
1 
 

Climate Modes evaluation datasets from CMIP6 pre-industrial control simulations and 

observations 

Sandeep Mohapatra1,2, Alex Sen Gupta1,3, Nathaniel L. Bindoff1,2,4, Yuxuan Lyu1,2 

1
Australian Centre for Excellence in Antarctic Science, University of Tasmania, Hobart, 

Australia 5 

2
Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia 

3
Climate Change Research Centre, University of New South Wales, Sydney, Australia  

4
Australian Antarctic Program Partnership, University of Tasmania, Hobart, Australia 

Correspondence to: Sandeep Mohapatra (sandeep.mohapatra@utas.edu.au) 

 10 

 

Abstract 

Internal climate variability encompasses processes ranging from daily weather fluctuations to 

multidecadal interactions within the climate system. A large component of internal variability 

on sub-seasonal to multi-decadal time scales is associated with recurring patterns or “climate 15 

modes”. In this study we provide an openly available dataset of eight major climate modes: 

Eastern Pacific El Niño (EP-El Niño), Central Pacific El Niño (CP-El Niño), Interdecadal 

Pacific Oscillation (IPO), Indian Ocean Dipole (IOD), Subsurface Dipole Mode (SDM), 

Atlantic Multidecadal Oscillation (AMO), North Atlantic Oscillation (NAO), and Southern 

Annular Mode (SAM). These modes were derived from 23 Coupled Model Intercomparison 20 

Project 6 (CMIP6) models, each with over 500 years of simulation data, ensuring robust 

statistical insights into their spatial and temporal structures. The datasets were validated against 

observational data, revealing broad-scale consistency and highlighting biases in regional 

features and amplitudes. However, regional discrepancies, like exaggerated warming or 

cooling in specific areas, were found. Despite these limitations, the datasets provide an 25 

important resource for understanding climate variability, conducting detection and attribution 

studies, and improving climate projections. All datasets are publicly accessible (Mohapatra et 

al. 2025; https://doi.org/10.5281/zenodo.17337105), supporting future research and policy 

development to address climate variability and its implications for climate change adaptation 

and mitigation. 30 

Short Summary 
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This study provides a new open-access datasets that capture how natural climate 

patterns shape the global climate. The datasets are built from climate model simulations and 

observations, allowing researcher to see how well models reproduce natural climate behaviour. 

Our openly available datasets will help researchers to better distinguish natural climate 35 

variability from human-caused changes. These resources also provide a foundation for 

improving climate models and long-term projections. 

1 Introduction 

1.1 Internal variability and Climate Modes  

Identifying internal variability is crucial for isolating the anthropogenic climate change 40 

signal, which can enhance or mask the long-term trend (Deser et al., 2012; Kay et al., 2015). A 

better understanding of internal processes is an important factor in reducing the uncertainty of 

climate projections. The internal variability of the climate system can be described, to a large 

extent, as a combination of climate modes. A climate mode is a recurring pattern of climate 

variability that typically spans large geographical areas and influences weather and climate 45 

over weeks to decades. These patterns emerge from complex interactions between the 

atmosphere, oceans, and sometimes land or ice systems. Each mode is usually characterized by 

specific spatial patterns (such as sea surface temperature or sea level pressure anomalies) and 

temporal behaviour (how often it occurs and how long it lasts). 

1.2 Climate Modes across the Globe  50 

Different ocean basins host various climate modes operating at multiple time scales, 

ranging from sub-seasonal to interannual, decadal, and multidecadal. For instance, the Pacific 

Ocean, being the largest ocean basin, exhibits key climate modes such as the El Niño Southern 

Oscillation (ENSO), and the Interdecadal Pacific Oscillation (IPO; Henley et al., 2015, 2017; 

Power et al., 1999; Folland et al., 2002). Among them, ENSO stands out as the strongest 55 

interannual climate mode in tropical Pacific Ocean and has substantial global impact. ENSO is 

commonly separated into two types based on the region of greatest anomalous activity: Eastern 

Pacific (EP) El Niño and Central Pacific (CP) El Niño. EP (CP) El Niño is characterized by 

eastern (central) tropical Pacific warming during its positive phase.  On the other hand, the IPO 

is a multidecadal climate mode with SST anomalies that extend more broadly than ENSO into 60 

the subtropics. During the positive phase of the IPO, sea surface temperature warm in the 

tropical eastern and central Pacific, while the subtropical central and western Pacific experience 

cooling (Henley et al., 2015).  

The Indian Ocean displays distinct climate modes, including the Indian Ocean Dipole 

(IOD; Saji et al., 1999; Webster et al., 1999), and Subsurface Dipole Mode (SDM; Sayantani 65 
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& Gnanaseelan, 2015; Mohapatra & Gnanaseelan, 2021). The IOD and SDM vary from 

interannual to decadal time scales, with IOD defined using tropical Indian Ocean SST, while 

SDM is defined based on thermocline depth and 500 m ocean heat content (OHC500). The 

IOD is characterised by contrasting warming and cooling in the western and southeastern 

equatorial Indian Ocean during its positive phase. The SDM is characterised by the 70 

southwestern Indian Ocean warming and eastern and central equatorial Indian Ocean cooling 

during its positive phase.   

The Atlantic Ocean exhibits two main climate modes: the North Atlantic Oscillation 

(NAO; Hurrell et al., 2003; Hurrell & Deser, 2009) and the Atlantic Multidecadal Oscillation 

(AMO; Deser et al., 2010). The NAO is an atmospheric mode of variability characterised by 75 

fluctuations in the sea level pressure difference between the Icelandic Low and the Azores 

High. The AMO is an oceanic mode of multidecadal variability in North Atlantic SST, marked 

by uniform warming and cooling during warm and cold phases.  

In the southern hemisphere, the Southern Annular Mode (SAM; Gong & Wang, 1999; 

Marshall, 2003) represents an important atmospheric mode of variability in sea level pressure 80 

and is characterised by the north-south movement of the westerly wind belt over the mid and 

higher latitudes. In its positive phase, the SAM is associated with lower pressure over 

Antarctica and stronger poleward-shifted westerlies. Overall, these climate modes are 

regionally based and defined by specific spatial patterns and time evolution. 

