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Abstract. Lake-terminating glaciers (LTGs) typically exhibit higher rates of retreat and thinning
compared to land-terminating glaciers. However, a comprehensive inventory for LTGs and their
associate proglacial lakes across High Mountain Asia (HMA) is currently lacking, limiting further
understanding of their spatial heterogeneity in glacier change. This study employs a semi-automated
identification method, coupled with rigorous visual inspection, to construct a comprehensive inventory
of LTGs and proglacial lakes in HMA for 1990 and 2022. Our data indicate that, by 2022, HMA hosted
1740 LTGs (5082.08 + 13.15 km?), among which 667 glaciers (3454.59 + 12.43 km?) remained in contact
with proglacial lakes since 1990, 1073 (1627.49 + 4.30 km?) are newly developed and 468 (960.13 +
3.18 km?) had disconnected from proglacial lakes during the investigation period. Accordingly, 645
proglacial lakes (207.18 + 0.82 km?) remained in contact with ice, 1123 new lakes (54.85 £ 0.35 km?)
formed, and 485 lakes (45.31 + 0.34 km?) detached from ice (including 25 disappeared). During the past
32 year, the total area of proglacial lakes increased by 138.19 + 1.18 km? (81.7%), alongside a glacier
area loss of 324.43 + 19.23 km? (5.1%). The southern regions of HMA, particularly the Hindu Kush,
Himalayas, Nyainqentanglha, and Gangdise Mountains, exhibiting the highest concentration and rapidest
changes of the glacier-lake system. We hope that this dataset will improve our understanding of mountain
glacier-lake interactions, water availability, as well as glacier-related hazards in HMA.

The dataset is available at https://doi.org/10.5281/zenodo.17369580 (Luo and Liu, 2025).
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1 Introduction

Proglacial lakes in direct contact with glacier termini play a critical role in glacier evolution (Liu et
al., 2020; Truffer and Motyka, 2016; Chernos et al., 2016) and are a primary driver of spatial
heterogeneity in glacier responses to climate change (Brun et al., 2019; Maurer et al., 2019). Proglacial
lakes typically form behind end or lateral moraines, on debris-covered glaciers often developed through
the coalescence of multiple supraglacial ponds near the glacier terminus (Carrivick and Tweed, 2013;
Quincey et al., 2007; Mertes et al., 2017). The influence of lake water on glacier change operates
primarily through two mechanisms: (1) thermal undercutting by lake water (Truffer and Motyka, 2016)
and calving at the glacier front (Benn et al., 2007a), which together accelerate subaquatic and frontal
ablation; and (2) when glacier termini come into contact with sufficiently deep water, the buoyancy of
the lake reduces basal effective pressure, thereby enhancing glacier flow and dynamic thinning
(Sugiyama et al., 2011; Sutherland et al., 2020; Benn et al., 2007b). (Sato et al., 2022; Tsutaki et al., 2019;
Tsutaki et al., 2017). Observations indicate that LTGs in HMA have mass loss rates 18-97% higher than
the regional average (Brun et al., 2019) , and under comparable geographic conditions, their flow
velocities are typically two- to threefold greater than those land-terminating counterparts. Furthermore,
Zhang et al. (2023) reported that existing geodetic methods, by failing to account for the replacement of
glacier ice by lake water, underestimate the mass loss of Himalayan LTGs by approximately 6.5%.

HMA encompassing the entire Tibetan Plateau and its surroundings contains the largest
concentration of mid-latitude mountain glaciers on Earth. Driven by ongoing global warming, glaciers
in HMA have undergone a persistent negative mass balance, with an average mass loss rate of —20.1 Gt
a! during 2000-2019 (Hugonnet et al., 2021). Glacier meltwater has driven substantial runoff and
facilitated the formation and expansion of glacial lakes. From 1990 to 2018, the number of glacial lakes
in HMA increased by 11%, and their total area expanded by 15% (Wang et al., 2020). The ongoing
increase in both the number and extent of proglacial lakes underscores the critical need for a
comprehensive assessment of lake-terminating glacier-proglacial lake systems in HMA. Such an
evaluation is essential for elucidating feedback between the lake and ice, forecasting their responses to
future climate change, and informing evidence-based strategies for water resource management and

