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Abstract. Global tree species mapping using remote sensing data is vital for biodiversity monitoring, forest management, and

ecological research. However, progress in this field has been constrained by the scarcity of large-scale, labeled datasets. To

address this, we introduce GlobalGeoTree—a comprehensive global dataset for tree species classification. GlobalGeoTree

comprises 6.3 million geolocated tree occurrences, spanning 275 families, 2,734 genera, and 21,001 species across the

hierarchical taxonomic levels. Each sample is paired with Sentinel-2 image time series and 27 auxiliary environmental variables,5

encompassing bioclimatic, geographic, and soil data. The dataset is partitioned into GlobalGeoTree-6M, a large subset for

model pretraining, and curated evaluation subsets, primarily GlobalGeoTree-10kEval, a benchmark for zero-shot and few-

shot classification. To demonstrate the utility of the dataset, we introduce a baseline model, GeoTreeCLIP, which leverages

paired remote sensing data and taxonomic text labels within a vision-language framework pretrained on GlobalGeoTree-

6M. Experimental results show that GeoTreeCLIP achieves substantial improvements in zero- and few-shot classification on10

GlobalGeoTree-10kEval over existing advanced models. By making the dataset, models, and code publicly available, we aim

to establish a benchmark to advance tree species classification and foster innovation in biodiversity research and ecological

applications. The code is publicly available at https://github.com/MUYang99/GlobalGeoTree, and the GlobalGeoTree dataset is

available at https://huggingface.co/datasets/yann111/GlobalGeoTree (Mu et al., 2025b).

1 Introduction15

Forests cover approximately 31% of the global land surface (Hansen et al., 2013) and provide essential ecosystem services,

including carbon sequestration (Jenkins et al., 2003), biodiversity conservation (Lindenmayer et al., 2006), and climate

regulation (Bonan, 2008). Accurate and large-scale mapping of tree species plays an increasingly vital role in addressing pressing

environmental challenges (Mu et al., 2025a), including effective biodiversity monitoring (Felton et al., 2020), informed forest

management practices (Franklin, 2001), and comprehensive ecological research aimed at understanding the complex impacts of20

climate change (Hamann and Wang, 2006).
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Figure 1. Overview of the GlobalGeoTree dataset, which includes 6.3 million samples spanning 21,001 tree species across 221 countries/regions.

The map illustrates the geographic coverage, with color intensity representing the number of samples in each 1° × 1° latitude/longitude

grid. Each sample is paired with remote sensing data, including Sentinel-2 time series, auxiliary environmental variables, and hierarchical

taxonomic labels spanning from functional type to species level.

Traditional ground-based forest monitoring methods (Wellbrock et al., 2018), while providing detailed information, are often

limited in their spatial and temporal coverage, making it challenging to obtain a comprehensive understanding of global forest

composition and dynamics. In contrast, remote sensing has emerged as a key technology for large-scale forest monitoring,

offering non-invasive and cost-effective approaches to tree species classification (Hermosilla et al., 2022). Despite significant25

advancements in this field, progress has been constrained by the limited availability of comprehensive, high-quality, and

accurately labeled datasets that capture the global diversity of tree species (Bountos et al., 2025). Existing datasets typically

focus on specific geographic regions or limited taxonomic coverage, hampering the development of models with global

applicability (Ouaknine et al., 2025).

To bridge these gaps, we present GlobalGeoTree, a large-scale dataset comprising 6.3 million remote sensing samples paired30

with multi-level taxonomic labels. This dataset integrates time-series satellite imagery from Sentinel-2 with 27 bioclimatic,

geographic, and soil variables, offering a rich multimodal representation of tree species within their environmental contexts.

The taxonomic hierarchy spans family, genus, and species levels, enabling classification across various scales of biological

organization.

In addition to the dataset, we introduce GeoTreeCLIP, a vision-language model specifically designed for tree species35

classification. Drawing on frameworks like CLIP (Radford et al., 2021), our approach aligns satellite imagery with taxonomic
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labels to learn nuanced representations. Unlike traditional classifiers treating labels as discrete categories, vision-language

models can inherently process label hierarchical structure, generalizing to unseen species through representations of related

genera or families (Stevens et al., 2024). This enables robust zero-shot and few-shot learning of GeoTreeCLIP, which are critical

for addressing the vast scale of global biodiversity, ever-evolving species catalogs, and the practical impossibility of exhaustive40

data collection for all taxa.

GeoTreeCLIP leverages domain-specific pretraining on GlobalGeoTree-6M, main part of the dataset tailored for model

pretraining, and evaluated on a specialized benchmark, GlobalGeoTree-10kEval, which enables a comprehensive assessment of

model performance across multiple taxonomic levels. Through the open availability of GlobalGeoTree, its associated models,

and evaluation protocols, we seek to establish a community-driven benchmarking standard that will accelerate the development45

of generalizable models for tree species mapping and deepen our understanding of global forest biodiversity.

2 Related Work

2.1 Open datasets for tree species classification

Table 1 provides an overview of notable open datasets that have contributed to tree species classification, detailing their

geographic coverage, size, and taxonomic diversity. For instance, the Seu Nico Forest dataset (Gastauer et al., 2015) from50

Brazil provides geolocated samples for 228 species but is geographically constrained. Similarly, the Maraca Ecological Station

dataset (Farias et al., 2020) includes 110 species but is also region-specific. In Europe, the EUForest dataset (Mauri, 2017) offers

broader coverage with data for 242 species. On a global scale, datasets such as Tallo (Jucker et al., 2022) provide significant

taxonomic diversity, covering 5,163 species across 187 families. However, these datasets lack integration with remote sensing or

environmental variables, limiting their application in ecological modeling.55

Table 1. Overview of publicly available datasets for tree species classification.

Dataset Geographic scope Size Classes Year

Seu Nico Forest (Gastauer et al., 2015) Brazil 2,868 54 families; 139 genera; 228 species 2015

EUForest (Mauri, 2017) Europe 588,983 83 genera; 242 species 2017

Maraca Eco. Sta. (Farias et al., 2020) Brazil 680 40 families; 110 species 2020

TreeSatAI (Ahlswede, 2022) Germany 50,381 15 genera; 20 species 2022

Tallo (Jucker et al., 2022) Global 498,839 187 families; 1,453 genera; 5,163 species 2022

Indi. Tree Point Clouds (Weiser et al., 2022) Germany 1,491 22 species 2022

NEON Veg. Struc. (Kampe et al., 2010) USA N/A 949 genera; 2,826 species 2023

PureForest (Gaydon and Roche, 2025) France 135,569 18 species 2024

Planted (Pazos-Outón et al., 2024) Global 2,264,747 46 genera; 40 species 2024

GlobalGeoTree Global 6,263,345 275 families; 2,734 genera; 21,001 species 2025
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Advances in high-resolution imaging and lidar technologies have enabled datasets like PureForest (Gaydon and Roche, 2025)

and Individual Tree Point Clouds (Weiser et al., 2022), which utilize aerial and point cloud data for species classification. While

these datasets offer detailed structural information, they remain region-specific and lack the spectral and temporal depth of

satellite-based datasets. The TreeSatAI dataset (Ahlswede, 2022) combines multi-sensor data, including aerial imagery and

Sentinel-1/2, for tree species classification in Germany but covers only 20 species. Similarly, the Planted dataset (Pazos-Outón60

et al., 2024) focuses on only 40 planted species globally, limiting its broader applicability. Our work also complements broader

biodiversity benchmarks like GeoLifeCLEF (Botella et al., 2025) and GeoPlant (Picek et al., 2024). While these focus on

regional, multi-lifeform plant prediction, GlobalGeoTree is the first dataset with a global scope specifically curated for over

21,000 forest tree species.

Collectively, while valuable, these existing datasets highlight the persistent need for a benchmark that synergizes global65

coverage, deep taxonomic information for forest tree species, and multimodal remote sensing data, a gap GlobalGeoTree aims to

fill.

2.2 Vision-language models for remote sensing applications

Vision-language models (VLMs) enable the integration of visual and textual information. Among these, Contrastive Language-

Image Pretraining (CLIP) (Radford et al., 2021) has demonstrated exceptional zero-shot transfer capabilities by jointly training70

image and text encoders through a contrastive learning objective, aligning image-text pairs within a shared embedding space.

