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Abstract. The global near-surface soil freeze-thaw (FT) states are crucial for understanding complex interactions with
hydrological, ecological, and climatic processes. However, current remote sensing of FT states primarily relies on passive
microwave remote sensing, which, despite its all-weather monitoring capabilities, suffers from low spatial resolution. This
limitation restricts its application to hydroclimatological scales, precluding its use in finer-scale studies such as soil erosion
and hydrometeorological applications. To address this, this study introduces a novel downscaling approach that integrates
passive microwave and optical satellite data to generate a long-term (2002—2023), high-resolution (0.05°) dataset of global
near-surface FT states, ensuring daily seamless continuity. The dataset was validated against in situ measurements,
demonstrating that the high-resolution product maintains an overall accuracy of 83.78%, consistent with the coarse-resolution
microwave-based dataset, while offering enhanced spatial detail. Comprehensive global trend analyses provided new insights
into the dynamics of FT cycles, revealing that the average annual number of frost days in regions north of 45°N is 187.8 +
12.7 days, with 14.35% of the area showing a decreasing trend in frozen persistence. Additionally, the average annual number

of freeze onset dates is 240.3 = 7.2, and 9.10% of the area exhibits a trend of delayed freeze onset. The high-resolution record
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enables accurately monitoring FT states and providing detailed information, for a refined understanding of hydrological and
ecological effects globally. The global 0.05° near-surface soil FT state dataset is freely available at
https://doi.org/10.11888/Cryos.tpdc.301551 (Zhao et al., 2024b).

1 Introduction

Frozen ground, including permafrost and seasonally frozen ground, covers nearly 66 million km?, accounting for 52.5% of the
total global land surface area (Kim et al., 2011; McDonald and Kimball, 2006). Most of these regions experience seasonal
freeze-thaw (FT) state cycles, which refer to the phase transition between water and ice in the soil pores of surface layers
(Zhang et al., 2010). These FT state cycles significantly impact on surface runoff, energy balance, and carbon cycling (Kimball
et al., 2004; Wang et al., 2024), thereby influencing climate (Peng et al., 2016; Poutou et al., 2004), hydrological (Gouttevin
et al., 2012; Gray et al., 1985), ecological (Black et al., 2000) and biogeochemical processes (Panneer Selvam et al., 2016;
Schaefer et al., 2011; Xu et al., 2013). Therefore, the dynamics of surface soil FT states are recognized as a significant indicator
of global climate warming, with broad implications for the Earth’s environment and human society (Beer et al., 2018; Yang et
al., 2013).

Over the past few decades, numerous studies have focused on detecting soil FT status. Although many traditional methods
based on in situ observations offer advantages in terms of accuracy and reliability (Wei et al., 2011; Cary et al., 1979; Zhang
et al., 2007), their labor-intensive nature, coupled with sparse spatial coverage and limited representativeness, restricts their
ability to meet the comprehensive requirements of frozen ground research. In contrast, satellite remote sensing offers an
effective and rapid alternative, providing extensive spatial and temporal coverage for monitoring FT status.

Due to the critical importance of monitoring global surface FT states in hydroclimatology research, FT has been identified as
an Essential Climate Variable (ECV) by the Global Climate Observation System (GCOS) (Bojinski et al., 2014). FT cycles
occur frequently and are highly spatially heterogeneous due to variations in topography, vegetation, soil properties, and snow
characteristics (Chang et al., 2015; Jiang et al., 2020). As a result, the GCOS has specified explicit requirements for FT
estimation. While an ideal spatial resolution of 1 km and a temporal resolution of 6 hours are recommended, the application
of FT monitoring can be improved if FT records achieve a spatial resolution of 10 km and daily temporal resolution. However,
current remote sensing techniques are unable to directly meet these requirements for monitoring FT dynamics.

Satellite microwave remote sensing methods are less susceptible to potential degradation from solar illumination effects and
atmospheric cloud/aerosol contamination, while remaining sensitive to changes in landscape dielectric properties due to liquid
water content variations in soils. This characteristic makes them highly applicable in consistent FT detection (England, 1990;
Kouetal.,, 2017; McDonald et al., 2004b; Wu et al., 2022; Zhao et al., 2014). Passive microwave remote sensing is an effective
technique for monitoring global surface FT processes owing to radiometers’ shorter revisit intervals and larger coverage areas
(Kim et al., 2011; Kou et al., 2017; Zuerndorfer and England, 1992). Additionally, it can detect microwave radiation from

specific depths within the surface soil and is sensitive to changes in soil dielectric properties, thereby enhancing its applicability
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in FT detection (McDonald et al., 2004b). In recent years, with the development of new-generation passive microwave
radiometers, various corresponding FT discrimination algorithms have been constructed, including the dual-index algorithm
(Han et al., 2015; Judge et al., 1996; Zuerndorfer and England, 1992; Zuerndorfer et al., 1990), the decision tree algorithm (Jin
etal., 2009), the discriminant function algorithm (DFA) (Hu et al., 2019; Kou et al., 2017, 2018; Zhao et al., 2011), the seasonal
threshold method (Kim et al., 2011) and the polarization ratio(PR)-based algorithm (Rautiainen et al., 2016; Roy et al., 2015).
However, the relatively coarse spatial resolution of current passive microwave radiometers limits the retrieval of high-
resolution information (Chai et al., 2014; Han et al., 2015; Zhao et al., 2011; Zhou et al., 2016). Moreover, spatial heterogeneity,
often caused by mixed pixels resulting from the coarse spatial resolution, introduces uncertainty into FT data derived from
passive microwave remote sensing.

Optical remote sensing techniques provide high spatial resolution information, such as land surface temperature (LST), which
can be used to infer surface FT states. For example, the Moderate Resolution Imaging Spectroradiometer (MODIS) on Aqua
and Terra satellites provides LST products with high accuracy, potentially allowing for monitoring global FT states. However,
LST primarily reflects the linear changes in temperature during the FT process and cannot capture the abrupt changes in
dielectric properties that occur between the frozen and thawed soils. In addition, these products are significantly affected by
discontinuities in coverage due to cloud contamination, vegetation, and snow cover (Cary et al., 1979; Langer et al., 2013;
Chen et al., 2021; Running, 1998). Recent research focus is exemplified by efforts to generate seamless datasets (Li et al.,
2018; Yao et al., 2023; Yu et al., 2022; Zhang et al., 2022, 2020; Zhao et al., 2024a).

Active microwave sensors, divided into radars and scatterometers, receive backscattering coefficients as the echo signals,
which are primarily related to soil structure and dielectric properties. Active microwave remote sensing, particularly through
synthetic aperture radars (SARs), provides observations of landscape FT states at resolutions on the kilometer scale or finer.
Consequently, many active microwave FT discrimination algorithms have been developed, including the FT threshold value
method (Du et al., 2015; Kim et al., 2012; Kimball et al., 2004; Way et al., 1997), a change detection algorithm (Frolking et
al., 1999), and an edge detection algorithm (Canny, 1986; McDonald et al., 2004a). However, most satellite-based SARs have
longer revisit periods than passive microwave radiometers, preventing them from meeting the temporal resolution requirements
of FT monitoring.

