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Abstract. For the development of a joint European capacity for monitoring CO2 emissions, we created the framework “CO2 14 

Monitoring Challenges City Mapbooks v1.0” (CMC-CITYMAP). It includes a Jupyter notebook tool (Storm et al., 2025a, 15 

https://doi.org/10.18160/P8SV-B99F) which we use to characterise and cluster cities based on aspects relevant for different 16 

CO2 monitoring challenges. These include: 17 

 18 

(a) determining background levels of CO2 inflow into a city (“background challenge”). 19 

(b) separating the anthropogenic emissions from the influence of the biosphere (“biogenic challenge”).  20 

(c) representing spatially and temporally non-uniform emissions in models (“modelling challenge”).  21 

(d) implementing observation strategies not covered by the other challenges (“application-specific observational challenge”).  22 

 23 

We provide and discuss the challenges on a city-by-city basis. Our primary focus, however, is on the relationships between 24 

cities: best practices and lessons learned from monitoring CO2 emissions in one city can be transferred to other cities with 25 

similar characteristics. Additionally, we identify cities with characteristics that strongly contrast with those of cities with 26 

existing urban monitoring systems.  27 

 28 

While the notebook tool includes 308 cities, this paper focuses on the results for 96 cities with more than 200,000 inhabitants. 29 

We place a particular emphasis on Paris, Munich, and Zurich. These cities are pilot cities for the Horizon 2020-funded project 30 

Pilot Application in Urban Landscapes (“ICOS Cities”), where a range of urban CO2 monitoring methods are being 31 

implemented and assessed. According to our analyses, Zurich—and Munich especially—should be less challenging to monitor 32 
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than Paris. Examining the challenges individually reveals that the most significant challenge relative to the other cities is the 33 

“modelling challenge” (c) for Zurich and Paris. Complex urban topography adds to the challenge for both cities, and in Zurich, 34 

the natural topography further amplifies the challenge. Munich has low scores across all challenges, but with the greatest 35 

challenge anticipated from the “application-specific observational challenge” (d). Overall, Bratislava (Slovakia) and 36 

Copenhagen (Denmark) are among the most distant from Paris, Munich, and Zurich in our dendrogram resulting from 37 

numerical cluster-analysis. This makes them strong candidates for inclusion in the ICOS Cities network, as they would 38 

potentially provide the most information on how to monitor emissions in cities that face different challenges. 39 

1 Introduction 40 

“Cities are where the climate battle will largely be won or lost”, stated United Nations Secretary-General António Guterres at 41 

the 2019 C40 Mayors Summit. In 2020, cities accounted for approximately 67-72% of global CO2-equivalent emissions based 42 

on consumption-based accounting (Lwasa et al., 2022). This share will only increase as the urban population is projected to 43 

rise from 4.2 billion in 2018 to 6.7 billion by 2050 (United Nations, 2018). In response, many cities in Europe are committed 44 

to the EU’s climate targets to achieve net-zero emissions by mid-century (European Commission, 2019). Often, they have 45 

joined forces in their efforts through initiatives such as C40 Cities (C40 Cities, n.d.) and the Covenant of Mayors (Covenant 46 

of Mayors, n.d.), as well as inclusion in the European Union’s mission “100 Climate-Neutral and Smart Cities by 2030” 47 

(European Commission, Directorate-General for Research and Innovation, 2024). Cities can achieve climate neutrality by 48 

ensuring they remove as much greenhouse gases as they emit. To reach this goal, they have drawn up and committed 49 

themselves to implement climate action plans with various mitigation efforts. However, many cities lack the detailed and 50 

timely information on their emission history and trends, which is necessary to evaluate effective action (Hsu, 2020). While 51 

various options exist for obtaining this information, verifying emissions always requires actual observations. Determining the 52 

most effective strategies for these observations is an active area of research. 53 

 54 

Most cities that engage in emission monitoring use “bottom-up” approaches that usually do not include direct observations: 55 

activity data (such as traffic counts) are combined with emission factors (such as kgCO2/vehicle km (vkm)), and the 56 

sophistication of its implementation varies. Several public protocols are available for cities to develop self-reported inventories 57 

(SRIs), including those from ICLEI - Local Governments for Sustainability, and the Global Covenant of Mayors (ICLEI, n.d.; 58 

Global Covenant of Mayors, 2023). The estimates resulting from using different protocols can show significant differences 59 

(e.g., Albarus et al., 2023; Gurney et al., 2021; Gately and Hutyra 2017; Lian et al., 2023). For example, Gurney et al. (2021) 60 

found an average under-reporting of 18.3% when comparing the annual emission estimates for 48 U.S. cities with local SRIs 61 

to the common inventory “Vulcan”. The latter has shown consistency with observations in previous studies (Gurney et al., 62 

2020; Lauvaux et al., 2020; Basu et al., 2020). The range of under- or over-reporting spanned from -145.5% to +63.5%. 63 

Uncertainties become even larger when estimating emissions at higher spatial and temporal resolutions (Super et al., 2021). 64 
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For example, Lian et al. (2023, Fig. S10) showed particularly large discrepancies in individual 1 km2 grid cells when comparing 65 

two emission inventories. 66 

 67 

In the “top-down” approach, various types of observations are used to verify and potentially refine the emission estimates. The 68 

observational methods available include—but are not limited to—measuring concentrations using sensors of varying accuracy 69 

and precision, observing total column concentrations through surface-based remote sensing and satellites, and measuring direct 70 

fluxes with eddy covariance. However, these observations concern total CO2 and to isolate the fossil fuel component, different 71 

types of observations should be used. Options include measurements of co-emitted trace gases such as CO (e.g. Turnbull et 72 

al., 2006; Nathan et al., 2018) and NOx (e.g. Lopez et al., 2013); co-located trace gases such as SF6 (e.g. Turnbull et al., 2006; 73 

Turnbull et al., 2011); and isotopes like 14C in CO2 (e.g. Turnbull et al., 2006; Lopez et al., 2013; Miller et al, 2020). There are 74 

several options for using observations to provide information on emissions, often synergistically to improve each other (Miles 75 

et al., 2021). A comprehensive account of the options can be found in IG3IS “Urban Emission Observation and Monitoring 76 

Good Research Practice Guidelines” (World Meteorological Organization, 2025). To produce spatially explicit maps with 77 

adjusted (bottom-up) emissions, inverse modelling is commonly applied. This approach relates the observations, or the 78 

observed upwind-downwind gradients (e.g. Bréon et al., 2015, Super et al., 2017; Staufer et al., 2016), to CO2 exchanges 79 

within the city using transport models. Next, the CO2 emissions are optimised to fit better with the observations. There are 80 

uncertainties also in the adjusted emissions, and a study period of at least a few years may be required to confirm a trend in 81 

the emissions with high confidence (Lauvaux et al., 2020). 82 

 83 

Several factors make monitoring CO2 emissions particularly challenging and prone to uncertainties. Based on our experiences 84 

and a literature review of monitoring efforts in cities, we have identified four main areas of challenges. The first is to accurately 85 

represent the variability in boundary conditions, meaning the “background” concentration of air flowing into the city (the 86 

“background challenge”). This can significantly affect the results as the increase in concentrations from city emissions is 87 

relatively small, even for large cities. For example, in Indianapolis the enhancement at the downwind site was only about 3 88 

ppm in October 2012 (averaged over 17-22UTC), according to Lauvaux et al. (2016). Using only models to represent the 89 

background can introduce errors that are larger than this enhancement, with Lian et al. (2021) reporting differences as large as 90 

5 ppm for background concentration for Paris between two models. In addition, this may create seasonal biases (Sargent et al., 91 

2018). The alternative is to use observations, which comes with the challenge of selecting spatially representative locations 92 

that have limited local flux contributions and well-understood atmospheric dynamics (Sargent et al., 2018). Seemingly 93 

homogeneous land cover classified as “cropland” may require extra attention, as the associated fluxes can vary significantly 94 

due to different management practices and crop rotation cycles. For example, in Miles et al., (2021) two background towers 95 

classified as “agricultural” gave significantly different values. 96 

 97 
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A second challenge is correctly attributing the fossil fuel CO2 (ffCO2) component in observed total CO2 (the “biogenic 98 

challenge”). Correlated and co-emitted trace gases, as well as 14C in CO2, have already been mentioned as useful observations 99 

for this purpose. They can be used to optimise modelled prior biogenic fluxes in addition to the anthropogenic emissions (e.g. 100 

Miller et al., 2020). Historically, biogenic flux models have been unable to resolve urban vegetation and its associated fluxes. 101 

