5 Radiocarbon (14CO2) 

When using 14CO2 observations to separate fossil and non-fossil contributions of urban CO2 enhancements, it is essential — 275 

particularly in Europe — to account for the impact of anthropogenic 14C emissions from nuclear facilities. Nuclear emissions 

enhance the 14C/C ratio masking a certain share of the 14C/C depletion due to the emission of ffCO2. This masking effect is on 

average 15% in flask samples collected at seven ICOS stations in the study by Maier et al. (2023). We apply their methodology 

to estimate nuclear contributions in the 96 cities, using a Jupyter notebook hosted at the ICOS Carbon Portal (Storm et al., 

2024a). To quantify nuclear masking, we use a modification of Equation 2.3 from Maier et al. (2023), where ffCO2 (Cff) is 280 

calculated using measured CO2 (Cmeas) and Δ14C (Δ14Cmeas), both with and without considering the nuclear contribution 

(Δ14Cnuc). We exclude the relatively insignificant respiration term which was also excluded in Levin et al. (2003): 

 

Δ14𝑚𝑒𝑎𝑠 =
𝐶𝑏𝑔∙Δ14𝑏𝑔+ 𝐶𝑚𝑒𝑎𝑠∙Δ14𝑛𝑢𝑐−1000∙𝐶𝑓𝑓 

𝐶𝑓𝑓+𝐶𝑏𝑔
                                                                                                                        (1) 

 285 

Δ14Cmeas is solved for based on modelled concentration timeseries calculated in the Jupyter notebook (Storm et al., 2024a; 

Karstens, 2023). The background concentrations (Δ14Cbg), however, were provided by the ICOS Radiocarbon Laboratory based 

on measurements from the Mace Head site in Ireland. Next, Eq. 1 is used once more to back-calculate what ffCO2 (Cff) would 

need to be if the nuclear contribution term (Δ14Cnuc) was not considered. The result is compared to the original modelled ffCO2 

component (Cff) to calculate the impact of nuclear masking. For the calculation of the final metric for each city, the average 290 

differences in percent for January and February at 12:00 and 15:00 UTC is calculated. 

 

Even when nuclear contributions are accounted for, they introduce additional uncertainties to the 14C-based ffCO2 estimates. 

These uncertainties arise primarily because the flat emission time profile, derived from the annual nuclear emissions totals, 

does not accurately reflect the timing of emissions (Maier et al., 2023). This is one of the motivations behind the current 295 

sampling strategy at the ICOS Radiocarbon Laboratory in Heidelberg: to avoid sampling when nuclear contribution exceeds 

0.5 permil. A second metric, "nuclear sample selection bias," calculates the extent of sampling bias that could occur in cities 

if this strategy is adopted. The modelled concentration timeseries (12:00 and 15:00 UTC, January and February of 2021) is 

subset to when the nuclear contribution is below 0.5 permil, according to the calculations in the Carbon Portal notebook (Storm 

et al., 2024a). The average of the ffCO2 components in the subset is compared to the average ffCO2 components for the whole 300 

timeseries, resulting in a difference in percent, which is our metric.  
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2.2.6 Cloud cover 

Total cloud cover is extracted from ECMWF ERA5 at 12:00 UTC during the winter (January and February) and summer (June 

and July) of year 2018 and are considered as separate metrics. Both summer and winter are included because cloud cover can 

exhibit significant seasonal differences depending on the city's location. 12:00 UTC was selected to match with the overpass 305 

time of the planned CO2M satellite mission (Kuhlmann et al., 2019). The 0.25 x 0.25 degree ERA5 data cell in which each 

city falls is used to extract a time series of cloud cover in the individual cities. In turn, a threshold of 30% cloud cover is used 

to calculate the proportion of days when samples will likely need to be discarded.  

2.3 Monitoring challenges 

2.3.1 Background challenge 310 

The challenge of determining the background concentration of CO2 upwind of the city combines wind data with both natural 

fluxes and anthropogenic emissions. Higher wind speeds result in larger influence regions (“footprints”), which reduce the 

impact of strong local sources that could interfere with the goal of obtaining spatially representative observations. This leads 

to generally better agreement between modeled and observed values and is one reason for excluding low-wind-speed 

observations from further analyses, such as in the inverse modeling studies over Paris by Bréon et al. (2015) (>2 m s−1) and 315 

Lian et al. (2023) (>3 m s−1). 

 

Wind direction is also relevant for obtaining spatially representative measurements, as fluxes in the dominant wind direction 

contribute most to the signal. Even at higher wind speeds, significant influence from large point sources or an especially active 

biosphere can still occur. To account for this, the emission intensity and the share of cropland surrounding the city are 320 

considered, with extra weight given to the area in the dominant wind direction. Cropland is singled out because of the added 

difficulty in correctly representing associated fluxes, which are influenced by crop cycles and management practices. A final 

consideration is that when the wind predominantly comes from a single direction, fewer background towers are needed to 

provide suitable upwind values for most observations. This makes the city less challenging to monitor.   

2.3.2 Biospheric challenge 325 

The carbon landscape of cities includes the natural exchange of CO2 through soils and the biosphere. Understanding the spatial 

and temporal distributions of these exchanges is necessary to isolate contribution of anthropogenic emissions from the observed 

CO2. To estimate how challenging this might be, the natural and anthropogenic fluxes as well as land cover are considered. 

