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Abstract. Global tree species mapping using remote sensing data is vital for biodiversity monitoring, forest management, and
ecological research. However, progress in this field has been constrained by the scarcity of large-scale, labeled datasets. To
address this, we introduce GlobalGeoTree—a comprehensive global dataset for tree species classification. GlobalGeoTree
comprises 6.3 million geolocated tree occurrences, spanning 275 families, 2,734 genera, and 21,001 species across the
hierarchical taxonomic levels. Each sample is paired with Sentinel-2 image time series and 27 auxiliary environmental variables,
encompassing bioclimatic, geographic, and soil data. The dataset is partitioned into GlobalGeoTree-6M, a large subset for
model pretraining, and curated evaluation subsets, primarily GlobalGeoTree-10kEval, a benchmark for zero-shot and few-
shot classification. To demonstrate the utility of the dataset, we introduce a baseline model, GeoTreeCLIP, which leverages
paired remote sensing data and taxonomic text labels within a vision-language framework pretrained on GlobalGeoTree-
6M. Experimental results show that GeoTreeCLIP achieves substantial improvements in zero- and few-shot classification on
GlobalGeoTree-10kEval over existing advanced models. By making the dataset, models, and code publicly available, we aim
to establish a benchmark to advance tree species classification and foster innovation in biodiversity research and ecological
applications. The code is publicly available at https://github.com/MU Yang99/GlobalGeoTree, and the GlobalGeoTree dataset is
available at https://huggingface.co/datasets/yannl11/GlobalGeoTree (Mu et al., 2025b).

1 Introduction

Forests cover approximately 31% of the global land surface (Hansen et al., 2013) and provide essential ecosystem services,
including carbon sequestration (Jenkins et al., 2003), biodiversity conservation (Lindenmayer et al., 2006), and climate
regulation (Bonan, 2008). Accurate and large-scale mapping of tree species plays an increasingly vital role in addressing pressing
environmental challenges (Mu et al., 2025a), including effective biodiversity monitoring (Felton et al., 2020), informed forest
management practices (Franklin, 2001), and comprehensive ecological research aimed at understanding the complex impacts of

climate change (Hamann and Wang, 2006).



25

30

35

https://doi.org/10.5194/essd-2025-613
Preprint. Discussion started: 5 November 2025
(© Author(s) 2025. CC BY 4.0 License.

6.3 million samples; 21,001 species; 221 countries/regions

= -~ <
—

103 tal 'h "‘- '“. = sl wY

Earth System
Science

Data

Open Access
suoIssnasIqg

Sentinel-2 Time Series
12 monthly median composite
10 bands: RGB, NIR, Vegetation

# Red Edge and SWIR

102 Bioclim Variables (19)
bio01: annual mean temperature
. B.i.o12: annual precipitation
107 R e
1 o .
o (( j § . .
&L - Geographic Variables (5)
Latitude and longitude
level0 Evergreen Broadleaf <

Elevation, slope and aspect

level1_family Myrtaceae

level2_genus Eucalyptus

Soil Variables (3)
Volumetric Water Content at
33kPa across depths: 0-5 cm,
5-15cm, 15-30 cm

level3_species Eucalyptus kybeanensis

location: Australia, source: iNaturalist Res.-
grade Obse., species_key: 3176853, ...

Figure 1. Overview of the GlobalGeoTree dataset, which includes 6.3 million samples spanning 21,001 tree species across 221 countries/regions.
The map illustrates the geographic coverage, with color intensity representing the number of samples in each 1° x 1° latitude/longitude
grid. Each sample is paired with remote sensing data, including Sentinel-2 time series, auxiliary environmental variables, and hierarchical

taxonomic labels spanning from functional type to species level.

Traditional ground-based forest monitoring methods (Wellbrock et al., 2018), while providing detailed information, are often
limited in their spatial and temporal coverage, making it challenging to obtain a comprehensive understanding of global forest
composition and dynamics. In contrast, remote sensing has emerged as a key technology for large-scale forest monitoring,
offering non-invasive and cost-effective approaches to tree species classification (Hermosilla et al., 2022). Despite significant
advancements in this field, progress has been constrained by the limited availability of comprehensive, high-quality, and
accurately labeled datasets that capture the global diversity of tree species (Bountos et al., 2025). Existing datasets typically
focus on specific geographic regions or limited taxonomic coverage, hampering the development of models with global
applicability (Ouaknine et al., 2025).

To bridge these gaps, we present GlobalGeoTree, a large-scale dataset comprising 6.3 million remote sensing samples paired
with multi-level taxonomic labels. This dataset integrates time-series satellite imagery from Sentinel-2 with 27 bioclimatic,
geographic, and soil variables, offering a rich multimodal representation of tree species within their environmental contexts.
The taxonomic hierarchy spans family, genus, and species levels, enabling classification across various scales of biological
organization.

In addition to the dataset, we introduce GeoTreeCLIP, a vision-language model specifically designed for tree species

classification. Drawing on frameworks like CLIP (Radford et al., 2021), our approach aligns satellite imagery with taxonomic
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labels to learn nuanced representations. Unlike traditional classifiers treating labels as discrete categories, vision-language
models can inherently process label hierarchical structure, generalizing to unseen species through representations of related
genera or families (Stevens et al., 2024). This enables robust zero-shot and few-shot learning of GeoTreeCLIP, which are critical
for addressing the vast scale of global biodiversity, ever-evolving species catalogs, and the practical impossibility of exhaustive
data collection for all taxa.

GeoTreeCLIP leverages domain-specific pretraining on GlobalGeoTree-6M, main part of the dataset tailored for model
pretraining, and evaluated on a specialized benchmark, GlobalGeoTree-10kEval, which enables a comprehensive assessment of
model performance across multiple taxonomic levels. Through the open availability of GlobalGeoTree, its associated models,
and evaluation protocols, we seek to establish a community-driven benchmarking standard that will accelerate the development

of generalizable models for tree species mapping and deepen our understanding of global forest biodiversity.

2 Related Work
2.1 Open datasets for tree species classification

Table 1 provides an overview of notable open datasets that have contributed to tree species classification, detailing their
geographic coverage, size, and taxonomic diversity. For instance, the Seu Nico Forest dataset (Gastauer et al., 2015) from
Brazil provides geolocated samples for 228 species but is geographically constrained. Similarly, the Maraca Ecological Station
dataset (Farias et al., 2020) includes 110 species but is also region-specific. In Europe, the EUForest dataset (Mauri, 2017) offers
broader coverage with data for 242 species. On a global scale, datasets such as Tallo (Jucker et al., 2022) provide significant
taxonomic diversity, covering 5,163 species across 187 families. However, these datasets lack integration with remote sensing or

environmental variables, limiting their application in ecological modeling.

Table 1. Overview of publicly available datasets for tree species classification.

Dataset Geographic scope  Size Classes Year
Seu Nico Forest (Gastauer et al., 2015) Brazil 2,868 54 families; 139 genera; 228 species 2015
EUForest (Mauri, 2017) Europe 588,983 83 genera; 242 species 2017
Maraca Eco. Sta. (Farias et al., 2020) Brazil 680 40 families; 110 species 2020
TreeSatAl (Ahlswede, 2022) Germany 50,381 15 genera; 20 species 2022
Tallo (Jucker et al., 2022) Global 498,839 187 families; 1,453 genera; 5,163 species 2022
Indi. Tree Point Clouds (Weiser et al., 2022)  Germany 1,491 22 species 2022
NEON Veg. Struc. (Kampe et al., 2010) USA N/A 949 genera; 2,826 species 2023
PureForest (Gaydon and Roche, 2025) France 135,569 18 species 2024
Planted (Pazos-Outon et al., 2024) Global 2,264,747 46 genera; 40 species 2024
GlobalGeoTree Global 6,263,345 275 families; 2,734 genera; 21,001 species 2025
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Advances in high-resolution imaging and lidar technologies have enabled datasets like PureForest (Gaydon and Roche, 2025)
and Individual Tree Point Clouds (Weiser et al., 2022), which utilize aerial and point cloud data for species classification. While
these datasets offer detailed structural information, they remain region-specific and lack the spectral and temporal depth of
satellite-based datasets. The TreeSatAl dataset (Ahlswede, 2022) combines multi-sensor data, including aerial imagery and
Sentinel-1/2, for tree species classification in Germany but covers only 20 species. Similarly, the Planted dataset (Pazos-Outén
et al., 2024) focuses on only 40 planted species globally, limiting its broader applicability. Our work also complements broader
biodiversity benchmarks like GeoLifeCLEF (Botella et al., 2025) and GeoPlant (Picek et al., 2024). While these focus on
regional, multi-lifeform plant prediction, GlobalGeoTree is the first dataset with a global scope specifically curated for over
21,000 forest tree species.