For example, Lian et al. (2023) found that their biogenic model only resolved the two largest parks within the Île-de-France 102 

region. They were not optimising the biogenic fluxes and instead saw large adjustments to their prior ffCO2 emissions, 103 

especially during the growing seasons. One alternative strategy has been to study only the dormant season and assume biogenic 104 

exchange to be insignificant (e.g. Lauvaux et al., 2016). Recent developments, including Urban-VPRM (Hardiman et al., 2017) 105 

and pyVPRM (Glauch et al., 2025), can better resolve sub-kilometre patches of vegetation. Their improvements stem mainly 106 

from the use of high-resolution satellite products, but they are still parametrised with rural flux data and assumed to function 107 

in the same way also in urban areas. However, urban management practices have been shown to violate this assumption. For 108 

example, Smith et al. (2019) found that urban trees have growth rates up to four times compared to those observed in a nearby 109 

forest. A more recent study from Havu et al. (2024), describes a significant CO2 uptake for the city of Helsinki. This may be 110 

attributed to higher ambient CO2 mole fractions, nutrient variability, and water availability from irrigation. However, there are 111 

also urban studies where lower CO2 uptake and decreased productivity are observed due to factors such as pollutant loads or 112 

poor soil conditions (Roman and Scatena 2011; Ainsworth et al. 2012). Correctly representing these responses in biogenic flux 113 

models is especially important when the biogenic component is large compared to anthropogenic emissions. Many studies 114 

have reported estimates for the biogenic component, with its relative contribution varying to large extent depending on the 115 

city, season, and time of the day (e.g., Turnbull et al., 2015; Gurney et al., 2017; Sargent et al., 2018; Winbourne et al., 2022). 116 

Studies in Boston (Sargent et al., 2018) and the Washington, DC/Baltimore area (Winbourne et al., 2022) found that the 117 

influence of biogenic fluxes on the city’s net flux was sometimes comparable to that of anthropogenic emissions. 118 

 119 

The third challenge is representing the urban carbon landscape in models (the “modelling challenge”). While the biogenic 120 

fluxes are discussed separately, additional challenges arise from the highly non-Gaussian variability of emissions across both 121 

time and space. About 50% of fossil fuel related CO2 emissions in Europe stem from large point sources, which are required 122 

to report their emissions under the EU ETS (European Union Emissions Trading Scheme) and the E-PRTR (European Pollutant 123 

Release and Transfer Register). Although many of these facilities report hourly emissions with high accuracy, most models 124 

are unable to use facility-specific data. Instead, they rely on standard temporal profiles to scale annual totals. This can introduce 125 

large uncertainties, as demonstrated in studies by Super et al. (2020; 2021). These uncertainties further increase near point 126 

sources, where representing the emission plume accurately is challenging due to the well-mixed assumption in most models 127 

(Lauvaux et al., 2016). Furthermore, as most emissions from point sources are released from a stack, models need to 128 

incorporate realistic vertical profiles (Brunner et al., 2019; Maier et al., 2022). Another challenge for transport models in the 129 

urban environment is to accurately represent airflow, which is complicated by variable topography and tall urban structures. 130 

There are models that can do this with some accuracy (e.g. Berchet et al., 2017; Gaudet et al., 2017), but they are 131 
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computationally expensive to run. For example, Berchet et al. (2017) use a catalogue-based approach where a set of pre-132 

computed steady-state flow and dispersion patterns is matched hourly to actual meteorological observations. These models 133 

require highly resolved spatiotemporal input data, including both biogenic fluxes and anthropogenic emissions. 134 

 135 

The fourth challenge within the scope of this paper is the “application-specific observational challenge”. Many challenges 136 

associated with implementing a basic observational network are inherently intertwined with the other discussed challenges. 137 

These include high precision CO2 in-situ observations on tall towers, low- and mid-cost sensors, ground based total column 138 

FTIRs (Fourier Transform Infrared Spectroscopy), and eddy flux towers. In this fourth challenge, we include the challenges 139 

associated with the use of the isotope 14C in CO2 and making satellite observations. 14C (radiocarbon), can be used to estimate 140 

the amount of ffCO2 in a sample. However, high costs limit the spatial and temporal coverage of radiocarbon observations, 141 

and therefore co-emitted species such as CO are often used to fill the gaps. Calibration with co-located radiocarbon 142 

observations remains necessary. A key challenge with radiocarbon observations is accounting for the contribution to the 143 

atmospheric signal by radiocarbon emissions from nuclear facilities (e.g. Levin et al., 2003; Graven and Gruber, 2011; 144 

Bozhinova et al., 2014; Maier et al., 2023). The impact of these emissions depends on the proximity of sampling locations to 145 

nuclear facilities. Unaccounted emissions were estimated to mask about 15% of ffCO2 emissions in flask samples collected at 146 

seven Integrated Carbon Observation System (ICOS) stations in the study by Maier et al. (2023). Even when considered in the 147 

ffCO2 estimates, obtaining the appropriate temporal resolution for these emissions is difficult. This increases uncertainties in 148 

14C-based ffCO2 estimates (Maier et al., 2023).  149 

 150 

Another type of observation considered within the scope of the fourth challenge is column-averaged CO2 dry air mole fraction 151 

(XCO2) from satellites. These observations require a clear sky for accurate overpass measurements which can significantly 152 

limit the number of samples collected. For example, in a synthetic study for Berlin, Kuhlmann et al. (2019) found that out of 153 

the 365 days in 2012, only 50 appeared suitable to observe the CO2 plume from space due to unfavourable meteorological 154 

conditions during the other 315 days. Furthermore, the emissions during the sample collection were 18% higher than the annual 155 

total for Berlin, requiring temporal profiles to correct for this sampling bias. However, as shown in Super et al. (2020), temporal 156 

profiles come with sometimes large additional uncertainties. Yet another challenge with satellite observations is that only large 157 

emissions provide a sufficient signal-to-noise ratio in observed XCO2 enhancement. Wang et al. (2020) suggested that 158 

emissions from a city or a power plant larger than 7.33 MtCO2 yr-1 (2 MtC yr-1) could potentially be constrained between 8:30 159 

and 11:30 using the CO2M instrument, which has a planned launch in 2026. The threshold corresponds to a posterior 160 

uncertainty smaller than 20% for more than 10 times within a year. 161 

 162 

In this study, we quantify and compare the challenges for 96 cities by relating them to information gathered from relevant 163 

spatial data layers. This is done using various Geographical Information Science (GIS) techniques to condense information 164 

from multiple data layers into 18 city metrics. These metrics represent specific characteristics of the city and are weighted 165 
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based on factors that are deemed to make emission monitoring challenging. Each city is presented in individual “mapbooks”, 166 

which show their results and associated maps. These mapbooks can be used by stakeholders or local experts, as well as in 167 

national or pan-European monitoring strategies, including ICOS (Integrated Carbon Observation System) and Copernicus’ 168 

monitoring and verification system (MVS). The full framework of CMC-CITYMAP also includes an interactive Jupyter 169 

notebook that can be downloaded or run on the ICOS Jupyter service. It allows users to update the analyses presented in this 170 

study and explore additional available metrics.  171 

 172 

After an overview of our study area and selected cities (Sect. 2.1), Sect. 2.2 explains how the spatial information layers are 173 

reduced to metrics. Sect. 2.3 connects the metrics to the four monitoring challenges and Sect. 2.4 is detailing how they are 174 

integrated into challenge scores and used in further analyses. Next, the results are presented in four sections. They begin with 175 

the characteristics of individual cities (Sect. 3.1), proceed to city comparisons (Sects. 3.2 and 3.3), and conclude with a cluster 176 

analysis focusing on the implications for a joint European urban monitoring capacity. A discussion of the results follows (Sect. 177 

4), and the study is concluded in Sect. 6. Section 5 provides links to relevant resources for the study, including its associated 178 

Jupyter notebook tool and mapbooks. 179 

2 Methods 180 

Spatial information layers representing city characteristics relevant to the monitoring challenges have been selected. These 181 

layers come from various sources and are available at different resolutions (see Table 1). City borders are used to subset the 182 

layers, and statistical properties or derived indices are then used to generate comparable metrics for each city. In some cases, 183 

multiple layers are combined to create a single metric, such as the ratio between biogenic uptake and anthropogenic emissions 184 

(see Sect. 2.2.3). When applicable, the selected time period is the dormant season during daytime, which helps reduce the 185 

influence of the biosphere and usually means well-mixed conditions.  186 

2.1 Cities and their surroundings   187 

The city boundaries used in this study were downloaded from Eurostat’s GISCO service (Eurostat, 2024). These include only 188 

cities within the European Union, and the delineation method follows the definition provided by the OECD (Organisation for 189 

Economic Co-operation and Development). Fine-grained population data was used to delineate urban centres, defined as 190 

contiguous areas of high population density (>1500 residents per km²) with a total population of at least 50,000 residents. In 191 

turn, the urban centres were associated with local administrative units, and if more than 50% of the population within a unit 192 

lived in the urban centre, the local administrative unit was defined as a city. In cases where adjacent local administrative units 193 

met the city criteria, they were merged to form a single city (Dijkstra et al., 2019). 194 

 195 



7 

 

A total of 308 cities in the European Union fall within our study region spanning from 2ºW to 19ºE and from 47ºN to 56ºN. 196 

This is the area where one of our key data sources—the high-resolution emission data from TNO (the Dutch Organization for 197 

Applied Scientific Research)—is available. For our study we have considered only cities with over 200,000 inhabitants, 198 

resulting in the 96 cities depicted in Fig. 1. Most are found in Germany (43), the Netherlands (15), France (13) and Poland (9). 199 

