
Response to RC1 

The article is well-structured, and the technique and results are thoroughly explained. However, there are 
a few important comments: 

Reply:  

Thank you for your positive assessment and thoughtful comments. Our responses to each point are 
provided below. 

 

1. At what depths was in-situ data used to confirm soil freezing beyond 5 cm? Freezing to a depth of 5 
cm is a significant criterion for some agricultural activities, but it is insufficient for the majority of 
hydrological and ecological tasks, particularly in the context of climate change. 

Reply:  

Thank you for your inquiry regarding the depth of in situ measurements used for validating soil 
freezing. In validating both the coarse-resolution and high-resolution freeze-thaw (FT) datasets, we 
exclusively relied on ground-based soil temperature data from depths shallower than 5 cm. The initial 
coarse-resolution FT discrimination is derived from AMSR-E/2 passive-microwave brightness 
temperatures (TBs) at K-band (18.7 GHz) and Ka-band (36.5 GHz), whose typical penetration depths are 
approximately 3–5 cm and 0–2 cm, respectively, both under 5 cm. Given these penetration-depth 
constraints of passive microwave sensing, we confined our validation to shallow (<5 cm) observations to 
ensure that the in situ data and satellite-derived classifications sample the same sensitive soil layer. We 
also acknowledge the importance of deeper FT dynamics for climate and ecosystem studies and may 
investigate remote-sensing approaches for monitoring and analyzing greater freeze depths in future work.  

We have revised Sections 2.5 and 4.4.2 to clearly state the depths of ground-based soil temperature 
measurements used for validation and to explain the rationale for focusing on shallow (<5 cm) layers. 

Changes in manuscript: 

Lines 177-178 in Section 2.5: 

“This study selected long-term in situ soil temperature data from 1,027 stations within 44 global networks, 
all measured at a depth of 0–5 cm to match the penetration depth of the passive microwave observations.” 

Lines 518-520, 525-527 in Section 4.4.2: 

“Additionally, the utilization of 0–5 cm depth data ensures comparability with satellite-based FT 



discrimination, since the typical penetration depths of passive microwave observations at 18.7 GHz and 
36.5 GHz are approximately 3–5 cm and 0–2 cm, respectively, both under 5 cm.” 

“However, the use of 0–5 cm soil temperature remains the most physically meaningful for passive 
microwave FT validation, as it provides a more direct and reliable indicator of the near-surface state than 
either air temperature or deeper soil temperature measurements.” 

 

2. How do the authors incorporate data on permafrost distribution into the FT product, both in extended 
areas and mountainous regions? How do authors account for geographical and temporal variations in 
permafrost indicators between 2002 and 2023? 

Reply:  

Thank you for your question. We address it in two parts: 

First, we did not incorporate any existing permafrost‐distribution maps into our FT dataset. 
As shown in Fig. 1, we only used three IGBP land-cover classes as masking layers: water bodies, urban 
and built-up lands, and snow and ice. No permanent‐permafrost map was employed, either in the extended 
areas or in mountainous regions. This explanation has been added to Section 2.4 of the revised manuscript. 

Second, although our 0.05° FT dataset focuses on near-surface soil phase transitions, it enables the 
derivation of annual FT metrics (e.g. the number of frost days, the number of FT cycles) for each grid 
cell. Mapping these metrics across diverse landscapes provides a remote sensing approach to assess spatial 
and temporal variations in permafrost extent from 2002 to 2023.  

For instance, while our dataset does not use any existing permafrost distribution data as input, 
the results show spatial agreement between the annual number of frost days derived from our remote 
sensing approach in 2017 and independently derived permafrost maps over the Qinghai–Tibetan Plateau 
(Zhao, 2017), as illustrated in Fig. 8 of the revised manuscript. Specifically, the average annual frost days 
within permafrost-classified pixels is approximately 278.85, indicating a potential spatial correspondence 
between these two metrics. This qualitative comparison demonstrates that regions with high annual 
numbers of frost days, as detected by remote sensing, are generally consistent with areas classified 
as permafrost in existing reference datasets, supporting the potential of the annual number of frost days 
to serve as a valuable proxy for assessing permafrost extent and its spatial variability. This discussion has 
been added at the end of Section 4.3.1 of the revised manuscript. 