Collectively, while valuable, these existing datasets highlight the persistent need for a benchmark that synergizes global
coverage, deep taxonomic information for forest tree species, and multimodal remote sensing data, a gap GlobalGeoTree aims to

fill.
2.2 Vision-language models for remote sensing applications

Vision-language models (VLMs) enable the integration of visual and textual information. Among these, Contrastive Language-
Image Pretraining (CLIP) (Radford et al., 2021) has demonstrated exceptional zero-shot transfer capabilities by jointly training
image and text encoders through a contrastive learning objective, aligning image-text pairs within a shared embedding space.
For tree species classification, CLIP’s ability to learn from image-text pairings (such as satellite imagery and taxonomic labels)
offers a path to capture complex visual and semantic relationships. Its proven zero-shot capabilities are particularly suited for
addressing the challenges of identifying species within dynamic and evolving catalogs (Stevens et al., 2024). Meanwhile, its
few-shot capabilities tackle the issue of limited labeled data, a common obstacle in biodiversity research, offering an advantage
over traditional supervised methods.

In remote sensing, VLMs have been applied to various tasks, including image classification, retrieval, and scene understanding,
with domain-specific adaptations yielding significant improvements. For example, RemoteCLIP (Liu et al., 2024), the first VLM
specifically tailored for remote sensing, leverages pretraining on large-scale remote sensing imagery paired with aligned text,
achieving state-of-the-art performance in zero-shot classification, linear probing, and few-shot learning. Similarly, SkyCLIP
(Wang et al., 2024), SkyCLIP-50 (Wang et al., 2024) and CLIP-laion-RS (He et al., 2024) extend the capabilities of CLIP
through continual pretraining on semantically diverse remote sensing image-text pairs. These models demonstrate enhanced
generalization and transferability, achieving substantial gains in tasks such as zero-shot scene classification, fine-grained
classification, and cross-modal retrieval compared to the original CLIP model.

These advancements underscore the importance of domain-specific pretraining in adapting VLMs for remote sensing
applications. Aligning models more closely with the unique characteristics of remote sensing tasks has demonstrated significant

potential to advance progress in this field.
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3 The GlobalGeoTree dataset
3.1 Geolocated data collection and preprocessing

The GlobalGeoTree dataset provides unprecedented global and taxonomic coverage for tree species classification using remote

sensing data, and the collection involved several key steps:
3.1.1 Tree species catalog construction

We constructed a comprehensive tree species catalog by integrating two major global repositories: TreeGOER (Kindt, 2023)
and GlobalTreeSearch (Beech et al., 2017), containing 48,129 and 57,681 tree species respectively. This compilation was
further enriched with multiple open-source datasets documented in Table 1. The taxonomic framework was subsequently
validated and expanded using the Global Biodiversity Information Facility (GBIF) Species API (Global Biodiversity Information
Facility (GBIF), 2025), ensuring nomenclatural consistency and accuracy. The resulting catalog encompasses 87,845 species,

representing the global diversity of tree species.
3.1.2 Geolocation sampling

For each tree species in our catalog, we queried the GBIF Occurrence API (Chamberlain and Boettiger, 2017) to retrieve global
geolocations with documented occurrences. To ensure data quality and reliability, we applied strict filtering criteria, including:
(1) selecting only recent observations recorded between 2015 and 2024; (2) limiting data to human observation records; (3)
excluding records with geospatial issues as flagged by GBIF (e.g., country-coordinate mismatches); (4) filtering for occurrences
with a "present” status; and (5) removing duplicate entries and observations with low geographic precision. Additionally, we
ensured all samples conform to open data licenses (CCO 1.0, CC-BY-4.0, etc.), maintaining the dataset’s accessibility and

reusability for the broader research community.
3.1.3 Forest layer filtering

To ensure that each geolocated observation corresponds to a valid tree, we performed an additional forest cover verification step.
We utilized the EC JRC Global Map of Forest Cover 2020 (Bourgoin et al., 2024), which has a 10m spatial resolution. Each
geolocated point from GBIF was cross-referenced with this map, and only samples located within forest areas were retained.
This filtering not only served as an essential quality control measure to enhance data reliability but also defined 2020 as the
target year for our study. This allowed us to subsequently acquire the Sentinel-2 time series for 2020, ensuring a direct temporal

correspondence between the verified ground observations and the satellite imagery.
3.2 Dataset Composition and Structure

The filtering process results in the final GlobalGeoTree dataset, which comprises 6,263,345 high-quality samples distributed

across 221 countries and regions. A core feature of this dataset is its multi-granular taxonomic hierarchy, which is essential for
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developing models that can generalize across different levels of biological classification. This hierarchical structure is visualized
in Fig. 2, illustrating the relationships branching from four broad functional types at the center (level 0), through 275 families

(level 1) and 2,734 genera (level 2), out to the 21,001 individual species at the periphery (level 3).

Evergreen Needlelea

Figure 2. The taxonomic hierarchy of the GlobalGeoTree dataset. The visualization shows the nested relationships, branching from the four
functional types (e.g., Deciduous Broadleaf) at the center, through families (e.g., Fabaceae), genera, and out to the 21,001 species at the

outermost ring. This multi-level structure is a core feature that enables multi-granular classification tasks.

120 Each of the 6.3 million samples is structured as a single record that includes this full taxonomic lineage, its geolocation,

and source metadata. This entire collection is made available as a downloadable CSV file (GlobalGeoTree. csv) for full



125

130

135

140

Earth System
Science

Data

https://doi.org/10.5194/essd-2025-613
Preprint. Discussion started: 5 November 2025
(© Author(s) 2025. CC BY 4.0 License.

Open Access
suoIssnasIqg

transparency and accessibility. Table 2 presents several example records to illustrate the data structure. A comprehensive

statistical breakdown and accessibility details of the dataset is provided in Appendix A.

Table 2. Example records from the GlobalGeoTree. csv file, demonstrating the structure of each geolocated data point.

country_code level0 levell_family level2_genus level3_species source longitude latitude
ES Deciduous Broadleaf ~ Fagaceae Quercus Quercus rotundifolia  iNaturalist Res.-grade Obs.  -3.74024 40.49546
UsS Evergreen Needleleaf ~ Cupressaceae  Thuja Thuja plicata iNaturalist Res.-grade Obs.  -122.168 48.33392
IE Deciduous Broadleaf — Fagaceae Castanea Castanea sativa iNaturalist Res.-grade Obs.  -9.524 52.05556
PT Deciduous Broadleaf — Fagaceae Quercus Quercus rotundifolia  Forestry Inventory 2015 -7.85145 39.42701
AU Deciduous Broadleaf ~ Fabaceae Acacia Acacia platycarpa ALA species sightings 1329895  -14.818

3.3 Paired remote sensing data

Each sample in the GlobalGeoTree dataset is paired with a rich set of multimodal data to enable robust modeling. Table 3
provides a comprehensive overview of these features, including paired Earth Observation (EO) data and auxiliary environmental

variables derived from remote sensing sources.
3.3.1 EOdata

The Sentinel-2 data for each sample consists of a time series of 12 monthly median composites from January to December 2020.
The full-year temporal coverage enables models to capture the distinct seasonal patterns of different tree species, such as leaf-out,
full canopy, and senescence (Mu et al., 2025a). These phenological features are particularly discriminative for deciduous species.

For each month, all L2A Sentinel-2 images with less than 30% cloud cover were collected, and the median composites
were generated from these images. This process ensures a robust, largely cloud-free representation for each month, effectively
mitigating issues caused by transient atmospheric conditions in single-date imagery.