disaster risk mitigation. Although several regional-scale glacial lake inventories have been published in
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55 recent years (Wang et al., 2020; Chen et al., 2021; Zhang et al., 2015; Worni et al., 2013; Salerno et al.,
56 2012; Shugar et al., 2020), most datasets do not distinguish the contact status and its change between
57 glaciers and proglacial lakes. Moreover, there is currently no comprehensive inventory of lake-
58  terminating glacier-proglacial lake systems covering the entire HMA, and their spatiotemporal evolution
59 remains poorly understood. Therefore, this study aims to construct a dataset of LTGs and proglacial lakes
60 for HMA based on multi-source remote sensing data, thereby filling this research gap and providing
61 fundamental database to support studies on regional glacier change, water resource assessment, disaster
62  management, and glacier hydrology.
63 2 Study area
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65 Figure 1: Location of HMA and distribution of LTGs. Glacier outlines from the Randolph Glacier Inventory
66  (RGI v7.0). Types of LTGs are shown in Table 1.
67 High Mountain Asia (HMA), encompassing the Tibetan Plateau and its surrounding ranges-
68 including the Himalayas, Karakoram, and Pamir Plateau, etc.-constitutes the most glacier-rich region in
69  the mid-latitudes (Figure 1). HMA lies between 26°-45°N and 67°-105°E. It has an average elevation of
70 approximately 4,500 m. The region features a complex topography. This topography is characterized by
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higher elevations in the northwest and lower elevations in the southeast. It comprises a network of
interwoven mountain ranges, valleys, and river systems. The dominant orographic orientation is east-
west. The Tanggula Shan, located in the central part of the region, rise above 6,000 m, while the
Himalayas contain 15 peaks exceeding 8000 m, and most peaks on the northern plateau surpass 6500 m.
North-south trending ranges are mainly distributed in the southeastern Tibetan Plateau and the Hengduan
Shan, forming the geomorphological framework of the region and controlling the overall topographic

configuration of the plateau.

Climatically, the southern part of HMA is dominated by the South Asian and East Asian monsoons,
bringing abundant precipitation, whereas the northern and western sectors are under the influence of the
mid-latitude westerlies, characterized by arid conditions and scarce precipitation (Yao et al., 2012). This
pronounced north-south climatic contrast results in a highly heterogeneous spatial pattern of glacier
accumulation and ablation across the region. HMA serves as the source region for several major Asian
rivers, including the Yellow River, Yangtze River, Yarlung Tsangpo, Indus, Ganges, Salween, Mekong,
and Irrawaddy, which are vital for downstream hydrological processes and water resource availability.
According to the Randolph Glacier Inventory (RGI 7.0), HMA hosts 94,058 modern glaciers, covering
approximately 99,468.4km? making it the most extensively glacierized region outside polar areas. Most
glaciers in HMA are undergoing retreat (Brun et al., 2017; Hugonnet et al., 2021). However, slight mass
gains have been observed in parts of the Karakoram and western Kunlun ranges (Gardelle et al., 2012;

Kaab et al., 2015), though recent studies suggest this trend may be diminishing (Hugonnet et al., 2021).

3 Data and methodology
3.1 Extraction of proglacial lake outlines

Before developing a comprehensive inventory of LTGs shown in Figure 1, we first generated a
proglacial lake dataset using an automated delineation workflow within the Google Earth Engine (GEE)
platform. We used Landsat imagery from the Thematic Mapper (TM) and Operational Land Imager (OLI)
sensors, selected for their long-term record (since 1972), 30 m resolution, global coverage, and open
access. All images were pre-processed in GEE, including radiometric, atmospheric, and geometric

corrections. To minimize seasonal variability and the presence of snow and ice, we selected images
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acquired from July to November. Two-time windows were defined: 1990+2 years (historical) and
2022 + 1 year (recent). Due to limited image availability around 1990, imagery from 1993 to 1996 was
used to supplement data gaps. A 2 km buffer around each glacier was applied to focus on potential ice-
contact proglacial lakes. Cloud contamination was reduced using the CFMask algorithm (Foga et al.,
2017) to detect and mask clouds and shadows, followed by compositing cloud-free mosaics (Figure 2ab).
In total, 4570 Landsat TM scenes were used for the 1990 period and 5493 OLI scenes for the 2020 period
(Figure 2cd).