Whereas models can be used to estimate the signal from the biosphere, these are associated with large uncertainties — 

especially in urban environments. Therefore, strong biospheric activity in the city is expected to add to this challenge. Further 330 

adding to the challenge is when the signal from the biosphere is large in comparison to that from the anthropogenic emissions, 

which decreases the signal-to-noise ratio (e.g. Sargent et al., 2018; Winbourne et al., 2022). If the city-wide biogenic signal is 
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coming from a coherent area, for example a large park, the challenge is reduced. In such cases, partitioning the observations 

is expected to be easier. This is mainly relevant when observing direct fluxes in a city, as the influence areas (“footprints”) are 

much smaller compared to influence areas of concentration measurements (Kljun et al., 2015). 335 

2.3.3 Modelling challenge 

For the challenge of modeling CO2 exchange within the city, both anthropogenic emissions and the city's natural and urban 

topography are considered. Point sources add complexity to this challenge. These sources emit large quantities of CO2 from 

high stacks and require high-resolution spatiotemporal data and models. Maier et al. (2022) demonstrated that resolving 

emissions from stacks, as opposed to ground-level sources, is important even in regional-scale modeling within 50 km of the 340 

emission source. Furthermore, large shares of emissions from point sources can obscure more distributed sources, making 

these harder to monitor. The distribution of remaining non-point source emissions is also relevant to the modelling challenge. 

Spatially concentrated emissions are generally easier to monitor because they limit the spatial scope of the monitoring network 

and increase the likelihood of detecting large emission signals. Larger emission signals improve the signal-to-noise ratio and 

extend the time before a monitoring network may detect the planned future decreasing signals from emissions (Albarus et al., 345 

2024). 

 

When it comes to the natural and urban topography, high shares of flat, uniform topography and low buildings reduce airflow 

complexity, which makes it easier to model the atmospheric transport. 

2.3.4 Observational challenge 350 

The metrics in this challenge relate to specific observational methods that are not covered in the other challenges: using 

radiocarbon to distinguish between fossil fuel and biogenic components and using satellites to make XCO2 observations. As 

mentioned in the introduction, there are additional observational methods and these may be preferred especially if the two 

discussed here prove challenging (World Meteorological Organization, 2022). A well-established issue in using radiocarbon 

to infer ffCO2 is radiocarbon emissions from nuclear facilities. "Potential nuclear masking" refers to the underestimation in 355 

ffCO2 signal the nuclear contribution is modelled to cause if ignored. It is called "potential" because it can be corrected for, 

but large uncertainties in the correction arise from the quality of emission data and uncertain transport modelling. Hence, the 

challenge increases with large potential nuclear masking. A preferred practice is to avoid sampling when nuclear contribution 

is expected to be significant. However, this can lead to sampling bias which is estimated for the "nuclear sample selection 

bias" metric. Ideally, the ffCO2 signal should be of similar magnitude in both avoided and collected samples. A greater 360 

difference means a greater sampling bias and adds to the observational challenge.  
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The metrics related to making observations using satellites is based on cloud cover. Summer and winter are considered as 

separate metrics as there can be large differences in cloud cover between the seasons. Higher shares of cloud cover will limit 

the samples from future satellite missions, thereby adding to the observational challenge.  365 

2.4 Integration and analysis of city characteristics 

The collected characteristics for the 96 cities are further analysed using statistical methods. These methods include the 

calculation of challenge scores for the individual challenges and an overall challenge score, along with associated similarity 

matrices. In turn, the similarity matrices facilitate similarity searches and cluster analyses. To prepare the collection to be 

combined, the selected characteristics are transformed using a min-max normalization between the 10-90 percentile (Eq. 2). 370 

The 10-90 percentile range is used to focus the analyses on the normal characteristic range of cities. 

 

The scaled value of characteristic 𝑗  for city 𝑖 (𝑥𝑖𝑗
𝑠𝑐𝑎𝑙𝑒𝑑) is calculated as: 

 

𝑥𝑖𝑗
𝑠𝑐𝑎𝑙𝑒𝑑 = max(0, min (1,

𝑥𝑖𝑗 −𝑞0,1
𝑗

𝑞0,9
𝑗

−𝑞0,1
𝑗 ))                                                                                                                                  (2) 375 

  

Where 𝑞0,1
𝑗

 and 𝑞0,9
𝑗

 represent the 10th and 90th percentiles of the 𝑥𝑖𝑗  values across all 96 cities. The min and max functions 

enforce a normalized range between 0 and 1. 

 

In most cases, a higher value of a metric can be interpreted as more challenging to monitor. However, the opposite is true for 380 

the metrics “Share of wind from dominant wind direction”, “Share of wind >2 m s−1”, and “Share of flat areas”. Therefore, 

resulting 𝑥𝑖𝑗
𝑠𝑐𝑎𝑙𝑒𝑑 are inverted — meaning a value of 0 becomes a value of 1 — to ensure consistency and allow for combination 

of metrics into scores for the different challenges. 