Each composite includes a 5x5 pixel patch centered on the geolocation of the tree species. This patch size was chosen to
account for typical crown sizes (10-30 m) (Jucker et al., 2022) and to align with other public datasets, such as PureForest
(Gaydon and Roche, 2025) and TreeSatAl (Ahlswede, 2022). The chosen 5x5 patch size represents a trade-off: it is sufficiently
large enough to capture the crown of a mature tree and its immediate context, while remaining compact enough to minimize

noise from surrounding unrelated species.
3.3.2 Auxiliary data

The auxiliary data enriches the EO data for each sample by providing additional contextual environmental information.
Geographic variables, such as elevation, slope, and aspect, are derived from the USGS SRTM dataset (Jarvis et al., 2008), while
soil data, including volumetric water content at 33 kPa across three depths (0-5 cm, 5-15 cm, 15-30 cm), are obtained from
SoilGrid (Poggio et al., 2021). Additionally, 19 bioclimatic variables are sourced from WorldClim (Fick and Hijmans, 2017).
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Table 3. Overview of features in each sample in the GlobalGeoTree dataset.

Feature Name Type Description

Remote Sensing Data

Sentinel-2 Time Series float 12 monthly median composites; Includes RGB, NIR, Vegetation

Red Edge, and SWIR bands; dimensions: (12, 10, 5, 5).

Geographic Variables float Latitude and longitude, as well as elevation, slope, and aspect
derived from USGS (SRTM) (30m resolution).
Soil Variables float 3 Volumetric Water Content data at 33kPa across depths: 0-5 cm,

5-15 cm, 15-30 cm (250m resolution).

Bioclim Variables float 19 climatic variables from WorldClim (1km resolution).
Text Labels

levelO string  Functional type of the species (e.g., Evergreen Broadleaf).

levell_family string  Taxonomic family of the species (e.g., Myrtaceae).

level2_genus string  Taxonomic genus of the species (e.g., Eucalyptus).

level3_species string  Scientific name of the species (e.g., Eucalyptus kybeanensis).
Meta Data

location string  Geographic location of the sample (e.g., Australia).

country_code string  ISO country code of the sample location.

source string  Source of the sample record (e.g., iNaturalist Research-grade
Observations).

species_key float Unique identifier for the species in the GBIF database.

record_year int The year when the record was collected.

145 Due to the relatively coarse spatial resolution of these datasets (ranging from 30m to 1km), only the values corresponding to
the exact coordinates of each occurrence are extracted to ensure precision and relevance (Gillespie et al., 2024). A detailed

description of all 27 auxiliary variables and their sources is provided in Appendix B.
3.4 Dataset partitioning

For effective model development and evaluation, the GlobalGeoTree dataset was partitioned into GlobalGeoTree-6M and curated

150 evaluation subsets, primarily GlobalGeoTree-10kEval.
GlobalGeoTree-6M comprises the vast majority of the samples and is specifically designed for model pretraining. This large
size allows models to learn robust and generalizable representations of tree species and their associated environmental contexts.
GlobalGeoTree-10kEval, is a carefully curated dataset intended for benchmarking model performance across taxonomic

levels and species frequency categories in a fair and robust manner. To address the characteristic long-tail distribution observed
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Figure 3. Species in GlobalGeoTree are categorized into Frequent, Common and Rare groups based on the number of samples per species.

155 in the datasets (detailed in Appendix A3), species in GlobalGeoTree dataset were categorized into three groups based on the

number of samples: Frequent (more than 1500), Common (100-1500), and Rare (less than 100), as shown in Fig. 3.

Frequent
Common
Rare

Figure 4. Geographic distribution of GlobalGeoTree-10kEval. This benchmark includes species selected from Frequent, Common, and Rare

categories, as described in the text.

The GlobalGeoTree-10kEval dataset includes 30 species from each of these three categories, resulting in a total of 90 species.

The sample proportions within this evaluation set are 12% for Rare species, 33% for Common species, and 55% for Frequent
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species, culminating in around 10,000 samples. Fig. 4 shows the geographical distribution of GlobalGeoTree-10kEval, which
spans diverse regions across the globe. This global distribution ensures that the dataset captures a wide range of ecological and
environmental contexts, making it representative of real-world scenarios. By focusing on a diverse set of species with varying
levels of representation, GlobalGeoTree-10kEval serves as a robust evaluation benchmark for assessing the ability of models to
tackle challenges posed by the long-tail distribution of species and shifts in geographical domains.

Beyond GlobalGeoTree-10kEval, we developed larger evaluation sets—GlobalGeoTree-10kEval-300 and GlobalGeoTree-
10kEval-900—by selecting 100 and 300 species from each category, respectively. Crucially, all samples within these evaluation
sets, are excluded from the GlobalGeoTree-6M pretraining set to ensure fair evaluation. Details of all evaluation subsets
(Appendix C) and the corresponding evaluation results (Appendix D) are also provided. Given the complexity of global tree
species classification, our primary analysis focuses on the 90-species GlobalGeoTree-10kEval, which serves as a practical

starting point for systematic benchmarking.

4 Benchmarks
4.1 GeoTreeCLIP model

To establish a strong baseline on the GlobalGeoTree dataset, we developed GeoTreeCLIP, a vision-language model (VLM)
specifically tailored for tree species classification. Our choice of the VLM paradigm was motivated by the inherent challenges of
this task: preliminary experiments showed that traditional supervised models struggle with the vast, long-tailed, and hierarchical
label space of GlobalGeoTree, especially at the fine-grained genus and species levels (see Sect. 5.1).

In contrast, a VLM framework treats taxonomic labels not as discrete indices, but as structured text. This allows the model
to leverage the rich semantic relationships between species, genera, and families. By jointly training on image-text pairs,
GeoTreeCLIP learns powerful, transferable representations that align visual features with their corresponding taxonomic context.
This approach is particularly effective for zero-shot and few-shot scenarios, which are critical for addressing the immense scale
of global biodiversity and the practical impossibility of collecting exhaustive data for all taxa (Stevens et al., 2024).

As shown in Fig. 5, the GeoTreeCLIP model architecture consists of the following components:

— Visual Encoder: A ViT-B/16 backbone (Dosovitskiy et al., 2020) adapted to process the multi-spectral, time-series
Sentinel-2 data. To handle the 10-channel, 5x5 pixel input patches, we modify the initial patch embedding layer of the
ViT. Each 5x5 patch is first upsampled to 16x16 pixels using bicubic interpolation. The modified embedding layer then
processes these 10 channels and projects the entire 16x16 patch into a single visual token. This approach allows the
model to capture the holistic spectral information of the patch at each timestep. These 12 monthly tokens are then fed
into a temporal attention module (Vaswani et al., 2017) to learn and fuse key phenological patterns across the year. This
mechanism allows the model to dynamically weigh the importance of different months, implicitly learning which parts of

the phenological cycle are most informative for identifying a particular species.

10
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Figure 5. Architecture of the GeoTreeCLIP baseline model. It processes Sentinel-2 time series and auxiliary data through visual encoder and
MLP, and hierarchical taxonomic labels through a text encoder. The resulting multimodal visual and text features are then aligned using a

contrastive loss.

190 — Auxiliary Feature Integration: A multi-layer perceptron (MLP) (Rosenblatt, 1958; Gillespie et al., 2024) designed
to process bioclimatic, soil, and geographic data. The MLP consists of several feature-specific linear layers (hidden
dimension: 256) followed by LayerNorm and ReL.U activation. The encoded features are then fused and projected into
a 768-dimensional embedding, which is added to the visual token embedding from the Visual Encoder before the final

contrastive projection. This allows the model to integrate environmental context with visual information.