For tree species classification, CLIP’s ability to learn from image-text pairings (such as satellite imagery and taxonomic labels)

offers a path to capture complex visual and semantic relationships. Its proven zero-shot capabilities are particularly suited for

addressing the challenges of identifying species within dynamic and evolving catalogs (Stevens et al., 2024). Meanwhile, its

few-shot capabilities tackle the issue of limited labeled data, a common obstacle in biodiversity research, offering an advantage75

over traditional supervised methods.

In remote sensing, VLMs have been applied to various tasks, including image classification, retrieval, and scene understanding,

with domain-specific adaptations yielding significant improvements. For example, RemoteCLIP (Liu et al., 2024), the first VLM

specifically tailored for remote sensing, leverages pretraining on large-scale remote sensing imagery paired with aligned text,

achieving state-of-the-art performance in zero-shot classification, linear probing, and few-shot learning. Similarly, SkyCLIP80

(Wang et al., 2024), SkyCLIP-50 (Wang et al., 2024) and CLIP-laion-RS (He et al., 2024) extend the capabilities of CLIP

through continual pretraining on semantically diverse remote sensing image-text pairs. These models demonstrate enhanced

generalization and transferability, achieving substantial gains in tasks such as zero-shot scene classification, fine-grained

classification, and cross-modal retrieval compared to the original CLIP model.

These advancements underscore the importance of domain-specific pretraining in adapting VLMs for remote sensing85

applications. Aligning models more closely with the unique characteristics of remote sensing tasks has demonstrated significant

potential to advance progress in this field.
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3 The GlobalGeoTree dataset

3.1 Geolocated data collection and preprocessing

The GlobalGeoTree dataset provides unprecedented global and taxonomic coverage for tree species classification using remote90

sensing data, and the collection involved several key steps:

3.1.1 Tree species catalog construction

We constructed a comprehensive tree species catalog by integrating two major global repositories: TreeGOER (Kindt, 2023)

and GlobalTreeSearch (Beech et al., 2017), containing 48,129 and 57,681 tree species respectively. This compilation was

further enriched with multiple open-source datasets documented in Table 1. The taxonomic framework was subsequently95

validated and expanded using the Global Biodiversity Information Facility (GBIF) Species API (Global Biodiversity Information

Facility (GBIF), 2025), ensuring nomenclatural consistency and accuracy. The resulting catalog encompasses 87,845 species,

representing the global diversity of tree species.

3.1.2 Geolocation sampling

For each tree species in our catalog, we queried the GBIF Occurrence API (Chamberlain and Boettiger, 2017) to retrieve global100

geolocations with documented occurrences. To ensure data quality and reliability, we applied strict filtering criteria, including:

(1) selecting only recent observations recorded between 2015 and 2024; (2) limiting data to human observation records; (3)

excluding records with geospatial issues as flagged by GBIF (e.g., country-coordinate mismatches); (4) filtering for occurrences

with a "present" status; and (5) removing duplicate entries and observations with low geographic precision. Additionally, we

ensured all samples conform to open data licenses (CC0 1.0, CC-BY-4.0, etc.), maintaining the dataset’s accessibility and105

reusability for the broader research community.

3.1.3 Forest layer filtering

To ensure that each geolocated observation corresponds to a valid tree, we performed an additional forest cover verification step.

We utilized the EC JRC Global Map of Forest Cover 2020 (Bourgoin et al., 2024), which has a 10m spatial resolution. Each

geolocated point from GBIF was cross-referenced with this map, and only samples located within forest areas were retained.110

This filtering not only served as an essential quality control measure to enhance data reliability but also defined 2020 as the

target year for our study. This allowed us to subsequently acquire the Sentinel-2 time series for 2020, ensuring a direct temporal

correspondence between the verified ground observations and the satellite imagery.

3.2 Dataset Composition and Structure

The filtering process results in the final GlobalGeoTree dataset, which comprises 6,263,345 high-quality samples distributed115

across 221 countries and regions. A core feature of this dataset is its multi-granular taxonomic hierarchy, which is essential for
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developing models that can generalize across different levels of biological classification. This hierarchical structure is visualized

in Fig. 2, illustrating the relationships branching from four broad functional types at the center (level 0), through 275 families

(level 1) and 2,734 genera (level 2), out to the 21,001 individual species at the periphery (level 3).

Figure 2. The taxonomic hierarchy of the GlobalGeoTree dataset. The visualization shows the nested relationships, branching from the four

functional types (e.g., Deciduous Broadleaf ) at the center, through families (e.g., Fabaceae), genera, and out to the 21,001 species at the

outermost ring. This multi-level structure is a core feature that enables multi-granular classification tasks.

Each of the 6.3 million samples is structured as a single record that includes this full taxonomic lineage, its geolocation,120

and source metadata. This entire collection is made available as a downloadable CSV file (GlobalGeoTree.csv) for full

6

https://doi.org/10.5194/essd-2025-613
Preprint. Discussion started: 5 November 2025
c© Author(s) 2025. CC BY 4.0 License.



transparency and accessibility. Table 2 presents several example records to illustrate the data structure. A comprehensive

statistical breakdown and accessibility details of the dataset is provided in Appendix A.

Table 2. Example records from the GlobalGeoTree.csv file, demonstrating the structure of each geolocated data point.

country_code level0 level1_family level2_genus level3_species source longitude latitude

ES Deciduous Broadleaf Fagaceae Quercus Quercus rotundifolia iNaturalist Res.-grade Obs. -3.74024 40.49546

US Evergreen Needleleaf Cupressaceae Thuja Thuja plicata iNaturalist Res.-grade Obs. -122.168 48.33392

IE Deciduous Broadleaf Fagaceae Castanea Castanea sativa iNaturalist Res.-grade Obs. -9.524 52.05556

PT Deciduous Broadleaf Fagaceae Quercus Quercus rotundifolia Forestry Inventory 2015 -7.85145 39.42701

AU Deciduous Broadleaf Fabaceae Acacia Acacia platycarpa ALA species sightings 132.9895 -14.818

3.3 Paired remote sensing data

Each sample in the GlobalGeoTree dataset is paired with a rich set of multimodal data to enable robust modeling. Table 3125

provides a comprehensive overview of these features, including paired Earth Observation (EO) data and auxiliary environmental

variables derived from remote sensing sources.

3.3.1 EO data

The Sentinel-2 data for each sample consists of a time series of 12 monthly median composites from January to December 2020.

The full-year temporal coverage enables models to capture the distinct seasonal patterns of different tree species, such as leaf-out,130

full canopy, and senescence (Mu et al., 2025a). These phenological features are particularly discriminative for deciduous species.

For each month, all L2A Sentinel-2 images with less than 30% cloud cover were collected, and the median composites

were generated from these images. This process ensures a robust, largely cloud-free representation for each month, effectively

mitigating issues caused by transient atmospheric conditions in single-date imagery.

Each composite includes a 5×5 pixel patch centered on the geolocation of the tree species. This patch size was chosen to135

account for typical crown sizes (10–30 m) (Jucker et al., 2022) and to align with other public datasets, such as PureForest

(Gaydon and Roche, 2025) and TreeSatAI (Ahlswede, 2022). The chosen 5×5 patch size represents a trade-off: it is sufficiently

large enough to capture the crown of a mature tree and its immediate context, while remaining compact enough to minimize

noise from surrounding unrelated species.

3.3.2 Auxiliary data140

The auxiliary data enriches the EO data for each sample by providing additional contextual environmental information.

Geographic variables, such as elevation, slope, and aspect, are derived from the USGS SRTM dataset (Jarvis et al., 2008), while

soil data, including volumetric water content at 33 kPa across three depths (0–5 cm, 5–15 cm, 15–30 cm), are obtained from

SoilGrid (Poggio et al., 2021). Additionally, 19 bioclimatic variables are sourced from WorldClim (Fick and Hijmans, 2017).
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Table 3. Overview of features in each sample in the GlobalGeoTree dataset.

Feature Name Type Description

Remote Sensing Data

Sentinel-2 Time Series float 12 monthly median composites; Includes RGB, NIR, Vegetation

Red Edge, and SWIR bands; dimensions: (12, 10, 5, 5).