2.4.1 Challenge scores 

The scaled characteristics are combined to create individual and overall challenge scores. Before they are summarized, the 385 

weights listed in Table 1—assigned based on expert knowledge and consideration of our literature review— are applied to 

reflect each metric’s relative importance. This means the final scores are normalized to a range between 0 and 1, or 0 and 

100%, for minimum and maximum relative challenge. The minimum and maximum values can be achieved if a city 

consistently falls within the bottom 10th or top 90th percentile for all metrics. For the overall challenge score, which considers 

all metrics, the weights in Table 1 associated with the four individual challenges are divided by four before being summarized.  390 
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2.4.2 Similarity matrices 

The scaled and weighted characteristics are used to create similarity matrices based on Euclidean distances. The Euclidean 

distance, 𝐷, between two cities 𝑥 and 𝑦 is calculated as follows: 

 

𝐷(𝑥, 𝑦) =  √∑ (𝑥𝑖 − 𝑦𝑖 )
2𝑛

𝑖=1
                                                                                                                                             (3) 395 

 

Where 𝑥𝑖 and 𝑦𝑖  represent the 𝑖th scaled and weighted characteristic vectors of for cities 𝑥 and 𝑦 respectively.  

Similarity matrices created using Euclidean distances are suitable for further analyses, including hierarchical clustering, 

discussed next.  

2.4.3 Dendrogram cluster analysis 400 

Based on the similarity matrix given all available metrics (see Sect 2.4.2), a dendrogram is constructed. A dendrogram is a 

tree-like diagram that visually represents hierarchical clusters. It starts with each city represented as an individual branch. 

These branches are incrementally merged according to their similarity. There are different strategies for the merging, and we 

used one referred to as “Ward’s method” where the total within-cluster sum of squared Euclidean distances is minimized: 

 405 

∆𝑆𝑆(𝐶𝑖 , 𝐶𝑗) =  
|𝐶𝑖| ∙ |𝐶𝑗| 

|𝐶𝑖|+ |𝐶𝑗|
∙ 𝐷(�̅�𝑖 , �̅�𝑗  )

2
                                                                                                                                  (4) 

 

Where ∆𝑆𝑆 is the increase in the total within-cluster sum of squared distances, calculated for all possible combinations of two 

clusters, 𝐶𝑖  and 𝐶𝑗 , that can be merged. |𝐶𝑖| and |𝐶𝑗| represent the number of cities within each cluster. �̅�𝑖  and �̅�𝑗  are the 

centroids of these clusters. The Euclidean distances between the centroids are calculated using Eq. 3.  410 

 

As clusters are merged, the dendrogram moves towards forming a single branch (see Fig. 4). The later that two branches are 

merged, the more dissimilar the cities in the two branches are. Before merging, the branches can be viewed as individual 

clusters. Visual inspection of the dendrogram tree reveals five meaningful clusters, discussed further in the result section. 

3 Results 415 

The results begin with a section that highlights some of the individual characteristics of the cities and exemplifies what several 

of the input spatial data layers look like (see Fig. 2). Next, the challenge scores estimated from the combination of metrics are 

showcased, followed by their application in similarity searches. Finally, general similarities and dissimilarities among all cities 

are identified based on the cluster analysis result. There is a general focus on Paris, Munich, and Zurich as these are part of the 

evolving urban observation network within ICOS (https://www.icos-cp.eu/projects/icos-cities, last access: October 2024). 420 
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Similarity searches are employed to identify the potential for knowledge exchange between cities that face similar challenges 

to those within the network. Finally, the cluster analysis is used to identify cities that are dissimilar to those already in the 

network. These cities are argued as good candidates for additions to the ICOS Cities network. More details about other specific 

cities can be found in the resources published along with this study (see Sect. 5). 

3.1 General characteristics 425 

The 96 selected cities exhibit a wide range of values across the different characteristics with the 90th percentile values 

frequently being several times higher than the 10th percentile values (see Table 2). The span of 10th to 90th percentile ranges is 

the most extreme for metrics where emissions from point sources are part of the analysis: while many cities have none, some 

have large emitters that account for almost all the emissions in the city. The non-Gaussian distribution of large emission sources 

also contributes to a large variability of emission intensity in the surroundings of the cities, and partly also to major differences 430 

in ratio between NEE and anthropogenic CO2. Nuclear facilities are also unevenly distributed, with particularly large amounts 

of radiocarbon emitted from La Hague, located on the coast of Normandy, France. This creates significant “nuclear masking 

potential” in a handful of cities and results in a mean value that is as large as the 90th percentile. There are also significant 

differences in the sampling bias introduced by adopting the strategy of discarding samples with large nuclear contribution 

(“representation bias sample selection”): for the 90th percentile city, the modelled average fossil fuel enhancement is very 435 

different compared to the enhancement in the discarded (38%). This broadness of characteristics poses a range of very different 

challenges when it comes to emission monitoring in different cities, which confirms the primary motivation for this study. 

 

Metric Unit  Mean 10th percentile 90th percentile Std. 