Existing methods fall short in fulfilling the scientific requirements for high-resolution detection of FT states and are
predominantly dependent on microwave observations. To overcome these limitations, downscaling techniques based on multi-
source data fusion have been proposed (Giorgi and Mearns, 1991; Hanssen-Bauer et al., 2005; Xu et al., 2019). Among these,
statistical downscaling methods (Bierkens et al., 2000; Vaittinada Ayar et al., 2016) are commonly applied in high-resolution
monitoring studies (Fan et al., 2005; Hertig and Jacobeit, 2008), which quickly establish statistical or empirical relationships
between downscaling predictors and predictands, thereby enabling the reconstruction of coarse-resolution data at finer scales.
This has inspired researchers to integrate multi-source remote sensing data, leveraging the high sensitivity of passive

microwave signals to FT dynamics and the finer spatial details of optical datasets (Zhao et al., 2017).
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The detection of frozen and thawed soil can rely on two critical characteristics: temperatures below 0 °C and the presence of
ice. Therefore, remote sensing observations can be utilized to infer these conditions by monitoring the physical temperature
and liquid water content. Microwave and optical remote sensing each offer distinct advantages in this context. Microwave
observations are extensively employed to detect FT dynamics through various discrimination algorithms. In particular, the
DFA has proven to be highly effective in generating consistent, long-term, daily global FT state products. This algorithm,
which utilizes brightness temperature (TB) data from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and
its successor, the Advanced Microwave Scanning Radiometer 2 (AMSR2), has demonstrated both high validation accuracy
and reasonable consistency (Hu et al., 2019; Wang et al., 2019a). One of the key discriminant indicators in this algorithm is
TB at 36.5 GHz due to its strong correlation with LST. The other important indicator is the quasi-emissivity (Qe), the ratio
between TB at 18.7 GHz and TB at 36.5 GHz, which captures the variations in landscape dielectric properties (ice/water
content) across different FT conditions (Zhang et al., 2010; Zhao et al., 2011). Despite its strengths in physical mechanisms,
the coarse spatial resolution of passive microwave sensors constrains its application in detailed monitoring. In comparison,
optical remote sensing provides data with high spatial resolution, offering an alternative for detecting detailed FT states. A
previous study attempted to generate high-resolution FT maps, but the optical data used were restricted to LST and did not
incorporate parameters characterizing soil ice/water content. (Hu et al., 2017). The apparent thermal inertia (ATI), derived
from optical data, has been shown to effectively monitor soil moisture conditions (Qin et al., 2013; Song and Jia, 2016; Van
Doninck et al., 2011; Veroustraete et al., 2012; Verstraeten et al., 2006). Thus, integrating ATI into data fusion might further
enhance the ability to generate high-resolution FT records (Liang et al., 2024; Yao et al., 2023; Yu et al., 2022; Zhang et al.,
2022).

The objective of this study is to enhance the spatial resolution of FT detection products without compromising the accuracy of
passive microwave-based FT products, as derived from AMSR-E/2 TB data through the DFA. To achieve this enhancement,
the study employs downscaling indicators, specifically the MODIS-based LST and ATI, which serve to encapsulate soil
moisture information. Both the original coarse-resolution and the resultant high-resolution FT records were validated by in
situ soil temperatures, thereby facilitating an assessment of accuracy variations post downscaling. Subsequent trend analyses
of the high-resolution FT records were conducted to reflect the detailed dynamics of FT states. The resultant downscaled, high-
resolution FT states align with the expanding spatial and temporal resolution requirements of GCOS for FT monitoring, thereby

providing a valuable tool in cryospheric and ecological studies.

2 Data
2.1 AMSR-E and AMSR?2 brightness temperature

The near-surface FT downscaling method integrates data from passive microwave and optical remote sensing. TB observations
from passive microwave sensors were obtained from AMSR-E and its successor, AMSR2. AMSR-E, which was carried on

NASA’s Aqua satellite, operated from May 2002 to October 2011 and provided six microwave bands (6.9, 10.65, 18.7, 23.8,
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36.5, and 89 GHz), each available in both horizontal (H) and vertical (V) polarization (Cho et al., 2017). AMSR2, launched in
May 2012 and mounted on Japan Aerospace Exploration Agency’s (JAXA’s) Global Change Observation Mission-Water 1
(GCOM-W1) satellite, retains most of AMSR-E’s physical properties, except for a larger antenna reflector and an extra C-
band channel (7.3 GHz) (Cho et al., 2017). Both sensors share the same spatial resolution of 0.25° and provide measurements
at 13:30 (ascending) and 1:30 (descending) local time at the equator. This study utilized TB data from the 18.7H and 36.5V
channels of the AMSR-E/2 Level-3 TB standard product to discriminate near-surface FT states at a 0.25° grid resolution. All
available TB data from 2002 to 2023 were utilized, excluding the missing observations between AMSR-E and AMSR-2.

2.2 Global spatiotemporally continuous MODIS LST dataset

The spatiotemporally continuous MODIS LST dataset was utilized in this study, derived from two products: MODIS/Terra
LST Daily L3 Global 0.05° CMG (MOD11C1) and MODIS/Aqua LST Daily L3 Global 0.05° CMG (MYD11C1). These
products are separately obtained from the Terra and Aqua satellites, both of which cross the equator at the local time of 13:30
and 01:30 during ascending and descending orbits, respectively. However, cloud contamination introduces data gaps in these
products. To address this issue, a data interpolation and reconstruction method was applied, enabling the generation of
spatiotemporally continuous LST records. Furthermore, the clear-sky LSTs were corrected to all-weather LSTs, enabling the
retrieval of more realistic information (Yu et al., 2022; Zhao and Yu, 2021). These datasets under clear-sky and all-weather
conditions exhibit satisfactory accuracy and are therefore suitable for high-resolution optical remote sensing inputs in the

development of the downscaling algorithm.

2.3 GLASS Albedo

Spatiotemporally continuous land surface albedo products are essential for estimating global ATI, as outlined in the
Introduction. In this study, we used the GLASS02B06 dataset, which is part of the Global Land Surface Satellite (GLASS)
project. The GLASS albedo series demonstrates accuracy comparable to that of the MODIS MCDA43 albedo product, validated
against FLUXNET site observations (Liu et al., 2013). Furthermore, GLASS albedo products address spatial gaps arising from
cloud contamination and snow cover, thereby ensuring seamless and continuous products. This study employed the long-term
clear-sky albedo dataset from GLASS02B06, which captures surface albedo at a 0.05° spatial resolution and provides new
data every 8 days.

2.4 Land cover maps

In this study, the ancillary land cover maps were derived from the MODIS Land Cover Type CMG Yearly L3 Global 0.05°
(MCD12C1) dataset (Friedl and Sulla-Menashe, 2022). With a spatial resolution of 0.05°, this dataset aligns with the resolution
of the optical datasets mentioned earlier. It follows the 17-class International Geosphere-Biosphere Programme (IGBP)
classification framework, as summarized in Table 1. The land cover dataset, illustrated in Fig. 1, was specifically utilized to

identifirmask out pixels of three IGBP land-cover classes: water bodies, urban and built-up lands, and snow and ice.snrow—and
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ice-covered-areas-as-well-as-urban-and-built-upregions: Furthermore, the corresponding type percentage dataset was used to
filter out pixels dominated by large water bodies, which were then explicitly marked in the FT data record. Notably, no

permafrost distribution data were used as input or constraints in generating the FT dataset.