Geographic Variables float Latitude and longitude, as well as elevation, slope, and aspect

derived from USGS (SRTM) (30m resolution).

Soil Variables float 3 Volumetric Water Content data at 33kPa across depths: 0-5 cm,

5-15 cm, 15-30 cm (250m resolution).

Bioclim Variables float 19 climatic variables from WorldClim (1km resolution).

Text Labels

level0 string Functional type of the species (e.g., Evergreen Broadleaf).

level1_family string Taxonomic family of the species (e.g., Myrtaceae).

level2_genus string Taxonomic genus of the species (e.g., Eucalyptus).

level3_species string Scientific name of the species (e.g., Eucalyptus kybeanensis).

Meta Data

location string Geographic location of the sample (e.g., Australia).

country_code string ISO country code of the sample location.

source string Source of the sample record (e.g., iNaturalist Research-grade

Observations).

species_key float Unique identifier for the species in the GBIF database.

record_year int The year when the record was collected.

Due to the relatively coarse spatial resolution of these datasets (ranging from 30m to 1km), only the values corresponding to145

the exact coordinates of each occurrence are extracted to ensure precision and relevance (Gillespie et al., 2024). A detailed

description of all 27 auxiliary variables and their sources is provided in Appendix B.

3.4 Dataset partitioning

For effective model development and evaluation, the GlobalGeoTree dataset was partitioned into GlobalGeoTree-6M and curated

evaluation subsets, primarily GlobalGeoTree-10kEval.150

GlobalGeoTree-6M comprises the vast majority of the samples and is specifically designed for model pretraining. This large

size allows models to learn robust and generalizable representations of tree species and their associated environmental contexts.

GlobalGeoTree-10kEval, is a carefully curated dataset intended for benchmarking model performance across taxonomic

levels and species frequency categories in a fair and robust manner. To address the characteristic long-tail distribution observed
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Figure 3. Species in GlobalGeoTree are categorized into Frequent, Common and Rare groups based on the number of samples per species.

in the datasets (detailed in Appendix A3), species in GlobalGeoTree dataset were categorized into three groups based on the155

number of samples: Frequent (more than 1500), Common (100–1500), and Rare (less than 100), as shown in Fig. 3.

Figure 4. Geographic distribution of GlobalGeoTree-10kEval. This benchmark includes species selected from Frequent, Common, and Rare

categories, as described in the text.

The GlobalGeoTree-10kEval dataset includes 30 species from each of these three categories, resulting in a total of 90 species.

The sample proportions within this evaluation set are 12% for Rare species, 33% for Common species, and 55% for Frequent
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species, culminating in around 10,000 samples. Fig. 4 shows the geographical distribution of GlobalGeoTree-10kEval, which

spans diverse regions across the globe. This global distribution ensures that the dataset captures a wide range of ecological and160

environmental contexts, making it representative of real-world scenarios. By focusing on a diverse set of species with varying

levels of representation, GlobalGeoTree-10kEval serves as a robust evaluation benchmark for assessing the ability of models to

tackle challenges posed by the long-tail distribution of species and shifts in geographical domains.

Beyond GlobalGeoTree-10kEval, we developed larger evaluation sets—GlobalGeoTree-10kEval-300 and GlobalGeoTree-

10kEval-900—by selecting 100 and 300 species from each category, respectively. Crucially, all samples within these evaluation165

sets, are excluded from the GlobalGeoTree-6M pretraining set to ensure fair evaluation. Details of all evaluation subsets

(Appendix C) and the corresponding evaluation results (Appendix D) are also provided. Given the complexity of global tree

species classification, our primary analysis focuses on the 90-species GlobalGeoTree-10kEval, which serves as a practical

starting point for systematic benchmarking.

4 Benchmarks170

4.1 GeoTreeCLIP model

To establish a strong baseline on the GlobalGeoTree dataset, we developed GeoTreeCLIP, a vision-language model (VLM)

specifically tailored for tree species classification. Our choice of the VLM paradigm was motivated by the inherent challenges of

this task: preliminary experiments showed that traditional supervised models struggle with the vast, long-tailed, and hierarchical

label space of GlobalGeoTree, especially at the fine-grained genus and species levels (see Sect. 5.1).175

In contrast, a VLM framework treats taxonomic labels not as discrete indices, but as structured text. This allows the model

to leverage the rich semantic relationships between species, genera, and families. By jointly training on image-text pairs,

GeoTreeCLIP learns powerful, transferable representations that align visual features with their corresponding taxonomic context.

This approach is particularly effective for zero-shot and few-shot scenarios, which are critical for addressing the immense scale

of global biodiversity and the practical impossibility of collecting exhaustive data for all taxa (Stevens et al., 2024).180

As shown in Fig. 5, the GeoTreeCLIP model architecture consists of the following components:

– Visual Encoder: A ViT-B/16 backbone (Dosovitskiy et al., 2020) adapted to process the multi-spectral, time-series

Sentinel-2 data. To handle the 10-channel, 5x5 pixel input patches, we modify the initial patch embedding layer of the

ViT. Each 5x5 patch is first upsampled to 16x16 pixels using bicubic interpolation. The modified embedding layer then

processes these 10 channels and projects the entire 16x16 patch into a single visual token. This approach allows the185

model to capture the holistic spectral information of the patch at each timestep. These 12 monthly tokens are then fed

into a temporal attention module (Vaswani et al., 2017) to learn and fuse key phenological patterns across the year. This

mechanism allows the model to dynamically weigh the importance of different months, implicitly learning which parts of

the phenological cycle are most informative for identifying a particular species.
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Figure 5. Architecture of the GeoTreeCLIP baseline model. It processes Sentinel-2 time series and auxiliary data through visual encoder and

MLP, and hierarchical taxonomic labels through a text encoder. The resulting multimodal visual and text features are then aligned using a

contrastive loss.

– Auxiliary Feature Integration: A multi-layer perceptron (MLP) (Rosenblatt, 1958; Gillespie et al., 2024) designed190

to process bioclimatic, soil, and geographic data. The MLP consists of several feature-specific linear layers (hidden

dimension: 256) followed by LayerNorm and ReLU activation. The encoded features are then fused and projected into

a 768-dimensional embedding, which is added to the visual token embedding from the Visual Encoder before the final

contrastive projection. This allows the model to integrate environmental context with visual information.

– Text Encoder: A 77-token causal autoregressive transformer (Vaswani et al., 2017; Radford et al., 2019) that processes195

the hierarchical taxonomic labels. For each sample, the text input is structured to convey the full taxonomic lineage, for

example, "Evergreen Broadleaf, Family Myrtaceae, Genus Eucalyptus, Species Eucalyptus kybeanensis". By encoding

this structured text, the model learns embeddings that capture the relationships between different taxonomic levels. This

allows GeoTreeCLIP to understand, for instance, that two different species within the same genus (Eucalyptus) are

semantically closer than species from different families. This learned semantic structure is key to its strong generalization200

capabilities, especially for rare or unseen species.

4.1.1 Pretraining details

Both the Visual Encoder and Text Encoder are initialized using OpenAI’s publicly available CLIP checkpoint (Radford et al.,

2021) and further pre-trained on the GlobalGeoTree-6M using Distributed Data Parallel (DDP) across 5 NVIDIA 3090 (24GB)

GPUs. We employed a batch size of 384 per GPU, with gradient accumulation over 2 steps, resulting in an effective batch size205

11

https://doi.org/10.5194/essd-2025-613
Preprint. Discussion started: 5 November 2025
c© Author(s) 2025. CC BY 4.0 License.



of 768 per GPU (3840 globally). The AdamW optimizer (Loshchilov and Hutter, 2017) was used with a base learning rate of

1× 10−5 for the visual and auxiliary encoders, and a reduced learning rate of 1× 10−6 for the pretrained text encoder. A weight

decay of 1× 10−4 was applied. A linear learning rate warmup was implemented for the first 5 epochs. Following the warmup, a

Cosine Annealing with Warm Restarts (Loshchilov and Hutter, 2022) scheduler was used, with T0 = 10 epochs and Tmult = 2,

and a minimum learning rate of 1× 10−7. Gradients were clipped to a maximum L2 norm of 1.0. The loss function was the210

standard CLIP contrastive loss (Oord et al., 2018). Mixed-precision training (Micikevicius et al., 2017) was enabled. A full

25-epoch training run required approximately 2 days, with peak GPU memory consumption observed at roughly 14 GB per

GPU.