195 — Text Encoder: A 77-token causal autoregressive transformer (Vaswani et al., 2017; Radford et al., 2019) that processes
the hierarchical taxonomic labels. For each sample, the text input is structured to convey the full taxonomic lineage, for
example, "Evergreen Broadleaf, Family Myrtaceae, Genus Eucalyptus, Species Eucalyptus kybeanensis". By encoding
this structured text, the model learns embeddings that capture the relationships between different taxonomic levels. This
allows GeoTreeCLIP to understand, for instance, that two different species within the same genus (Eucalyptus) are

200 semantically closer than species from different families. This learned semantic structure is key to its strong generalization

capabilities, especially for rare or unseen species.
4.1.1 Pretraining details

Both the Visual Encoder and Text Encoder are initialized using OpenAlI’s publicly available CLIP checkpoint (Radford et al.,
2021) and further pre-trained on the GlobalGeoTree-6M using Distributed Data Parallel (DDP) across 5 NVIDIA 3090 (24GB)
205 GPUs. We employed a batch size of 384 per GPU, with gradient accumulation over 2 steps, resulting in an effective batch size

11
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of 768 per GPU (3840 globally). The AdamW optimizer (Loshchilov and Hutter, 2017) was used with a base learning rate of
1 x 107 for the visual and auxiliary encoders, and a reduced learning rate of 1 x 1076 for the pretrained text encoder. A weight
decay of 1 x 10~* was applied. A linear learning rate warmup was implemented for the first 5 epochs. Following the warmup, a
Cosine Annealing with Warm Restarts (Loshchilov and Hutter, 2022) scheduler was used, with Ty = 10 epochs and 1,1 = 2,
and a minimum learning rate of 1 x 10~7. Gradients were clipped to a maximum L2 norm of 1.0. The loss function was the
standard CLIP contrastive loss (Oord et al., 2018). Mixed-precision training (Micikevicius et al., 2017) was enabled. A full
25-epoch training run required approximately 2 days, with peak GPU memory consumption observed at roughly 14 GB per
GPU.

4.2 Experimental setup

We evaluated GeoTreeCLIP against two advanced pretrained vision-language models: CLIP (Radford et al., 2021) and Re-
moteCLIP (Liu et al., 2024), a specialized VLM for remote sensing applications. To ensure a fair comparison with models
not explicitly designed for time-series data, we employed an ensemble-like approach for CLIP and RemoteCLIP. Specifically,
features or probabilities were computed independently for each of the 12 monthly images, and the final results were obtained
by averaging these values. Additionally, the results of other baseline models, including SkyCLIP-50 (Wang et al., 2024) and
CLIP-laion-RS (He et al., 2024), are provided in Appendix E.

All models were evaluated on the GlobalGeoTree-10kEval benchmark using zero-shot and few-shot learning settings.
Performance was measured using top-1 and top-5 prediction accuracy, with separate evaluations for each taxonomic level
(family, genus, and species). To ensure robustness, we repeated each experiment 5 times using different random seeds and

reported the mean accuracy and variance.
4.2.1 Zero-shot evaluation

For zero-shot evaluation, we assess each model’s ability to classify samples from the evaluation sets (GlobalGeoTree-10kEval,
-10kEval-300, and -10kEval-900) without any fine-tuning. Our protocol is framed as an "in-domain" zero-shot classification task,
following the setup in recent remote sensing benchmarks (Wang et al., 2024). This approach tests a model’s transfer capability
to new, unseen samples of species, rather than to entirely unseen categories. Although the species categories in the evaluation
sets are present in the training data, this setup strikes a balance between preserving the model’s ability to classify all tree species

after pre-training on GlobalGeoTree-6M and ensuring a valid zero-shot scenario.
4.2.2 Few-shot evaluation

For few-shot evaluation, we explored scenarios such as one-shot learning, where the model is provided with only one labeled
example per species. To implement this, we adopted a fine-tuning-based approach (Parnami and Lee, 2022) using the pre-trained
model. Specifically, we randomly sampled % labeled examples per class (e.g., k = 1, k = 3) to form the support set and fine-tuned

the visual encoder of the pre-trained model on this set. During fine-tuning, most of the visual encoder’s parameters were frozen,
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with only the last four transformer layers and the classification-related parameters remaining trainable. The text encoder was
entirely frozen, leveraging the pre-trained textual embeddings for class labels. The fine-tuning was conducted for 10 epochs to
balance adaptation and prevent overfitting due to the small support set. Afterward, the model was evaluated on the query set,
which consisted of the remaining examples in the dataset.

For each query image, predictions were made by computing similarity scores between its visual embedding (extracted by
the fine-tuned visual encoder) and the textual embeddings of the class labels. The class with the highest similarity score was
assigned as the predicted label. Classification accuracy on the query set was then used to evaluate the model’s performance.
This fine-tuning approach enables the model to adapt to the few-shot setting while retaining the benefits of the pre-trained
representations.

This evaluation framework highlights the model’s ability to generalize effectively from limited labeled data, which is a crucial
capability for real-world applications in biodiversity monitoring where obtaining large amounts of labeled data for every species

is often infeasible.
4.3 Experimental results

4.3.1 Zero-shot evaluation

Table 4. Zero-shot evaluation on GlobalGeoTree-10kEval. Results are presented as mean accuracy (%) =+ standard deviation (%) over 5 runs.

CLIP RemoteCLIP GeoTreeCLIP
Taxon.

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Family = 10.80 £0.03 25324+0.05 1.11+£0.01 10.55+0.04 20.99 +0.28 56.88 + 0.42
Genus 1.09 £ 0.01 934+£001 1.11£0.01 625+002 1839+0.26 50.98 £+ 0.41
Species  1.09 £ 0.01 7.02+£002 1.11£0.01 625+002 16.71 +£0.25 47.52 +0.37

The results of zero-shot evaluation are presented in Table 4, clearly demonstrating the substantial improvements achieved
by GeoTreeCLIP across all taxonomic levels. At the family level, GeoTreeCLIP achieves a top-1 accuracy of 20.99% and a
top-5 accuracy of 56.88%. The performance gap is even more pronounced at the genus level. GeoTreeCLIP achieves a top-1
accuracy of 18.39% and a top-5 accuracy of 50.98%, outperforming CLIP (1.09% top-1, 9.34% top-5) and RemoteCLIP (1.11%
top-1, 6.25% top-5) by a large margin. At the most challenging species level, GeoTreeCLIP still shows significant superiority,
achieving a top-1 accuracy of 16.71% and a top-5 accuracy of 47.52%.

The experimental results reveal two key patterns. First, accuracy consistently declines as the taxonomic level becomes
finer, reflecting the growing challenge of distinguishing closely related classes. This trend is observed across all models but
is particularly pronounced for CLIP and RemoteCLIP, which perform poorly at the genus and species levels. In contrast,
GeoTreeCLIP demonstrates stronger performance at these fine-grained levels, likely due to its ability to learn and leverage

the hierarchical relationships in taxonomic labels, as supported by feature embedding visualizations (see Sect. 5.2 and Figure
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6). Second, the significant performance gap between GeoTreeCLIP and the baseline models underscores the importance of
domain-specific pretraining. Moreover, its integration of spatiotemporal and multispectral information further enhances its
ability as general-purpose models like CLIP and RemoteCLIP struggle to handle. Additional zero-shot benchmark results,
including evaluations of SkyCLIP-50 (Wang et al., 2024) and CLIP-laion-RS (He et al., 2024), are provided in Appendix E.

4.3.2 Few-shot evaluation

Table 5. Few-shot evaluation on GlobalGeoTree-10kEval. Results are presented as mean accuracy (%) = standard deviation (%) over 5 runs.

CLIP RemoteCLIP GeoTreeCLIP
Taxon.

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

One-Shot Evaluation

Family 295+0.01 15.06+0.03 11.25+0.01 23.85+0.03 29.37+£0.07 69.38 & 0.34
Genus 243 +£0.01 8.14+£0.02 2.31 £0.01 7.68£0.02 27.70 £0.11 64.40 +0.29
Species  1.67 £0.01  6.59 +0.03 1.94 £ 0.00 6.59+0.02 25.80=+0.15 62.43+0.25

Three-Shot Evaluation

Family 6.19£0.01 2350+0.03 444+£0.02 17.02+0.04 37.77+£0.23 75.49 +0.25
Genus  4.04 £0.01 1276 £0.03 2.77+£0.03 11.70+0.02 36.19 +0.22 72.50 + 0.23
Species 3.41 £0.01 11.46+0.03 1.88+£0.03 940 £0.06 33.67 £0.24 71.53 +0.23

The results in Table 5 demonstrate that providing even a small amount of labeled data for fine-tuning generally improves
performance compared to the zero-shot setting across all models and taxonomic levels. GeoTreeCLIP consistently achieves
the highest accuracies in both one-shot and three-shot scenarios. For instance, in the one-shot setting at the species level,
GeoTreeCLIP reaches a top-1 accuracy of 25.80%, substantially outperforming CLIP (1.67%) and RemoteCLIP (1.94%). This
advantage becomes even more pronounced with three shots, where GeoTreeCLIP’s species-level top-1 accuracy increases to
33.67%, while CLIP and RemoteCLIP show more modest gains to 3.41% and 1.88%, respectively.