The surroundings of the cities are defined as the buffer area extending 20 km beyond the city boundaries and is used for some 200 

of the metrics. Additionally, the surrounding buffer area in the dominant 30-degree wind direction is used to subset data for 201 

separately weighted metrics (see Table 1; Sect. 2.2.1). This puts higher significance on the characteristics of the area upwind 202 

of the city.  203 

 204 

 205 

Figure 1: Overview of the 96 characterised cities. The points represent cities, and their colours indicate which of the four challenges 206 
has the highest score. The size of the points increases with the anticipated overall challenge to monitor emissions in them after 207 
weighing the individual challenges equally (see Sect. 2.4.1). 208 

2.2 Extraction of city metrics 209 

Table 1 lists all the input datasets along with brief information on how they are analysed to derive metrics for the cities, which 210 

are used in further analyses. The datasets are available for the entire region, which is a prerequisite for making comparisons 211 

across the 96 cities. Alternative datasets and derived metrics—which were excluded from this study—are also available in the 212 
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notebook tool (Storm et al., 2025a). Sections 2.2.1 through 2.2.6 focus on the datasets and how they are used to derive the 213 

metrics. Sections 2.3.1 through 2.3.4 motivate how the data layers are associated with the individual challenges to estimate 214 

their relative difficulty. Finally, sections 2.4.1 through 2.4.4 outlines how the metrics are integrated and analysed. This includes 215 

how the weights (column “Challenge (weight)” in Table 1) are applied to the individual metrics, and how the metrics are 216 

adjusted so that higher values consistently correspond to a greater monitoring challenge before they are combined.  217 

 218 

Data (section) Resolution Reference 

year data 

Reference Metric Metric 

implication 

Challenge 

(weight) 

Wind (2.2.1) 0.25° x 0.25° 2018 ERA5 reanalysis 

(Hersbach et al., 

2023) 

Fraction of time 

wind from the 

dominant wind 

direction (limited to 

wind speed >2 m 

s
−1

) 

Expected 

constancy of 

concentration 

footprint 

 

Background 

(30%)* 

Fraction of time 

with wind speed >2 

m s
−1

 

Stagnant flow 

conditions 

Background 

(10%)* 

ffCO2 

emissions by 

sector and 

source type 

(2.2.2) 

1/60° x 

1/120° 

2018 TNO high 

resolution 

emission 

inventory 

(Kuenen et al., 

2022) 

Emission intensity 

buffer 

Non-city 

emissions within 

the expected 

footprint 

Background 

(20%) 

Emission intensity 

buffer dominant 

wind direction 

(limited to >2 m 

s
−1

) 

Background 

(20%) 

Share point source 

emission 

 Modelling 

(30%) 

Non-point-source 

emission spatial 

aggregation  

Expected ffCO2 

signal 

aggregation 

Modelling 

(20%) 

Land cover 

(2.2.3) 

10m x 10m 2021 ESA 

Worldcover v.2 

(Zanaga et al., 

2022) 

Vegetation 

heterogeneity  

Expected 

separation of 

biogenic signal 

Biogenic 

(30%) 

Share cropland in 

buffer 

Non-city 

cropland within 

the expected 

footprint 

Background 

(10%) 

Share cropland in 

buffer dominant 

wind direction 

(limited to >2 m 

s
−1

) 

Background 

(10%) 

Net Ecosystem 

Exchange 

(NEE) (2.2.3) 

500m x 

500m 

2018 VPRM 

(Mahadevan et 

al., 2008; 

Glauch et al., 

2025) 

NEE relative to 

ffCO2 

Signal-to-noise 

potential of 

ffCO2 

Biogenic 

(40%) 

Average NEE  Biogenic 

(30%) 

Building 

height (2.2.4) 

100m x 

100m 

2018 GHSL: Global 

building heights 

Average building 

height 

Expected 

complexity of 

Modelling 

(20%) 
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(Pesaresi and 

Politis, 2023) 

urban 

topography 

Landform 

(2.2.4) 

90m x 90 m 2015 Global SRTM 

Landforms 

(Theobald et al., 

2015) 

Share of flat areas Expected 

complexity of 

natural 

topography 

Modelling 

(15%)* 

Topography 

(2.2.4) 

25m x 25m 2011 EU-DEM v1.1 

(European 

Environment 

Agency, 2016) 

Topographic 

heterogeneity  

Modelling 

(15%) 

Emissions 

from nuclear 

facilities 

(2.2.5) 

Exact 

locations 

2021 Annual emission 

totals of 14CO2 

from nuclear 

facilities 

(Storm et al., 

2024b) 

Potential nuclear 

masking (see Eq. 1) 

Expected 

interference of 

nuclear 

emissions when 

sampling 

radiocarbon 

Observational 

(25%) 

Nuclear sample 

selection bias 

Observational 

(25%) 

Cloud cover 

(2.2.6) 

0.25° x 025° 2018 ERA5 reanalysis 

(Hersbach et al., 

2023) 

Share of days with 

>30% cloud cover 

summer 

Expected 

potential for 

satellite 

observations 

Observational 

(25%) 

Share of days with 

>30% cloud cover 

winter 

Observational 

(25%) 

*For these contributions, a lower value means a greater monitoring challenge (see Sect 2.4).  219 

Table 1: An overview of the different input data layers, the metrics they are used to derive, and the specific challenges they contribute 220 
to estimating. Their weights in their contributions to the challenges are provided as percentages. The weights within each category 221 
sum to 100%. For the overall challenge, the four individual challenges are equally weighted (see Sect. 2.4.1). 222 

2.2.1 Wind 223 

For the metrics related to wind, eastward and northward windspeed components at ten meters from European Centre for 224 

Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5; Hersbach et al., 2023) have been used. Data during 225 

daytime hours (09:00 to 18:00 UTC) in the winter months (January and February) of 2018 was used for the analyses. One of 226 

the derived metrics is the “Fraction of time with wind speed above 2 m s
−1

” at the centroid of the city boundary. The 2 m s
−1

 227 

threshold is also used to filter out low wind speeds when calculating the fraction of time the wind is from the dominant wind 228 

direction as well as in a couple of other metrics (see Table 1). 229 

 230 

The dominant wind direction is determined by aggregating the wind direction into 30-degree bins, where north is defined as 231 

ranging from 345 to 15 degrees. The bin found to represent the dominant wind direction for a city is used in several metrics 232 

(see Table 1) to place emphasis on the surrounding area upwind of the city. 233 

2.2.2 Anthropogenic CO2 emissions 234 

The bottom-up CO2 emission inventory used in this paper originates from TNO. It includes emissions from different sectors 235 

distributed on a 1/60° × 1/120° grid (approximately 1 km2). Emissions from power plants and industrial facilities are instead 236 
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assigned to their exact locations, as derived from input datasets including E-PRTR (Kuenen et al., 2022, Table 1). Standard 237 

temporal profiles (updated from Denier van der Gon et al., 2011) are applied to distribute the annual emissions into hourly 238 

values. This is done using sector-specific scaling factors for individual months, days of the week, and hours of the day. These 239 

profiles are used to get data comparable to biogenic activity at specific times (see Sect. 2.2.3).  240 

 241 

All metrics related strictly to anthropogenic CO2 emissions use the annual total for the year 2018. “Emission intensity buffer” 242 

uses emissions per km2 in the 20-kilometer buffer area around the cities, with an additional metric, “Emission intensity buffer 243 

dominant wind direction”, which highlights the upwind buffer area. “Share point source emissions” is the percentage of a 244 

city’s total emissions that can be attributed to point sources.  245 

 246 

In addition to metrics related to emission intensity and shares, there is a metric called “non-point-source emission spatial 247 

aggregation”. It is defined as the share of the city’s total area with the highest emission intensity that in combination holds 248 

50% of the total emissions from non-point sources. Higher values therefore mean that remaining emissions are more evenly 249 

distributed in the city. 250 

2.2.3 Biospheric CO2 exchange 251 

As a representation of biospheric CO₂ exchange, calculations of NEE (Net Ecosystem Exchange) provided by Heidelberg 252 

University were used. The calculations are based on a new implementation of the Vegetation Photosynthesis and Respiration 253 

Model (VPRM; Mahadevan et al., 2008) in the pyVPRM tool (Glauch et al., 2025). VPRM is a simple diagnostic model that 254 

uses remote sensing and meteorological data to estimate the NEE at high spatiotemporal resolution. This implementation uses 255 

MODIS Terra MOD09A1 Collection 6.1 8-day data (Vermote, E., 2021) at 500 m resolution and hourly ERA5 meteorological 256 

data with a resolution of 0.25 degrees to retrieve the two-meter temperature and the solar irradiance (Hersbach et al., 2023). In 257 

addition, land cover information from the Copernicus Land Cover Service is used at 100m resolution (Buchhorn et al., 2020).  258 

 259 

For the metric related to the general biogenic activity in the city, average NEE at 15:00 UTC during winter (January and 260 