Changes in manuscript: 

Lines 165-168 in Section 2.4: 



“The land cover dataset, illustrated in Fig. 1, was specifically utilized to mask out pixels of three IGBP 
land-cover classes: water bodies, urban and built-up lands, and snow and ice. Furthermore, the 
corresponding type percentage dataset was used to filter out pixels dominated by large water bodies, 
which were then explicitly marked in the FT data record. Notably, no permafrost distribution data were 
used as input or constraints in generating the FT dataset.”  

Lines 457–465, Figure 8 in Section 4.3.1: 

“To further explore the climatic and geocryological significance of this metric, we compared the spatial 
distribution of annual frost days in 2017 with independently derived permafrost maps over the Qinghai–
Tibetan Plateau (Zhao, 2017; Zou et al., 2017), as illustrated in Fig. 8. This qualitative comparison reveals 
a notable spatial agreement, demonstrating that regions with high annual numbers of frost days, as 
detected by remote sensing, are generally consistent with areas classified as permafrost in existing 
reference datasets. Specifically, the average annual frost days within permafrost-classified pixels is 
approximately 278.85, indicating a potential spatial correspondence between these two metrics. This 
finding highlights the potential of the annual number of frost days as a valuable proxy for assessing 
permafrost extent and its spatial variability.”  

 

Figure 8: Maps of (a) permafrost distribution map (Zhao, 2017), and (b) annual frost days derived from the downscaled descending 

FT product in 2017 over the Qinghai–Tibet Plateau. 

Lines 799–800, 820-822 in Reference: 

Zhao, L.: A new map of permafrost distribution on the Tibetan Plateau (2017), National Tibetan Plateau / 



Third Pole Environment Data Center [dataset], https://doi.org/10.11888/Geocry.tpdc.270468, 2017. 

Zou, D., Zhao, L., Sheng, Y., Chen, J., Hu, G., Wu, T., Wu, J., Xie, C., Wu, X., Pang, Q., Wang, W., Du, 
E., Li, W., Liu, G., Li, J., Qin, Y., Qiao, Y., Wang, Z., Shi, J., and Cheng, G.: A new map of permafrost 
distribution on the tibetan plateau, The Cryosphere, 11, 2527–2542, https://doi.org/10.5194/tc-11-2527-
2017, 2017. 

 

3 The authors do not provide a convincing number of point verifications of the FT product in various 
physiographic conditions using statistical techniques. In addition, a comparison of soil freezing depth 
inaccuracies in various natural zones is required. 

Reply:  

Thank you for your valuable suggestion. 

To address the issue of insufficient point verifications across different physiographic conditions and 
land cover types, we have added a statistical accuracy table based on the ESA CCI Land Cover 2010 
classifications provided by ISMN sites (see Table 4 of the revised manuscript and Response Fig. 1). This 
table presents classification accuracies of both coarse-resolution (0.25°) and high-resolution (0.05°) 
products across different land cover types, with separate statistics for ascending and descending satellite 
passes, thereby reflecting the accuracy under various physiographic conditions and land cover types. This 
content has been included in Section 4.2 of the revised manuscript.  

As for the comparison of soil freezing depth inaccuracies across natural zones, we are initiating a 
follow-up study that uses the annual total frozen-days metric from our FT dataset to simulate soil freezing 
depths and assess their variability across different natural regions. A detailed comparison will be presented 
in future work. 



 

Response Figure 1: Line plots of classification accuracy for the 0.25° and 0.05° FT products across different land cover types: (a) 

ascending passes; (b) descending passes. The x-axis abbreviations are explained in Response Table 1 

Response Table 1: ESA CCI land cover classification framework.  

Code 

ESA CCI Land Cover Classes 

Code 

ESA CCI Land Cover Classes 

Abbreviated 
name 

Full name 
Abbreviated 
name 

Full name 

10 CR Cropland, rainfed 100 MTS/HC 
Mosaic tree and shrub (>50%) / 
herbaceous cover (<50%) 

11 CR/HC Cropland, rainfed / Herbaceous cover 110 MHC/TS 
Mosaic herbaceous cover (>50%) / 
tree and shrub (<50%) 

12 CR/TS 
Cropland, rainfed / Tree or shrub 
cover 

120 SH Shrubland 

20 CI Cropland, irrigated or post-flooding 130 GR Grassland 

30 MC/NV 
Mosaic cropland (>50%) / natural 
vegetation (tree, shrub, herbaceous 
cover) (<50%)  

140 LM Lichens and mosses 

40 MNV/CR 
Mosaic natural vegetation (tree, shrub, 
herbaceous cover) (>50%) / cropland 
(<50%) 

150 SV 
Sparse vegetation (tree, shrub, 
herbaceous cover) (<15%) 

50 TBE 
Tree cover, broadleaved, evergreen, 
Closed to open (>15%) 

180 SHF 
Shrub or herbaceous cover, 
flooded, fresh/saline/brakish water 

60 TBD Tree cover, broadleaved, deciduous, 190 UA Urban areas 



Closed to open (>15%) 