Our few-shot experiments reveal distinct patterns across models when increasing from one to three shots. GeoTreeCLIP
demonstrates substantial improvements across all taxonomic levels (species top-1 accuracy rising from 25.80% to 33.67%),
while CLIP shows consistent but smaller gains. RemoteCLIP exhibits mixed results, including a slight decrease in family-level
accuracy, suggesting difficulties effectively utilizing additional examples. Both baseline models demonstrate limited capacity to
leverage few-shot supervision compared to GeoTreeCLIP, with only marginal improvements over their zero-shot performances
(Table 4), particularly at finer taxonomic levels. This indicates that general pretraining approaches may not align sufficiently with
the specific challenges of fine-grained tree species classification from remote sensing data, even when provided with in-domain

examples.
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The poor performance of CLIP and RemoteCLIP can likely be attributed to their design, which is optimized for RGB
three-channel data and lacks the capability to process time-series information. Additionally, these models struggle with the
small-patch classification tasks required for tree species identification. These limitations further emphasize the importance of
introducing this benchmark for the global tree species classification task. More benchmark results on larger evaluation subsets

can be found in Table D1 and Table D2 in Appendix D.

5 In-depth Analysis
5.1 Comparison with Supervised Learning Paradigm

To further contextualize the performance of our contrastive learning-based GeoTreeCLIP model, we conducted an additional
experiment using a traditional supervised learning paradigm. This allows for a more direct comparison of learning objectives

(contrastive vs. supervised) while keeping core architectural components and training settings as consistent as possible.
5.1.1 Supervised Model Architecture and Training

We designed a supervised model, termed SupervisedGeoTree, which retains the visual processing pathway of GeoTreeCLIP,
including the Vi sualEncoder for Sentinel-2 time series and the AuxiliaryEncoder for environmental variables. The
features from these two encoders are projected, normalized, and then fused via concatenation followed by a fusion layer, similar
to the visual feature preparation in GeoTreeCLIP.

However, unlike GeoTreeCLIP, the SupervisedGeoTree model does not include a text encoder or employ a contrastive loss.
Instead, the fused visual-auxiliary features are fed into four independent classification heads (fully connected layers), each dedi-
cated to predicting labels for one of the hierarchical taxonomic levels: functional type (lLeve10), family (levell_family),
genus (level2_genus), and species (Level3_species). The number of output neurons for each head corresponds to the
number of unique classes at that respective taxonomic level in the GlobalGeoTree (4 for 1evel0, 275 for family, 2,734 for
genus, and 21,001 for species).

The model was trained on the GlobalGeoTree-6M dataset. The loss function employed was a sum of standard Cross-Entropy
losses, calculated independently for each of the four taxonomic levels. The contributions of each level’s loss to the total loss
were equally weighted. All other training hyperparameters, including the learning rate (1 x 10~°), optimizer (AdamW), weight
decay, number of epochs (25), warmup strategy (5 epochs), learning rate scheduler (Cosine Annealing with Warm Restarts), and

batch size, were kept identical to those used for pretraining GeoTreeCLIP to ensure a fair comparison of the learning paradigms.
5.1.2 Comparison of the Supervised Model

After training on the GlobalGeoTree-6M dataset, the SupervisedGeoTree model was evaluated on the GlobalGeoTree-10kEval
subset. Since this model is trained with fixed classification heads for the classes seen during training, its ability to perform

"zero-shot" classification in the same sense as a CLIP-style model (i.e., classifying entirely new, unseen samples provided at test
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time) is inherently limited. However, for this comparison, we evaluate its performance on the classes within GlobalGeoTree-
10kEval that were also part of the GlobalGeoTree-6M training vocabulary for each respective taxonomic head. If a class in
GlobalGeoTree-10kEval was not in the training vocabulary for a specific head, it cannot be correctly predicted by that head.
Notably, the GlobalGeoTree-6M dataset was designed to retain nearly all tree species categories, as our goal was to pretrain
a model capable of classifying the full spectrum of tree species. Consequently, the zero-shot evaluation here can be seen as
measuring the model’s “zero-shot” transfer capability on unseen datasets, aligning with the concept of "in-domain" zero-shot

classification defined in Wang et al. (2024).

Table 6. Evaluation on GlobalGeoTree-10kEval. The table compares our vision-language model, GeoTreeCLIP, against the CLIP and a

traditional supervised baseline (SupervisedGeoTree). Results are mean accuracy (%) + standard deviation (%) over 5 runs.

CLIP SupervisedGeoTree GeoTreeCLIP
Taxon.

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Family  10.80 £0.03 2532+0.05 9.554+0.10 27.41+0.07 20.99 +0.28 56.88 + 0.42
Genus 1.09 £ 0.01 934+£001 1.19£009 8.18+£0.14 18.39+0.26 50.98+ 0.41
Species  1.09 £ 0.01 7.02+£0.02 000£000 028=£0.02 16.71£0.25 47.52+0.37

The results in Table 6 indicate that a consistent trend across all models is the decline in classification accuracy as the taxonomic
level becomes finer (from family to species). This reflects the inherent increase in difficulty when distinguishing between more
closely related taxa. However, the extent of this performance degradation varies significantly between models.

The SupervisedGeoTree model, which employs traditional supervised classification heads for each taxonomic level, achieves
reasonable accuracy at the family level (9.55% top-1). However, its performance drops sharply for genus (1.19% top-1) and
becomes negligible at the species level (0.00% top-1). This drastic decline underscores the challenge of fine-grained classification
when relying solely on visual and auxiliary features without leveraging the semantic relationships embedded in textual taxonomic
labels, and the inherent limitation of generalizing to a large number of specific classes in a purely supervised manner.

In contrast, the proposed GeoTreeCLIP model demonstrates substantial improvements over all other baselines across every
taxonomic level. At the family level, GeoTreeCLIP achieves a top-1 accuracy of 20.99%, more than doubling the performance of
CLIP and significantly outperforming SupervisedGeoTree. This advantage is even more pronounced at the finer-grained levels:
GeoTreeCLIP obtains 18.39% top-1 accuracy for genus and 16.71% for species identification. These results strongly indicate
the power of contrastive vision-language learning to align visual features with rich, hierarchical taxonomic text labels. This
capability allows GeoTreeCLIP to learn more nuanced and generalizable representations, leading to its superior performance
in this challenging zero-shot evaluation. The significant gap, especially compared to SupervisedGeoTree at the species level,

highlights the efficacy of the contrastive learning paradigm for handling large, structured label spaces.
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Figure 6. t-SNE visualization of feature embeddings from GlobalGeoTree-10kEval-300 at different taxonomic levels, comparing GeoTreeCLIP

(top row), CLIP (middle row), and SupervisedGeoTree (bottom row). Columns from left to right represent visualizations at the Family

level (selected: Anacardiaceae, Berberidaceae, Cactaceae, Hernandiaceae, Rosaceae), Genus level (selected within Rosaceae: Prunus, Pyrus,

Rhodotypos, Rubus, Spiraea), and Species level (selected within Prunus: Prunus avium, Prunus caroliniana, Prunus ilicifolia, Prunus

laurocerasus, Prunus obtusata).

5.2 Qualitative Analysis: t-SNE Feature Embeddings Visualization

To qualitatively assess and compare the learned feature representations from different modeling paradigms, we performed t-SNE

visualizations (Van der Maaten and Hinton, 2008). We used zero-shot image embeddings (or the final fused visual-auxiliary

features for SupervisedGeoTree before the classification heads) extracted from a subset of the GlobalGeoTree-10kEval-300

dataset. This analysis includes our proposed GeoTreeCLIP, the CLIP pretrained by OpenAl, and the SupervisedGeoTree model.