Table 1 IGBP land cover classification framework.

value IGBP Classes value IGBP Classes
Abbreviated name  Full name Abbreviated name  Full name
0 WAT Water Bodies 9 SAV Savannas
1 ENF Evergreen Needleleaf Forest | 10 GRL Grasslands
2 EBF Evergreen Broadleaf Forest | 11 PWL Permanent Wetlands
3 DNF Deciduous Needleleaf Forest | 12 CRL Croplands
4 DBF Deciduous Broadleaf Forest | 13 URB Urban and Built-Up
5 MXF Mixed Forest 14 CRM Cropland Mosaics
6 CSH Closed Shrubland 15 SNI Snow and Ice
7 OSH Open Shrubland 16 BSV Barren/Sparsely Vegetated
8 WSA Woody Savannas

2.5 In situ soil temperature

Validation of the downscaled FT dataset was conducted using soil temperature measurements obtained from 41 dense
observation networks and three sparse networks (SCAN, SNOTEL, USCRN). Among these, 42 networks were provided by
the International Soil Moisture Network (ISMN), a global collaboration that delivers in situ measurements of soil moisture
and related variables (Dorigo et al., 2013, 2021). Additionally, two networks (Naqu and Pali) were obtained from the Tibetan
Plateau Observatory (Tibet-Obs), which focuses on plateau-scale monitoring of soil moisture and temperature (Su et al., 2011;
Zhang et al., 2021a, b). Although the sampling time points vary across networks, the measurements are consistently conducted
at hourly intervals. This study selected long-term in situ soil temperature data from 1,027 stations within 44 global networks,

all measured at a depth of 0—5 cm_to match the penetration depth of the passive microwave observations. Fig. 1 illustrates the

spatial distribution of these stations.
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Figure 1: ISBP global land cover map for 2019, depicting the spatial distribution of ground measurement sites within the ISMN and
Tibet-Obs networks.

2.6 Data pre-processing

The inter-calibration of different satellite instruments is for establishing consistent data records of Earth’s environment
(Chander et al., 2013). Although AMSR-E and AMSR2 share numerous similarities, calibrating these two sensors is necessary
due to a 5 K difference in observed TB caused by different calibration procedures and other issues (Okuyama and Imaoka,
2015). Hu et al. (2019) introduced an inter-calibration linear model utilizing overlapping TB observations and the least squares
method. This inter-calibration model was applied to TB data at the 18.7 GHz and 36.5 GHz bands, generating a long-term

passive microwave TB dataset. The inter-calibration model equations are as follows:

TBamske 1871 = 1.0189 X TBapsra 1870 — 5.2717, (1)
TBamske 187v = 1.0577 X TBppsra 187v — 16.2042 ()
TBamsre 3651 = 1.0073 X TBamsr 3650 — 47723, (3)
TBamsre 36.5v = 1.0135 X TBpnisr2 36.5v — 6.3914, “4)

where TBamsre 1870 and TBamsrz 1874 denote TB at 18.7 GHz in horizontal polarization, obtained from AMSR-E and
AMSR2, respectively. TBaysge 18.7v and TBaysgrz 18.7v correspond to vertical polarization at the same frequency. Other terms

in the equations follow the same conventions.
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To meet the requirements of daily ATI estimation, a linear interpolation method was employed to transform the GLASS 8-day

shortwave clear-sky albedo datasets into daily data (Sohrabinia et al., 2014).

3 Methodology
3.1 FT discrimination from passive microwave observations

The DFA is a surface FT discrimination method developed using AMSR-E and AMSR?2 data, demonstrating high accuracy
compared to existing FT products. Near-surface FT variations are closely associated with soil temperature and moisture, which
are reflected by the TB at 36.5 GHz in vertical polarization (T B4 syv) and the “Quasi-emissivity> (Qe).

Qe is defined as the ratio of the TB at 18.7 GHz in horizontal polarization (TB;g 7y;) to T B3¢ 5v5. Lhis ratio servingserves as an

indicator-a-representative-measure of soil water-eontentmoisture, as microwave TB at these frequencies is highly sensitive to

changes in water content. The near-surface soil FT process involves dynamic changes in soil and vegetation moisture states,

which lead to significant variations in soil dielectric properties. Due to the substantial difference in dielectric constants between

liquid water and ice, these phase transitions cause pronounced dielectric changes, a phenomenon further complicated by the

distinct biogeochemical mechanisms of different vegetation types. The Qe index introduced in this study comprehensively

characterizes the combined dielectric effects of both soil and vegetation during the FT process. Thus, Qe not only reflects soil

moisture variations, but also indirectly captures the biophysical status of vegetation and soil conditions, enabling consideration

of the unique biogeochemical processes associated with various vegetation types during the FT process.

Therefore, TB;4 5y and Qe were selected as key parameters for FT discrimination (Zhao et al., 2011).
AdditionallytThe DFA is further parameterized to separately detect FT status during ascending and descending orbits (Wang
et al., 2019b), as expressed by the following equations:

FTI, = —0.123 X TBs4 5y + 11.842 x Qe + 20.650 , (5)

FTIy = —0.209 X TB;65v + 9.384 X Qe + 43.697 , (6)
__TBig7H

Qe = TB3ss5v )

where FTI, and FTI represent the FT status for ascending and descending orbits, respectively. Through these equations, a

long-term 0.25° FT record was generated using AMSR-E and AMSR2 TB data.

3.2 Estimation of apparent thermal inertia

ATI, as a substitute indicator for thermal inertia (TI), has proven effective in monitoring soil moisture conditions, thereby
facilitating the downscaling of coarse-resolution FT states (Qin et al., 2013; Song and Jia, 2016; Van Doninck et al., 2011;
Veroustraete et al., 2012; Verstraeten et al., 2006). ATI quantifies the temperature rise due to the Earth’s surface absorbing
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radiant energy. Given that water has a relatively large heat capacity, higher soil water content provides greater resistance to
external thermal fluctuations (Qin et al., 2013).

In this study, ATI is introduced as an indicato of soil moisture and is calculated as follows:

1-ag

ATI = C 2, (8)

where ay is the actual surface albedo, derived from interpolated daily surface albedo data. C denotes the solar correction factor,
which accounts for spatial and temporal variations in solar flux due to latitude and solar declination. The diurnal LST cycle's
amplitude, denoted as DT A, represents the largest variation in LST observed within a single day.

C is calculated as follows:

C = sin @ sin & (1 — tan? @ tan? §)'/2 + cos ¢ cos § arccos(— tan @ tan §) , 9)

where ¢ is the latitude and 6 represents the solar declination, calculated by:

8§ =0.006918 — 0.399912 cos(I') + 0.070257 sin(I") — 0.006758 cos(2I') + 0.000907 sin(2I') — 0.002697 cos(3I') +
0.00148sin(30) , (10)
where I represents the day angle, given by:

_ 2n(ng—1)

365.25 (11)

and ny is the day number of the year.