61 TBD-C 
Tree cover, broadleaved, deciduous, 
Closed (>40%) 

200 BA Bare areas 

62 TBD-O 
Tree cover, broadleaved, deciduous, 
Open (15-40%) 

201 CBA Consolidated bare areas 

70 
TNE 

Tree cover, needleleaved, evergreen, 
closed to open (>15%) 210 

WT Water 

90 TMX 
Tree cover, mixed leaf type 
(broadleaved and needleleaved) 

220 PSI Permanent snow and ice 

 

Changes in manuscript: 

Lines 412-415 in Section 4.2: 

In addition, Table 4 summarizes the classification accuracies of both products across various land cover 
types for both ascending and descending passes. The land cover types are defined by the ESA CCI Land 
Cover 2010 classification values provided by the ISMN sites, enabling a more comprehensive assessment 
of performance under different physiographic conditions. 

Lines 430-432, Table 4 in Section 4.2: 

Table 4 Validation results for the coarse- and high-resolution FT products across various land cover types. Land cover types are 

sourced from the ESA CCI Land Cover 2010 classification values provided within the ISMN site dataset.  

No Land cover type 
Ascend Descend 

Num 
Accuracy 
(0.05°) 

Accuracy 
(0.25°) 

Num 
Accuracy 
(0.05°) 

Accuracy 
(0.25°) 

1 Cropland, rainfed 275,743  94.66% 94.37% 277,149  92.71% 92.26% 

2 
Cropland, rainfed / Herbaceous 
cover 

10,129  90.79% 80.11% 10,157  83.01% 62.56% 

3 
Cropland, rainfed / Tree or 
shrub cover 

12,127  99.54% 99.20% 11,336  99.07% 98.42% 

4 
Cropland, irrigated or post-
flooding 

5,162  99.99% 99.91% 5,217  99.93% 99.81% 

5 
Mosaic cropland (>50%) / 
natural vegetation (tree, shrub, 
herbaceous cover) (<50%)  

4,896  95.70% 96.12% 5,439  93.14% 93.47% 

6 
Mosaic natural vegetation (tree, 
shrub, herbaceous cover) 
(>50%) / cropland (<50%) 

25,702  91.44% 89.54% 27,613  82.67% 79.58% 

7 Tree cover, broadleaved, 7,466  99.14% 94.58% 12,210  79.45% 64.53% 



evergreen, Closed to open 
(>15%) 