17



340

345

350

355

360

365

370

Earth System
Science

Data

https://doi.org/10.5194/essd-2025-613
Preprint. Discussion started: 5 November 2025
(© Author(s) 2025. CC BY 4.0 License.

Open Access
suoIssnasIqg

Given the large number of classes and the hierarchical nature of the labels, we adopted a selective visualization strategy:
first examining embeddings at the family level for five randomly selected families (Anacardiaceae, Berberidaceae, Cactaceae,
Hernandiaceae, and Rosaceae); then focusing on five genera within the Rosaceae family (Prunus, Pyrus, Rhodotypos, Rubus,
and Spiraea); and finally, visualizing five species within the Prunus genus (Prunus avium, Prunus caroliniana, Prunus ilicifolia,
Prunus laurocerasus, and Prunus obtusata).

The comparative t-SNE visualizations are presented in Figure 6. Across all three taxonomic levels (Family, Genus, and
Species, shown as columns), GeoTreeCLIP (top row) consistently demonstrates the most effective separation and formation
of distinct clusters. At the family level (left column), GeoTreeCLIP clearly distinguishes between the selected families. The
CLIP (middle row) exhibits considerable overlap, particularly for the diverse Rosaceae family. SupervisedGeoTree (bottom
row) shows some separation but less defined clusters compared to GeoTreeCLIP, with Rosaceae still forming a very broad
distribution.

This pattern of superior clustering by GeoTreeCLIP continues at the genus level within Rosaceae (middle column).
GeoTreeCLIP forms relatively distinct groups for genera like Prunus, Pyrus, and Rhodotypos. Both CLIP and Supervised-
GeoTree struggle more, with CLIP showing a highly condensed and overlapping structure, while SupervisedGeoTree offers
some separation but with less clarity than GeoTreeCLIP. The most striking difference is observed at the species level within the
Prunus genus (right column). GeoTreeCLIP achieves remarkable separation, forming visually distinct clusters for each of the
five Prunus species. In contrast, both CLIP and SupervisedGeoTree largely fail to differentiate these closely related species,
with their embeddings heavily intermingled.

These visualizations qualitatively affirm that GeoTreeCLIP, through its contrastive vision-language learning approach tailored
with hierarchical taxonomic information and domain-specific data, learns more semantically meaningful and discriminative
representations across all taxonomic ranks. This aligns with its superior quantitative performance in classification tasks compared

to both general-domain VLMs and a traditional supervised approach.
5.3 Ablation Study on Input Modalities

To quantify the contribution of different input modalities, we conducted an extensive ablation study. We trained several variants of
GeoTreeCLIP (for 10 epochs on GlobalGeoTree-6M) and evaluated their zero-shot performance on the GlobalGeoTree-10kEval
benchmark. The results are summarized in Table 7.

The results lead to several key insights. First, the full input consistently outperforms all ablated versions, highlighting the
synergistic effect of integrating spectral-temporal imagery with environmental context. Second, comparing the "Image Only
(10-band)" and "RGB Only" variants reveals the critical importance of non-visible bands (e.g., NIR, SWIR) for vegetation
analysis, as they provide a substantial performance boost (e.g., 15.83% vs. 6.38% at the family level). Third, adding geolocation
to RGB imagery ("RGB + Geolocation") improves performance over "RGB Only", confirming that spatial priors help capture
species’ geographical ranges. The reason "Image Only (10-band)" outperforms "RGB + Geolocation" is that the rich information

from the 7 additional spectral bands is more discriminative than the signal provided by geolocation alone.
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Table 7. Ablation study on input modalities. Performance is reported as mean Top-1 accuracy (%) over 5 runs on GlobalGeoTree-10kEval.

Model Variant Family Acc. Genus Acc.  Species Acc.
GeoTreeCLIP (Full Input) 18.66 % 16.30% 13.95%
- Image Only (10-band S2) 15.83% 14.51% 12.62%
- Auxiliary Only (27 vars) 13.66% 10.50% 9.52%
- RGB + Geolocation Only 7.92% 6.04% 5.50%
- RGB Only 6.38% 5.08% 4.43%

6 Ethics, Limitations and Impact
6.1 Ethics

Our data collection process was designed to adhere to ethical standards for data reuse. All geolocated occurrence records sourced
from GBIF (Lane and Edwards, 2007) were filtered to include only those with permissive licenses (e.g., CC0O, CC-BY) explicitly
chosen by the original data contributors. We also respected the privacy safeguards of the source platforms; for instance, the
coordinates of sensitive or threatened species are often automatically obscured by platforms like iNaturalist, and our dataset
preserves these privacy-preserving modifications.

The Sentinel-2 L2A data (Spoto et al., 2012) were accessed via Google Earth Engine. The auxiliary bioclimatic, geographic,
and soil data were sourced from WorldClim (Fick and Hijmans, 2017), USGS SRTM (Jarvis et al., 2008), and SoilGrids (Poggio
et al., 2021), respectively, all of which are publicly available.

6.2 Limitations

While GlobalGeoTree represents one of the largest and most comprehensive datasets of its kind, users should be aware of its
inherent limitations. As with most datasets derived from opportunistic or citizen-science observations, it contains geographic
and taxonomic biases. Data coverage is higher in regions with active observer communities (e.g., North America, Europe) and
is skewed towards more common or easily identifiable species, resulting in a long-tail distribution. The ambiguous boundary
between trees and shrubs in botanical classification further complicates the dataset, as some samples may represent shrubs rather
than trees. Tree species taxonomy is also subject to frequent revisions driven by new genetic evidence, which may misalign
dataset labels with updated classifications over time. Although CLIP-based models can identify unseen species to some extent,
such taxonomic shifts may still affect model interpretability and evaluation consistency. Additionally, the dataset relies on
Sentinel-2 data from 2020, restricting its ability to capture long-term vegetation dynamics or recent disturbances. Future versions

incorporating multi-year observations could better account for phenological changes and climate-driven impacts.
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6.3 Potential impact

GlobalGeoTree holds great potential for advancing forest monitoring, biodiversity conservation, and climate change mitigation.
By improving tree species mapping, it can support sustainable forest management, restoration planning, accurate carbon stock
estimation, and biodiversity monitoring. We urge users to apply this data responsibly and, when working with sensitive species,

to integrate local expertise and field validation to prevent negative environmental or social outcomes.

7 Code and Data Availability

The GlobalGeoTree dataset is openly available under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license.
The complete dataset is archived on Hugging Face at https://huggingface.co/datasets/yann111/GlobalGeoTree under DOI
https://doi.org/10.15468/dd.9qxqyy (Mu et al., 2025b). The pretraining and evaluation datasets are provided in WebDataset
format (Aizman et al., 2019). This format enables efficient online data streaming to train models without requiring full dataset
downloads, facilitating large-scale machine learning workflows. It also integrates seamlessly with popular deep learning
frameworks, improving accessibility and usability for researchers.

All code is available in our github repository https://github.com/MU Yang99/GlobalGeoTree under the Apache License 2.0,
which provides comprehensive tools for using these resources. We are dedicated to maintaining and enhancing the dataset,
addressing issues, and incorporating updates like new data sources or taxonomic revisions in future versions. The code and

Huggingface repository will serve as the primary channels for updates and community feedback.

8 Conclusion and future work

In this paper, we introduced GlobalGeoTree, a large-scale, globally comprehensive dataset and benchmark for tree species
classification. The dataset includes over 6 million geolocated tree occurrences spanning 21,001 species, paired with Sentinel-2
time series data and a rich set of auxiliary environmental variables. We also proposed GeoTreeCLIP, a baseline vision-
language model specifically designed for this task, leveraging domain-specific pretraining on GlobalGeoTree-6M. Experimental
results demonstrate that GeoTreeCLIP significantly outperforms existing advanced models in classification accuracy across all
taxonomic levels, highlighting both the effectiveness of our approach and the importance of introducing this benchmark for
global tree species classification.