Share of wind >2 m s−1 % 84 73 93 10 

Share of wind from dominant wind 

direction (limited to >2 m s−1) 

% 26 21 32 5 

Emission intensity buffer  tCO2 km-2 5264 750 14621 6899 

Emission intensity buffer dominant 

wind direction (limited to >2 m s−1) 

tCO2 km-2  5342 368 14994 12051 

Share of point source emission % 29 0 76 28 

Non-point-source emission spatial 

aggregation  

%  19 12 25 5 

Vegetation heterogeneity   %   24 14 34 7 

Share cropland buffer % 30 12 51 14 

Share cropland buffer dominant wind 

direction (limited to >2 m s−1) 

% 30 5 57 21 

NEE relative to emissions % 25 8 44 22 
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Average NEE µmol m-2 s-1 0.60 0.39 0.81 0.18 

Average building height m 7.2 5.5 8.9 1.2 

Share flat areas % 44 12 71 22 

Topographic heterogeneity m 2.6 1.1 5.1 1.8 

Nuclear masking potential % 20 4.6 19.7 108 

Nuclear sample selection bias  % 19 3.9 38 12 

Share days >30% clouds summer % 74 68 82 5.9 

Share days >30% clouds winter % 88 81 95 5.6 

 

Table 2: Averages, standard deviations, and 10th and 90th percentile values for the 18 metrics based on the 96 analysed cities. 440 
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Figure 2: Four of the input data layers subset for Zurich, showing (a) natural topography, (b) land cover, (c) biosphere net ecosystem 

exchange (NEE), and (d) total ffCO2. The largest green point in the CO2 emission map (d) represents Zurich’s airport and falls just 

outside the city border. The biogenic flux map (c) is based on an average from wintertime afternoons in 2018 (see Sect. 2.2.3). 
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Paris stands out for its relatively low citywide NEE compared to its large ffCO2 emissions which generally increase the signal-445 

to-noise ratio in ffCO2 emission estimates. This is seen in Fig. 3, which shows the 18 characteristics for the ICOS Cities pilot 

cities Munich, Zurich, and Paris. NEE in Paris is associated with vegetation that is fragmented, as indicated by the high 

vegetation heterogeneity metric. One implication is that this potentially makes it hard to find good locations to make eddy 

covariance measurements with limited influence of the urban biosphere. Finally, the average building height of 8.9 meters is 

in the 90th percentile and indicates a complex urban topography influencing the transport modelling of fluxes.  450 

 

Munich and Zurich both have strong dominant wind directions which is advantageous for representing the inflow boundary 

conditions with a limited network of tall tower stations measuring concentrations. However, compared to the other cities the 

wind speed is quite frequently below 2 m s⁻¹, which could be a challenge for collecting spatially representative up-wind 

observations. Both cities have low shares of emissions from point sources and are not expected to have a major problem with 455 

nuclear contribution in potential radiocarbon samples. Figure 2d shows the point sources in Zurich, but we note that the largest 

point source—Zurich’s airport—lies just outside the city boundaries and is therefore not included in the metric. Airports cannot 

be represented with take-off and landing information in the TNO emission inventory and are therefore rather turned into point 

sources which keeps their exact location. 

 460 

All three cities differ significantly when it comes to natural topography; Zurich stands out with only 6% flat areas and a high 

topographic variability, placing it in the 90th percentile in both these metrics (see Fig. 2a). Similar to the complex urban 

topography in Paris, this will make modelling in Zurich particularly challenging. Out of the three cities, Munich has the most 

advantageous natural and urban topography for monitoring ffCO2 emissions. 
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 465 

Figure 3: (a) The 18 metrics listed along the y-axis are linearly scaled between the values of the city at the 10th percentile and the city 

at the 90th percentile, out of the 96 cities (see Table 2). They are organized along the y-axis according to their association with the 

four discussed challenges. Higher values indicate greater challenges to monitor CO2 emissions. (b) Density plot showing where most 

cities fall in the linear scaling between the 10th and 90th percentile. 
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3.2 Challenge scores 470 

The combined challenge scores (see Sect. 2.4.1) range from 30% for Leiden, the Netherlands—indicating relatively low 

challenge—to 59% for Rouen, France as seen in Table 3. The biogenic and modelling challenges contribute the most to these 

scores for the two cities, respectively. There are no apparent spatial patterns regarding which challenge is estimated to have 

the highest scores for the cities, except in and around the Ruhr area in western Germany (see Fig. 1). Here, many cities can 

expect it to be challenging to determine background concentrations. A main driver is that many of these cities are close to each 475 

other, resulting in high emission intensity in their surroundings.  

 

Among the three target cities, Munich has a low overall challenge score (34%) close to that of Leiden. Compared to other 

cities, the scores associated with the biogenic challenge and modelling challenges are particularly low (see Table 3). Like for 

Paris, the ratio between NEE and ffCO2 emission is small, and for Munich the average NEE is also relatively low placing the 480 

city in the 10th percentile of the biospheric challenge (see Fig.3). While Zurich’s overall score is similar to Munich’s, the 

individual challenges are different, in particular for the modelling challenge where the city’s complex urban and natural 

topography stand out. Paris has the highest overall score of the three and stands out for its high score in the challenge of 

determining background concentrations. Paris is also in the third quartile when it comes to the observational and modelling 

challenges. Contributing factors include a high concentration of emissions from point sources and tall buildings, as well as 485 

high cloud cover especially in the summer, which likely reduces the number of useful satellite observations. The influence of 

nuclear emissions is the highest among the three pilot cities, but remains relatively low compared to all 96 cities considered. 