February) has been calculated. In the metric comparing NEE and emissions, the ratio between average city-wide NEE and 261 

anthropogenic ffCO2 at 15:00 UTC in winter is used. If it is a challenge during this time of year, when the biosphere is dormant, 262 

it will also be a challenge during the rest of the year. To estimate how coherent the biogenic active areas are within the city, 263 

an “edge-to-area ratio” for vegetation is applied. Based on the European Space Agency (ESA) Worldcover dataset v2 (Zanaga 264 

et al., 2022), each 10m resolution cell attributed to vegetation (classes 10, 20, 30, 40, 90, and 100) is selected. “Edge cells” are 265 

defined as cells with at least one non-vegetated neighbouring cell. The final metric represents the fraction of vegetation cells 266 

that are classified as edge cells.  267 

 268 
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The ESA Worldcover dataset is also used to include cropland information (class 40) in the metrics “share cropland buffer” and 269 

“share cropland in dominant wind direction”. In both cases, 20-kilometer buffers around the cities are applied (see Sect. 2.1). 270 

For “share cropland buffer”, the full buffer area is used. For “share cropland in dominant wind direction”, only the buffer in 271 

the dominant wind direction is considered to emphasise the upwind area. 272 

2.2.4 Natural and built-up topography   273 

The landform dataset by Theobald et al. (2015) is used to calculate the share of flat areas (classes 24 and 34) within the city, 274 

while average building heights are derived from the dataset by Pesaresi and Politis (2023). The building heights dataset has a 275 

100m x 100m resolution, which is deemed adequate for a city-wide average and indicates whether the city has many tall 276 

buildings. 277 

 278 

The spatial variability in the natural topography—the “Topographic heterogeneity” metric—is captured by averaging the 279 

Terrain Ruggedness Index (TRI) for each 25m x 25m grid cell in the EU-DEM v1.1 (European Environment Agency, 2016). 280 

The TRI is calculated using the methodology outlined in Riley et al. (1999): each cell's value is determined by taking the 281 

square root of the squared and averaged elevation differences with its eight adjacent cells.  282 

2.2.5 Radiocarbon (14CO2) 283 

When using 14CO2 observations to separate fossil and non-fossil contributions of urban CO2 enhancements, it is essential to 284 

account for the impact of anthropogenic 14C emissions from nuclear facilities. Nuclear emissions enhance the 14C/C ratio 285 

masking part of the 14C/C depletion due to the emission of ffCO2. This masking effect was on average 15% in flask samples 286 

collected at seven ICOS stations in the study by Maier et al. (2023). A Jupyter notebook hosted at the ICOS Carbon Portal 287 

(Storm et al., 2024a) is used to quantify nuclear masking using a modification of their Equation 2.3: ffCO2 (Cff) is calculated 288 

using measured CO2 (Cmeas) and Δ14C (Δ14
meas), with and without considering the nuclear contribution (Δ14

nuc). As in Levin et 289 

al. (2003), the relatively insignificant respiration term is excluded: 290 

 291 

𝛥14𝑚𝑒𝑎𝑠 =
𝐶𝑏𝑔∙𝛥14𝑏𝑔+ 𝐶𝑚𝑒𝑎𝑠∙𝛥14𝑛𝑢𝑐−1000∙𝐶𝑓𝑓 

𝐶𝑓𝑓+𝐶𝑏𝑔
                                                                                                                        (1) 292 

 293 

Δ14
meas is solved for based on modelled concentration timeseries calculated in the Jupyter notebook (Storm et al., 2024a; 294 

Karstens, 2023). The background concentrations (Δ14
bg) are provided by the ICOS Radiocarbon Laboratory based on 295 

measurements from the Mace Head site in Ireland. Next, Eq. 1 is used once more to back-calculate what ffCO2 (Cff) would 296 

need to be if the nuclear contribution term (Δ14
nuc) was not considered. The result is compared to the original modelled ffCO2 297 

component (Cff) to calculate the impact of nuclear masking. For the calculation of the final metric for each city, the average 298 

differences in percent for January and February at 12:00 and 15:00 UTC are calculated. 299 
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 300 

Even when nuclear contributions are accounted for, they introduce additional uncertainties to the 14C-based ffCO2 estimates. 301 

This is primarily because the emission time profile—assumed to be flat and derived from annual nuclear emissions totals—302 

does not accurately reflect the timing of emissions (Maier et al., 2023). This limitation motivates the current sampling strategy 303 

at the ICOS Radiocarbon Laboratory in Heidelberg: to avoid sampling when nuclear contribution exceeds 0.5 permil. A second 304 

metric, “nuclear sample selection bias”, calculates the degree of sampling bias that could occur in cities if this observational 305 

monitoring strategy is adopted. The modelled concentration timeseries (12:00 and 15:00 UTC, January and February of 2021). 306 

It is subset to when the nuclear contribution is below 0.5 permil, based on calculations in the Carbon Portal notebook (Storm 307 

et al., 2024a). The metric is calculated as the percentage difference between the average ffCO₂ components in the subset and 308 

the average for the entire time series.  309 

2.2.6 Cloud cover 310 

Total cloud cover is extracted from ECMWF ERA5 at 12:00 UTC during the winter (January and February) and summer (June 311 

and July) of 2018. Winter and summer are included as separate metrics because cloud cover can exhibit significant seasonal 312 

variability depending on the city's location. 12:00 UTC was selected to match with the overpass time of the planned CO2M 313 

satellite mission (Kuhlmann et al., 2019). The 0.25 x 0.25 degree data cell in which each city falls is used to extract a time 314 

series of cloud cover in the individual cities. In turn, a threshold of 30% cloud cover is used to calculate the proportion of days 315 

when samples will likely need to be discarded.  316 

2.3 Monitoring challenges 317 

2.3.1 Background challenge 318 

The challenge of determining the background concentration of CO2 upwind of the city is connected to wind patterns, natural 319 

fluxes and anthropogenic emissions. Higher wind speeds result in larger influence regions (“footprints”) and reduce the impact 320 

of strong local sources within the background region. This leads to more spatially representative background observations and 321 

is one reason for excluding low-wind-speed observations from further analyses, such as in the inverse modelling studies over 322 

Paris by Bréon et al. (2015) (>2 m s
−1

) and Lian et al. (2023) (>3 m s
−1

). 323 

 324 

Wind direction is also relevant for obtaining spatially representative observations, as fluxes in the dominant wind direction 325 

contribute most to the signal. Even at higher wind speeds, significant influence from large point sources or an especially active 326 

biosphere can still occur. To account for this, the emission intensity and the share of cropland surrounding the city are 327 

considered, with extra weight given to the area in the dominant wind direction. Cropland is singled out because of the added 328 

difficulty in correctly representing associated fluxes, which are influenced by crop cycles and management practices. A final 329 

consideration is wind direction. When it predominantly comes from one direction, fewer background towers are needed to 330 
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provide suitable upwind values for most observations. This makes the city less challenging to monitor in terms of the 331 

background challenge.  332 

2.3.2 Biospheric challenge 333 

The carbon landscape of cities includes the natural exchange of CO2 through soils and the biosphere. Understanding the spatial 334 

and temporal distributions of these exchanges is necessary to isolate the contribution of anthropogenic emissions from observed 335 

CO₂. To estimate how challenging this might be, the natural and anthropogenic fluxes as well as land cover are considered. 336 

Whereas models can be used to estimate the signal from the biosphere, these estimates are associated with large uncertainties—337 

especially in urban environments. Therefore, strong biospheric activity in the city is expected to add to this challenge. Further 338 

adding to the challenge is when the signal from the biosphere is large in comparison to that from the anthropogenic emissions, 339 

as the signal-to-noise ratio then decreases (e.g. Sargent et al., 2018; Winbourne et al., 2022). If the city-wide biogenic signal 340 

originates from a coherent area, such as a large park, the challenge is reduced because partitioning the observations becomes 341 

easier. This is mainly relevant when observing direct fluxes in a city, as the influence areas (“footprints”) are much smaller 342 

compared to influence areas of concentration measurements (Kljun et al., 2015). 343 

2.3.3 Modelling challenge 344 

For the challenge of modelling CO2 exchange within the city, both anthropogenic emissions and the city's natural and urban 345 

topography are considered. Especially point sources add complexity to this challenge. They emit large quantities of CO2 from 346 

high stacks and require high-resolution spatiotemporal data and models. Maier et al. (2022) demonstrated that resolving 347 

emissions from stacks, as opposed to ground-level sources, is important even in regional-scale modelling within 50 km of the 348 

emission source. Furthermore, large shares of emissions from point sources can obscure more distributed sources, making 349 

these harder to monitor. The distribution of remaining non-point source emissions is also relevant to the modelling challenge. 350 