Future work could explore several promising directions. Expanding the GlobalGeoTree with more recent data, additional
satellite sensors (e.g., SAR data for structural information), and a broader range of auxiliary variables could enhance its utility.
Investigating alternative vision-language model architectures, pretraining strategies, and methods for addressing the long-tail
distribution could further improve classification accuracy, especially at the species level. Developing techniques for uncertainty
estimation and improving model explainability are also critical areas for future work. Moreover, applying GlobalGeoTree
and GeoTreeCLIP to real-world applications in biodiversity monitoring, conservation, and forest management could provide

practical support and holds great potential.
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Appendix A: GlobalGeoTree Dataset Statistics

The GlobalGeoTree dataset is a large-scale, multimodal resource for tree species classification. This section provides detailed

statistics complementing the overview in the main paper.
Al Data Records and Taxonomic Catalog

To provide full transparency and facilitate detailed exploration of the dataset, we have made two key files publicly available in

our Hugging Face repository (https://huggingface.co/datasets/yannl11/GlobalGeoTree/files).

— Complete Taxonomic Catalog (Tree_species_catalog.csv): This file contains the complete list of all 275
families, 2,734 genera, and 21,001 species included in GlobalGeoTree, along with their corresponding unique species

keys used in the GBIF database. This catalog serves as a comprehensive reference for the taxonomic scope of our dataset.

— Full Georeferenced Records (GlobalGeoTree. csv): This file contains all 6.3 million geolocated records. Each row
includes the coordinates, hierarchical taxonomic labels (from functional type to species), the original data source (e.g.,
iNaturalist Research-grade Observations), and other metadata as detailed in Table 3. This allows for complete traceability

and enables users to perform custom geographical or taxonomic subsetting.
A2 Basic Statistics

The dataset encompasses a comprehensive collection of geolocated tree occurrences:
— Total Samples: 6,263,345
— Countries/Regions' Covered: 221
— Taxonomic Coverage: Families: 275, Genera: 2,734, Species: 21,001

A3 Long-tail Distribution Analysis

The dataset exhibits a characteristic long-tail distribution across taxonomic levels as shown in Fig. Al. This highlights the

challenge of classifying both common and rare taxa:

— Family Level: The top 20% of families (55 families) account for 91.01% of all samples. Conversely, 24 families (8.73%

of total families) have fewer than 10 samples each.

— Genus Level: The top 20% of genera (546 genera) cover 96.65% of the samples. A significant portion, 760 genera
(27.80% of total genera), have fewer than 10 samples.

I'The term "Countries/Regions" is used to align with global data standards (e.g., from GBIF) and accurately represents both sovereign states and other

geographic entities such as overseas territories or dependencies, ensuring comprehensive coverage.
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— Species Level: The distribution is most skewed at the species level, where the top 20% of species (4,200 species) comprise

450 97.21% of the samples. A majority of species, 11,611 species (55.29% of total species), have fewer than 10 samples.

This long-tail distribution underscores the importance of evaluation strategies, like those employed for GlobalGeoTree-10kEval,

that explicitly consider species rarity.
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Figure A1l. Long-tail distribution across taxonomic levels in GlobalGeoTree.

A4 Detailed Categorical Statistics

Below are statistics for key categorical attributes within the GlobalGeoTree dataset, illustrating geographical and taxonomic

455 diversity and distribution.
A4.1 Location (location)

— Number of unique countries/regions: 221
— Top 5 most frequent locations:

1. United States of America: 1,932,465
460 2. Australia: 506,179

3. Canada: 429,266

4. Colombia: 330,896

5. Russian Federation: 209,019

A4.2 Functional Type (levelO) Deciduous Broadleaf: 3,582,456

) ) Evergreen Broadleaf: 2,208,578
465 — Number of unique functional types: 4

Evergreen Needleleaf: 447,568

— Distribution of functional types: 470 Deciduous Needleleaf: 24,743
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A4.3 Taxonomic Family (levell_family) 2. Quercus: 210,104

— Number of unique families: 275 3. Pinus: 168,917

485 4. Vaccinium: 158,362
— Top 5 most frequent families:
5. Prunus: 125,604
1. Ericaceae: 423,365

475 2. Fabaceae: 384,038 A4.5 Taxonomic Species (level3_species)

3. Fagaceae: 362,317 — Number of unique species: 21,001

4. Rosaceae: 355,950
— Top 5 most frequent species:

5. Pinaceae: 320,415
490 1. Cornus acuminata: 180,120

A4.4 Taxonomic Genus (level2_genus)
2. Securidaca volubilis: 103,441

480 — Number of unique genera: 2,734 3. Cupania sylvatica: 99,797
— Top 5 most frequent genera: 4. Bourreria cumanensis: 96,304
1. Cornus: 288,678 5. Fagus sylvatica: 75,503

495 Appendix B: Auxiliary Environmental Variables

The 27 auxiliary variables used in GlobalGeoTree were sourced from three publicly available datasets, accessible via Google

Earth Engine (GEE):
— WorldClim V1 (Bioclimatic Variables): GEE Dataset ID: WORLDCLIM/V1_BIO
— SoilGrids 250m v2.0 (Soil Variables): GEE Dataset ID: ISRIC/soilgrids/v02
500 — USGS SRTM GL1 v003 (Geographic Variables): GEE Dataset ID: USGS/SRTMGL1_003
Table B1 provides a detailed description of a subset of these variables.

Table B1: Description of the 19 bioclimatic variables from WorldClim (BIO1-BIO19) used in the GlobalGeoTree dataset.

Variable Units Scale Factor Description

bio01 °C 0.1 Annual Mean Temperature

bio02 °C 0.1 Mean Diurnal Range (Mean of monthly (max temp
- min temp))

Continued on next page
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Table B1 — continued from previous page

Variable Units Scale Factor Description

bio03 % 1 Isothermality (BIO2/BIO7 x 100)

bio04 °C 0.01 Temperature Seasonality (Standard Deviation x
100)

bio05 °C 0.1 Max Temperature of Warmest Month

bio06 °C 0.1 Min Temperature of Coldest Month

bio07 °C 0.1 Temperature Annual Range (BIOS - BIO6)

bio08 °C 0.1 Mean Temperature of Wettest Quarter

bio09 °C 0.1 Mean Temperature of Driest Quarter

biol0 °C 0.1 Mean Temperature of Warmest Quarter

bioll °C 0.1 Mean Temperature of Coldest Quarter

biol2 mm 1 Annual Precipitation

biol3 mm 1 Precipitation of Wettest Month

biol4 mm 1 Precipitation of Driest Month

biol5 Coeff. of Variation 1 Precipitation Seasonality

biol6 mm 1 Precipitation of Wettest Quarter

biol7 mm 1 Precipitation of Driest Quarter

biol8 mm 1 Precipitation of Warmest Quarter

biol9 mm 1 Precipitation of Coldest Quarter

Appendix C: Details of Evaluation Subsets
C1 Overview and Construction

To enable robust benchmarking across various taxonomic diversity scales and species rarity, we constructed three evaluation

505 subsets: GlobalGeoTree-10kEval, GlobalGeoTree-10kEval-300, and GlobalGeoTree-10kEval-900. These subsets were created
by first categorizing all species in the GlobalGeoTree dataset into Rare, Common, and Frequent groups based on available sample
counts (Sect. 3.4), then randomly selecting 30, 100, and 300 species per category, respectively. The primary GlobalGeoTree-
10kEval benchmark (90 species) is featured in the main paper, while the larger subsets enable assessment of model scalability
and performance on increasingly complex tasks. Detailed overviews of each subset’s composition are provided in Table C1,

510 Table C2, and Table C3. The geographical distribution of the two additional evaluation sets is shown in Figure Cla and Figure
Clb.
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Table C1. Overview of the GlobalGeoTree-10kEval evaluation subset. This subset comprises 30 species selected from each of the three rarity

categories (Rare, Common, Frequent), totaling 90 unique species and 9,930 geolocated samples.

Category Example Species Num of Samples
Rare Acacia platycarpa 40
Adenanthos cuneatus 40
Adenocarpus decorticans 40
Rare (Total) 30 species selected 1,200
Common Abies religiosa 110
Aloe marlothii 110
Alternanthera sessilis 110
Common (Total) 30 species selected 3,300
Frequent Acer glabrum 181
Arctostaphylos glandulosa 181
Ardisia paniculata 181
Frequent (Total) 30 species selected 5,430
Total 90 species total 9,930
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Table C2. Overview of the GlobalGeoTree-10kEval-300 evaluation subset. This subset comprises 100 species selected from each of the three

rarity categories (Rare, Common, Frequent), totaling 300 unique species and 10,000 geolocated samples.