 

City 

 

Overall  Background Biogenic  Modelling Observational 

% Q and R* % Q and R* % Q and R* % Q and R* % Q and R* 

Munich, DE 34 Q1 (6) 31 Q2 (25) 30 Q1 (9) 26 Q1 (17) 50 Q3 (65) 

Zurich, CH 35 Q1 (9) 20 Q1 (5) 34 Q1 (19) 54 Q3 (70) 32 Q2 (26) 

Paris, FR 45 Q3 (65) 45 Q3 (61) 38 Q2 (29) 50 Q3 (57) 48 Q3 (61) 

Leiden, NL 30 Q1 (1) 32 Q2 (30) 33 Q1 (17) 30 Q2 (26) 24 Q1 (16) 

Rouen, FR 59 Q4 (96) 38 Q2 (41) 41 Q2 (35) 80 Q4 (96) 76 Q4 (92) 

Kassel, DE 40 Q2 (34) 14 Q1 (1) 50 Q3 (66) 56 Q4 (76) 41 Q2 (41) 

Groningen, NL 45 Q3 (49) 70 Q4 (96) 66 Q4 (85) 9 Q1 (5) 38 Q2 (28) 

Rennes, FR  40 Q2 (29) 42 Q3 (58) 18 Q1 (1) 40 Q2 (40) 57 Q4 (80) 

Gliwice, PL 42 Q2 (45) 27 Q1 (17) 76 Q4 (96) 18 Q1 (6) 47 Q3 (57) 

Almere, NL 32 Q1 (3) 39 Q2 (46) 49 Q3 (61) 1 Q1 (1) 39 Q2 (38) 

Rouen, FR 59 Q4 (96) 38 Q2 (41) 41 Q2 (35) 80 Q4 (96) 76 Q4 (92) 
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Düsseldorf, DE 39 Q2 (28) 64 Q4 (94) 39 Q2 (31) 51 Q3 (62) 0.

3 

Q1 (1) 

Dijon, FR 55 Q4 (95) 36 Q2 (36)  38 Q2 (28) 53 Q3 (69) 93 Q4 (96) 

* “Q & R” stands for Quartile and Rank.       

Table 3: Challenge scores for Paris, Munich, and Zurich along with the cities with the highest and lowest scores overall, and for each 490 
of the four challenges. The higher the score, the greater the anticipated challenge. 

3.3 Similarity searches 

Similarity matrices quantify the potential to transfer the CO2 monitoring experience gained in the three ICOS pilot cities, as 

exemplified for Munich. The potential is especially high for cities with high similarity scores to Munich, as listed in the first 

section of Table 4. Strategies used to overcome the challenge of determining background concentrations in Munich could also 495 

work in Linz (Austria), Mulhouse (France), and Augsburg (Germany). These are cities where, as in Munich, this challenge is 

relatively low (see Table 3). In practice, this could mean that only a few background towers are needed in the outskirts of the 

cities to get representative boundary conditions for most situations. The biogenic challenge in Munich is also low, as in similar 

cities including Brussels (Belgium), Nantes, and Lille (France). It will not be as difficult to separate the anthropogenic signal 

in these cities as it is in cities at the opposite end of the spectrum from Munich, such as Bratislava (Slovakia) and Erfurt and 500 

Hagen (Germany), which are listed as the most dissimilar to Munich in this aspect (see Table 4). 

 

Out of the 96 cities, Nuremberg is overall the city most like Munich, while the corresponding cities for Zurich and Paris are 

German cities Kassel and Berlin. Their monitoring strategies could look similar, but to overcome individual challenges it may 

still be useful to consider similarities in terms of the specific challenges. In terms of background challenges, Karlsruhe 505 

(Germany) is most like Zurich, and Charleroi (Belgium) to Paris. Charleroi is also most similar to Paris regarding biogenic 

challenges, and for Zurich, the corresponding city is Brussels (Belgium). Tables showing the top five similar cities to each of 

the 96 cities across the different challenges are available in the map books (see Sect. 5). 

 

Overall (%) Background (%) Biogenic (%) Modelling (%) 

 

Observational (%) 

Most similar 

Nuremberg, DE (92) Linz, AT (98) Brussels, BE (100) Tilburg, NL (97) Graz, AT (97) 

Vienna, AT (92) Mulhouse, FR (98) Nantes, FR (100) Angers, FR (96) 

 

Vienna, AT (97) 

Augsburg, DE (91) Augsburg, DE (96) Lille, FR (100) Orléans, FR (96) 

 

Bratislava, SK (95) 

Hanover, DE (91) Ostrava, CZ (95) The Hague, NL (100) Lens, FR (96) 

 

Gliwice, PL (94) 

Paris, FR (91) Zurich, CH (93) Antwerp, NL (100) 

Mönchengladbach, 

DE (95) 

 

Wrocław, PL (92) 
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Most dissimilar 

Haarlemmermeer, NL 

(80) 

Haarlemmermeer, 

NL (62) Bratislava, SK (42) Antwerp, NL (66) 