The daily LST amplitude DT A in Eq. (8) can be calculated as:

DTA _ n¥, cos(wt;—P)T—n Y-, cos(wt;—P) T, T; (12)

2 nZ’l—LlCos(wti—w)—(2?=1cos(mti—lp))z

where T; is the LST recorded at time t;, w is the angular velocity of the Earth’s rotation. The parameter n represents the

number of LST observations for one pixel in a day (n = 4 in this study), and ¥ is the phase angle, calculated as:

Y =arctan(é) + 1, (13)

E= (T1—T3)(CQS(wtz)—C?S(wt4))—(Tz—T4)(C?S(wtﬂ—CIOS(wts)) , (14)
(T2-T4)(sin(wt1)-sin(wt3))—(T1—T3) (sin(wtz)—sin(wt,))

where Eq. (14) is used to calculate the diurnal LST cycle and requires clear-sky LST observations at four specific times during

the day: Aqua/night (01:30), Terra/day (10:30), Aqua/day (13:30), and Terra/night (22:30). These observations are derived

from the spatiotemporally continuous MODIS clear-sky LST products. The method of ATI calculation is adapted from Van

Doninck et al. (2011). Consequently, a long-term 0.05° daily ATI dataset has been prepared for downscaling FT status.
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3.3 Spatial downscaling of FT status

The FT1 is characterized by its quantitative form, expressed in decimal values instead of binary values (Zhao et al., 2017). This
feature enables its integration with other satellite-derived parameters, thereby enhancing its utility in remote sensing
applications. As defined by soil temperature and emissivity from microwave data in Eqgs. (5) and (6), the FTI exhibits a strong
correlation with LST, thereby demonstrating its relevance in thermal analysis. (Zhao et al., 2017). Moreover, the emissivity
properties of soil are susceptible to changes in soil water content, which can be captured through ATI estimation.

Consequently, the assumed linear relationship between microwave and optical datasets is mathematically expressed as follows:
FTI =a-LST+b-ATl +c, (15)

where the coefficients a, b and ¢ are determined through linear regression analysisfitting. The MODIS/Aqua LST dataset was
selected to ensure temporal consistency with the AMSR-E TB product.

Given the annual FT cycles, the downscaling approach was applied to the data on a yearly basis, following four steps as
illustrated in Fig. 2.

The 0.05° LST and ATI data were resampled to align with the lower 0.25° resolution of the microwave-derived FTI. This
resampling process involved averaging the data across 5x5 grid cells.

The FTI, LST, and ATI datasets were divided into yearly vectors, and the data within each vector were arranged in
chronological order.

Linear regression analysis-fitting was performed on these three data vectors of each pixel, resulting in six coefficient matrices

for a, b, and c at the ascending and descending times:
FT[LR = aRr- LSTLR + bLR . ATILR + CLR » (16)

where the abbreviations "HR" and "LR" refer to high and low resolution, respectively. Regression fitting was performed using

only those dates with valid 0.25° FT data, together with the corresponding 0.05° optical data on those dates.Observational-data

Once the coefficients a; g, by g, and c; g were expanded into 5x5 grids at a spatial resolution of 0.05°, they were applied in a

regression model with the high-resolution (0.05°) LST and ATI data to generate the downscaled FTI values:
FT[HR = QiR LSTHR + bLR . ATIHR + CIR » (17)

This process produced a finer spatial resolution compared to the original 0.25° FT maps derived from microwave data.
Additionally, the land cover product was utilized to identify areas characterized by permanent snow and ice, substantial water

cover, and urban or built-up lands, ensuring an accurate representation in the downscaled dataset.

10
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Figure 2: Schematic diagram of spatial downscaling methodology.
3.4 Validation

Validating the downscaled FT product is essential to ensure its accuracy and reliability. In this study, soil temperature data
from ISMN and Tibet-Obs ground stations were used to validate the downscaled FT results. Since satellite observations are
divided into ascending and descending orbit data, the FT records were validated independently for each orbit. Frozen and
thawed states in in situ soil temperature data are classified as follows:

{3 0. thawed (18)

To validate satellite data against ground measurements, the in situ observations must first be selected and pre-processed. In
situ observations temporally closest to the satellite observation times are selected. ISMN observation data are recorded at
hourly intervals, while the MODIS LST product provides observations at 20-minute increments. Thus, in situ data recorded at
the hour closest to the satellite observation time are used for validating FT classification. Missing data are excluded from the
validation process. Due to the properties of microwave sensors, data gaps may occur in the 0.25° FT product, where the
corresponding in situ observations are not included in the accuracy validation. Furthermore, only ISMN data labeled as “Good”

quality is selected for validation.
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Accuracy was calculated separately for the 0.25° and 0.05° FT products. The validation process, illustrated in Fig. 3, was
conducted using a single, larger 0.25° grid cell as an example.

FT conditions derived from in situ observations were considered the actual results. For a grid cell with a resolution of 0.25°,
the average of all in situ soil temperature observations within the cell was calculated. The grid cell was subsequently classified
according to the criteria delineated in Eq. (18), distinguishing between frozen and thawed states.

The FT classification results for the larger grid cell from both products were validated using in situ data. For the 0.25° product,
the FT classification of the grid cell was directly compared to the in situ observation results. For the 0.05° product, each 0.25°
grid cell contains 25 pixels. If the majority of these pixels (i.e., more than 13) were classified as frozen, the entire grid cell was
labeled as frozen in the 0.05° product; otherwise, it is labeled as thawed.

The classification accuracies of the two products were calculated. Within each grid cell, the number of true and false FT

classifications over the entire time series was counted to determine the discrimination accuracy using the following formula:

FF+TT
FF+FT+TF+TT ’

(19)

Accuracy=

where FF denotes the number of classifications where both the in situ observation and the satellite observation indicate a frozen
state, and FT denotes the number of classifications where the soil is frozen, but the satellite observation indicates thawed
conditions. TF and TT are defined similarly.

The same validation procedures were applied to all other grid cells containing in situ observations. The discrimination accuracy
before and after downscaling was calculated and compared to assess any changes in accuracy resulting from the downscaling

process.
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Figure 3: Schematic diagram of the validation method for comparing the FT product before and after downscaling.
3.5 Trend analysis

Trend analysis for global FT cycles is crucial for understanding temporal changes across different regions, which may indicate
impacts associated with climate change. To analyze the annual global FT trend based on the downscaled product, this study
employs two key parameters: the frost day and the frozen onset date.

A frost day is defind as the number of days within a year in which the lowest recorded temperature is less than 0 °C. The
minimum temperature can be inferred to be below 0 °C if freezing is detected at the satellite’s descending time for the same
pixel. Therefore, in the satellite FT product, a frost day is identified as a day when the pixel is classified as frozen. In this study,
the calculation and analysis of frost days rely on the descending FT product. The freeze onset date refers to the first day a pixel
begins freezing and remains in a frozen state for more than two weeks. The initial day of this freezing period is designated as
the freeze onset date. Both the frost day and the freeze onset date offer significant insights into the global distribution of near-
surface FT variations. These two parameters are essential for comprehending the global temporal and spatial dynamics of
freezing events.