Category Example Species Num of Samples
Rare Abutilon wrightii 12
Acacia georgensis 12
Acacia loroloba 12
Rare (Total) 100 species selected 1,200
Common Acacia confusa 33
Acacia mucronata 33
Achyranthes spec 33
Common (Total) 7100 species selected 3,300
Frequent Acacia dealbata 55
Acacia decurrens 55
Acacia polyphylla 55
Frequent (Total) 100 species selected 5,500
Total 300 species total 10,000

(a) GlobalGeoTree-10kEval-300

Frequent
Common
Rare

(b) GlobalGeoTree-10kEval-900

Figure C1. Geographic distributions of GlobalGeoTree-10kEval-300 and GlobalGeoTree-10kEval-900.

26

Frequent
Common
Rare



515

https://doi.org/10.5194/essd-2025-613
Preprint. Discussion started: 5 November 2025
(© Author(s) 2025. CC BY 4.0 License.

Earth System
Science

Data

Open Access
suoIssnasIqg

Table C3. Overview of the GlobalGeoTree-10kEval-900 evaluation subset. This subset comprises 300 species selected from each of the three

rarity categories (Rare, Common, Frequent), totaling 900 unique species and 10,200 geolocated samples.

Category

Example Species

Num of Samples

Rare

Abies hickelii
Abutilon auritum

Acacia adunca

Rare (Total)

300 species selected

1,200

Common

Abies fraseri
Acacia echinula

Acacia falcata

11
11
11

Common (Total)

300 species selected

3,300

Frequent

Abies amabilis
Abies balsamea

Acacia dealbata

19
19
19

Frequent (Total)

300 species selected

5,700

Total

900 species total

10,200

Appendix D: Model Performance on GlobalGeoTree-10kEval-300 and GlobalGeoTree-10kEval-900

The evaluation results on the larger GlobalGeoTree-10kEval-300 (Table D1) and GlobalGeoTree-10kEval-900 (Table D2)
subsets align with trends from the primary benchmark GlobalGeoTree-10kEval (Table 4 and 5). GeoTreeCLIP consistently

outperforms CLIP and RemoteCLIP across all settings (zero-shot, one-shot, three-shot) and taxonomic levels (Family, Genus,

Species). Despite lower absolute accuracies on these challenging subsets, especially GlobalGeoTree-10kEval-900, GeoTreeCLIP

maintains a significant performance edge, highlighting the advantages of its domain-specific pretraining and tailored architecture

for multimodal tree species classification.
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Table D1. Zero-shot and Few-shot evaluation on GlobalGeoTree-10kEval-300. Results are presented as mean accuracy (%) + standard

deviation (%) over 5 runs.

CLIP RemoteCLIP GeoTreeCLIP

Taxon.

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
Zero-Shot Evaluation
Family 7.07£0.02 20.14+£0.03 1354+0.01 7.284+0.08 12.55+0.20 40.25 + 0.30
Genus 2.34+0.01 5594+0.03 057+0.01 2.10+£0.05 9.26 + 0.24  28.34 + 0.25
Species  0.46 +£0.00 2.06£0.01 0.56 £ 0.01 1.70 = 0.02 7.87 +£0.20 2520 + 0.21
One-Shot Evaluation
Family 1.55£0.00 6.80£0.02 2434001 1030£0.09 1858+0.21 5041+ 0.21
Genus 0.87 £ 0.01 3.59 + 0.01 0.66 £ 0.01 391 +£0.07 14.57 £0.26 41.92 4+ 0.27
Species  0.63 +0.00 2.35+0.01 0.61 £ 0.01 2.75+0.03 13.31 £0.22 38.39 4+ 0.26
Three-Shot Evaluation
Family 5.28 £0.01 16.12+£0.04 3.794+0.01 1149£0.05 2391+0.26 57.97+0.29
Genus 1.79+£0.01 6.02+0.02 1.114+0.02 3.60+£0.04 19.22+0.28 50.35 + 0.27
Species 133 +£0.00 4.17+£0.01 0.74£0.02 2.64£0.02 1790+ 0.23 47.54 +0.29
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Table D2. Zero-shot and Few-shot evaluation on GlobalGeoTree-10kEval-900. Results are presented as mean accuracy (%) + standard

deviation (%) over 5 runs.

CLIP RemoteCLIP GeoTreeCLIP
Taxon.

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Zero-Shot Evaluation

Family 4.77+£0.04 13.17+0.05 1.10+0.00 10.08+0.02 7.62+0.13 27.25 £ 0.05
Genus 0.69+£0.01 258+£0.02 0.04+000 0.55=£0.02 436 +0.10 16.32 +0.11
Species  0.12£0.00 0.59+0.00 0.04£0.00 0.51+0.02 340+0.09 11.83 +0.05

One-Shot Evaluation

Family 344 +0.02 9.76+£0.04 1.89+0.04 4.69+£0.06 14.16+0.26 41.81+0.31
Genus 1.53+£0.01 282+£0.02 0.25+0.01 121 £0.02 10.24 +0.21  31.45 + 0.32
Species 0.45+£0.01 127+001 022£0.01 0.83+0.01 8.18 £ 0.15  25.17 +0.28

Three-Shot Evaluation

Family 4.39+0.02 1293+0.04 543+0.09 13294+0.02 16.00+0.14 46.07 + 0.34
Genus 208+001 525£0.02 077+002 422+£0.04 12.50+0.21 37.42+0.20
Species 137 £0.01 397+001 034£0.02 184+006 10.23+0.25 31.79+0.17
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Appendix E: Additional Baselines Evaluated on GlobalGeoTree-10kEval

To further contextualize GeoTreeCLIP’s performance, we extended our zero-shot evaluation on the GlobalGeoTree-10kEval
subset to include two additional publicly available vision-language models: SkyCLIP-50 (Wang et al., 2024) and CLIP-laion-RS,
a CLIP model pretrained on the remote sensing subset of LAION-2B (Schuhmann et al., 2022). These models were evaluated on
the GlobalGeoTree-10kEval subset under the same zero-shot protocol used for CLIP and RemoteCLIP (features extracted from
individual monthly images, probabilities averaged). For ease of comparison, their performance alongside our GeoTreeCLIP is

presented in Table E1.

Table E1. Zero-shot evaluation of SkyCLIP-50, CLIP-laion-RS, and GeoTreeCLIP on GlobalGeoTree-10kEval. Results are presented as mean

accuracy (%) + standard deviation (%) over 5 runs.

SkyCLIP-50 CLIP-laion-RS GeoTreeCLIP
Taxon.

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Family 233 +0.01 1840+0.08 1.154+0.01 17.83+0.16 20.99 +0.28 56.88 + 0.42
Genus 1.10+£0.03 648 +£0.04 1.124+£001 733£0.03 18.39+0.26 50.98+ 0.41
Species 1.10£0.03 636+0.04 1.12£0.01 7.27+£0.02 16.71+0.25 47.52 + 0.37

The results in Table E1 show that both SkyCLIP-50 and CLIP-laion-RS, despite their pretraining on remote sensing imagery,
achieve zero-shot accuracies on GlobalGeoTree-10kEval that are substantially lower than our GeoTreeCLIP. For instance,
at the species level, SkyCLIP-50 obtains a top-1 accuracy of 1.10% and CLIP-LAION-RS achieves 1.12%, in contrast to
GeoTreeCLIP’s 16.71%. As indicated in the main text for similar baseline models (CLIP, RemoteCLIP), such performance
can partly be attributed to their design, which is often optimized for RGB data and lacks effective handling of time-series
information or small-patch classification crucial for tree species identification. These limitations further emphasize the value of
the GlobalGeoTree benchmark and the effectiveness of our tailored GeoTreeCLIP approach in advancing global tree species
classification research.

The comparison highlights that general remote sensing pretraining alone is insufficient for the nuanced task of global
fine-grained tree species identification. The domain-specific dataset characteristics, multimodal input integration (including
time-series and auxiliary data), and the tailored contrastive learning approach of GeoTreeCLIP appear critical for achieving

strong performance on this challenging benchmark.
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