4.2 Experimental setup

We evaluated GeoTreeCLIP against two advanced pretrained vision-language models: CLIP (Radford et al., 2021) and Re-215

moteCLIP (Liu et al., 2024), a specialized VLM for remote sensing applications. To ensure a fair comparison with models

not explicitly designed for time-series data, we employed an ensemble-like approach for CLIP and RemoteCLIP. Specifically,

features or probabilities were computed independently for each of the 12 monthly images, and the final results were obtained

by averaging these values. Additionally, the results of other baseline models, including SkyCLIP-50 (Wang et al., 2024) and

CLIP-laion-RS (He et al., 2024), are provided in Appendix E.220

All models were evaluated on the GlobalGeoTree-10kEval benchmark using zero-shot and few-shot learning settings.

Performance was measured using top-1 and top-5 prediction accuracy, with separate evaluations for each taxonomic level

(family, genus, and species). To ensure robustness, we repeated each experiment 5 times using different random seeds and

reported the mean accuracy and variance.

4.2.1 Zero-shot evaluation225

For zero-shot evaluation, we assess each model’s ability to classify samples from the evaluation sets (GlobalGeoTree-10kEval,

-10kEval-300, and -10kEval-900) without any fine-tuning. Our protocol is framed as an "in-domain" zero-shot classification task,

following the setup in recent remote sensing benchmarks (Wang et al., 2024). This approach tests a model’s transfer capability

to new, unseen samples of species, rather than to entirely unseen categories. Although the species categories in the evaluation

sets are present in the training data, this setup strikes a balance between preserving the model’s ability to classify all tree species230

after pre-training on GlobalGeoTree-6M and ensuring a valid zero-shot scenario.

4.2.2 Few-shot evaluation

For few-shot evaluation, we explored scenarios such as one-shot learning, where the model is provided with only one labeled

example per species. To implement this, we adopted a fine-tuning-based approach (Parnami and Lee, 2022) using the pre-trained

model. Specifically, we randomly sampled k labeled examples per class (e.g., k = 1, k = 3) to form the support set and fine-tuned235

the visual encoder of the pre-trained model on this set. During fine-tuning, most of the visual encoder’s parameters were frozen,
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with only the last four transformer layers and the classification-related parameters remaining trainable. The text encoder was

entirely frozen, leveraging the pre-trained textual embeddings for class labels. The fine-tuning was conducted for 10 epochs to

balance adaptation and prevent overfitting due to the small support set. Afterward, the model was evaluated on the query set,

which consisted of the remaining examples in the dataset.240

For each query image, predictions were made by computing similarity scores between its visual embedding (extracted by

the fine-tuned visual encoder) and the textual embeddings of the class labels. The class with the highest similarity score was

assigned as the predicted label. Classification accuracy on the query set was then used to evaluate the model’s performance.

This fine-tuning approach enables the model to adapt to the few-shot setting while retaining the benefits of the pre-trained

representations.245

This evaluation framework highlights the model’s ability to generalize effectively from limited labeled data, which is a crucial

capability for real-world applications in biodiversity monitoring where obtaining large amounts of labeled data for every species

is often infeasible.

4.3 Experimental results

4.3.1 Zero-shot evaluation250

Table 4. Zero-shot evaluation on GlobalGeoTree-10kEval. Results are presented as mean accuracy (%) ± standard deviation (%) over 5 runs.

Taxon.
CLIP RemoteCLIP GeoTreeCLIP

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Family 10.80 ± 0.03 25.32 ± 0.05 1.11 ± 0.01 10.55 ± 0.04 20.99 ± 0.28 56.88 ± 0.42

Genus 1.09 ± 0.01 9.34 ± 0.01 1.11 ± 0.01 6.25 ± 0.02 18.39 ± 0.26 50.98 ± 0.41

Species 1.09 ± 0.01 7.02 ± 0.02 1.11 ± 0.01 6.25 ± 0.02 16.71 ± 0.25 47.52 ± 0.37

The results of zero-shot evaluation are presented in Table 4, clearly demonstrating the substantial improvements achieved

by GeoTreeCLIP across all taxonomic levels. At the family level, GeoTreeCLIP achieves a top-1 accuracy of 20.99% and a

top-5 accuracy of 56.88%. The performance gap is even more pronounced at the genus level. GeoTreeCLIP achieves a top-1

accuracy of 18.39% and a top-5 accuracy of 50.98%, outperforming CLIP (1.09% top-1, 9.34% top-5) and RemoteCLIP (1.11%

top-1, 6.25% top-5) by a large margin. At the most challenging species level, GeoTreeCLIP still shows significant superiority,255

achieving a top-1 accuracy of 16.71% and a top-5 accuracy of 47.52%.

The experimental results reveal two key patterns. First, accuracy consistently declines as the taxonomic level becomes

finer, reflecting the growing challenge of distinguishing closely related classes. This trend is observed across all models but

is particularly pronounced for CLIP and RemoteCLIP, which perform poorly at the genus and species levels. In contrast,

GeoTreeCLIP demonstrates stronger performance at these fine-grained levels, likely due to its ability to learn and leverage260

the hierarchical relationships in taxonomic labels, as supported by feature embedding visualizations (see Sect. 5.2 and Figure

13

https://doi.org/10.5194/essd-2025-613
Preprint. Discussion started: 5 November 2025
c© Author(s) 2025. CC BY 4.0 License.



6). Second, the significant performance gap between GeoTreeCLIP and the baseline models underscores the importance of

domain-specific pretraining. Moreover, its integration of spatiotemporal and multispectral information further enhances its

ability as general-purpose models like CLIP and RemoteCLIP struggle to handle. Additional zero-shot benchmark results,

including evaluations of SkyCLIP-50 (Wang et al., 2024) and CLIP-laion-RS (He et al., 2024), are provided in Appendix E.265

4.3.2 Few-shot evaluation

Table 5. Few-shot evaluation on GlobalGeoTree-10kEval. Results are presented as mean accuracy (%) ± standard deviation (%) over 5 runs.

Taxon.
CLIP RemoteCLIP GeoTreeCLIP

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

One-Shot Evaluation

Family 2.95 ± 0.01 15.06 ± 0.03 11.25 ± 0.01 23.85 ± 0.03 29.37 ± 0.07 69.38 ± 0.34

Genus 2.43 ± 0.01 8.14 ± 0.02 2.31 ± 0.01 7.68 ± 0.02 27.70 ± 0.11 64.40 ± 0.29

Species 1.67 ± 0.01 6.59 ± 0.03 1.94 ± 0.00 6.59 ± 0.02 25.80 ± 0.15 62.43 ± 0.25

Three-Shot Evaluation

Family 6.19 ± 0.01 23.50 ± 0.03 4.44 ± 0.02 17.02 ± 0.04 37.77 ± 0.23 75.49 ± 0.25

Genus 4.04 ± 0.01 12.76 ± 0.03 2.77 ± 0.03 11.70 ± 0.02 36.19 ± 0.22 72.50 ± 0.23

Species 3.41 ± 0.01 11.46 ± 0.03 1.88 ± 0.03 9.40 ± 0.06 33.67 ± 0.24 71.53 ± 0.23

The results in Table 5 demonstrate that providing even a small amount of labeled data for fine-tuning generally improves

performance compared to the zero-shot setting across all models and taxonomic levels. GeoTreeCLIP consistently achieves

the highest accuracies in both one-shot and three-shot scenarios. For instance, in the one-shot setting at the species level,

GeoTreeCLIP reaches a top-1 accuracy of 25.80%, substantially outperforming CLIP (1.67%) and RemoteCLIP (1.94%). This270

advantage becomes even more pronounced with three shots, where GeoTreeCLIP’s species-level top-1 accuracy increases to

33.67%, while CLIP and RemoteCLIP show more modest gains to 3.41% and 1.88%, respectively.