These modes have a substantial impact on the global climate through oceanic and 85 

atmospheric channels across multiple timescales. They are responsible for internal changes in 

regional and global teleconnection processes, including key systems such as monsoon 

dynamics, Walker and Hadley circulation, ocean circulation, sea level, and heat content 

(Arblaster et al., 2002; Taschetto et al., 2015; Dong & McPhaden, 2017; IPCC, 2023; 

Mohapatra et al., 2023). These modes interact with each other, either amplifying or suppressing 90 

one another, thereby further influencing climate dynamics at both regional and global scales 

(IPCC, 2023; Meehl & Arblaster, 2012; Park et al., 2023).  

1.3 Representation of climate modes in CMIP 

Past research indicates that while the simulation of various climate modes has improved 

across successive CMIP generations, notable biases remain (Lee et al., 2021; Bracegirdle et al., 95 

2020; Fasullo et al., 2020; Flato et al., 2013; Coburn & Pryor 2021). Most CMIP5 models 

reproduce the AMO spatial pattern (Chen et al., 2018) but underrepresented low-frequency 

hemispheric teleconnections (Kavvada et al., 2013). Based on historical simulations, CMIP6 

exhibits clear advances, for instance, improved representation of several ENSO characteristics, 
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more realistic IOD spatial patterns, and better reproduction of AMO variability, yet persistent 100 

issues remain, such as biases in IOD amplitude and weak coupling between near-surface and 

subsurface processes for ENSO (Planton et al., 2021; McKenna et al. 2020). 

 To better evaluate these natural climate patterns, piControl simulations provide long-

term datasets of unforced climate variability, offering a stable baseline for the assessment of 

climate modes. By comparing CMIP6 outputs with observations and across models, these 105 

datasets enable systematic validation of climate modes, quantification of individual model 

limitations.  

1.4 Objective of climate mode datasets from CMIP6 

Many analyses in climate science require information on climate modes, for example, 

when assessing their impacts, conducting attribution studies, or investigating mode dynamics. 110 

It is often useful to have information on the modes uncontaminated by a global warming signal. 

However, these piControl outputs are large datasets and processing times can be long, 

especially for metrics such as subsurface temperature. To address this need, we provide an open 

dataset along with a detailed description of the derivation of eight key climate modes (EP-El 

Niño, CP-El Niño, IPO, IOD, SDM, AMO, NAO, and SAM) based on 23 CMIP6 piControl 115 

simulations and observations. Section 2.1 outlines the datasets used to derive these climate 

modes, including details of the CMIP6 models and observational products. Section 2.2 

describes the methodologies adopted and the standard definitions employed to identify the 

climate modes and techniques adopted for validation. Section 3 presents the technical 

validation and quality control of the derived datasets, providing a detailed discussion of the 120 

spatial and temporal structures of the eight climate modes, highlighting their consistency and 

limitations when compared with observational data. Section 4 summarizes the key dataset 

characteristics and findings. Section 5 highlights the utility of climate modes indices, and 

outlines their potential applications for studying internal climate variability and supporting 

future climate assessments. Finally, section 6 provides the data availability statement for 125 

derived and original datasets. 

2 Data and Methods 

2.1 Data Description 

Monthly CMIP6 sea surface temperature (SST; variable: tos), sea level pressure (SLP; 

variable: psl), and potential temperature (variable: thetao) are obtained from the Earth System 130 

Grid Federation (https://esgf-node.llnl.gov/projects/cmip6). The present study considers 23 

CMIP6 models. Only models with 500 or more years of piControl runs are considered to ensure 

robust statistics. This criterion ensures that the derived indices capture statistically robust 
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characteristics of internal climate variability, independent of externally forced signals. Each 

model contributes continuous monthly fields from the ocean and atmosphere components, 135 

allowing for consistent computation of climate mode indices. 

The selected models represent a diverse range of modelling centres and configurations, 

encompassing different resolutions, parameterizations, and coupled components. This diversity 

provides a comprehensive basis for evaluating model consistency and spread in representing 

climate modes. Model details, including the originating centres, ocean-atmosphere resolutions, 140 

and total simulation lengths are listed in Table 1.  

Model 

name 

Model Centres Ocean Component 

(Horizontal 

Resolution) 

Atmospheric 

Component 

(Horizontal 

Resolution) 

 

Duratio

n 

(years) 

CanESM5 Canadian Centre for Climate 

Modelling and Analysis 

(CCCma) 

NEMO3.4.1 

(361*290) 

CanAM5 (128*64) 1000 

HadGEM3-

GC31-LL 

UK Met Office Hadley NEMO-HadGEM3-

GO6.0 (ORCA1 1o) 

MetUM-HadGEM3- 

GA7.1 (192*144) 

500 

EC-Earth3-

CC 

EC-Earth Consortium NEMO3.6 (362*292) IFS cy36r4 

(512*256) 

505 

CMCC-

CM2-SR5 

Centro Euro-Mediterraneo sui 

Cambiamenti Climatici 

(CMCC) 

NEMO3.6 (ORCA025 

0.25o) 

CAM5.3 (288 x 192) 500 

CNRM-

CM6-1 

Centre National de Recherches 

Météorologiques (CNRM-

CERFACS) 

NEMO3.6 (ORCA1 

1o) 

Arpege 6.3 (T127, 

150km) 

500 

GISS-E2-1-

G 

NASA Goddard Institute for 

Space Studies 

GISS Ocean (1o) GISS-E2.1 (144 x 

90) 

851 

CMCC-

ESM2 

Centro Euro-Mediterraneo sui 

Cambiamenti Climatici 

(CMCC) 

NEMO3.6 (ORCA1 

1o) 

CAM5.4 (288*192) 500 

EC-Earth3 EC-Earth Consortium NEMO3.6 (ORCA1 

1o) 

IFS cy36r4 

(512*256) 

501 

https://doi.org/10.5194/essd-2025-618
Preprint. Discussion started: 11 November 2025
c© Author(s) 2025. CC BY 4.0 License.