Spatially concentrated emissions are generally easier to monitor because they limit the spatial scope of the monitoring network 351 

and increase the likelihood of detecting large emission signals. Larger emission signals enhance the signal-to-noise ratio and 352 

thereby delay the time at which a monitoring network no longer can detect the—hopefully—decreasing emissions (Albarus et 353 

al., 2024). 354 

 355 

When it comes to the natural and urban topography, high shares of flat, uniform topography and low buildings reduce airflow 356 

complexity. This, in turn, makes it easier to model atmospheric transport. 357 

2.3.4 Observational challenge 358 

The metrics in this challenge relate to specific observational methods that are not covered in the other challenges: using 359 

radiocarbon to distinguish between fossil fuel and biogenic components and using satellites to make XCO2 observations. As 360 

mentioned in the introduction, there are additional observational methods, and these may be preferred especially if the two 361 
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discussed here prove challenging (World Meteorological Organization, 2025). A well-established issue in using radiocarbon 362 

to infer ffCO2 is radiocarbon emissions from nuclear facilities. “Potential nuclear masking” refers to the underestimation in 363 

ffCO2 signal the nuclear contribution is modelled to cause if ignored. It is called "potential" because it can be corrected for, 364 

but large uncertainties in the correction arise from the quality of emission data and uncertain transport modelling. Hence, the 365 

challenge increases with the magnitude of the potential nuclear masking. A preferred practice is to avoid sampling when the 366 

nuclear contribution is expected to be significant. However, this can lead to sampling bias which is estimated for the “nuclear 367 

sample selection bias” metric. Ideally, the ffCO2 signal should be of similar magnitude in both avoided and collected samples. 368 

A greater difference means a greater sampling bias and adds to the observational challenge.  369 

 370 

The metrics related to making observations using satellites is based on cloud cover. Summer and winter are considered as 371 

separate metrics as there can be large differences between the seasons. Higher shares of cloud cover will limit the samples 372 

from future satellite missions, thereby adding to the observational challenge.  373 

2.4 Integration and analysis of city characteristics 374 

The collected metrics for the 96 cities are further analysed using statistical methods. These methods include the calculation of 375 

challenge scores and similarity matrices for the four individual challenges and an overall challenge score. In turn, the similarity 376 

matrices facilitate similarity searches and cluster analyses.  377 

 378 

To prepare the collection to be combined, the selected metrics are transformed using a min-max normalisation between the 379 

10-90 percentile. All cities in the 10th percentile are assigned the value of zero, and those beyond the 90th percentile are 380 

assigned the value of one. The remaining cities are scaled linearly between zero and one. The 10-90 percentile range is used 381 

to focus the analyses on the typical range of values across cities. Without normalisation, a large outlier could receive a value 382 

of one, while all other cities would get values close to zero. Even after scaling, the metric “Emission intensity buffer” still 383 

shows a strong disparity: the city in the 90th percentile has a value 17 times greater than that in the 10th percentile (see Table 384 

2). The effect is evident in Fig. 3b, where the distribution is strongly skewed.  385 

 386 

In most cases, a higher value of a metric can be interpreted as more challenging to monitor. However, the opposite is true for 387 

the metrics “Fraction of time wind from the dominant wind direction (limited to wind speed >2 m s
−1

)”, “Fraction of time 388 

wind speed >2 m s
−1

, and “Share of flat areas”. Therefore, the scaled values are inverted to ensure all metrics are interpreted 389 

in the same way before being combined into challenge scores. 390 
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2.4.1 Weights  391 

To reflect that some metrics are expected to contribute more to the challenges than others, they are weighted as specified in 392 

Table 1. For the overall challenge, the scores of each of the four identified challenges are weighted equally. The individual 393 

weights within a challenge are assigned based on our literature review (as presented in Sect. 1) and experience in the field. A 394 

sensitivity analysis was performed to assess how the overall challenge score changed under different weighting schemes. 395 

Naturally, cities whose metrics almost exclusively indicate that they are either relatively hard or relatively easy to monitor will 396 

show more robust challenge scores. Once more data becomes available to link the different metrics to how well an area can be 397 

monitored, weights may be assigned in a more quantitative way. However, it should always be possible to adjust choices to 398 

accommodate the different needs of stakeholders and to recognize the value of local expert knowledge. 399 

2.4.2 Challenge scores 400 

The scaled and weighted characteristics are combined to create individual and overall challenge scores which range between 401 

zero and one, or 0 and 100%, for minimum and maximum relative challenge. The minimum and maximum values can be 402 

achieved if a city consistently falls within the bottom 10th or top 90th percentile for all metrics. 403 

 404 

2.4.3 Similarity matrices 405 

In addition to creating challenge scores, the scaled and weighted characteristics are used to generate similarity matrices based 406 

on Euclidean distances. The Euclidean distance, 𝐷, between two cities 𝑥 and 𝑦  is calculated as follows: 407 

 408 

𝐷(𝑥, 𝑦) =  √∑ (𝑥𝑖 − 𝑦𝑖 )
2𝑛

𝑖=1                                                                                                                                                 (2) 409 

 410 

Where 𝑥𝑖 and 𝑦𝑖  represent the 𝑖th scaled and weighted metric scores of for cities 𝑥 and 𝑦 respectively. Distances are computed 411 

for all city pairs, resulting in 96×96 matrices for each of the individual challenges as well as for the overall challenge. 412 

  413 

Similarity matrices created using Euclidean distances are suitable for further analyses, including hierarchical clustering, 414 

discussed next.  415 

2.4.4 Dendrogram cluster analysis 416 

Based on the similarity matrix for the overall challenge (see Sect 2.4.3), a dendrogram is constructed. A dendrogram is a tree-417 

like diagram that visually represents hierarchical clusters. It starts with each city represented as an individual branch. The 418 

branches are incrementally merged according to their similarity. There are different strategies for this merging, and we use a 419 

strategy called “Ward’s method” where the total within-cluster sum ∆𝑆𝑆 of squared Euclidean distances is minimized: 420 

 421 
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∆𝑆𝑆(𝐶𝑖 , 𝐶𝑗) =  
|𝐶𝑖| ∙ |𝐶𝑗| 

|𝐶𝑖|+ |𝐶𝑗|
∙ 𝐷(𝑥𝑖 , 𝑥𝑗  )

2
                                                                                                                                  (3) 422 

 423 

Where ∆𝑆𝑆 is calculated for all possible combinations of two clusters, 𝐶𝑖 and 𝐶𝑗, that can be merged. |𝐶𝑖| and |𝐶𝑗| represent 424 

the number of cities within each cluster. 𝑥𝑖 and 𝑥𝑗 are the centroids of these clusters. The Euclidean distances between the 425 

centroids are calculated using Eq. 2.  426 

 427 

As clusters are merged, the dendrogram moves towards forming a single branch (see Fig. 4). The later that two branches are 428 

merged, the more dissimilar the cities in the two branches are. Before merging, the branches can be viewed as individual 429 

clusters. Visual inspection of the dendrogram tree reveals a set of meaningful clusters, discussed further in the result section. 430 

3 Results 431 

The results begin with a section that highlights some of the individual characteristics of the cities and exemplifies what several 432 

of the input spatial data layers look like (see Fig. 2). Next, the challenge scores estimated from the combination of metrics are 433 

presented, followed by their application in similarity searches. Finally, general similarities and dissimilarities among all cities 434 

are identified based on the cluster analysis result. There is a general focus on Paris, Munich, and Zurich as these are part of the 435 

evolving urban observation network within ICOS (https://www.icos-cp.eu/projects/icos-cities, last access: October 2024). 436 

Similarity searches are employed to identify the potential for knowledge exchange between cities that face similar challenges 437 

to those within the network. Finally, the cluster analysis is used to identify cities that are dissimilar to those already in the 438 

network. These cities are argued as good candidates for additions to the ICOS Cities network. More details about other specific 439 

cities can be found in the resources published along with this study (see Sect. 5). 440 

3.1 General characteristics 441 

The 96 selected cities exhibit a wide range of values across the different characteristics with 90th percentile values that are 442 

often several times higher than the 10th percentile values (see Table 2). The 10th-to-90th percentile span is most extreme for 443 

metrics that include emissions from point sources. While many cities have none, some have large emitters that account for 444 

almost all the emissions in the city. Furthermore, the non-Gaussian distribution of large emission sources contributes to high 445 

variability of emission intensity in the surroundings of the cities and partly explains major differences in the ratio between 446 

NEE and anthropogenic CO2. Nuclear facilities are also unevenly distributed, with particularly large amounts of radiocarbon 447 

emitted from La Hague, located on the coast of Normandy, France. This creates significant “nuclear masking potential” in a 448 

handful of cities that are close and results in a mean value that is as large as the 90th percentile. There are also significant 449 

differences in the sampling bias introduced by adopting the strategy of discarding samples with large nuclear contributions. 450 

https://www.icos-cp.eu/projects/icos-cities
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The large differences between cities lead to very different challenges when it comes to emission monitoring, confirming the 451 

primary motivation for this study. 452 

 453 

Metric Unit  Mean 10th percentile 90th percentile Std. 