8 
Tree cover, broadleaved, 
deciduous, Closed to open 
(>15%) 

12,658  94.14% 93.40% 12,094  94.76% 93.53% 

9 
Tree cover, broadleaved, 
deciduous, Closed (>40%) 

15,445  90.60% 91.34% 14,557  91.21% 90.13% 

10 
Tree cover, broadleaved, 
deciduous, Open (15-40%) 

198  100.00% 100.00% 198  100.00% 100.00% 

11 
Tree cover, needleleaved, 
evergreen, closed to open 
(>15%) 

898,729  81.77% 82.81% 996,959  76.49% 76.84% 

12 
Tree cover, mixed leaf type 
(broadleaved and needleleaved) 

10,529  83.71% 83.61% 12,351  79.36% 84.00% 

13 
Mosaic tree and shrub (>50%) / 
herbaceous cover (<50%) 

22,384  90.10% 90.79% 24,002  85.67% 90.28% 

14 
Mosaic herbaceous cover 
(>50%) / tree and shrub (<50%) 

5,159  90.48% 91.17% 4,955  92.15% 93.02% 

15 Shrubland 217,565  89.63% 89.83% 236,376  85.49% 85.47% 

16 Grassland 596,806  87.98% 88.41% 626,309  84.49% 84.47% 

17 Lichens and mosses 2,711  92.62% 92.88% 3,153  86.24% 93.78% 

18 
Sparse vegetation (tree, shrub, 
herbaceous cover) (<15%) 

25,240  88.56% 88.26% 28,065  83.54% 87.57% 

19 
Shrub or herbaceous cover, 
flooded, fresh/saline/brakish 
water 

16,913  83.87% 85.76% 19,753  80.89% 85.64% 

20 Urban areas 41,406  92.64% 92.07% 37,230  89.29% 89.39% 

21 Bare areas 2,955  93.10% 93.49% 3,178  89.26% 90.64% 

22 Consolidated bare areas 642  85.41% 85.31% 665  67.48% 65.08% 

23 Water 5,213  81.31% 81.96% 6,120  73.57% 74.23% 

24 Permanent snow and ice 0  / / 0  / / 

 

4. Can you explain the lack of freeze-thaw data at 0.25º resolution in Fig. 4? 

Reply:  

Thank you for this question.  

The lack of 0.25° freeze-thaw (FT) data shown in Fig. 4(a) and (b) arises from the satellite’s inherent 



orbital swath gaps in daily AMSR-E/2 passive-microwave brightness-temperature (TB) observations. 
Because each overpass only covers a limited swath, grid cells outside that swath on any given day lack 
valid TB inputs, making FT discrimination at 0.25° impossible and resulting in missing values. The 
approximately 2-day revisit interval of AMSR-E/2 causes the location of valid observations to shift from 
one day to the next. Although this results in missing measurements for certain pixels on some dates, each 
pixel still accumulates sufficient valid observations over the course of a year. 

In contrast, Fig. 4(c) and (d) show our 0.05° high‐resolution downscaled product, which contains no 
data gaps because our pixel-by-pixel linear-regression downscaling automatically skips any dates with 
missing inputs. Specifically, for each 0.25° pixel, regression fitting was performed using only those dates 
with valid 0.25° FT data, together with the corresponding 0.05° optical data on those dates. The 0.05° 
optical data are spatiotemporally continuous, so regression fitting is always possible on any date with 
valid 0.25° FT observations. For example, if a given pixel has valid 0.25° FT data on only 200 out of 365 
days, the regression coefficients are derived solely from those 200 days. We then apply the fitted model 
to the full year of 0.05° optical data, thereby generating a seamless 0.05° FT dataset. 

A detailed description of this linear-regression downscaling approach and how it addresses missing 
data is provided in Section 3.3 of the manuscript. Additionally, Section 4.1 provides a brief description of 
the data gaps present in the 0.25° product, while highlighting that the 0.05° downscaled product contains 
no such gaps. 

Changes in manuscript: 

Lines 259, 267, 270-272 in Section 3.3: 

“where the coefficients a, b and c are determined through linear regression fitting.” 

“Linear regression fitting was performed on these three data vectors of each pixel, resulting in six 
coefficient matrices for 𝑎𝑎, 𝑏𝑏, and 𝑐𝑐 at the ascending and descending times:” 

“where the abbreviations "HR" and "LR" refer to high and low resolution, respectively. Regression fitting 
was performed using only those dates with valid 0.25° FT data, together with the corresponding 0.05° 
optical data on those dates.” 

Lines 361-363, 370-378 in Section 4.1: 

“The left panel of Fig. 4 presents a comparison between the original 0.25° FT discrimination product and the 

downscaled FT discrimination product for January 1, 2019, at 01:30 (descending orbit).” 

“In addition to the classification of surface conditions, another important feature of the dataset is its 
treatment of missing data. In the original 0.25° FT product, data gaps occur due to the inherent swath gaps 



of the AMSR-E/2 satellites, resulting in missing values for some grid cells on certain days. By contrast, 
our downscaling approach for the 0.05° product effectively overcomes this limitation. For each 0.25° 
pixel, regression fitting is performed using only those dates with valid 0.25° FT data, together with the 
corresponding 0.05° optical data on those dates. As the 0.05° optical data are spatiotemporally continuous, 
regression can always be performed on any date with valid 0.25° FT observations. The fitted regression 
model is then applied to the complete year of 0.05° optical data, resulting in a seamless, gap-free 0.05° 
FT dataset. This missing-data treatment in the downscaling process ensures that the high-resolution FT 
product contains no data gaps, as demonstrated in Fig. 4.” 