6 
 

E3SM1-0 U.S. Department of Energy 

(DOE) 

MPAS-Ocean v6.0 

(resolution 60 km to 

30 km) 

E3M v1.0 C90 500 

MIROC6 JAMSTEC, AORI, NIES 

(Japan) 

COCO4.9 (360*256) CCSR AGCM 

(256*128) 

800 

MRI-ESM2-

0 

Meteorological Research 

Institute (MRI) 

MRI.COM4.4 2 

(360*364) 

MRI-AGCM3.5 

(320*160) 

500 

HadGEM3-

GC31-MM 

UK Met Office Hadley Centre NEMO-HadGEM3-

GO6.0 (ORCA025 

0.25o) 

MetUM-HadGEM3- 

GA7.1 (432*324) 

500 

BCC-

CSM2-MR 

Beijing Climate Center (BCC) MOM4 (1o) AGCM3 (T106, 46) 600 

IPSL-

CM6A-LR 

Institute Pierre-Simon Laplace 

(IPSL) 

NEMO3.6 (362*332) LMDZ (144 * 143) 2000 

MPI-ESM1-

2-HR 

Max Planck Institute for 

Meteorology (MPI-M) 

MPIOM1.6.3 

(802*404) 

ECHAM6.3 

(384*192) 

500 

ACCESS-

ESM1-5 

ACCESS, CSIRO (Australia) GFDL-MOM5 

(360*300) 

HadGAM2 

(192*145) 

1000 

ACCESS-

CM2 

ACCESS, CSIRO (Australia) GFDL-MOM5 

(360*300) 

HadGEM3-GA7.1 

(N96) 

500 

CESM2 National Center for 

Atmospheric Research (NCAR) 

POP2 (320*384) CAM6 (288*192) 1200 

GFDL-CM4 NOAA Geophysical Fluid 

Dynamics Laboratory (GFDL) 

GFDL-MOM6 

(1440*1080) 

GFDL-AM4.0.1 

(360*180) 

500 

CIESM Chinese Academy of 

Meteorological Sciences 

CIESM-OM 

(720*560) 

CIESM-AM 

(288*192) 

500 

FGOALS-g3 Institute of Atmospheric 

Physics, Chinese Academy of 

Sciences (IAP-CAS) 

LICOM3.0 (360*218) GAMIL2 (180*90) 700 

SAM0-

UNICON 

Seoul National University 

(SNU) 

POP2 (320*384) CAM5.3 with 

UNICON (320*384) 

700 

CNRM-

ESM2-1 

Centre National de Recherches 

Météorologiques (CNRM-

CERFACS) 

NEMO3.6 (e-

ORCA1 1o) 

Arpege 6.3 (T127) 500 

Table 1. List of CMIP6 model with their organisation. 
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Observation and reanalysis datasets are used for validating the climate modes. Monthly 

SST data is taken from Extended Reconstructed SST version5 (ERSSTv5) for the period 1900-

2023. The latest version of ERSSTv5 incorporates updated datasets, including SST from 145 

ICOADS Release 3.0, Argo floats (above 5 m), and sea-ice concentration from HadISST2. It 

improves spatial and temporal variability by refining Empirical Orthogonal Teleconnections 

(EOTs) and correcting ship SST biases using buoy-based references and an unadjusted first-

guess approach. The detailed description of ERSSTv5 is provided by Huang et al. (2017). The 

present study also considers the monthly potential temperature data from the Ocean Reanalysis 150 

System 5 (ORAS5) during 1958-2018. ORAS5 adopts 3DVar-FGAT mode with ensemble 

based bias correction scheme. Observations from satellite instruments and in-situ 

measurements like CTD, Mooring etc. are assimilated into the Nucleus for European Modelling 

of the Ocean versions 4.0 (NEMO4) ocean model (Zuo et al. 2018). Our study includes the 

monthly Sea level pressure data from ERA5 reanalysis product  for the period 1940-2023. 155 

ERA5 is the 5th generation reanalysis project from the European Centre for Medium-Range 

Weather Forecasts (ECWMF). ERA5 is produced using 4D-Var data assimilation and model 

forecasts in CY41R2 of the ECMWF Integrated Forecast System (IFS) (Hersbach et al. 2020). 

The dataset incorporates updated analyses of sea-surface temperature, sea-ice concentration, 

and multiple observational records using an ocean-wave optimal interpolation scheme, 160 

providing global hourly/monthly data since 1940 at ~31 km (0.5° × 0.5°) resolution, along with 

uncertainty estimates to assess data quality and reliability.  

Using the above datasets, we derived eight climate modes in NetCDF format. All files, 

together with the generating codes, are publicly archived on Zenodo (Mohapatra et al. 2025; 

https://doi.org/10.5281/zenodo.17337105). Detailed descriptions of the data processing steps, 165 

including preprocessing, statistical derivation, and consistency checks, as well as a 

comprehensive evaluation against observational and reanalysis datasets, are provided in the 

Methodology and Technical Validation sections.  

2.2 Methodology  

As the first step, all observational, reanalysis, and CMIP model datasets were regridded 170 

to a 1° × 1° grid using bilinear interpolation before any further processing. 

2.2.1 Ocean Heat Content 

The 500m upper Ocean Heat Content (OHC500) in reanalysis and models is computed 

as follows: 

𝑂𝐻𝐶500 = 𝜌0𝐶𝑝 ∫ 𝑇(𝑧)𝑑𝑧
500

0
  175 
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where Cp=4186 J Kg−1 K−1 is the specific heat capacity of the sea water and ρ0=1026 kg m−3 

is the reference sea water density, T(z) is the vertical profile of regridded potential temperature. 

2.2.2 Drift correction  

Variables from piControl simulations, that are not subject to transient forcing, should 

be stationary over time. However, a common issue in climate models is the drift. Drift is a 180 

spurious trend in different state variables that are unrelated to changes in external forcing (Sen 

Gupta et al. 2013). Drift may occur for various reasons such as insufficient spin up and errors 

in the model’s energy budget (Hobbs et al. 2016). This shortcoming in the models when 

integrated over century scales can result large changes in ocean temperature, and ocean heat 

content etc (Sen Gupta et al. 2013; Hobbs et al. 2016). To remove model drift, a linear trend 185 

was fitted and removed at each grid cell over the full duration of the piControl simulations for 

regridded SST, OHC500, and SLP. 

2.2.3 Climate modes 

We have calculated eight widely used climate modes (IPO, EP and CP El 𝑁𝑖ñ𝑜, AMO, 

NAO, IOD, SDM, and SAM), using standard definitions of these modes in the literature (Table 190 

2). First, monthly anomalies are calculated by subtracting the long-term (duration of piControl) 

monthly mean climatology from the SST, SLP, and OHC500, after the data had already been 

regridded and linearly detrended as described above. 