Fraction of time wind speed >2 m s
−1

 

% 84 73 93 10 

Fraction of time wind from dominant 

wind direction (limited to wind speed 

>2 m s
−1

) 

% 26 21 32 5 

Emission intensity buffer  tCO2 km-2 5264 750 14621 6899 

Emission intensity buffer dominant 

wind direction (limited to wind speed 

>2 m s
−1

) 

tCO2 km-2  5342 368 14994 12051 

Share of point source emission % 29 0 76 28 

Non-point-source emission spatial 

aggregation  

%  19 12 25 5 

Vegetation heterogeneity   %   24 14 34 7 

Share cropland buffer % 30 12 51 14 

Share cropland buffer dominant wind 

direction (limited to wind speed >2 m 

s
−1

) 

% 30 5 57 21 

NEE relative to emissions % 25 8 44 22 

Average NEE µmol m-2 s-1 0.60 0.39 0.81 0.18 

Average building height m 7.2 5.5 8.9 1.2 

Share flat areas % 44 12 71 22 

Topographic heterogeneity m 2.6 1.1 5.1 1.8 

Nuclear masking potential % 20 4.6 19.7 108 

Nuclear sample selection bias  % 19 3.9 38 12 

Share days >30% clouds summer % 74 68 82 5.9 

Share days >30% clouds winter % 88 81 95 5.6 

 454 

Table 2: Averages, standard deviations, 10th- and 90th-percentile values for the 18 metrics based on the 96 analysed cities. 455 
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 456 

Figure 2: Four of the input data layers subset for Zurich, showing (a) natural topography, (b) land cover, (c) biosphere net ecosystem 457 
exchange (NEE), and (d) total ffCO2. The largest green point in the CO2 emission map (d) represents Zurich’s airport and falls just 458 
outside the city border. The biogenic flux map (c) is based on an average from wintertime afternoons in 2018 (see Sect. 2.2.3). 459 
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Figure 3 shows all 18 metrics for the ICOS Cities pilot cities, Munich, Zurich, and Paris. Paris stands out among the other 460 

cities for its relatively low citywide NEE relative to its large ffCO₂ emissions, which makes emission monitoring easier. 461 

However, the NEE in Paris is associated with fragmented vegetation, as indicated by the high vegetation heterogeneity metric. 462 

One implication is that signals from emissions are mixed with signals from biogenic activity, making it difficult to isolate 463 

them. Another factor indicating that Paris is relatively challenging to monitor is its average building height of 8.9 meters, 464 

which falls in the 90th percentile. This complex urban topography complicates the transport modelling. 465 

 466 

Munich and Zurich both have strong dominant wind directions. This is advantageous for representing the inflow boundary 467 

conditions with a limited network of tall tower stations measuring concentrations. However, compared to the other cities the 468 

wind speed is quite frequently below 2 m s⁻¹. This rather adds to the challenge, as upwind observations are less likely to be 469 

spatially representative during periods of low wind-speed. Both cities have low shares of emissions from point sources and are 470 

not expected to have a major problem with nuclear contribution in potential radiocarbon samples. Figure 2d shows the point 471 

sources in Zurich, but we note that the largest point source—Zurich’s airport—lies just outside the city boundaries and is 472 

therefore not included in the metric “share of point source emission”. Airports cannot be represented with take-off and landing 473 

information in the TNO emission inventory and are therefore represented by point sources which keep their exact location. 474 

 475 

All three cities differ significantly when it comes to natural topography; Zurich stands out with only 6% flat areas and a high 476 

topographic variability, placing it in the 90th percentile for both these metrics (see Fig. 2a). As in Paris, with its complex urban 477 

topography, this will make modelling in Zurich particularly challenging. Out of the three cities, Munich has the most 478 

advantageous natural and urban topography for monitoring ffCO2 emissions. 479 
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 480 

Figure 3: (a) The 18 metrics listed along the y-axis are linearly scaled between the values of the city at the 10th percentile and the 481 
city at the 90th percentile, out of the 96 cities (see Table 2). They are organized along the y-axis according to their association with 482 
the four discussed challenges. Higher values indicate greater challenges to monitor CO2 emissions. (b) Density plot showing where 483 
most cities fall in the linear scaling between the 10th and 90th percentile. 484 
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3.2 Challenge scores 485 

The overall challenge scores (see Sect. 2.4.2) range from 30% for Leiden, the Netherlands—indicating a relatively low 486 

challenge—to 59% for Rouen, France (see Table 3). The biogenic and modelling challenges contribute the most to these scores 487 

for the two cities, respectively. No clear spatial patterns are observed in which challenge dominates across nearby cities, except 488 

around the Ruhr area in western Germany (see Fig. 1). Here, many cities can expect challenges to determine background 489 

concentrations. A main driver is that many of these cities are close to each other, which results in high emission intensity in 490 

their surroundings, thereby increasing the background challenge.  491 

 492 

Among the three target cities, Munich has a low overall challenge score (34%), close to that of Leiden. Compared to other 493 

cities, the scores associated with the biogenic challenge and modelling challenges are particularly low (see Table 3). Like for 494 

Paris, the ratio between NEE and ffCO2 emission is small, and for Munich the average NEE is also relatively low placing the 495 

city in the 10th percentile of the biospheric challenge (see Fig. 3). While the overall score of Zurich is similar to that of Munich, 496 

there are differences between individual challenges. In particular, the modelling challenge stands out due to the Zurich’s 497 

complex urban and natural topography.  498 

 499 

Paris has the highest overall score of the three and stands out for its high score in the challenge of determining background 500 

concentrations. Paris is also in the third quartile when it comes to the observational and modelling challenges. Contributing 501 

factors include a high concentration of emissions from point sources and tall buildings, as well as high cloud cover, especially 502 

in the summer. The cloud cover likely reduces the number of useful satellite observations. The influence of nuclear emissions 503 

is the highest among the three pilot cities but remains relatively low compared to all 96 cities considered. 504 

 505 

City 

 

Overall  Background Biogenic  Modelling Observational 

% Q and R* % Q and R* % Q and R* % Q and R* % Q and R* 

Munich, DE 34 Q1 (6) 31 Q2 (25) 30 Q1 (9) 26 Q1 (17) 50 Q3 (65) 

Zurich, CH 35 Q1 (9) 20 Q1 (5) 34 Q1 (19) 54 Q3 (70) 32 Q2 (26) 

Paris, FR 45 Q3 (65) 45 Q3 (61) 38 Q2 (29) 50 Q3 (57) 48 Q3 (61) 

Leiden, NL 30 Q1 (1) 32 Q2 (30) 33 Q1 (17) 30 Q2 (26) 24 Q1 (16) 

Rouen, FR 59 Q4 (96) 38 Q2 (41) 41 Q2 (35) 80 Q4 (96) 76 Q4 (92) 

Kassel, DE 40 Q2 (34) 14 Q1 (1) 50 Q3 (66) 56 Q4 (76) 41 Q2 (41) 

Groningen, NL 45 Q3 (49) 70 Q4 (96) 66 Q4 (85) 9 Q1 (5) 38 Q2 (28) 

Rennes, FR  40 Q2 (29) 42 Q3 (58) 18 Q1 (1) 40 Q2 (40) 57 Q4 (80) 

Gliwice, PL 42 Q2 (45) 27 Q1 (17) 76 Q4 (96) 18 Q1 (6) 47 Q3 (57) 

Almere, NL 32 Q1 (3) 39 Q2 (46) 49 Q3 (61) 1 Q1 (1) 39 Q2 (38) 
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Rouen, FR 59 Q4 (96) 38 Q2 (41) 41 Q2 (35) 80 Q4 (96) 76 Q4 (92) 

Düsseldorf, DE 39 Q2 (28) 64 Q4 (94) 39 Q2 (31) 51 Q3 (62) 0.3 Q1 (1) 

Dijon, FR 55 Q4 (95) 36 Q2 (36)  38 Q2 (28) 53 Q3 (69) 93 Q4 (96) 

* “Q & R” stands for Quartile and Rank.       506 

Table 3: Challenge scores for Paris, Munich, and Zurich along with the cities with the highest and lowest scores overall, and for each 507 
of the four challenges. The higher the score, the greater the anticipated challenge. 508 

3.3 Similarity searches 509 

Similarity matrices are used to quantify the potential to transfer the CO2 monitoring experience gained from the three ICOS 510 

pilot cities, exemplified here with Munich. In terms of similarities relevant to the background challenge, Linz (Austria), 511 

Mulhouse (France), and Augsburg (Germany) are most like Munich (see Table 4). These are cities where, as in Munich, this 512 

challenge is relatively low (see Table 3). In practice, this could mean that only a few background towers are needed in the 513 

outskirts of the cities to obtain representative boundary conditions for most situations. The biogenic challenge in Munich is 514 

also low, as similar cities include Brussels (Belgium), Nantes, and Lille (France). It will not be as difficult to separate the 515 

anthropogenic signal in these cities as it is in cities at the opposite end of the spectrum from Munich. Cities such as Bratislava 516 

(Slovakia) and Erfurt and Hagen (Germany) are listed as the most dissimilar to Munich in this aspect (see Table 4). 517 

 518 

Out of the 96 cities, Nuremberg is overall the city most like Munich, while the corresponding cities for Zurich and Paris are 519 

the German cities Kassel and Berlin. Their monitoring strategies could look similar, but to overcome individual challenges it 520 

may still be useful to consider similarities in terms of the specific challenges. In terms of the background challenge, Karlsruhe 521 

(Germany) is most similar to Zurich, and Charleroi (Belgium) to Paris. Charleroi is also most like Paris regarding the biogenic 522 

challenges, and for Zurich, the corresponding city is Brussels. Tables listing the top five most similar cities to each of the 96 523 

cities across the different challenges are provided in the mapbooks (see Sect. 5). 524 