 

Nates, FR (56) 

Gdynia, PL (80) Groningen, NL (63) Erfurt, DE (42) Karlsruhe, DE (67) 

 

Rennes, FR (56) 

Odense, DE (81) Cologne, DE (64) Hagen, DE (42) 

Gelsenkirchen, DE 

(67) 

 

Lens, FR (57) 

Groningen, NL (81) The Hague, NL (65) Münster, DE (42) Linz, AT (67) 

 

Angers, FR (59) 

Alkmaar, NL (81) Rotterdam, NL (65) Saarbrücken, DE (42) Mannheim, DE (68) 

 

Reims, FR (59) 

 510 

Table 4: Similarity to Munich in terms of the four individual challenges, as well as overall similarity when the four challenges are 

combined. A higher value indicates greater similarity. 

3.4 Cluster analysis 

As a complement to the similarity searches, the result from a dendrogram cluster analysis shows the overall structure of 

similarities and dissimilarities across all 18 metrics (see Fig. 4). The matching of cities with the ICOS Cities pilot cities, as 515 

exemplified in Sect. 3.3, would improve for many of the 96 cities more clusters were represented by pilot cities. Hence, the 

dendrogram can be used to guide future network expansion. Munich and Paris both fall into the same cluster, C1, whereas 

Zurich is in cluster C4 (see Fig. 4). The hierarchical structure of the dendrogram shows that cities in cluster C3, followed by 

those in cluster C5, are the furthest away in the cluster space from the already represented clusters. A prominent city in cluster 

C3 is Copenhagen, Denmark. Its characteristics signature (see CMC-CITYMAP; Sect. 5) indicate that Copenhagen is expected 520 

to face a greater biogenic challenge compared to the pilot cities. Using complementary observations of correlate trace gases or 

isotopes to separate the ffCO2 signal will be especially important in these cities. However, the use of Δ14C would come with 

the additional uncertainty of accounting for nuclear emissions which has a significant influence in Copenhagen. This aspect of 

the city adds to its observational challenge. Both the background and the modelling challenges are relatively minor; the greatest 

challenges stem from the lack of a dominant wind direction and the average building height, which is high—though not as 525 

high as in Zurich and Paris.  

 

Bratislava, Slovakia, is a good candidate from cluster C5 and faces an even higher biogenic challenge than Copenhagen. 

However, the vegetation is relatively clustered in space which offers greater opportunity to make observations where the 

biogenic influence is limited. Bratislava also stands out for its high share of cropland surrounding the city, which complicates 530 

determination of representative background levels of CO2. A solution could be to have more background sites to capture the 

potential cropland flux heterogeneity. Cities in the final cluster, C2, are closer in the cluster space to cities in clusters that 

already have pilot cities (see Fig. 4) but could be prioritized next. 
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 535 

Figure 4: Dendrogram based on the similarity matrix created from all 18 metrics. The different colours represent five distinct 

clusters formed by drawing a horizontal line at the desired separation between the dendrogram branches. Paris (C1), Munich (C1), 

and Zurich (C4) are highlighted on the x-axis. 

4 Discussion 

Our study is sensitive to the selection of cities included in the analysis, and our focus is on a subregion in western Europe (see 540 

Fig. 1). If cities from a broader geographic area, spanning different climate zones, were included, the value ranges would likely 

change. For example, we would expect a wider range in the cloud cover metric, as some regions experience consistent cloudy 

conditions for part of the year. Large point sources in additional cities could raise the already high 90 th percentile values in 

related metrics. For example, 13 out of our 96 cities account for 75% of the point source emissions. This results in the skewed 

distribution seen in Fig. 3b, where a city like Paris—with 19% of emissions from point sources—receives a score of only 0.25 545 

out of 1, with 1 indicating the highest level of challenge. 

 

Another important aspect affecting the results is how our cities are defined geographically. Our city borders are based on the 

OECD definition of a city (Dijkstra et al., 2019), but these still rely on local administrative boundaries provided by the 

countries. Albarus et al. (2023) observe that the drawing of administrative boundaries sometimes results in cities being 550 

separated from large portions of emissions in their immediate surroundings. At other times, the boundaries may include 

extended areas of nonurban land cover. The former scenario places greater demands on CO2 emission monitoring to distinguish 

between emissions within and outside the borders (Albarus et al., 2023). This issue is partly addressed in our study as adjacent 

administrative units with high population densities form a single city (Dijkstra et al., 2019). However, significant nearby 
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emission sources may still be excluded, as seen in Zurich, where its airport falls just outside the city boundaries (see Fig. 2d). 555 

One option could be to consider emission intensity, rather than population, as a criterion for merging local administrative units 

in the OECD approach. This would preserve the advantage of integrating readily available statistics from local administrative 

units in future analyses. Another alternative could be to define city boundaries entirely based on the highest-resolution emission 

data available, which would create “carbon cities”. The latter approach would likely reduce the inclusion of large nonurban 

areas on the outskirts of cities, which particularly affects our urban vegetation-related metrics. For example, in Münster 560 

(Germany), 85% of the city area is covered by vegetation, and it was modelled to be a net source of CO2 equivalent to 48% of 

that from anthropogenic emissions during the winter afternoons. 