A Lanczos filter was applied to the above processed datasets prior to computing the 

AMO, ENSO and IPO indices. For the AMO and IPO, a 10-year low-pass filter with a 10-year 195 

cut-off and a filter length of 121 months was used, which removes approximately five years of 

data from the beginning and end of the record. For ENSO, a band-pass filter with lower and 

upper cut-offs at 24 months and 108 months respectively, and a filter length of 109 months, 

was applied. The Lanczos filters (low-pass and band-pass) were chosen to retain only the 

desired frequency ranges required for defining climate mode (AMO, ENSO and IPO). To 200 

maintain consistency, we removed five years from the start and end of the record used for 

computing each of the climate mode index (Table 2). While the AMO is defined as the average 

of 10year low pass filtered SST anomaly over the North Atlantic as preferred in most literature, 

the other seven climate modes are defined based on Empirical Orthogonal Function (EOF) and 

applied separately to different regions/variables (as mentioned in Table 2).  205 

EOF analysis decomposes spatiotemporal data into orthogonal spatial patterns and 

corresponding temporal coefficients, known as principal components (PCs), ranked by the 

variance they explain (Hannachi et al., 2007). We have not included the Niño 3.4 (for ENSO), 

DMI (Dipole Mode Index for IOD) indices in this study because they rely on specific, small-
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area averages. Since models have biases in accurately representing these regions, we instead 210 

use EOF based PCs as indices, which better account for regional biases while capturing 

variability across the full basins.  

Index Definition  

AMO (Atlantic 

Multidecadal Oscillation) 

Average of 10 years low pass filtered detrended monthly SST Anomaly average 

over the North Atlantic (0-60oN,75oW-7.5oW)  

(Enfield et al. 2001; Wang et al. 2009; Deser et al. 2021) 

IPO (Interdecadal Pacific 

Oscillation) 

1st EOFPC of 10 years low pass filtered detrended monthly SST anomaly averaged 

over the Pacific Ocean (70oS-70oN, 120oE-80oW). (Dong and McPhaden 2017; 

Han et al. 2014; Power et al. 1999) 

El Niño (EP El Niño and 

CP El Niño) 

1st and 2nd EOFPC of 2-9 years band pass filtered detrended monthly SST anomaly 

over the tropical Pacific Ocean (120oE-80oW, 30oS-30oN). EOFPC1 (EOFPC2) 

represents EP El Niño (CP El Niño). (Xu et al 2017)  

Here EP El Niño is denoted as ENSO1 and CP El Niño is denoted as ENSO2. 

SAM (Southern Annular 

Mode) 

1st EOFPC of detrended monthly sea level pressure anomaly south of 20oS (Cai 

and Cowan 2007; Miller et al. 2006) 

NAO (North Atlantic 

Oscillation) 

1st EOFPC of detrended monthly sea level pressure anomaly over the North 

Atlantic Ocean (90oW-40oE,20oN-80oN) (Hurrel et al. 2003; Hurrel & Deser 2009) 

SDM (Subsurface Dipole 

Mode) 

1st EOFPC of detrended monthly upper 500m OHC anomaly over the tropical 

Indian Ocean (40oE-110oE, 20oS-25oN) (Mohapatra & Gnanaseelan, 2021) 

IOD (Indian Ocean 

Dipole) 

2nd EOFPC of detrended monthly SST anomaly over the tropical Indian Ocean 

(40oE-110oE, 20oS-25oN). (Krishnamurthy & Kirtman, 2003) 

Table 2. Definition of various regional climate modes and their domains. 

2.2.4 Model Skill score  

To compare the spatial patterns of climate modes extracted from CMIP6 models with 215 

those from observations, we have employed Taylor diagrams. Taylor diagrams provide a 

concise visual representation of the spatial correlation coefficient (𝑟) and the standard deviation 

(STD) between a model field and an observed field, while also incorporating their combined 

measure, the root-mean-square difference (RMSD) (Izzaddin et al., 2024; Taylor, 2001). The 

RMSD is calculated as: 220 

RMSD2 = 𝜎𝑚
2 + 𝜎𝑟

2 − 2 𝜎𝑚𝜎𝑟  𝑟 

Where 𝜎𝑚 and 𝜎𝑟  are the standard deviations of the model and observed patterns, respectively, 

and 𝑟 is their spatial correlation coefficient. 

In our analysis, the model results were standardised relative to observation. This allows 

the distance from each model point to the reference (observed) point on the diagram to directly 225 

indicate the overall agreement between the simulated and observed spatial patterns. 
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2.2.5 Spectral analysis and Monte Carlo significance test 

We analysed the periodic variability of the climate mode indices time series using the 

Fast Fourier Transform (FFT) and tested the statistical significance of spectral peaks via Monte 

Carlo simulation. For each time series, the mean was removed, and the series was normalised 230 

to unit variance before spectral estimation. The power spectrum was computed using the 

variance-normalised periodogram with a Hanning window and normalised such that. 

∑ 𝑃(𝑓𝑘)

𝐾

𝑘=1

= 1 

Where 𝑃(𝑓𝑘) is the power at frequency 𝑓𝑘 , and 𝐾 is the number of positive frequency bins. 

To construct the null distribution, we fitted a first-order autoregressive (AR(1)) model to each 235 

series by estimating its lag-1 autocorrelation coefficient 𝛼 (Wilks, 2011). A total of 1000 Monte 

Carlo time series were generated with the same length as the original data following the 

approach of Schulz & Mudelsee (2002): 

𝑥𝑡 = 𝛼𝑥𝑡−1 + 𝜀𝑡,  𝜀𝑡 ∼ 𝒩(0,1) 

The FFT is applied to each surrogate, and the resulting simulated spectra are used to estimate 240 

the mean 𝑃(𝑓), standard deviation 𝜎𝑃(𝑓), and the effective degrees of freedom (EDF) at each 

frequency (Bretherton et al., 1999): 

EDF(𝑓) = [
𝑃(𝑓)

𝜎𝑃(𝑓)
]

2

 

The significance threshold at each frequency was then calculated as 

𝑇(𝑓) = 𝑃(𝑓) +
𝜎𝑃(𝑓)

√EDF(𝑓)
 245 

And peaks in the observed spectrum exceeding this threshold (mean + standard error) are 

considered statistically significant. This procedure is repeated for all CMIP6 models, 

observational and reanalysis datasets to assess the robustness of periodic signals in the 

extracted climate mode indices. For the heat maps, we plot the fraction of significant spectral 

power in each period bin for every dataset. Within each dataset, these fractions are normalized 250 

to sum to 1 (i.e., we condition on the significant part of the spectrum), so the heat map reflects 

the relative distribution of significant power across periods rather than absolute magnitude. 