 525 

Overall (%) Background (%) Biogenic (%) Modelling (%) 

 

Observational (%) 

Most similar 

Nuremberg, DE (92) Linz, AT (98) Brussels, BE (100) Tilburg, NL (97) Graz, AT (97) 

Vienna, AT (92) Mulhouse, FR (98) Nantes, FR (100) Angers, FR (96) 

 

Vienna, AT (97) 

Augsburg, DE (91) Augsburg, DE (96) Lille, FR (100) Orléans, FR (96) 

 

Bratislava, SK (95) 

Hanover, DE (91) Ostrava, CZ (95) The Hague, NL (100) Lens, FR (96) 

 

Gliwice, PL (94) 

Paris, FR (91) Zurich, CH (93) Antwerp, NL (100) 

Mönchengladbach, 

DE (95) 

 

Wrocław, PL (92) 

Most dissimilar 
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Haarlemmermeer, NL 

(80) 

Haarlemmermeer, 

NL (62) Bratislava, SK (42) Antwerp, NL (66) 

 

Nates, FR (56) 

Gdynia, PL (80) Groningen, NL (63) Erfurt, DE (42) Karlsruhe, DE (67) 

 

Rennes, FR (56) 

Odense, DE (81) Cologne, DE (64) Hagen, DE (42) 

Gelsenkirchen, DE 

(67) 

 

Lens, FR (57) 

Groningen, NL (81) The Hague, NL (65) Münster, DE (42) Linz, AT (67) 

 

Angers, FR (59) 

Alkmaar, NL (81) Rotterdam, NL (65) Saarbrücken, DE (42) Mannheim, DE (68) 

 

Reims, FR (59) 

 526 

Table 4: Similarity to Munich in terms of the four individual challenges, as well as overall similarity when the four challenges are 527 
combined (“overall challenge”). A higher value indicates greater similarity. 528 

3.4 Cluster analysis 529 

As a complement to the similarity searches, the results from a dendrogram cluster analysis shows the overall structure of 530 

similarities and dissimilarities across all 18 metrics (see Fig. 4). The matching of cities with the ICOS Cities pilot cities, as 531 

exemplified in Sect. 3.3, could be improved for many of the 96 cities if more clusters were represented by pilot cities. Hence, 532 

the dendrogram can be used to guide future network expansion. Munich and Paris both fall into the same cluster, C1, whereas 533 

Zurich is in cluster C4 (see Fig. 4). The hierarchical structure of the dendrogram shows that cities in cluster C3, followed by 534 

those in cluster C5, are the furthest away in the cluster space from the already represented clusters. A prominent city in cluster 535 

C3 is Copenhagen, Denmark. Its characteristic signature (see CMC-CITYMAP; Sect. 5) indicates that Copenhagen is expected 536 

to face a greater biogenic challenge compared to the pilot cities. Using complementary observations of correlated trace gases 537 

or isotopes to separate the ffCO2 signal will be especially important in similar cities. However, the use of Δ14C would come 538 

with the additional uncertainty of accounting for nuclear emissions which have a significant influence in Copenhagen. This 539 

aspect of the city adds to its observational challenge. Both the background and the modelling challenges are relatively minor: 540 

The main challenges stem from the lack of a dominant wind direction and a high average building height, though the latter is 541 

still lower than in Zurich and Paris.  542 

 543 

Bratislava, Slovakia, is a good candidate from cluster C5 and faces an even higher biogenic challenge than Copenhagen. 544 

However, the vegetation is relatively clustered in space which makes the signal less mixed. Bratislava also stands out for its 545 

high share of cropland surrounding the city, which complicates the determination of representative background levels of CO2. 546 

A solution there could be to deploy more background sites to capture the potential heterogeneity of cropland fluxes. Cities in 547 

the final cluster, C2, are located closer in cluster space to those that already include pilot cities (see Fig. 4) but could be 548 

prioritized next. 549 

 550 
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 551 

Figure 4: Dendrogram based on the similarity matrix created from all 18 metrics included in the overall challenge. The different 552 
colours represent five distinct clusters formed by drawing a horizontal line at the desired separation between the dendrogram 553 
branches. Paris (C1), Munich (C1), and Zurich (C4) are highlighted on the x-axis. 554 

4 Discussion 555 

The metric scores in this study are derived from the relative distribution of the selected cities which are all from a subregion 556 

in western Europe (see Fig. 1). If cities from a broader geographic area, spanning different climate zones, were included, the 557 

range of values would likely change. For example, we would expect a wider range in the cloud cover metric, as some regions 558 

experience consistently cloudy conditions for part of the year. Large point sources in additional cities could further increase 559 

the already high 90th percentile values in related metrics. In our dataset, 13 out of the 96 cities account for 75% of the point 560 

source emissions, resulting in the skewed distribution seen in Fig. 3b. A city like Paris—with 19% of emissions from point 561 

sources—receives a score of only 0.25 out of one, where one indicates the highest level of challenge. 562 

 563 

Another important aspect affecting our results is how our cities are defined geographically. Our city borders are based on the 564 

OECD definition of a city (Dijkstra et al., 2019), but these still rely on local administrative boundaries provided by the 565 

countries. Albarus et al. (2023) observe that the drawing of administrative boundaries sometimes results in cities being 566 

separated from large portions of emissions in their immediate surroundings. Other times, the boundaries may include extended 567 

areas of nonurban land cover. The former scenario places greater demands on CO2 emission monitoring to distinguish between 568 

emissions within and outside the borders (Albarus et al., 2023). This issue is partly addressed in our study, as adjacent 569 

administrative units with high population densities form a single city (Dijkstra et al., 2019). However, significant nearby 570 
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emission sources may still be excluded, as in Zurich, where the airport falls just outside the city boundaries (see Fig. 2d). The 571 

effect of this is mitigated by the fact that the airport still contributes to the city’s challenge scores through its inclusion in the 572 

20-kilometer buffer area (see Sect. 2.1). One option could be to consider emission intensity, rather than population, as a 573 

criterion for merging local administrative units in the OECD approach. This would preserve the advantage of integrating 574 

readily available statistics from local administrative units in future analyses. Another alternative could be to define city 575 

boundaries entirely based on the highest-resolution emission data available, creating so-called “carbon cities”. This approach 576 

would likely reduce the inclusion of large nonurban areas on the outskirts of cities, which particularly affects our urban 577 

vegetation-related metrics.  578 

 579 

Our selection of metrics and how they are synthesised into four challenges are motivated by our literature review (as presented 580 

in Sect. 1) and experience in the field. Some of the studies present results that can be discussed in the context of our findings. 581 

Previous studies in Paris shed light on what we refer to as the “background challenge”, where Paris scores in the 3 rd quartile. 582 

The relatively high score for Paris aligns with the findings of Sargent et al. (2018). They warned that boundary conditions can 583 

be particularly complex for continental cities due to long- and medium-range transport from both distant urban areas and 584 

biogenic sources. Lian et al. (2021) indeed found especially large discrepancies between different modelled boundary 585 

conditions when air was coming from continental Europe—up to 5 ppm between two products. This is significant, as the CO2 586 

gradients between urban and suburban “background” towers in Paris were found to be 5-10 ppm in the summer and 20-30 ppm 587 

in the winter (Lian et al., 2023). In cities or regions with lower emission intensities than Paris, a bias in the boundary conditions 588 

would be even more impactful. For example, Lauvaux et al. (2012) found that a 0.55 ppm bias in the boundary condition 589 

resulted in a substantial impact on the posterior annual CO2 flux for Iowa and the surrounding states.  590 

 591 

Best practices proposed to mitigate the “background challenge” include using observations to find upwind-downwind gradients 592 

for inversions (e.g., Bréon et al., 2015; Staufer et al., 2016), or to constrain the modelled boundary conditions with observations 593 

(e.g., Sargent et al., 2018). Our metrics associated with the challenge offer an estimate for how spatially representative the 594 

observations may be by considering fluxes nearby the cities. Our consideration of wind speed and direction also ties to how 595 

many useful observations would be available for the different practices aimed at limiting the bias from boundary conditions. 596 

These factors greatly reduced the number of samples that could be used in the inversion over Paris by Bréon et al. (2015). At 597 

the time, the background concentration was sampled from only two towers, and the wind speed threshold, like ours, was 2 m 598 

s-1. Compared with the other cities, Paris is among the most favourable in terms of wind speed but exhibits one of the most 599 

variable wind directions. Today, more background towers are available, and cities with similar characteristics could also 600 

benefit from deploying a larger number of background sites from the outset. 601 

 602 

Regarding the “biogenic challenge”, Lian et al. (2023) highlighted their poorly resolved and non-optimised biogenic fluxes as 603 

a key area for improvement in future studies in Paris. It was pointed out as a likely contribution to the 20% increase in their 604 
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optimised ffCO2 estimates compared to the emission inventory used as prior (April-June). Different borders for Paris (Lian et 605 

al., 2023; Fig. 1) are just one of the reasons we cannot directly compare our results, but based on our analysis the significance 606 

of the biosphere is not surprising: even in winter afternoons the modelled net influence of the biosphere is 8% compared to the 607 

ffCO2 emissions. On summer afternoons the NEE is more than twice the magnitude of the anthropogenic emissions. If we 608 

instead consider borders roughly bounded by Le Bourget Airport in the north and Paris-Orly in the south, the corresponding 609 

values are 0.9% and 11%, which are more in line with the findings and adjustments to the ffCO2 emissions in Lian et al. (2023). 610 