To further analyze the trends of frost days and freeze onset dates, time series data for both parameters were generated for
global-scale analysis using Sen’s Slope and Mann-Kendall (MK) test.

The equation for Sen’s Slope is defined as:
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where X; and X; represent the data values at times i and j, respectively, and Median(-) represents the median calculation. This
equation computes the median of the slopes between all pairs of data points. A positive 8 reflects an increasing trend, while a
negative 8 indicates a decreasing trend.

The MK test is a statistical procedure that is employed to evaluate the null hypothesis that the data are independent and
identically distributed (Mann, 1945; Kendall, 1948). It is employed to detect trends in time series data without assuming a
linear relationship. Given a series X; of length n, the null hypothesis posits that the values in X, are independent. The MK test

statistic S is calculated as:
S =X X sen(X; — X,) 1)

where n is the sample size, defined as the number of data points, and sgn(Xj - X l-) is the sign function, defined as

1, ifX; > X
—1,if X; < X;

The test statistic S evaluates the cumulative number of positive differences that exceed negative differences. In this study,

since the frost day and freeze onset date of each year in the same pixel are unique, the variance of S is computed as

n(n-1)(2n+5)

Var(S) = & , (23)
If the sample size n > 10, the standard normal test statistic Z is calculated as:
s-1 .
——Var(s),lfs >0
7 =X0, ifs=0, (24)
s+1 .
m,lf §<0

Trend testing is conducted at a specified significance level, a. If the absolute value of Z exceeds the critical value Z;_g/,, the

null hypothesis of no trend is rejected. In this study, the test was performed at @ = 0.05, corresponding to a 95% confidence
interval. Under these conditions, if [Z] > 1.96, the null hypothesis is rejected. The results of the test are categorized into five
trend types, as summarized in Table 2. Sen’s Slope quantifies the direction of temporal variation as positive or negative, while
the MK test evaluates the statistical significance of these trends. This combined approach allows for the assessment of both
the magnitude and significance of trends in frost days and freeze onset dates, providing insights into changes in global FT
cycles that may be linked to climate change.

Table 2 Classification of trends based on the MK test
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4 Results and Discussions
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Figure 4: Maps of the FT product for (a) the global scale and (b) the Qinghai-Tibet Plateau at 01:30 on April 1, 2019, derived from
microwave data with a 0.25° spatial resolution. Additionally, (c) and (d) display the same conditions in the downscaled FT product

at a higher resolution of 0.05°.

According to the methodology described in Sect. 3.3, a global near-surface FT states dataset with a 0.05° resolution was

generated, spanning the years 2002 to 2023. This dataset provides daily FT information for both daytime and nighttime,

corresponding to the satellite’s ascending (13:30) and descending (01:30) orbits, respectively. The left panel of Fig. 4 presents
a comparison between the original 0.25° FT discrimination product and —tHustrates-the glebal-downscaled FT product for
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surface conditions into the following categories: thawed soil, frozen soil, snow and ice, urban and built-up lands, water bodies,

as well as regions with missing data, and water-influenced areas (labeled as “water” in Fig. 4).

An important point to consider is that areas near water bodies may be misclassified as frozen due to the high soil moisture
content detected by microwave TB data. However, these areas are unlikely to freeze, particularly in coastal regions where
temperatures consistently remain above 0°C. To improve the reliability of the FT product, these water-influenced areas should
be carefully delineated and flagged.

In addition to the classification of surface conditions, another important feature of the dataset is its treatment of missing data.

In the original 0.25° FT product, data gaps occur due to the inherent swath gaps of the AMSR-E/2 satellites, resulting in

missing values for some grid cells on certain days. By contrast, our downscaling approach for the 0.05° product effectively

overcomes this limitation. For each 0.25° pixel, regression fitting is performed using only those dates with valid 0.25° FT data,

together with the corresponding 0.05° optical data on those dates. As the 0.05° optical data are spatiotemporally continuous,

regression can always be performed on any date with valid 0.25° FT observations. The fitted regression model is then applied

to the complete year of 0.05° optical data, resulting in a seamless, gap-free 0.05° FT dataset. This missing-data treatment in

the downscaling process ensures that the high-resolution FT product contains no data gaps, as demonstrated in Fig. 4.

The right panel of Fig. 4 presents a comparison of the FT product for the Qinghai-Tibet Plateau, highlighting the enhanced
resolution of the 0.05° product in capturing FT states. The downscaled product more precisely classifies soil freezing and
thawing states, as well as specific surface features that are more difficult to detect in the 0.25° product. This demonstrates the
enhanced capability of the 0.05° product to capture FT cycles at the local scale, compensating for the resolution limitations of
the original 0.25° product.

This downscaled product, with its enhanced spatial resolution, allows for a more detailed analysis of global FT dynamics,
providing a more reliable interpretation of global FT patterns. This capability is crucial for understanding FT cycles and their

associated environmental impacts.
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Figure 5: Maps of frost days in April 2019 for (a) the global scale and (b) the Qinghai-Tibet Plateau, derived from microwave data
with a 0.25° spatial resolution during the descending orbit time. Additionally, (c) and (d) show the same conditions in the downscaled
descending FT product at a resolution of 0.05°.

Fig. 5 illustrates frost days for April 2019 at two spatial resolutions, 0.25° and 0.05°, for both the global scale and the Qinghai-
Tibet Plateau.

The left panel compares global frost days for a single month, showing that the 0.25° product exhibits a more gradual variation
in frost days across the northern hemisphere. In contrast, the 0.05° product reveals more detailed and intricate patterns of frost
day variation. For instance, in southern Russia and parts of North America, the 0.05° product captures more nuanced frost day
variations, highlighting significant differences in frost day counts between neighboring grid cells. Meanwhile, the 0.25°
product displays relatively uniform changes on frost days, reflecting less variation due to its coarser resolution.

The right panel of Fig. 5 compares frost days for the Qinghai-Tibet Plateau, illustrating finer variations at the higher spatial
resolution. This demonstrates that the downscaled product provides a more detailed distribution of frost days, while also
capturing the trend of frost day variation at a finer spatial scale.

In summary, the downscaled FT product offers significantly more detailed information, especially in regions with complex FT
dynamics. This improvement in spatial resolution is crucial for our research, as it enables a more refined understanding of
global FT processes and their environmental impacts. The ability to capture finer details and regional variations is a key

advantage of the downscaling approach, which effectively meets the primary objectives of this study.

17
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Figure 6: Scatter plots comparing the downscaled FT product at a 0.05° resolution with the FT product at a 0.25° resolution. The
plots show data for (a) ascending orbits and (b) descending orbits. The color bar represents the density of data points.

In this section, the coarse- and high-resolution FT products were validated against in situ soil temperature data from 44
networks. The scatter plots of accuracy across all ground stations are shown in Fig. 6, with detailed validation results provided
in Table 3. The downscaled products achieved overall accuracies of 87.63% and 83.78% at ascending and descending orbit
times, respectively. These accuracies are comparable to those of the original products, which had overall accuracies of 87.72%

and 84.08%. In addition, Table 4 summarizes the classification accuracies of both products across various land cover types for

both ascending and descending passes. The land cover types are defined by the ESA CCI Land Cover 2010 classification

values provided by the ISMN sites, enabling a more comprehensive assessment of performance under different physiographic

conditions.