Bins with no significant power are left blank. 

3 Technical Validation 

3.1 Spatial and Statistical Quality Control of Simulated Climate Modes 255 

3.1.1 Pacific Ocean Basin 
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3.1.1.1 ENSO (EP El Niño and CP El Niño) 

The tropical Pacific Ocean exhibits a dominant interannual climate mode known as El 

Niño Southern Oscillation, comprising of two types of EP and CP El Niño. These two types of 

modes are defined as the first two leading modes of SST anomaly in the tropical Pacific within  260 

30oS-30oN (Xue et al. 2017). The EP El Niño represents the primary leading mode and is 

characterized by warming in the eastern tropical Pacific  and explains 63.4% of the variance of 

tropical Pacific SST anomaly in observation (Fig. 1a). Spatial expression, obtained  by 

regressing SST anomaly against the normalised time series of mode indices (EOFPC1) show 

that most models capture the broad scale features, particularly warming in the eastern and 265 

central tropical Pacific Ocean during its positive phase (Fig. 1a). All the models reproduce the 

observed wedge-shaped warming in the central and eastern Pacific, with a weaker cooling 

signal in the surrounding regions. Pattern correlations range between 0.7 to 0.95 with RMSE 

error ranging between 0.35oC to 0.55oC (Fig. 4a). Models (particularly CanESM5, BCC-

CSM2-MR, IPSL-CM6A-LR, ACCESS-ESM1.5, and SAM0-UNICON) present warming 270 

signal that extends too far to the west along the equator and show maximum anomalies too far 

to the west. Despite these limitations, all the models broadly replicate the observed spatial 

pattern, with RMSE values around 0.50C. 

 

Fig. 1 Spatial pattern of regression-derived ocean response for the Eastern Pacific El Nino (EP El Nino: 275 

ENSO1). Values are sea surface temperature (2-9year band pass filtered) anomalies (in oC) regressed 

against the EOFPC (ENSO1) time series from (a) ERSSTv5, (b-x) 23 CMIP6 models and (y) MMM. 

Here MMM represents the average of spatial pattern of regression from 23 CMIP6 models. The 
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bracketed text and numbers in black are the mean variance explained by the EOF representing ENSO1 

between observations and models.  280 

Unlike the EP El Niño, models demonstrate a large inter-model spread in representing 

the observed warming in the central Pacific expanding to lower latitudes towards the east and 

with cooling in the eastern and western tropical Pacific Ocean which are the characteristics of 

the positive phase of CP El Niño (Fig. 2, Fig. 4b). This mode explains only 8.1% of the variance 

in the observation, which is much less than the  EP El Niño. Similarly low variances are seen 285 

across the models varying between 5%-15% (Fig. 2). With respect to observation, 14 out of 23 

models have correlations that exceed 0.5, whereas 6 models show lower correlations in between 

0.2-0.5 and 2 models (CESM2 and CIESM) show negative correlation (Fig. 4b). Models such 

as CanESM5, CMCC-CM2-SR5, BCC-CSM2-MR, ACCESS-ESM1-5 and MIROC6 show the 

central Pacific warming extending into the western Pacific, whereas EC-Earth3-CC, E3SM1-290 

0, CESM2, and CIESM display warming in the central and eastern Pacific, which deviates from 

the conventional CP El Niño spatial features, as indicated by RMSE values exceeding 1oC. 

These deviations are likely due to the smaller variance associated with this mode. Despite these 

issues, the MMM effectively captures the observed climate mode by reducing non-systematic 

biases coming from individual models and a lower RMSE of around 0.5oC (Fig. 4b). 295 

 

 

Fig. 2 Spatial pattern of regression-derived ocean response for the Central Pacific El Nino (CP El Nino: 

ENSO2). Values are sea surface temperature (2-9 years band pass filtered) anomalies (in oC) regressed 

against the EOFPC (ENSO2) time series from (a) ERSSTv5, (b-x) 23 CMIP6 models and (y) MMM. 300 

Here MMM represents the average of spatial pattern of regression from 23 CMIP6 models. The 
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bracketed text and numbers in black are the mean variance explained by the EOF representing ENSO2 

between observations and models. 

3.1.1.2 Interdecadal Pacific Oscillation (IPO) 

The IPO is a multidecadal climate mode and captured as the first leading mode of 305 

variability in low frequency SST anomaly in the Pacific Ocean (Dong and McPhaden 2017; 

Han et al. 2014; Power et al. 1999), accounting for 32.3% of variance in observation (Fig. 3a). 

However, for EC-Earth3 and HadGEM3-GC31-LL, IPO appears as the second and third 

leading modes of SST, respectively (Fig. 3c, i), as indicated by the corresponding EOFs that 

show strong correlations with the observed IPO spatial pattern. In most CMIP6 models, the 310 

IPO explains 25–35% of the variance, consistent with observations, though models such as 

CNRM-CM6-1, GISS-E2-1-G, FGOALS-g3, and CNRM-ESM2-1 show lower values (<20%), 

while CESM2 shows higher variance (44%). The observed IPO pattern exhibits a characteristic 

tripolar structure with warming in the central to eastern tropical Pacific and cooling in the 

western-central North and South Pacific, corresponding to the positive phase of the IPO (Fig. 315 

3a). 
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Fig. 3 Spatial pattern of regression-derived ocean response for the Interdecadal Pacific Oscillation 

(IPO). Values are sea surface temperature (10year low pass filtered) anomalies (in oC) regressed against 

the EOFPC (IPO) time series from (a) ERSSTv5, (b-x) 23 CMIP6 models and (y) MMM. Here MMM 320 

represents the average of spatial pattern of regression from 23 CMIP6 models. The bracketed text and 

numbers in black are the mean variance explained by the EOF representing IPO between observations 

and models. 