Our few-shot experiments reveal distinct patterns across models when increasing from one to three shots. GeoTreeCLIP

demonstrates substantial improvements across all taxonomic levels (species top-1 accuracy rising from 25.80% to 33.67%),

while CLIP shows consistent but smaller gains. RemoteCLIP exhibits mixed results, including a slight decrease in family-level275

accuracy, suggesting difficulties effectively utilizing additional examples. Both baseline models demonstrate limited capacity to

leverage few-shot supervision compared to GeoTreeCLIP, with only marginal improvements over their zero-shot performances

(Table 4), particularly at finer taxonomic levels. This indicates that general pretraining approaches may not align sufficiently with

the specific challenges of fine-grained tree species classification from remote sensing data, even when provided with in-domain

examples.280
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The poor performance of CLIP and RemoteCLIP can likely be attributed to their design, which is optimized for RGB

three-channel data and lacks the capability to process time-series information. Additionally, these models struggle with the

small-patch classification tasks required for tree species identification. These limitations further emphasize the importance of

introducing this benchmark for the global tree species classification task. More benchmark results on larger evaluation subsets

can be found in Table D1 and Table D2 in Appendix D.285

5 In-depth Analysis

5.1 Comparison with Supervised Learning Paradigm

To further contextualize the performance of our contrastive learning-based GeoTreeCLIP model, we conducted an additional

experiment using a traditional supervised learning paradigm. This allows for a more direct comparison of learning objectives

(contrastive vs. supervised) while keeping core architectural components and training settings as consistent as possible.290

5.1.1 Supervised Model Architecture and Training

We designed a supervised model, termed SupervisedGeoTree, which retains the visual processing pathway of GeoTreeCLIP,

including the VisualEncoder for Sentinel-2 time series and the AuxiliaryEncoder for environmental variables. The

features from these two encoders are projected, normalized, and then fused via concatenation followed by a fusion layer, similar

to the visual feature preparation in GeoTreeCLIP.295

However, unlike GeoTreeCLIP, the SupervisedGeoTree model does not include a text encoder or employ a contrastive loss.

Instead, the fused visual-auxiliary features are fed into four independent classification heads (fully connected layers), each dedi-

cated to predicting labels for one of the hierarchical taxonomic levels: functional type (level0), family (level1_family),

genus (level2_genus), and species (level3_species). The number of output neurons for each head corresponds to the

number of unique classes at that respective taxonomic level in the GlobalGeoTree (4 for level0, 275 for family, 2,734 for300

genus, and 21,001 for species).

The model was trained on the GlobalGeoTree-6M dataset. The loss function employed was a sum of standard Cross-Entropy

losses, calculated independently for each of the four taxonomic levels. The contributions of each level’s loss to the total loss

were equally weighted. All other training hyperparameters, including the learning rate (1× 10−5), optimizer (AdamW), weight

decay, number of epochs (25), warmup strategy (5 epochs), learning rate scheduler (Cosine Annealing with Warm Restarts), and305

batch size, were kept identical to those used for pretraining GeoTreeCLIP to ensure a fair comparison of the learning paradigms.

5.1.2 Comparison of the Supervised Model

After training on the GlobalGeoTree-6M dataset, the SupervisedGeoTree model was evaluated on the GlobalGeoTree-10kEval

subset. Since this model is trained with fixed classification heads for the classes seen during training, its ability to perform

"zero-shot" classification in the same sense as a CLIP-style model (i.e., classifying entirely new, unseen samples provided at test310
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time) is inherently limited. However, for this comparison, we evaluate its performance on the classes within GlobalGeoTree-

10kEval that were also part of the GlobalGeoTree-6M training vocabulary for each respective taxonomic head. If a class in

GlobalGeoTree-10kEval was not in the training vocabulary for a specific head, it cannot be correctly predicted by that head.

Notably, the GlobalGeoTree-6M dataset was designed to retain nearly all tree species categories, as our goal was to pretrain

a model capable of classifying the full spectrum of tree species. Consequently, the zero-shot evaluation here can be seen as315

measuring the model’s “zero-shot” transfer capability on unseen datasets, aligning with the concept of "in-domain" zero-shot

classification defined in Wang et al. (2024).

Table 6. Evaluation on GlobalGeoTree-10kEval. The table compares our vision-language model, GeoTreeCLIP, against the CLIP and a

traditional supervised baseline (SupervisedGeoTree). Results are mean accuracy (%) ± standard deviation (%) over 5 runs.

Taxon.
CLIP SupervisedGeoTree GeoTreeCLIP

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Family 10.80 ± 0.03 25.32 ± 0.05 9.55 ± 0.10 27.41 ± 0.07 20.99 ± 0.28 56.88 ± 0.42

Genus 1.09 ± 0.01 9.34 ± 0.01 1.19 ± 0.09 8.18 ± 0.14 18.39 ± 0.26 50.98 ± 0.41

Species 1.09 ± 0.01 7.02 ± 0.02 0.00 ± 0.00 0.28 ± 0.02 16.71 ± 0.25 47.52 ± 0.37

The results in Table 6 indicate that a consistent trend across all models is the decline in classification accuracy as the taxonomic

level becomes finer (from family to species). This reflects the inherent increase in difficulty when distinguishing between more

closely related taxa. However, the extent of this performance degradation varies significantly between models.320

The SupervisedGeoTree model, which employs traditional supervised classification heads for each taxonomic level, achieves

reasonable accuracy at the family level (9.55% top-1). However, its performance drops sharply for genus (1.19% top-1) and

becomes negligible at the species level (0.00% top-1). This drastic decline underscores the challenge of fine-grained classification

when relying solely on visual and auxiliary features without leveraging the semantic relationships embedded in textual taxonomic

labels, and the inherent limitation of generalizing to a large number of specific classes in a purely supervised manner.325

In contrast, the proposed GeoTreeCLIP model demonstrates substantial improvements over all other baselines across every

taxonomic level. At the family level, GeoTreeCLIP achieves a top-1 accuracy of 20.99%, more than doubling the performance of

CLIP and significantly outperforming SupervisedGeoTree. This advantage is even more pronounced at the finer-grained levels:

GeoTreeCLIP obtains 18.39% top-1 accuracy for genus and 16.71% for species identification. These results strongly indicate

the power of contrastive vision-language learning to align visual features with rich, hierarchical taxonomic text labels. This330

capability allows GeoTreeCLIP to learn more nuanced and generalizable representations, leading to its superior performance

in this challenging zero-shot evaluation. The significant gap, especially compared to SupervisedGeoTree at the species level,

highlights the efficacy of the contrastive learning paradigm for handling large, structured label spaces.
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Figure 6. t-SNE visualization of feature embeddings from GlobalGeoTree-10kEval-300 at different taxonomic levels, comparing GeoTreeCLIP

(top row), CLIP (middle row), and SupervisedGeoTree (bottom row). Columns from left to right represent visualizations at the Family

level (selected: Anacardiaceae, Berberidaceae, Cactaceae, Hernandiaceae, Rosaceae), Genus level (selected within Rosaceae: Prunus, Pyrus,

Rhodotypos, Rubus, Spiraea), and Species level (selected within Prunus: Prunus avium, Prunus caroliniana, Prunus ilicifolia, Prunus

laurocerasus, Prunus obtusata).

5.2 Qualitative Analysis: t-SNE Feature Embeddings Visualization

To qualitatively assess and compare the learned feature representations from different modeling paradigms, we performed t-SNE335

visualizations (Van der Maaten and Hinton, 2008). We used zero-shot image embeddings (or the final fused visual-auxiliary

features for SupervisedGeoTree before the classification heads) extracted from a subset of the GlobalGeoTree-10kEval-300

dataset. This analysis includes our proposed GeoTreeCLIP, the CLIP pretrained by OpenAI, and the SupervisedGeoTree model.
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Given the large number of classes and the hierarchical nature of the labels, we adopted a selective visualization strategy:

first examining embeddings at the family level for five randomly selected families (Anacardiaceae, Berberidaceae, Cactaceae,340

Hernandiaceae, and Rosaceae); then focusing on five genera within the Rosaceae family (Prunus, Pyrus, Rhodotypos, Rubus,

and Spiraea); and finally, visualizing five species within the Prunus genus (Prunus avium, Prunus caroliniana, Prunus ilicifolia,

Prunus laurocerasus, and Prunus obtusata).