For networks experiencing FT cycles, the accuracies of the high-resolution products are 85.91% and 81.55% at ascending and
descending orbit times, respectively. For networks without FT phenomena, the accuracies are 97.43% and 97.97%. The color
gradient in the plots of Fig. 6 reflects data density, with points shifting toward yellow as density increases. Additionally, in
65.91% and 56.92% of networks, accuracy exceeds 90% at both ascending and descending orbit times for both FT products.
These findings suggest that the data points are most densely concentrated in the range where accuracy values lie between 0.9
and 1. Both ascending and descending orbit results closely align with the one-to-one line, indicating that the accuracy of the
FT classification remains largely unchanged after the downscaling process. Despite the enhanced spatial resolution, the
downscaled product preserves the accuracy and consistency of the original resolution.

These results are consistent with the conventional understanding of downscaling, which aims to enhance spatial resolution
without compromising the accuracy of the original product. As a result, the downscaled FT product provides higher spatial
resolution and more detailed information while maintaining the integrity and quality of the original observations.

Table 3 Validation results for the coarse- and high-resolution FT products across various networks. Networks 1 to 27 typically
experience FT cycles, while networks 28 to 44 do not exhibit FT phenomena. "Num' represents the number of FT product samples
that matched in situ measurements at the corresponding sampling times and were used for validation.
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Ascend Descend

No  Network Num Accuracy  Accuracy Num Accuracy  Accuracy
(0.05°) (0.25°) (0.05°) (0.25°)

1 BNZ-LTER 6,977 90.28% 91.89% 7,641 89.45% 95.75%
2 CTP_SMTMN 22,654 73.59% 74.42% 25,433 87.04% 84.45%
3 FLUXNET-AMERIFLUX 5,981 99.57% 99.52% 5,726 99.25% 99.09%
4 FMI 5,395 66.71% 75.94% 5,701 69.20% 75.39%
5 FR_Aqui 2,947 99.97% 99.90% 3,018 100.00% 100.00%
6 GTK 1,686 83.33% 82.27% 1,124 84.16% 88.52%
7 HOAL 1,450 93.10% 93.03% 1,568 98.47% 96.49%
8 HOBE 6,931 91.43% 88.57% 7,916 97.02% 95.89%
9 HYDROL-NET PERUGIA 1,101 95.64% 95.37% 985 95.94% 95.94%
10 HiWATER_EHWSN 43 100.00% 100.00% 41 100.00% 100.00%
11 KHOREZM 25 100.00% 100.00% 27 100.00% 100.00%
12 MAQU 12,050 76.67% 77.35% 13,019 80.71% 76.34%
13 MOL-RAO 4,268 94.80% 94.24% 5,152 95.57% 95.38%
14 NGARI 7,699 81.60% 80.70% 8,188 69.89% 69.42%
15 NVE 304 69.41% 82.57% 0 / /
16 RISMA 13,435 93.80% 92.50% 13,772 89.34% 92.35%
17 Ru CFR 1,182 82.66% 85.87% 896 89.06% 84.71%
18 SMN-SDR 4,335 80.16% 81.34% 4,816 84.88% 85.24%
19 SMOSMANIA 43,811 99.45% 98.98% 41,441 99.56% 99.11%
20 SONTE-China 662 81.27% 82.78% 755 84.11% 86.23%
21 TibetObs-Naqu 24,814 73.81% 74.77% 27,829 85.90% 83.39%
22 TibetObs-Pali 5,427 91.84% 90.82% 5,645 80.96% 84.00%
23 TxSON 5,879 100.00% 100.00% 5,476 100.00% 99.95%
24 USDA-ARS 11,926 96.01% 96.43% 12,014 94.93% 95.04%
25 SCAN 486,602 94.20% 93.95% 506,250 91.18% 89.99%
26 SNOTEL 1,189,704  80.81% 81.94% 1,332,948  75.23% 75.85%
27 USCRN 235,292 93.26% 92.29% 238,498 89.39% 89.31%
Overall accuracy for networks
experiencing FT cycles 2,102,580  85.91% 86.41% 2,275,879  81.55% 81.60%
28 AACES 1,674 100.00% 100.00% 1,721 99.88% 100.00%
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29 ARM 47,249 98.94% 98.96% 43,150 98.55% 98.10%
30 BIEBRZA S-1 631 90.49% 89.22% 661 96.52% 96.37%
31 DAHRA 1,233 100.00% 100.00% 1,009 100.00% 100.00%
32 MySMNet 111 100.00% 100.00% 103 100.00% 100.00%
33 OZNET 17,128 100.00% 99.99% 16,939 99.94% 100.00%
34 REMEDHUS 16,943 99.98% 99.89% 17,273 99.95% 99.86%
35 RSMN 24,231 95.80% 95.21% 15,957 96.37% 95.57%
36 SASMAS 2,094 100.00% 100.00% 2,069 100.00% 100.00%
37 SOILSCAPE 5,475 90.47% 90.48% 5,029 97.77% 97.63%
38 SWEX POLAND 876 93.72% 94.41% 891 89.23% 90.68%
39 TAHMO 1,583 100.00% 99.68% 1,111 100.00% 100.00%
40 TERENO 5,304 92.48% 89.57% 6,529 97.33% 96.88%
41 TWENTE 13,339 95.80% 93.94% 15,136 99.09% 98.39%
42 VAS 365 99.45% 99.18% 298 100.00% 100.00%
43 WSMN 370 25.14% 1.35% 456 37.72% 2.63%
44 XMS-CAT 6,763 95.00% 94.69% 6,886 90.01% 85.81%
Overall accuracy for networks without FT

phenomena 145,369 97.43% 96.97% 135,218 97.97% 97.30%
Overall accuracy 2,247949  87.63% 87.72% 2,411,097  83.78% 84.08%

Table 4 Validation results for the coarse- and high-resolution FT products across various land cover types. Land cover types are

sourced from the ESA CCI Land Cover 2010 classification values provided within the ISMN site dataset.