  To examine the robustness of spatial pattern, we have calculated the spatial correlation 

between the observed and modelled IPO pattern (Fig. 4c), revealing that 19 CMIP6 models 325 

exhibit strong correlations ranging from 0.7 to 0.9, with low RMSE around 0.5°C. However, 

most models simulate the characteristic warming in the equatorial eastern Pacific extending 

westward, though with varying amplitudes compared to observation.  For example, GISS-E2-

1-G simulates positive anomalies over the western North Central Pacific (Fig. 3g), in contrast 

to the observed negative anomalies. Similarly, BCC-CSM2-MR shows basin-wide warming 330 
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across the South Pacific (Fig. 3n).  Overall, the MMM reproduces the IPO spatial pattern and 

variance reasonably well, demonstrating robust representation of the observed low-frequency 

Pacific variability. 

 

Fig. 4 Taylor diagram for regression based spatial pattern of (a) ENSO1 (b) ENSO2 (c) IPO from 335 

observation, 23 CMIP6 models and MMM. (d, e, f) Power spectrum of normalised time series for (d) 

ENSO1, (e) ENSO2 and (f) IPO climate mode indices from observation and 23 CMIP6 models. The 

power is plotted for values above a threshold (mean + standard error) after performing power analysis 

using a Monte Carlo–based significance test. 

 340 

3.1.2 Indian Ocean basin 

3.1.2.1 Indian Ocean Dipole (IOD) 

The IOD, an internal mode of variability in tropical Indian Ocean SST, is characterised 

by warming (cooling) in the WEIO (EEIO) during its positive phase (Krishnamurthy and 

Kirtman 2003; Saji et al. 1999). Most models represent the IOD as the second leading mode of 345 

variability in SST anomaly, while 7 models (CMCC-CM2-SR5, BCC-CSM2-MR, ACCESS-

ESM1-5, CESM2, CIESM, FGOALS-g3, SAM0-UNICON) exhibit the IOD as 1st leading 

mode (Fig. 5).  Observed  IOD accounts for 12.7% of the total SST anomaly variance in the 

tropical Indian Ocean (Fig. 5a). The explained variance in CMIP6 models varies widely, from 
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9.5% (CanESM5) to 31.5% (CIESM), while  8 models explains within the observed range of 350 

10%-15%.  A strong agreement exists between the simulated and observed spatial patterns of 

the IOD, with pattern correlations ranging from 0.4 to 0.9 across all the models (as shown in 

Taylor diagram in Fig. 7a), though  notable regional differences remains in reproducing the 

magnitude of warming and cooling over the western and eastern IO. For instance, a subset of 

seven models (CMCC-ESM2, EC-Earth3-CC, EC-Earth3, E3SM1-0, CIESM, MIROC6, and 355 

SAM0-UNICON) simulates strong cooling over Java and Sumatra region, resulting in high 

RMSE ranging between 1.0 and 1.5°C. Conversely, models like CMCC-CM2-SR5 and CESM2 

produce exaggerated warming in the western IO. The MMM mitigates these individual model 

biases and achieves a closer representation of the observed IOD spatial pattern, demonstrated 

by a strong pattern correlation (0.7) and a substantially lower RMSE (0.6°C). 360 

 

Fig. 5 Spatial pattern of regression-derived ocean response for the Indian Ocean Dipole (IOD). Values 

are sea surface temperature anomalies (in oC) regressed against the EOFPC (IOD) time series from (a) 

ERSSTv5, (b-x) 23 CMIP6 models and (y) MMM. Here MMM represents the average of spatial pattern 

of regression from 23 CMIP6 models. The bracketed text and numbers in black are the mean variance 365 

explained by the EOF representing IOD between observations and models. 
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3.1.2.2 Subsurface Dipole Mode (SDM) 

The SDM is an internal mode of variability in the upper 500m OHC of the tropical 

Indian Ocean, characterised by a distinct dipolar pattern with warming in the south-western 

Indian Ocean (SWIO)  and cooling in the EEIO  during its positive phase (Mohapatra and 370 

Gnanaseelan 2021). All 23 models, along with reanalysis data (ORAS5), represent the SDM as 

the dominant EOF in OHC500 anomaly (Fig. 6). Reanalysis data accounts for 21% of the total 

variance.  The explained variance in CMIP6 models varies widely from 14.4% in HadGEM3-

GC31-MM to over 40% in CIESM and FGOALS-g3. The SDM pattern in reanalysis shows 

warming (cooling) in the SWIO (EEIO) (Fig. 6a). Most models reproduce the observed SWIO 375 

and EEIO dipole structure of SDM, though a few models underestimate the observed warming 

over the Arabian Sea (Fig. 6).  

 

Fig. 6 Spatial pattern of regression-derived ocean response for the Subsurface Dipole Mode (SDM). 

Values are sea surface temperature anomalies (in *108 J/m2) regressed against the EOFPC (SDM) time 380 

series from (a) ORAS5, (b-x) 23 CMIP6 models and (y) MMM. Here MMM represents the average of 

spatial pattern of regression from 23 CMIP6 models. The bracketed text and numbers in black are the 

mean variance explained by the EOF representing SDM between observations and models. 
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 All the models exhibit a strong correlation with reanalysis, ranging from 0.6 to 0.9 (Fig. 

7b). The majority of models also display low RMSE values, around 0.5*108 J/m2. In contrast, 385 

CMCC-ESM2 exhibits a notably higher RMSE, exceeding 1*108 J/m2 (Fig. 7b), primarily due 

to its exaggerated amplitude in the SWIO relative to reanalysis (Fig. 6b). Overall, the CMIP6 

models demonstrate good skill in capturing the SDM’s spatial characteristics, underscoring 

their ability to represent key OHC variability in the tropical Indian Ocean.  