The comparative t-SNE visualizations are presented in Figure 6. Across all three taxonomic levels (Family, Genus, and

Species, shown as columns), GeoTreeCLIP (top row) consistently demonstrates the most effective separation and formation345

of distinct clusters. At the family level (left column), GeoTreeCLIP clearly distinguishes between the selected families. The

CLIP (middle row) exhibits considerable overlap, particularly for the diverse Rosaceae family. SupervisedGeoTree (bottom

row) shows some separation but less defined clusters compared to GeoTreeCLIP, with Rosaceae still forming a very broad

distribution.

This pattern of superior clustering by GeoTreeCLIP continues at the genus level within Rosaceae (middle column).350

GeoTreeCLIP forms relatively distinct groups for genera like Prunus, Pyrus, and Rhodotypos. Both CLIP and Supervised-

GeoTree struggle more, with CLIP showing a highly condensed and overlapping structure, while SupervisedGeoTree offers

some separation but with less clarity than GeoTreeCLIP. The most striking difference is observed at the species level within the

Prunus genus (right column). GeoTreeCLIP achieves remarkable separation, forming visually distinct clusters for each of the

five Prunus species. In contrast, both CLIP and SupervisedGeoTree largely fail to differentiate these closely related species,355

with their embeddings heavily intermingled.

These visualizations qualitatively affirm that GeoTreeCLIP, through its contrastive vision-language learning approach tailored

with hierarchical taxonomic information and domain-specific data, learns more semantically meaningful and discriminative

representations across all taxonomic ranks. This aligns with its superior quantitative performance in classification tasks compared

to both general-domain VLMs and a traditional supervised approach.360

5.3 Ablation Study on Input Modalities

To quantify the contribution of different input modalities, we conducted an extensive ablation study. We trained several variants of

GeoTreeCLIP (for 10 epochs on GlobalGeoTree-6M) and evaluated their zero-shot performance on the GlobalGeoTree-10kEval

benchmark. The results are summarized in Table 7.

The results lead to several key insights. First, the full input consistently outperforms all ablated versions, highlighting the365

synergistic effect of integrating spectral-temporal imagery with environmental context. Second, comparing the "Image Only

(10-band)" and "RGB Only" variants reveals the critical importance of non-visible bands (e.g., NIR, SWIR) for vegetation

analysis, as they provide a substantial performance boost (e.g., 15.83% vs. 6.38% at the family level). Third, adding geolocation

to RGB imagery ("RGB + Geolocation") improves performance over "RGB Only", confirming that spatial priors help capture

species’ geographical ranges. The reason "Image Only (10-band)" outperforms "RGB + Geolocation" is that the rich information370

from the 7 additional spectral bands is more discriminative than the signal provided by geolocation alone.
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Table 7. Ablation study on input modalities. Performance is reported as mean Top-1 accuracy (%) over 5 runs on GlobalGeoTree-10kEval.

Model Variant Family Acc. Genus Acc. Species Acc.

GeoTreeCLIP (Full Input) 18.66% 16.30% 13.95%

- Image Only (10-band S2) 15.83% 14.51% 12.62%

- Auxiliary Only (27 vars) 13.66% 10.50% 9.52%

- RGB + Geolocation Only 7.92% 6.04% 5.50%

- RGB Only 6.38% 5.08% 4.43%

6 Ethics, Limitations and Impact

6.1 Ethics

Our data collection process was designed to adhere to ethical standards for data reuse. All geolocated occurrence records sourced

from GBIF (Lane and Edwards, 2007) were filtered to include only those with permissive licenses (e.g., CC0, CC-BY) explicitly375

chosen by the original data contributors. We also respected the privacy safeguards of the source platforms; for instance, the

coordinates of sensitive or threatened species are often automatically obscured by platforms like iNaturalist, and our dataset

preserves these privacy-preserving modifications.

The Sentinel-2 L2A data (Spoto et al., 2012) were accessed via Google Earth Engine. The auxiliary bioclimatic, geographic,

and soil data were sourced from WorldClim (Fick and Hijmans, 2017), USGS SRTM (Jarvis et al., 2008), and SoilGrids (Poggio380

et al., 2021), respectively, all of which are publicly available.

6.2 Limitations

While GlobalGeoTree represents one of the largest and most comprehensive datasets of its kind, users should be aware of its

inherent limitations. As with most datasets derived from opportunistic or citizen-science observations, it contains geographic

and taxonomic biases. Data coverage is higher in regions with active observer communities (e.g., North America, Europe) and385

is skewed towards more common or easily identifiable species, resulting in a long-tail distribution. The ambiguous boundary

between trees and shrubs in botanical classification further complicates the dataset, as some samples may represent shrubs rather

than trees. Tree species taxonomy is also subject to frequent revisions driven by new genetic evidence, which may misalign

dataset labels with updated classifications over time. Although CLIP-based models can identify unseen species to some extent,

such taxonomic shifts may still affect model interpretability and evaluation consistency. Additionally, the dataset relies on390

Sentinel-2 data from 2020, restricting its ability to capture long-term vegetation dynamics or recent disturbances. Future versions

incorporating multi-year observations could better account for phenological changes and climate-driven impacts.
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6.3 Potential impact

GlobalGeoTree holds great potential for advancing forest monitoring, biodiversity conservation, and climate change mitigation.

By improving tree species mapping, it can support sustainable forest management, restoration planning, accurate carbon stock395

estimation, and biodiversity monitoring. We urge users to apply this data responsibly and, when working with sensitive species,

to integrate local expertise and field validation to prevent negative environmental or social outcomes.

7 Code and Data Availability

The GlobalGeoTree dataset is openly available under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license.

The complete dataset is archived on Hugging Face at https://huggingface.co/datasets/yann111/GlobalGeoTree under DOI400

https://doi.org/10.15468/dd.9qxqyy (Mu et al., 2025b). The pretraining and evaluation datasets are provided in WebDataset

format (Aizman et al., 2019). This format enables efficient online data streaming to train models without requiring full dataset

downloads, facilitating large-scale machine learning workflows. It also integrates seamlessly with popular deep learning

frameworks, improving accessibility and usability for researchers.

All code is available in our github repository https://github.com/MUYang99/GlobalGeoTree under the Apache License 2.0,405

which provides comprehensive tools for using these resources. We are dedicated to maintaining and enhancing the dataset,

addressing issues, and incorporating updates like new data sources or taxonomic revisions in future versions. The code and

Huggingface repository will serve as the primary channels for updates and community feedback.

8 Conclusion and future work

In this paper, we introduced GlobalGeoTree, a large-scale, globally comprehensive dataset and benchmark for tree species410

classification. The dataset includes over 6 million geolocated tree occurrences spanning 21,001 species, paired with Sentinel-2

time series data and a rich set of auxiliary environmental variables. We also proposed GeoTreeCLIP, a baseline vision-

language model specifically designed for this task, leveraging domain-specific pretraining on GlobalGeoTree-6M. Experimental

results demonstrate that GeoTreeCLIP significantly outperforms existing advanced models in classification accuracy across all

taxonomic levels, highlighting both the effectiveness of our approach and the importance of introducing this benchmark for415

global tree species classification.

Future work could explore several promising directions. Expanding the GlobalGeoTree with more recent data, additional

satellite sensors (e.g., SAR data for structural information), and a broader range of auxiliary variables could enhance its utility.

Investigating alternative vision-language model architectures, pretraining strategies, and methods for addressing the long-tail

distribution could further improve classification accuracy, especially at the species level. Developing techniques for uncertainty420

estimation and improving model explainability are also critical areas for future work. Moreover, applying GlobalGeoTree

and GeoTreeCLIP to real-world applications in biodiversity monitoring, conservation, and forest management could provide

practical support and holds great potential.
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Appendix A: GlobalGeoTree Dataset Statistics

The GlobalGeoTree dataset is a large-scale, multimodal resource for tree species classification. This section provides detailed425

statistics complementing the overview in the main paper.

A1 Data Records and Taxonomic Catalog

To provide full transparency and facilitate detailed exploration of the dataset, we have made two key files publicly available in

our Hugging Face repository (https://huggingface.co/datasets/yann111/GlobalGeoTree/files).

– Complete Taxonomic Catalog (Tree_species_catalog.csv): This file contains the complete list of all 275430

families, 2,734 genera, and 21,001 species included in GlobalGeoTree, along with their corresponding unique species

keys used in the GBIF database. This catalog serves as a comprehensive reference for the taxonomic scope of our dataset.