Ascend Descend
No  Land cover type Accuracy  Accuracy Accuracy  Accuracy
Num Num
(0.05°) (0.25°) (0.05°) (0.25°)
1 Cropland, rainfed 275,743 94.66% 94.37% 277,149 92.71% 92.26%
Cropland, rainfed / Herbaceous
2 10,129 90.79% 80.11% 10,157 83.01% 62.56%
cover
Cropland, rainfed / Tree or shrub
3 12,127 99.54% 99.20% 11,336 99.07% 98.42%
cover
Cropland, irrigated or
4 ] 5.162 99.99% 99.91% 5.217 99.93% 99.81%
flooding

20




|n

(=)

BN

|oo

[Ne]

Mosaic cropland (>50%) / natural

vegetation (tree, shrub, | 4.896 95.70% 96.12% 5.439 93.14% 93.47%
herbaceous cover) (<50%)
Mosaic natural vegetation (tree,
shrub. herbaceous cover) (>50%) | 25.702 91.44% 89.54% 27.613 82.67% 79.58%
/ cropland (<50%)
Tree COVET, broadleaved,
evergreen, Closed to open | 7.466 99.14% 94.58% 12,210 79.45% 64.53%
>15%)
Tree COVer, broadleaved,
deciduous, Closed to open | 12,658 94.14% 93.40% 12,094 94.76% 93.53%
(>15%)
Tree cover, broadleaved,
decid Closed (40%) 15.445 90.60% 91.34% 14,557 91.21% 90.13%
eciduous, Closed (>40%
Tree COVET, broadleaved,
decid o (15-40%) 198 100.00% 100.00% 198 100.00% 100.00%
eciduous, Open (15-40%
Tree cover, needleleaved,

898.729 81.77% 82.81% 996,959 76.49% 76.84%
evergreen, closed to open (>15%)
Tree cover, mixed leaf type

10,529 83.71% 83.61% 12,351 79.36% 84.00%
(broadleaved and needleleaved)
Mosaic tree and shrub (>50%) /
herb (<50%) 22.384 90.10% 90.79% 24,002 85.67% 90.28%
erbaceous cover (<50%
Mosaic herbaceous cover (>50%)
| d shrab (<50%) 5.159 90.48% 91.17% 4,955 92.15% 93.02%
tree and shrub (< ()
Shrubland 217,565 89.63% 89.83% 236,376 85.49% 85.47%
Grassland 596.806 87.98% 88.41% 626.309 84.49% 84.47%
Lichens and mosses 2,711 92.62% 92.88% 3,153 86.24% 93.78%
Sparse vegetation (tree, shrub,
herb ) (<15%) 25.240 88.56% 88.26% 28.065 83.54% 87.57%
erbaceous cover) (<15%
Shrub _or herbaceous cover,
flooded, fresh/saline/brakish | 16,913 83.87% 85.76% 19,753 80.89% 85.64%
water
Urban areas 41,406 92.64% 92.07% 37,230 89.29% 89.39%
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21 Bare areas 2.955 93.10% 93.49% 3.178 89.26% 90.64%
22 Consolidated bare areas 642 85.41% 85.31% 665 67.48% 65.08%
23 Water 5.213 81.31% 81.96% 6.120 73.57% 74.23%
24 Permanent snow and ice 0 / / 0 / /

4.3 FT dynamics and trends
4.3.1 Trend analysis of frost days

After validating the FT dataset’s accuracy with in situ observations, we calculated the average number of frost days and their
trends over the period 2003-2023. Fig. 7(a) illustrates the spatial distribution of the annual average frost days in the Northern
Hemisphere. In high-latitude regions (north of 45°N), the average frost days are approximately 187.8 + 12.7 days (spatial
standard deviation). In contrast, frost days in lower-latitude regions vary due to seasonal shifts.

While frost days generally increase with latitude, this pattern is not globally consistent. For example, the Qinghai-Tibet Plateau,
despite its relatively low latitude, experiences a higher number of frost days due to its high elevation. In the Southern
Hemisphere, soil freezing is rare, except in localized regions along the Andes Mountains, where freezing occasionally occurs
under specific climatic conditions.

The spatial trends of annual frost days are shown in Figure 7(b). MK trend analysis identifies a decreasing trend in
approximately 14.35% of global land areas, with 2.67% exhibiting statistically significant declines. This trend reflects the
impact of climate warming, especially across much of the Eurasian continent and Alaska, with particularly obvious effects in
Russia and the Qinghai-Tibet Plateau.

In contrast, about 11.17% of the global land area shows an increasing trend in frost days, of which 1.55% are statistically
significant. Regions with increasing frost days include North America and West Asia. These opposing trends underscore the
complexity of regional climate dynamics, revealing that while many areas are warming with fewer frost days, localized cooling
in some areas results in more frequent freezing events.

The analysis of frost day trends demonstrates the utility of the FT dataset while providing valuable insights into regional

variations in climate change impacts.
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Figure 7: Northern Hemisphere maps showing (a) average annual frost days and (b) trend analysis results for the 0.05° downscaled
FT product during the descending satellite pass from 2003 to 2023.

To further explore the climatic and geocryological significance of this metric, we compared the spatial distribution of annual
frost days in 2017 with independently derived permafrost maps over the Qinghai—Tibetan Plateau (Zhao, 2017; Zou et al.,

460 2017). as illustrated in Fig. 8. This qualitati.ve comparison reveals a notable spatial agreement, demonstrating that regions with

high annual numbers of frost days, as detected by remote sensing, are generally consistent with areas classified as permafrost
in existing reference datasets. Specifically, the average annual frost days within permafrost-classified pixels is approximately
278.85, indicating a potential spatial correspondence between these two metrics. This finding highlights the potential of the
annual number of frost days as a valuable proxy for assessing permafrost extent and its spatial variability.
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Figure 8: Maps of (a) permafrost distribution map (Zhao, 2017; Zou et al., 2017), and (b) annual frost days derived from the
downscaled descending FT product in 2017 over the Qinghai—Tibet Plateau.

4.3.2 Trend analysis of freeze onset date

A statistical analysis was performed to examine the average freeze onset date and its trend from 2003 to 2023. Fig. €9(a) shows
the spatial distribution of the annual average freeze onset date across the Northern Hemisphere. Soil freezing predominantly
occurs in the Northern Hemisphere, where the average freeze onset date in high-latitude regions is approximately 240.3 + 7.2
days (spatial standard deviation). A general trend is observed, with freezing beginning earlier in higher-latitude regions
compared to lower-latitude areas. However, this pattern is not uniform. On the Qinghai-Tibet Plateau, the high elevation causes
freezing to occur earlier, leading to lower freeze onset dates. In the Southern Hemisphere, soil freezing is limited to small areas,
primarily along the Andes Mountains, where freezing also begins earlier in the year.

Fig. 98(b) illustrates the spatial patterns of trends in freeze onset dates. The MK trend analysis identifies a decreasing trend in
freeze onset dates approximately 9.10% of the global land area, of which 1.22% exhibits statistically significant reductions. A
decrease in freeze onset date indicates an earlier start to freezing in these regions, with the most pronounced trends observed
in eastern Russia. Conversely, approximately 7.57% of the global land area demonstrates an increasing trend in freeze onset
dates, with 0.91% exhibiting statistically significant increases. An increase in freeze onset date reflects a delayed start to
freezing. These regions are more geographically dispersed, reflecting the widespread influence of global warming on soil FT

dynamics.
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Investigating frost day and freeze onset trends demonstrate the applicability of the FT dataset and provides deeper insight into

regional variations in climate change effects on global FT patterns.
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Figure 9: Northern Hemisphere maps showing (a) annual average freeze onset date and (b) trend analysis results for the 0.05°
downscaled FT product from 2003 to 2023.