 

Our selection of metrics and their synthesis into four challenges is motivated by our review of literature covering emission 

monitoring efforts in cities. Some of these studies present results that can be discussed in the context of our findings. Previous 565 

studies in Paris shed light on what we refer to as the “background challenge”, where Paris scores in the 3 rd quartile. The 

relatively high score for Paris aligns with the findings of Sargent et al. (2018), who warned that boundary conditions can be 

particularly complex for continental cities due to long- and medium-range transport from both distant urban areas and biogenic 

sources. Lian et al. (2021) indeed found especially large discrepancies between different modelled boundary conditions when 

air was coming from continental Europe—up to 5 ppm between two products. This is significant, as the CO2 gradients between 570 

urban and suburban “background” towers in Paris were found to be 5-10 ppm in the summer and 20-30 ppm in the winter 

(Lian et al., 2023). In cities or regions with lower emission intensities than Paris, a bias in the boundary conditions would be 

even more impactful. For example, Lauvaux et al. (2012) found that a 0.55 ppm bias in the boundary condition resulted in a 

substantial impact on the posterior annual CO2 flux for Iowa and the surrounding states.  

 575 

Best practices proposed to mitigate the background challenge include using observations to find upwind-downwind gradients 

for inversions (e.g., Bréon et al., 2015; Staufer et al., 2016) or to constrain the modelled boundary conditions with observations 

(e.g., Sargent et al., 2018). Our metrics associated with the challenge offer an estimate for how spatially representative the 

observations may be by considering fluxes nearby the cities. Our consideration of wind speed and direction also ties to how 

many useful observations would be available for the different practices to limit the bias from boundary conditions: these 580 

aspects greatly reduced the number of samples that could be used in the inversion over Paris by Bréon et al. (2015). At the 

time, the background concentration was sampled from only two towers, and the wind speed threshold, like ours, was 2 m s -1. 

 

Regarding the “biogenic challenge”, Lian et al. (2023) highlighted their poorly resolved and non-optimized biogenic fluxes as 

a key area for improvement in future studies in Paris. It was pointed out as a likely contribution to the 20% increase in their 585 

optimized ffCO2 estimates compared to the emission inventory used as prior (April-June). Different borders for Paris (Lian et 

al., 2023; Fig. 1) are just one of the reasons we cannot directly compare our results, but based on our analysis the significance 

of the biosphere is not surprising: even in the winter afternoons the modelled net influence of the biosphere is 8% compared 
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to the ffCO2 emissions, and on summer afternoons the NEE is more than twice the magnitude of the anthropogenic emissions. 

If we instead consider borders roughly bounded by Le Bourget Airport in the north and Paris-Orly in the south, the 590 

corresponding values are 0.9% and 11%, which are more in line with the findings and adjustments to the ffCO2 emissions in 

Lian et al. (2023). It is also consistent with the work by Albarus et al. (2024), who observed much lower signal-to-noise ratios 

further away from the Paris city centre. However, even given the borders extending further into the area with a lower ffCO2 

signal-to-noise ratio, Paris has a low biogenic challenge score compared to most of our cities (2nd quartile).  Hence, even cities 

with low scores likely require the use of well-calibrated biospheric models, preferably optimized with complementary direct 595 

flux measurements and observations of correlated tracers and/or isotopes. This is quite likely to be preferred over the strategy 

to using observations only in the dormant season (e.g Lauvaux et al., 2016), as this comes with the additional uncertainties of 

using temporal profiles to scale the results to the rest of the year (Super et al., 2020; Super et al., 2021).  

 

For the "modelling challenge" most of the metrics are related to the complexity of natural and urban topography, which puts 600 

high demands on models to accurately resolve the airflow. This is the main driver for Zurich’s challenge score (3 rd quartile). 

However, the study by Berchet et al. (2017) conducted in Zurich shows good performance of their model, which they found 

to fulfil the requirements for air pollution modelling at most of the tested sites. Although the requirement for modelling CO2 

is higher, this is promising for cities’ abilities to overcome this challenge. The challenge for models to accurately represent 

nearby point source emissions is also well-established (e.g. Gaudet et al., 2017; Maier et al., 2022; Brunner et al., 2019). This 605 

challenge is compounded by large emission quantities stemming from these sources, which generally do not have point-source-

specific temporal profiles. However, hourly emissions are sometimes available, such as for many power plants throughout 

Europe, but most models cannot include them.  

 

The “application-specific observational challenge” currently combines metrics related to how well-suited cities are for making 610 

satellite and radiocarbon observations. The satellite section currently only includes cloud cover, as this is a crucial factor, 

affecting the number of expected samples (e.g. Kuhlmann et al., 2019). However, the relevance of satellite observations to our 

study is debatable, as only a limited number of cities (15) had emission quantities greater than 7.33 MtCO2 yr⁻¹ in 2018, which 

is the threshold suggested by Wang et al. (2020) for possible monitoring from space with the CO2M instrument. In the future, 

considering separate challenge scores for the different observational methods could be beneficial, allowing cities to evaluate 615 

their options independently. 