It is also consistent with the work by Albarus et al. (2024), who observed much lower signal-to-noise ratios further away from 611 

the Paris city centre. However, even given the borders extending further into the area with a lower ffCO2 signal-to-noise ratio, 612 

Paris has a low biogenic challenge score compared to most of our cities (2nd quartile). Hence, even cities with low scores likely 613 

require the use of well-calibrated biospheric models, preferably optimised with complementary direct flux measurements and 614 

observations of correlated tracers and/or isotopes. This is quite likely preferable to the strategy of using observations only in 615 

the dormant season (e.g. Lauvaux et al., 2016), as this comes with the additional uncertainties of using temporal profiles to 616 

scale the results to the rest of the year (Super et al., 2020; Super et al., 2021).  617 

 618 

For the “modelling challenge” most of the metrics are related to the complexity of natural and urban topography, which puts 619 

high demands on models to accurately resolve the airflow. This is the main driver for Zurich’s challenge score (3 rd quartile). 620 

However, the study by Berchet et al. (2017) conducted in Zurich shows good performance of their model, which they found 621 

to fulfil the requirements for air pollution modelling at most of the tested sites. Although the requirement for modelling CO2 622 

is higher, this is promising for cities’ abilities to overcome this challenge. Hence, cities with scores similar to that in Zurich 623 

could benefit from adopting such a model. The challenge for models to accurately represent nearby point source emissions is 624 

also well-established (e.g. Gaudet et al., 2017; Maier et al., 2022; Brunner et al., 2019). This challenge is compounded by large 625 

emission quantities stemming from these sources, which generally do not have point-source-specific temporal profiles. While 626 

hourly emissions are sometimes available, such as for many power plants throughout Europe, most models currently cannot 627 

include them.  628 

 629 

The “application-specific observational challenge” currently combines metrics related to how well-suited cities are for making 630 

satellite and radiocarbon observations. They can be evaluated independently in Fig. 3, and stakeholders interested in specific 631 

cities can consider the two observational methods separately in the mapbooks (Storm et al., 2025b, 632 

https://doi.org/10.18160/Z66D-05JT). The satellite section currently only includes cloud cover, as this is a crucial factor, 633 

affecting the number of expected samples (e.g. Kuhlmann et al., 2019). However, the relevance of satellite observations to our 634 

study is debatable, as only a limited number of cities (15) had emission quantities greater than 7.33 MtCO₂ yr⁻¹ in 2018—the 635 

threshold suggested by Wang et al. (2020) as appropriate for monitoring emissions from space with the CO2M instrument. 636 

 637 

https://doi.org/10.18160/Z66D-05JT
https://doi.org/10.18160/Z66D-05JT
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For the use of 14CO2 observations, the observational challenge is linked to how much contribution is expected from emissions 638 

from nuclear facilities. As in previous studies (e.g., Maier et al., 2023), we used a flat annual emission rate to simulate this, 639 

but improving the resolution of this emission data is a priority at the ICOS Radiocarbon Laboratory. For example, knowing 640 

the timing of emissions from La Hague, France, would significantly enhance the feasibility of using radiocarbon in many cities 641 

beyond those closest to it. In 2021, La Hague accounted for 39% of the ¹⁴C in CO2 emissions from European nuclear facilities 642 

(Storm et al., 2024b), with large quantities released during short periods. Excluding La Hague’s emissions from our analyses,  643 

thereby simulating conditions between major emission events, reduces the nuclear masking potential’s 10th to 90th percentile 644 

range from 5-20% to 3-11%. This highlights how our findings can guide and motivate future efforts and underscores the 645 

importance of updating our analyses as new data becomes available to the community. In addition, the nuclear challenge also 646 

depends on the 14CO2 sampling strategy to be established within the city: When coordinated upwind and downwind sampling 647 

is employed, it can be assumed that most of the nuclear contribution will be captured in the up-and-downwind samples and is 648 

thus intrinsically corrected. 649 

 650 

Our focus has been on placing our results within the context of existing urban CO₂ monitoring studies, with particular attention 651 

to our three pilot cities. While it was not feasible nor possible to evaluate each individual metric and its true relevance to the 652 

challenges, our framework offers a foundation for future discussion and refinement as the research field progresses. Within 653 

ICOS Cities, it can support the project vision of developing “blueprints” for monitoring emissions in European cities. We 654 

recommend a modular approach for this, enabling cities to match with and adopt strategies from the pilot city that are most 655 

similar in ways relevant to the specific challenges. This approach is comparable to that of the “Twinning Learning Program”, 656 

part of the European Union’s mission “100 Climate-Neutral and Smart Cities by 2030”, where cities are paired based on shared 657 

barriers to achieving climate neutrality. From a pan-European monitoring strategy perspective, it is important to develop 658 

blueprints for strategies that are effective across the diverse characteristic signatures found in Europe. To support this, we 659 

identified Bratislava and Copenhagen as cities that are among the most distinct from the three cities currently in the ICOS 660 

Cities network, making them strong potential candidates for inclusion into the network. This assessment considered all metrics 661 

in combination. A modular approach could also be applied here. Cities with high scores in the “biogenic challenge”—which 662 

is low for the three pilot cities relative to the others—would then be highlighted as especially suitable candidates. Bratislava 663 

would again be among the recommended cities. All in all, there are numerous ways our framework can be used to create 664 

analyses like those presented in this study. Adjustments could range from minor changes to the weights of the 18 metrics to 665 

entirely different analyses based on a new selection of metrics that are readily available for our cities but not used here. 666 

5 Data availability 667 

For the datasets used to derive the metrics in this paper, we refer to the cited references. The resulting collection of 18 metrics, 668 

along with several metrics excluded from the study, is published along with the notebook tool (Storm et al., 2025a, 669 
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https://doi.org/10.18160/P8SV-B99F). The tool, provided as a Jupyter Notebook with accompanied Python files, can also be 670 

run directly in the Interactive Computing Environment offered by the ICOS Carbon Portal. Individual PDFs, referred to as 671 

“mapbooks”, contain maps and analysis results for all cities. These are published as a collection and can be downloaded for 672 

the individual cities (Storm et al., 2025b, https://doi.org/10.18160/Z66D-05JT). 673 

6 Conclusions 674 

This study presents a methodology to understand and quantify the differences between cities and what these differences mean 675 

from a CO2 emission monitoring perspective. We analyse 96 cities in western Europe using 18 defined metrics, linking these 676 

metrics to four key CO2 monitoring challenges. Next, the challenges are quantified to provide insights into the evolving 677 

network of urban observatories in Europe, with a focus on the ICOS Cities pilot cities: Paris, Munich, and Zurich. Their 678 

relationships to the other 93 cities are quantified to illustrate: 1) which monitoring challenges may be most significant, 2) 679 

which cities are similar and could benefit from knowledge exchange, and 3) which cities are dissimilar and may serve as 680 

candidate cities if there is funding to expand the ICOS Cities network. 681 

 682 

Overall, our results suggest that Zurich and Munich are relatively easy to monitor, with Zurich facing the greatest challenge in 683 

the “modelling challenge” and Munich in the “application-specific observational challenge”. Paris scores similarly to Zurich 684 

in the modelling challenge but has high scores in the other challenges except for the “biogenic challenge”. Cities similar to 685 

Munich are identified across the different challenges, suggesting, for instance, that monitoring strategies used to address the 686 

background challenge in Munich may also be effective in for example Linz (Austria). Paris, Munich, and Zurich fall into two 687 

out of five clusters when considering all 18 metrics. Copenhagen and Bratislava are highlighted as prominent cities in clusters 688 

that are currently not represented by the ICOS Cities network. These could be interesting candidates if an extension to the pilot 689 

network is considered. 690 

 691 

We have only highlighted a few examples from the results, which represent just a subset of the potential analyses that can be 692 

drawn from the framework we have developed. We refer to Sect. 5 for how to access results for specific cities of interest or to 693 

conduct new analyses based on a different set of characteristics.  694 

As the field of urban emission monitoring continues to evolve, we anticipate ongoing developments that will both help mitigate 695 

current challenges and enhance our suggested methods for analysing them. Regarding the mitigation of challenges, we have 696 

highlighted, among other examples, the need for improved urban-specific biogenic models and transport models capable of 697 

resolving airflow in urban environments. The research continues to advance, and datasets with higher accuracy than the one 698 

used in this study are already available for individual cities. As use of these models and data becomes more widely adopted, 699 

they can be applied in analyses similar to ours. With more training data, we may start to better understand the relationships 700 

https://doi.org/10.18160/P8SV-B99F
https://doi.org/10.18160/Z66D-05JT
https://doi.org/10.18160/Z66D-05JT
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between different city characteristics and their influence on the ease of monitoring emissions. One possible approach is to use 701 

machine learning, correlating model–data differences with these characteristics. 702 
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