 390 

Fig. 7 Taylor diagram for regression based spatial pattern of (a) IOD from ERSSTv5 (b) SDM from 

ORAS5, 23 CMIP6 models and MMM. (c, d) Power spectrum of normalised time series for (c) IOD 

and (d) SDM climate mode indices from observation and 23 CMIP6 models. The power is plotted for 

values above the threshold (mean + standard error) after performing power analysis using a Monte 

Carlo–based significance test. 395 

3.1.3 Atlantic Ocean basin 

3.1.3.1 Atlantic Multidecadal Oscillation (AMO) 

The AMO is an important multidecadal oceanic climate mode in the North Atlantic 

Ocean, characterised by basin-wide warming in the North Atlantic Ocean (Fig. 8a). All the 

models display the large-scale features of the observed AMO pattern (Fig. 8), through several 400 

show regional deviations. 10 out of the 23 models (EC-Earth3-CC, GISS-E2-1-G, EC-Earth3, 

E3SM1-0, MIROC6, MRI-ESM2-0, GFDL-CM4, FGOALS-g3, SAM0-UNICON, CNRM-

ESM2-1) exhibit a cooling pattern in the western-central North Atlantic Ocean. Several models 

also show amplitude deviations from observation, particularly north of 40°N, where the 

warming is either stronger or weaker than observed. These differences are reflected in the 405 

broader correlation range (0.2 to 0.7) between the models and observation (Fig. 11a). For 
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example, eight models (EC-Earth3, CMCC-CM2-SR5, CMCC-ESM2, CNRM-ESM1-0, 

FGOALS-g3, CNRM-CM6-1, and IPSL-CM6A-LR) show excessive warming north of 40°N, 

while FGOALS-g3 exhibits strong cooling in the western-central North Atlantic with RMSE 

values exceeding 2°C, and even exceeding 6°C (for EC-Earth3) (Fig. 11d). The MMM 410 

effectively mitigates these discrepancies, providing a more consistent representation of the 

observed AMO pattern, with a correlation of 0.6 and RMSE below 2°C, demonstrating 

improved overall skill relative to individual models. 

 

Fig. 8 Spatial pattern of regression-derived ocean response for the Atlantic Multidecadal Oscillation 415 

(AMO). Values are sea surface temperature (10year low pass filtered) anomalies (in oC) regressed 

against the AMO time series from (a) ERSSTv5, (b-x) 23 CMIP6 models and (y) MMM. Here MMM 

represents the average of spatial pattern of regression from 23 CMIP6 models.  

3.1.4 Atmospheric Modes 

3.1.4.1 North Atlantic Oscillation (NAO)  420 
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 The NAO, an atmospheric mode of variability in SLP over the North Atlantic Ocean,  

is defined as a distinct north-south dipolar SLP pattern, with high (low) SLP anomaly in the 

north (south) of the North Atlantic Ocean during its positive phase (Hurrel et al. 2003; Hurrel 

& Deser 2009). Reanalysis (ERA5) and all 23 models represent the NAO as the leading mode 

of variability in SLP anomaly (Fig. 9). Reanalysis data explains 33.1% of the total variance, 425 

while models account 28%-35% in SLP anomaly, indicating a strong imprint of the NAO in 

atmospheric circulation over this region.  Models successfully reproduce this canonical NAO 

spatial pattern with varying amplitude across the basin. All the models exhibit very strong 

spatial correlation (>0.95) with reanalysis and maintain very low RMSE values (< 5 Pa), 

underscoring the overall robustness and consistency of CMIP6 models in representing the 430 

observed NAO structure (Fig. 11b).   

 

Fig. 9 Spatial pattern of regression-derived ocean response for the North Atlantic Oscillation (NAO). 

Values are sea level pressure anomalies (in Pa) regressed against the EOFPC (NAO) time series from 

(a) ERA5, (b-x) 23 CMIP6 models and (y) MMM. Here MMM represents the average of spatial pattern 435 

of regression from 23 CMIP6 models. The bracketed text and numbers in black are the mean variance 

explained by the EOF representing NAO between observation and models. 

3.1.4.2 Southern Annular Mode (SAM) 

The southern hemisphere extra-subtropics are dominated by an atmospheric mode 

known as the SAM, which is characterised by a north-south shift in westerly wind belts. 440 

Reanalysis (ERA5) and all  CMIP6 simulations capture SAM as the primary climate mode in 

SLP anomaly. Reanalysis explains 26% of total variance, while models capture 26%–35%. The 
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regression based spatial pattern of the SAM shows negative SLP anomalies over the polar 

region and positive anomalies over the extra-subtropical latitudes, a feature reproduced by the 

models (Fig. 10). All models show strong correlation (>0.97) and low RMSE (<5 Pa) with 445 

reanalysis (Fig. 11c), confirming the robustness of SAM representation and the reliability of 

the CMIP6-derived SAM index for studying southern hemisphere climate variability.  

 

Fig. 10 Spatial pattern of regression-derived atmospheric response for the Southern Annular Mode 

(SAM). Values are sea level pressure anomalies (in Pa) regressed against the EOFPC (SAM) time series 450 

from (a) ERA5, (b-x) 23 CMIP6 models and (y) MMM. Here MMM represents the average of spatial 

pattern of regression from 23 CMIP6 models. The bracketed text and numbers in black are the mean 

variance explained by the EOF representing SAM between observation and models. 
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Fig. 11 Taylor diagram for spatial pattern (regression based) of (a) AMO (b) NAO, and (c) 455 

SAM in observation, 23 CMIP6 models and MMM. (d, e, f) Power spectrum of normalised 

time series for (d) AMO, (e) NAO and (f) SAM climate mode indices from observation and 23 

CMIP6 models. The power is plotted for values above the threshold (mean + standard error) 

after performing power analysis using a Monte Carlo–based significance test.  

3.2 Verification of Temporal Variability of Simulated Climate Modes 460 

Following our examination and evaluation of the spatial patterns of climate modes, we 

also investigate their temporal structure. ENSO is the strongest climate mode, with a periodicity 

on interannual time scales ranging from 2–7 years (Xu et al. 2017).  Both observed ENSO1 

and ENSO2 show a clear periodicity between 2–7 years, which is broadly captured by all the 

models,  though several extending  beyond 7 years. The broader distribution of power in the 465 

models reflects their substantially longer simulation periods compared to the relatively short 

observational record. Notably, ENSO1 periodicity extends beyond 10 years in CanESM5, 

CMCC-CM2-SR5, and MIROC6, while for ENSO2, CanESM5, CMCC-ESM2, MRI-ESM2-

0, and ACCESS-ESM1-5 show periodicities exceeding 10 years. Similarly, the observed IPO 

exhibits a multidecadal periodicity in the 10–30 years range (Fig. 4f). The models also capture 470 

this periodicity, though it extends beyond 30 years, and shows a greater number of significant 

power peaks than observations. In contrast, the extended model simulations show more 
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significant power, extending up to 50years reflecting their longer integration periods, but 

mostly concentrated within the 10-20 years range. Models such as CanESM5 (1000 years), 

MIROC6 (800 years), IPSL-CM6A-LR (2000 years), CESM2 (1200 years), that have long 475 

simulation lengths, exhibit a higher number of spectral peaks compared to other models. 