– Full Georeferenced Records (GlobalGeoTree.csv): This file contains all 6.3 million geolocated records. Each row

includes the coordinates, hierarchical taxonomic labels (from functional type to species), the original data source (e.g.,

iNaturalist Research-grade Observations), and other metadata as detailed in Table 3. This allows for complete traceability435

and enables users to perform custom geographical or taxonomic subsetting.

A2 Basic Statistics

The dataset encompasses a comprehensive collection of geolocated tree occurrences:

– Total Samples: 6,263,345

– Countries/Regions1 Covered: 221440

– Taxonomic Coverage: Families: 275, Genera: 2,734, Species: 21,001

A3 Long-tail Distribution Analysis

The dataset exhibits a characteristic long-tail distribution across taxonomic levels as shown in Fig. A1. This highlights the

challenge of classifying both common and rare taxa:

– Family Level: The top 20% of families (55 families) account for 91.01% of all samples. Conversely, 24 families (8.73%445

of total families) have fewer than 10 samples each.

– Genus Level: The top 20% of genera (546 genera) cover 96.65% of the samples. A significant portion, 760 genera

(27.80% of total genera), have fewer than 10 samples.

1The term "Countries/Regions" is used to align with global data standards (e.g., from GBIF) and accurately represents both sovereign states and other

geographic entities such as overseas territories or dependencies, ensuring comprehensive coverage.
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– Species Level: The distribution is most skewed at the species level, where the top 20% of species (4,200 species) comprise

97.21% of the samples. A majority of species, 11,611 species (55.29% of total species), have fewer than 10 samples.450

This long-tail distribution underscores the importance of evaluation strategies, like those employed for GlobalGeoTree-10kEval,

that explicitly consider species rarity.

Figure A1. Long-tail distribution across taxonomic levels in GlobalGeoTree.

A4 Detailed Categorical Statistics

Below are statistics for key categorical attributes within the GlobalGeoTree dataset, illustrating geographical and taxonomic

diversity and distribution.455

A4.1 Location (location)

– Number of unique countries/regions: 221

– Top 5 most frequent locations:

1. United States of America: 1,932,465

2. Australia: 506,179460

3. Canada: 429,266

4. Colombia: 330,896

5. Russian Federation: 209,019

A4.2 Functional Type (level0)

– Number of unique functional types: 4465

– Distribution of functional types:

– Deciduous Broadleaf: 3,582,456

– Evergreen Broadleaf: 2,208,578

– Evergreen Needleleaf: 447,568

– Deciduous Needleleaf: 24,743470
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A4.3 Taxonomic Family (level1_family)

– Number of unique families: 275

– Top 5 most frequent families:

1. Ericaceae: 423,365

2. Fabaceae: 384,038475

3. Fagaceae: 362,317

4. Rosaceae: 355,950

5. Pinaceae: 320,415

A4.4 Taxonomic Genus (level2_genus)

– Number of unique genera: 2,734480

– Top 5 most frequent genera:

1. Cornus: 288,678

2. Quercus: 210,104

3. Pinus: 168,917

4. Vaccinium: 158,362485

5. Prunus: 125,604

A4.5 Taxonomic Species (level3_species)

– Number of unique species: 21,001

– Top 5 most frequent species:

1. Cornus acuminata: 180,120490

2. Securidaca volubilis: 103,441

3. Cupania sylvatica: 99,797

4. Bourreria cumanensis: 96,304

5. Fagus sylvatica: 75,503

Appendix B: Auxiliary Environmental Variables495

The 27 auxiliary variables used in GlobalGeoTree were sourced from three publicly available datasets, accessible via Google

Earth Engine (GEE):

– WorldClim V1 (Bioclimatic Variables): GEE Dataset ID: WORLDCLIM/V1_BIO

– SoilGrids 250m v2.0 (Soil Variables): GEE Dataset ID: ISRIC/soilgrids/v02

– USGS SRTM GL1 v003 (Geographic Variables): GEE Dataset ID: USGS/SRTMGL1_003500

Table B1 provides a detailed description of a subset of these variables.

Table B1: Description of the 19 bioclimatic variables from WorldClim (BIO1-BIO19) used in the GlobalGeoTree dataset.

Variable Units Scale Factor Description

bio01 ◦C 0.1 Annual Mean Temperature

bio02 ◦C 0.1 Mean Diurnal Range (Mean of monthly (max temp

- min temp))

Continued on next page
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Table B1 – continued from previous page

Variable Units Scale Factor Description

bio03 % 1 Isothermality (BIO2/BIO7 × 100)

bio04 ◦C 0.01 Temperature Seasonality (Standard Deviation ×
100)

bio05 ◦C 0.1 Max Temperature of Warmest Month

bio06 ◦C 0.1 Min Temperature of Coldest Month

bio07 ◦C 0.1 Temperature Annual Range (BIO5 - BIO6)

bio08 ◦C 0.1 Mean Temperature of Wettest Quarter

bio09 ◦C 0.1 Mean Temperature of Driest Quarter

bio10 ◦C 0.1 Mean Temperature of Warmest Quarter

bio11 ◦C 0.1 Mean Temperature of Coldest Quarter

bio12 mm 1 Annual Precipitation

bio13 mm 1 Precipitation of Wettest Month

bio14 mm 1 Precipitation of Driest Month

bio15 Coeff. of Variation 1 Precipitation Seasonality

bio16 mm 1 Precipitation of Wettest Quarter

bio17 mm 1 Precipitation of Driest Quarter

bio18 mm 1 Precipitation of Warmest Quarter

bio19 mm 1 Precipitation of Coldest Quarter

Appendix C: Details of Evaluation Subsets

C1 Overview and Construction

To enable robust benchmarking across various taxonomic diversity scales and species rarity, we constructed three evaluation

subsets: GlobalGeoTree-10kEval, GlobalGeoTree-10kEval-300, and GlobalGeoTree-10kEval-900. These subsets were created505

by first categorizing all species in the GlobalGeoTree dataset into Rare, Common, and Frequent groups based on available sample

counts (Sect. 3.4), then randomly selecting 30, 100, and 300 species per category, respectively. The primary GlobalGeoTree-

10kEval benchmark (90 species) is featured in the main paper, while the larger subsets enable assessment of model scalability

and performance on increasingly complex tasks. Detailed overviews of each subset’s composition are provided in Table C1,

Table C2, and Table C3. The geographical distribution of the two additional evaluation sets is shown in Figure C1a and Figure510

C1b.
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C2 GlobalGeoTree-10kEval-300 and GlobalGeoTree-10kEval-900

Table C1. Overview of the GlobalGeoTree-10kEval evaluation subset. This subset comprises 30 species selected from each of the three rarity

categories (Rare, Common, Frequent), totaling 90 unique species and 9,930 geolocated samples.

Category Example Species Num of Samples

Rare Acacia platycarpa 40

Adenanthos cuneatus 40

Adenocarpus decorticans 40

... ...

Rare (Total) 30 species selected 1,200

Common Abies religiosa 110

Aloe marlothii 110

Alternanthera sessilis 110

... ...

Common (Total) 30 species selected 3,300

Frequent Acer glabrum 181

Arctostaphylos glandulosa 181

Ardisia paniculata 181

... ...

Frequent (Total) 30 species selected 5,430

Total 90 species total 9,930
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Table C2. Overview of the GlobalGeoTree-10kEval-300 evaluation subset. This subset comprises 100 species selected from each of the three

rarity categories (Rare, Common, Frequent), totaling 300 unique species and 10,000 geolocated samples.

Category Example Species Num of Samples

Rare Abutilon wrightii 12

Acacia georgensis 12

Acacia loroloba 12

... ...

Rare (Total) 100 species selected 1,200

Common Acacia confusa 33

Acacia mucronata 33

Achyranthes spec 33

... ...

Common (Total) 100 species selected 3,300

Frequent Acacia dealbata 55

Acacia decurrens 55

Acacia polyphylla 55

... ...