4.4 Discussion
4.4.1 Enhanced capabilities of high-resolution FT products

This study utilizes passive microwave and optical observations to achieve high-resolution detection of FT states. Initially,
passive microwave sensors were used to monitor global surface FT states, generating an original FT dataset at a 0.25° resolution.
Due to their minimal susceptibility to atmospheric conditions, such as cloud cover and aerosols, these sensors enable
continuous tracking of FT transitions across diverse landscapes and climatic zones globally. Furthermore, the associated
discrimination algorithm demonstrates high classification accuracy, rendering it suitable for global-scale applications.
However, the original dataset’s coarse spatial resolution of 0.25°, combined with inherent seams in microwave sensor data,
limits its capacity to capture detailed surface variations. In contrast, optical observations, including LST and albedo, offer
higher spatial resolution and provide more detailed surface information. Additionally, the development of seamless, long-term
data products not only addresses the data seams in the original dataset but also maintains a short revisit interval, enabling daily
surface monitoring.

Therefore, to integrate the advantages of both data sources, a bivariate regression model was developed, effectively
downscaling the original 0.25° resolution dataset to a finer 0.05° resolution. This improved resolution allows for a more
detailed representation of FT states, facilitating analyses of regional FT dynamics, particularly in areas with complex terrain,
diverse vegetation, or significant seasonal variations. As shown in Fig. 109, the 0.05° resolution FT product reveals finer

details of FT cycles that were previously undetectable in the 0.25° dataset. These enhancements are critical for research

25



505

510

515

520

525

requiring precise identification of localized surface condition changes, such as those affecting soil moisture and ecosystem
carbon dynamics.

The methodology employed in this study not only eliminates seams in the original FT dataset but also integrates data from
multiple sources, including MODIS optical products and microwave TB observations. This fusion provides a robust and
continuous long-term FT record, essential for understanding global FT cycles and their environmental implications. Moreover,
the enhanced spatial resolution enables detailed analyses of changes in local FT conditions, offering valuable insights for
hydrological modeling, climate research, and ecosystem management. These advancements expand the applicability of the FT

record, contributing significantly to diverse scientific fields.
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Figure 10: Time series plots comparing the 0.25° FT product values and the 0.05° frozen ratios in the downscaled product at the
SQ21 station of the NGARI network, distinguished by (a) daytime and (b) nighttime observations.

4.4.2 Uncertainties associated with ground validation

Ground temperature data serve as a reliable basis for validating satellite-derived FT products. In this study, soil temperature
measurements at 0—5 cm depth were used for validation rather than surface-level (0 cm) measurements due to their superior

representation of near-surface soil FT states. Additionally. the utilization of 0—5 cm depth data ensures comparability with

satellite-based FT discrimination, since the typical penetration depths of passive microwave observations at 18.7 GHz and 36.5

GHz are approximately 3—5 cm and 0—2 cm, respectively, both under 5 cm. While 0°C is commonly employed as the threshold

for distinguishing frozen and thawed states in validation using in situ temperature data, this criterion may not always accurately
reflect actual ground conditions. Various factors, including wind, vegetation cover, and snow cover, can influence the true
ground state even when surface temperatures are at or below 0°C.

Currently, there is no universally accepted standard for defining absolute temperature boundaries for frozen and thawed ground.

However, the use of 0—5 cm soil temperature remains the most physically meaningful for passive microwave FT validation, as

it provides a more direct and reliable indicator of the near-surface state than either air temperature or deeper soil temperature
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ate: Despite this,
under certain conditions, such as areas with strong winds or heavy snow cover, this approach may lead to classification errors,
particularly when the ground thawing process is disrupted at temperatures near 0°C. To address these limitations, future studies
should concentrate on identifying optimal soil depths and establishing more precise temperature thresholds to enhance

validation accuracy.

4.4.3 Limitations and challenges

Although this study has effectively generated high-resolution FT data by integrating passive microwave observations with
optical datasets, further refinements are required to address the remaining challenges. First, despite the resolution enhancement
to 0.05°, it is still relatively coarse for applications demanding finer-scale detail. In complex surface environments, this
resolution may not adequately capture localized variations in FT states. To reduce the influence of spatial heterogeneity, higher-
resolution optical observations are necessary. For instance, utilizing a 1-kilometer LST and albedo dataset for downscaling
would align the resulting FT record with this finer spatial resolution. While 1-kilometer LST datasets are available, the
development of more stable and higher-resolution LST products remains critical. The quality of the downscaled FT dataset is
closely reliant on the quality of the optical observations employed. Future research should prioritize the use of seamless, high-
quality optical datasets with short revisit intervals and higher spatial resolution to produce more precise and reliable FT
classification products.

Second, the accuracy of the downscaled FT dataset is inherently determined by FT discrimination algorithms, which rely on
lower-resolution microwave remote sensing. As outlined in Sect. 4.2, the downscaling process preserves the accuracy
characteristics of the original FT data. Therefore, improvements in the FT discrimination algorithms are necessary for
achieving further gains in classification accuracy.

Additionally, during the data fusion process, combining optical observations with microwave data, various factors may affect
the correlation coefficients and the performance of the linear regression model. These factors include land cover types,
vegetation conditions, terrain elevation, and seasonal variations, all of which can introduce instability in model performance
and impact FT classification accuracy. To address these limitations, future studies should incorporate additional surface
parameters, including the Normalized Difference Vegetation Index (NDVI), to improve the model’s adaptability and accuracy

across diverse surface conditions.

5 Data availability

The global 0.05° near-surface soil FT state dataset (2002-2023) is freely available at the National Tibetan Plateau / Third Pole
Environment Data Center. The dataset can be accessed via https://doi.org/10.11888/Cryos.tpdc.301551 or
https://cstr.cn/18406.11.Cryos.tpdc.301551 (Zhao et al., 2024b).
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6 Conclusion

This study developed a comprehensive, high-resolution global dataset of surface FT states by integrating multi-source remote
sensing data. The primary objective was to enhance spatial resolution and provide more detailed global monitoring of FT states.
Coarse-resolution FT data were initially derived from passive microwave TBs, while long-term ATI data were calculated using
optical observations. By leveraging the complementary strengths of passive microwave and optical remote sensing products,
a high-resolution daily near-surface FT dataset was produced, offering a finer representation of surface FT conditions.
Subsequently, the coarse- and high-resolution FT products were validated using ground-based in situ observations. This
validation facilitated a thorough evaluation of accuracy changes associated with the downscaling process and enabled a
comprehensive trend analysis on a global scale using the enhanced-resolution FT records.

The findings have significant implications for understanding and monitoring ecological and hydrological responses to climate
dynamics. The analysis revealed intricate patterns of frost days and freeze onset dates, demonstrating the varying regional
influences of climate change. The downscaled product, with its enhanced spatial resolution, provided detailed insights into FT
dynamics, which are crucial for studies requiring precise identification of local surface condition changes, such as those
impacting soil moisture or ecosystem carbon dynamics.

This integration of multi-source remote sensing data marks a significant advancement in monitoring Earth's surface processes.
It demonstrates the potential to improve climate models and other environmental assessments. Furthermore, the proposed
methodological framework is adaptable for similar applications globally, enhancing the predictive capabilities for climate-
related phenomena and supporting environmental decision-making. By providing a robust and continuous long-term FT record,
this study contributes to the development of hydrological models, climate studies, and ecosystem management, thereby

expanding the applicability of the record in diverse scientific fields.
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