The observed IOD shows periodicity at interannual time scale, with decadal 

fluctuations at 15 years (Fig. 7c). It exhibits strong power at Year 2, which is also reflected in 

most models. Models such as CanESM5, CMCC-CM2-SR5, IPSL-CM6A-LR, and MPI-

ESM1-2-HR exhibit broader spectral power up to 20 years, whereas IPSL-CM6A-LR, with its 480 

2000-year simulation, shows significant spectra over the entire 20 years period. For the SDM, 

the reanalysis (ORAS5) based index exhibits significant spectral power within 6 years  (Fig. 

7d), while models display this range with additional peaks extending up to 12 years. For 

instance, the periodicity of SDM extends beyond 10 years in CanESM5, IPSL-CM5A-LR, 

CESM2 and GFDL-CM4.  485 

Spectral analysis of the observed AMO index indicates  clear periodicity in the 10-60 

years range (Fig. 11d) represented by three significant power peaks. The extended piControl 

simulations show a broader distribution of power across this range, with several significant 

peaks spread throughout. CNRM-CM6-1, EC-Earth3, CMCC-ESM2 and CNRM-ESM2-1 

show comparatively fewer spectra than other models, with EC-Earth3 and CNRM-ESM2-1 490 

showing peaks limited to 10-25 years range (Fig. 11d).  For NAO, the reanalysis data exhibits 

a dominant spectral peak within 4 years, and more peaks scattered between 8 and 15 years, 

indicating variability spanning both interannual and decadal timescales (Fig. 11e). The 

Reanalysis shows strong power at the 2-year period, which gradually weakens but remains 

significant, a feature that is more prominent across all the models. Most models display 495 

significant spectral power concentrated within the 7-year range, with additional peaks unevenly 

distributed between 10 and 20 years (Fig. 11e).  

The SAM shows a pronounced spectral peak within a 6-year period in the reanalysis, 

reflecting strong interannual variability (Fig. 11f). The reanalysis also indicates notable power 

at the 2-year period, which diminishes with increasing period yet remains statistically 500 

significant, a pattern consistently reproduced by the models. Across the CMIP6, most models 

exhibit dominant power beyond 6 years, with several displaying additional, unevenly 

distributed peaks between 6 and 20 years.  

Overall, this temporal assessment demonstrates that CMIP6 models capture the 

observed periodicity and variability of major climate modes across interannual to multidecadal 505 

timescales. While differences remain in amplitude and spectral spread, the general agreement 
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across models, observations and reanalyses indicates a consistent and physically realistic 

representation of internal climate variability. 

4 Conclusion 

 Here, we provide datasets for eight different climate modes (EP-El Niño, CP-El Niño, 510 

IPO, IOD, SDM, AMO, NAO, and SAM) from 23 CMIP6 piControl simulations. Our findings 

suggest that the spatial and temporal structures of these climate modes in the piControl 

simulations, spanning 500 to 2000 years, broadly resemble the observed patterns, with models 

showing higher skill in representing atmospheric modes than oceanic modes. However, there 

are notable differences in capturing the amplitude and regional structure of these modes due to 515 

the model resolution, missing physics, and inadequate parameterization. Although the models 

reproduce many key features seen in observations, the wide differences in their representation 

of CP El Niño and AMO highlight greater uncertainties compared to the other climate modes.  

5 Data Usage 

These standardised pre-processed datasets will allow researchers to bypass the time-520 

consuming step of processing raw outputs, enabling them to focus on scientific inquiry and 

interpretation. The uniform definitions and methodologies embedded in this dataset ensure that 

analyses across different studies and climate models are comparable and consistent, fostering 

collaborative research and cross-validation of results. Moreover, it provides a crucial 

benchmark for evaluating climate model performance, helping identify limitations and guiding 525 

future improvements. This resource is potentially useful for detection and attribution studies, 

where distinguishing internal variability such as ENSO, SAM or IOD that alias into 

anthropogenic influences is essential for understanding short-term trends in observed climate 

records. These data products are suitable for exploring the influence of internal modes such as 

ENSO, SAM, and IPO on global and regional climate variability of sea level, and ocean heat 530 

content. By enabling robust statistical analysis and more precise attribution, these climate 

modes database can become a useful tool for both climate research and assessments informing 

IPCC reports and climate impact evaluations.  

Furthermore, the dataset can serve as a benchmark for future climate model 

development and tuning, as it highlights both the strengths and limitations in simulating key 535 

climate modes. It also provides an empirical foundation for improving multi-model ensemble 

analyses, and long-term climate projections. The inclusion of associated scripts ensures 

transparency and allows users to extend or modify the analysis framework for their specific 

research needs. 

6 Data Availability Statement 540 
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The resulting datasets, generated in NetCDF format, are publicly available via Zenodo 

(Mohapatra et al. 2025; https://doi.org/10.5281/zenodo.17337105). This includes EOFs, mode 

indices including PCs, normalised PCs and regression based spatial pattern files from 23 

CMIP6 piControl simulations, observations and reanalysis. The Zenodo archive also contains 

the codes used to generate these datasets. The 23 CMIP6 model directory contains datasets that 545 

includes the spatial, temporal, and normalized temporal components of eight commonly 

examined climate modes. The Observation_Reanalysis directory provides equivalent datasets 

from observational and reanalysis products for comparison and validation. The 

Regression_Based_Spatial_Patterns directory includes regression-derived spatial patterns 

based on key variables such as sea surface temperature (SST), sea level pressure (SLP), and 550 

ocean heat content (OHC). The Codes directory contains the NCL and Ferret scripts that is used 

for data processing, EOF analysis, regression computation. 

The original CMIP6 monthly outputs are available at https://esgf-

node.llnl.gov/projects/cmip6. ERA5 Sea level pressure data is taken from 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-555 

means?tab=overview and ERSSTv5 sea surface temperature data are provided by NOAA/PSL 

(https://downloads.psl.noaa.gov/Datasets/noaa.ersst.v5/). ORAS5 monthly potential 

temperature reanalysis data can be accessed from Asia-Pacific Data-Research Center 

(http://apdrc.soest.hawaii.edu/las/v6/dataset?catitem=16535). 
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