Frequent (Total) 100 species selected 5,500

Total 300 species total 10,000

(a) GlobalGeoTree-10kEval-300 (b) GlobalGeoTree-10kEval-900

Figure C1. Geographic distributions of GlobalGeoTree-10kEval-300 and GlobalGeoTree-10kEval-900.
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Table C3. Overview of the GlobalGeoTree-10kEval-900 evaluation subset. This subset comprises 300 species selected from each of the three

rarity categories (Rare, Common, Frequent), totaling 900 unique species and 10,200 geolocated samples.

Category Example Species Num of Samples

Rare Abies hickelii 4

Abutilon auritum 4

Acacia adunca 4

... ...

Rare (Total) 300 species selected 1,200

Common Abies fraseri 11

Acacia echinula 11

Acacia falcata 11

... ...

Common (Total) 300 species selected 3,300

Frequent Abies amabilis 19

Abies balsamea 19

Acacia dealbata 19

... ...

Frequent (Total) 300 species selected 5,700

Total 900 species total 10,200

Appendix D: Model Performance on GlobalGeoTree-10kEval-300 and GlobalGeoTree-10kEval-900

The evaluation results on the larger GlobalGeoTree-10kEval-300 (Table D1) and GlobalGeoTree-10kEval-900 (Table D2)

subsets align with trends from the primary benchmark GlobalGeoTree-10kEval (Table 4 and 5). GeoTreeCLIP consistently515

outperforms CLIP and RemoteCLIP across all settings (zero-shot, one-shot, three-shot) and taxonomic levels (Family, Genus,

Species). Despite lower absolute accuracies on these challenging subsets, especially GlobalGeoTree-10kEval-900, GeoTreeCLIP

maintains a significant performance edge, highlighting the advantages of its domain-specific pretraining and tailored architecture

for multimodal tree species classification.
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Table D1. Zero-shot and Few-shot evaluation on GlobalGeoTree-10kEval-300. Results are presented as mean accuracy (%) ± standard

deviation (%) over 5 runs.

Taxon.
CLIP RemoteCLIP GeoTreeCLIP

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Zero-Shot Evaluation

Family 7.07 ± 0.02 20.14 ± 0.03 1.35 ± 0.01 7.28 ± 0.08 12.55 ± 0.20 40.25 ± 0.30

Genus 2.34 ± 0.01 5.59 ± 0.03 0.57 ± 0.01 2.10 ± 0.05 9.26 ± 0.24 28.34 ± 0.25

Species 0.46 ± 0.00 2.06 ± 0.01 0.56 ± 0.01 1.70 ± 0.02 7.87 ± 0.20 25.20 ± 0.21

One-Shot Evaluation

Family 1.55 ± 0.00 6.80 ± 0.02 2.43 ± 0.01 10.30 ± 0.09 18.58 ± 0.21 50.41 ± 0.21

Genus 0.87 ± 0.01 3.59 ± 0.01 0.66 ± 0.01 3.91 ± 0.07 14.57 ± 0.26 41.92 ± 0.27

Species 0.63 ± 0.00 2.35 ± 0.01 0.61 ± 0.01 2.75 ± 0.03 13.31 ± 0.22 38.39 ± 0.26

Three-Shot Evaluation

Family 5.28 ± 0.01 16.12 ± 0.04 3.79 ± 0.01 11.49 ± 0.05 23.91 ± 0.26 57.97 ± 0.29

Genus 1.79 ± 0.01 6.02 ± 0.02 1.11 ± 0.02 3.60 ± 0.04 19.22 ± 0.28 50.35 ± 0.27

Species 1.33 ± 0.00 4.17 ± 0.01 0.74 ± 0.02 2.64 ± 0.02 17.90 ± 0.23 47.54 ± 0.29
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Table D2. Zero-shot and Few-shot evaluation on GlobalGeoTree-10kEval-900. Results are presented as mean accuracy (%) ± standard

deviation (%) over 5 runs.

Taxon.
CLIP RemoteCLIP GeoTreeCLIP

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Zero-Shot Evaluation

Family 4.77 ± 0.04 13.17 ± 0.05 1.10 ± 0.00 10.08 ± 0.02 7.62 ± 0.13 27.25 ± 0.05

Genus 0.69 ± 0.01 2.58 ± 0.02 0.04 ± 0.00 0.55 ± 0.02 4.36 ± 0.10 16.32 ± 0.11

Species 0.12 ± 0.00 0.59 ± 0.00 0.04 ± 0.00 0.51 ± 0.02 3.40 ± 0.09 11.83 ± 0.05

One-Shot Evaluation

Family 3.44 ± 0.02 9.76 ± 0.04 1.89 ± 0.04 4.69 ± 0.06 14.16 ± 0.26 41.81 ± 0.31

Genus 1.53 ± 0.01 2.82 ± 0.02 0.25 ± 0.01 1.21 ± 0.02 10.24 ± 0.21 31.45 ± 0.32

Species 0.45 ± 0.01 1.27 ± 0.01 0.22 ± 0.01 0.83 ± 0.01 8.18 ± 0.15 25.17 ± 0.28

Three-Shot Evaluation

Family 4.39 ± 0.02 12.93 ± 0.04 5.43 ± 0.09 13.29 ± 0.02 16.00 ± 0.14 46.07 ± 0.34

Genus 2.08 ± 0.01 5.25 ± 0.02 0.77 ± 0.02 4.22 ± 0.04 12.50 ± 0.21 37.42 ± 0.20

Species 1.37 ± 0.01 3.97 ± 0.01 0.34 ± 0.02 1.84 ± 0.06 10.23 ± 0.25 31.79 ± 0.17

29

https://doi.org/10.5194/essd-2025-613
Preprint. Discussion started: 5 November 2025
c© Author(s) 2025. CC BY 4.0 License.



Appendix E: Additional Baselines Evaluated on GlobalGeoTree-10kEval520

To further contextualize GeoTreeCLIP’s performance, we extended our zero-shot evaluation on the GlobalGeoTree-10kEval

subset to include two additional publicly available vision-language models: SkyCLIP-50 (Wang et al., 2024) and CLIP-laion-RS,

a CLIP model pretrained on the remote sensing subset of LAION-2B (Schuhmann et al., 2022). These models were evaluated on

the GlobalGeoTree-10kEval subset under the same zero-shot protocol used for CLIP and RemoteCLIP (features extracted from

individual monthly images, probabilities averaged). For ease of comparison, their performance alongside our GeoTreeCLIP is525

presented in Table E1.

Table E1. Zero-shot evaluation of SkyCLIP-50, CLIP-laion-RS, and GeoTreeCLIP on GlobalGeoTree-10kEval. Results are presented as mean

accuracy (%) ± standard deviation (%) over 5 runs.

Taxon.
SkyCLIP-50 CLIP-laion-RS GeoTreeCLIP

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Family 2.33 ± 0.01 18.40 ± 0.08 1.15 ± 0.01 17.83 ± 0.16 20.99 ± 0.28 56.88 ± 0.42

Genus 1.10 ± 0.03 6.48 ± 0.04 1.12 ± 0.01 7.33 ± 0.03 18.39 ± 0.26 50.98 ± 0.41

Species 1.10 ± 0.03 6.36 ± 0.04 1.12 ± 0.01 7.27 ± 0.02 16.71 ± 0.25 47.52 ± 0.37

The results in Table E1 show that both SkyCLIP-50 and CLIP-laion-RS, despite their pretraining on remote sensing imagery,

achieve zero-shot accuracies on GlobalGeoTree-10kEval that are substantially lower than our GeoTreeCLIP. For instance,

at the species level, SkyCLIP-50 obtains a top-1 accuracy of 1.10% and CLIP-LAION-RS achieves 1.12%, in contrast to

GeoTreeCLIP’s 16.71%. As indicated in the main text for similar baseline models (CLIP, RemoteCLIP), such performance530

can partly be attributed to their design, which is often optimized for RGB data and lacks effective handling of time-series

information or small-patch classification crucial for tree species identification. These limitations further emphasize the value of

the GlobalGeoTree benchmark and the effectiveness of our tailored GeoTreeCLIP approach in advancing global tree species

classification research.

The comparison highlights that general remote sensing pretraining alone is insufficient for the nuanced task of global535

fine-grained tree species identification. The domain-specific dataset characteristics, multimodal input integration (including

time-series and auxiliary data), and the tailored contrastive learning approach of GeoTreeCLIP appear critical for achieving

strong performance on this challenging benchmark.
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