 

For the use of 14CO2 observations, the observational challenge is linked to how much contribution is expected from emissions 

from nuclear facilities. As in previous studies (e.g., Maier et al., 2023), we used a flat annual emission rate to simulate this, 

but improving the resolution of emission data is a priority at the ICOS Radiocarbon Laboratory. For example, knowing the 620 

timing of emissions from La Hague, France, would significantly enhance the feasibility of using radiocarbon in many cities 

beyond those closest to it. In 2021, La Hague accounted for 39% of the ¹⁴C in CO₂ emissions from European nuclear facilities 
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(Storm et al., 2024b), with large quantities released during short periods. Excluding La Hague’s emissions from our analyses, 

thereby simulating conditions between major emission events, reduces the nuclear masking potential’s 10 th to 90th percentile 

range from 5-20% to 3-11%. This highlights how our findings can guide and motivate future efforts and underscores the 625 

importance of updating our analyses as new data becomes available to the community. In addition, the nuclear challenge also 

depends on the 14CO₂ sampling strategy to be established within the city. When coordinated upwind and downwind sampling 

is employed, it can be assumed that most of the nuclear contribution will be captured in the up-and-downwind samples and is 

thus intrinsically corrected. 

 630 

Our focus has been on placing our results within the context of existing urban CO₂ monitoring studies, with particular attention 

to our three pilot cities. While it was not feasible nor possible to evaluate each individual metric and its true relevance to the 

challenges, our framework offers a foundation for future discussion and refinement as the research field progresses. Within 

ICOS Cities, it can support the project vision of developing “blueprints” for monitoring emissions in European cities. We 

recommend a modular approach for this, enabling cities to match with and adopt strategies from the pilot city that is most 635 

similar in ways relevant to the specific challenges. This approach is comparable to that of the “Twinning Learning Program”, 

part of the European Union’s mission “100 Climate-Neutral and Smart Cities by 2030”, where cities are paired based on shared 

barriers to achieving climate neutrality. From a pan-European monitoring strategy perspective, it is important to develop 

blueprints for strategies that are effective across the diverse characteristic signatures found in Europe. To support this, we 

identified Bratislava and Copenhagen as cities that are among the most distinct from the three cities currently in the ICOS 640 

Cities network, making them strong potential candidates for inclusion into the network. This assessment considered all metrics 

in combination. A modular approach could also be applied here, highlighting cities with high scores in the “biogenic 

challenge”—a challenge that is relatively minimal for the three pilot cities—as especially suitable candidates. Bratislava would 

again be among the recommended cities. All in all, there are numerous ways our framework can be used to create analyses 

like those presented in this study. Adjustments could be as minor as tweaking the weights of the 18 metrics, or as substantial 645 

as conducting entirely different analyses based on a new selection of metrics that are readily available for our cities but not 

used here. 

5 Data availability 

For the datasets used to derive the metrics in this paper, we refer to the cited references. The resulting collection of 18 metrics, 

as well as several metrics that were excluded from the study, is published along with the notebook tool (Storm et al., 2025a, 650 

https://doi.org/10.18160/P8SV-B99F). The tool, published as a Jupyter Notebook programmed in Python along with associated 

Python files, can also be run directly in the Interactive Computing Environment offered by the ICOS Carbon Portal. Individual 

PDFs, referred to as “mapbooks”, contain maps and analysis results cities; these are published as a collection and can be 

downloaded for the individual cities (Storm et al., 2025b, https://doi.org/10.18160/Z66D-05JT). 
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6 Conclusions 655 

This study demonstrates a methodology to understand and quantify the differences between cities and what these differences 

mean from a CO2 emission monitoring perspective. Our analysis of 96 cities in western Europe, that are analysed based on 18 

defined characteristics, is linked to four key CO2 monitoring challenges. We show how these challenges can be quantified to 

provide insights into the evolving network of urban observatories in Europe, with a focus on the ICOS Cities pilot cities: Paris, 

Munich, and Zurich. Their relationships to the other 93 cities are quantified to illustrate: 1) which monitoring challenges may 660 

be most significant, 2) which cities are similar and could benefit from knowledge exchange, and 3) which cities are dissimilar 

and may serve as candidate cities if there is funding to expand the ICOS Cities network. 

 

Overall, our results suggest that Zurich and Munich are relatively easy to monitor, with Zurich facing the greatest challenge in 

the “modelling challenge” and Munich in the “application-specific observational challenge”. Paris scores similarly to Zurich 665 

in the modelling challenge, but also has high scores in the other challenges except for the “biogenic challenge”. Cities similar 

to Munich are identified across the different challenges, suggesting, for instance, that monitoring strategies used to address the 

background challenge in Munich may also be effective in for example Linz (Austria). Paris, Munich, and Zurich fall into two 

out of five clusters when considering all 18 metrics. Copenhagen and Bratislava are highlighted as prominent cities in clusters 

that are currently not represented by the ICOS Cities network. These could be interesting candidates if an extension to the pilot 670 

network is considered. 

 

We have only highlighted a few examples from the results, which represent just a subset of the potential analyses that can be 

drawn from the framework we have developed. We refer to Sect. 5 for how to access results for specific cities of interest or to 

conduct new analyses based on a different set of characteristics.  675 
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