Glacial lake extents were delineated using an automated mapping algorithm based on hierarchical
image segmentation and terrain analysis (Li and Sheng, 2012; Zhang et al., 2017). To reduce the influence
of mountain shadows, pixels with slopes >20° or shaded relief values <0.25 were excluded (Zheng et al.,
2021). Previous studies applied varying minimum area thresholds for glacial lake identification: 0.0054
km? (Wang et al., 2020), 0.0081 km? (Chen et al., 2021), 0.0036 km? (Luo et al., 2020), and 0.01 km? (Li
et al., 2020). Smaller thresholds can lead to greater uncertainties due to the limitations of pixel resolution
(Salerno et al., 2012). To improve the accuracy of lake-terminating glacier identification, we adopted a
minimum lake area threshold of 0.0036 km? (equivalent to at least four pixels), following Luo et al.

(2020).
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Figure 2: The number of usable pixels remaining in the study area after cloud removal during 1988-1996 (a)

and 2021-2023 (b). Temporal distribution of the number of images used, by year (c) and by month (d).
3.2 Mapping of LTGs

In this study, LTGs are defined as glaciers that develop proglacial lakes along the direction of ice
flow and are in direct contact with these lakes. The proglacial lake dataset was cross-referenced with the
RGI 7.0 glacier inventory to identify LTGs. Results were refined through detailed visual inspection and

manual correction using multi-source data, including Landsat and Planet Labs imagery, online maps (e.g.,
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Google Earth, Esri basemap), and existing glacial lake datasets (Wang et al. 2020, Chen et al. 2021,
Zhang et al. 2023). The identification of glacier-lake contact followed a two-step procedure. (1)
Preliminary screening: A 500 m buffer was applied to assess spatial intersections between glacier
boundaries and proglacial lakes, identifying potentially connected glacier-lake pairs. (2) Manual
verification: Different criteria were applied for different periods. For the year 2020, multi-source
moderate-to-high resolution imagery (e.g., Planet Labs, Landsat, Google Earth, Esri basemaps) was used.
Glacier-lake contact was confirmed when proglacial lakes overlapped with glacier terminus and
exhibited diagnostic geomorphic features, such as terminal ice cliffs or transverse crevasses
perpendicular to the flow direction. Due to limited data availability and the relatively coarse spatial
resolution of Landsat imagery (30 m) in 1990, direct identification of LTGs for that year involved
considerable uncertainty, particularly for small glaciers, where boundary errors increase with decreasing
glacier area. To address this, a temporal cross-validation approach was employed. Glaciers with
ambiguous contact in 1990 were classified as interacting if satellite imagery from 1990 to 2022 showed
lake expansion toward the glacier terminus. Based on the temporal evolution of glacier-lake contact,
LTGs were categorized into three types (Table 1): (1) terminus persistent contacting with proglacial lake
(Type 1); (2) terminus experencing transition from supraglacial lake to proglacial lake (Type 2); and (3)

terminus detaching from proglacial lake (Type 3).
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Table 1 The classification system of glaciers is based on the dynamic changes in glacier-lake contact. The

basemap is derived from Landsat imagery.

Types Characteristics

Persistent contact
between glacier and
lake from 1990 to
2022.

Type 1

Casc location:
94.51053E,
30.63100N

Transition from
supraglacial lake to
proglacial lake from
1990 10 2022.

Type 2

Casc location:
88.23816F,
27.81772N

Detachment of the
proglacial lake from
the parent glacier
from 1990 to 2022.

Type 3

Case location:
85.84583L.
28.20793N

3.3 Uncertainty estimates

When interpreting glacial lake and glacier boundaries using remote sensing data, errors are
inevitable even when manual visual delineation is applied. These errors are typically associated with
various factors related to image quality, such as spatial resolution, cloud cover, mountain shadows, and
subjective interpretation biases. Previous studies have reported that the area error in delineating glacier
or glacial lake boundaries from remote sensing imagery is approximately +0.5 pixels, depending on the
quality of the imagery. The uncertainty (§) and relative error (E;) of glacial lake area was estimated using

the equation (Hanshaw and Bookhagen, 2014):

5—P><sz06872 3
6T 27
§
B, =% 100% €3]
where P is the perimeter of the glacial lake, and A is the glacial lake area.
The uncertainty (1) and relative error (E) in glacier area was estimated to using the equation
(Bolch et al., 2010):
GZ
A=NX 7 (1)
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where N is the total count of pixels along the outline of ice coverage, G is the spatial

resolution of the images used, and S 1is the glacier area.

3.4 Attributes of inventory data

In this inventory, 9 attribute fields (Table 2) were recorded for the LTG, including a unique identifier,
type, associated mountain range, area, mapping uncertainty, location (longitude and latitude), RGI7 ID,
and feature code. Similarly, the proglacial lake inventory contains 9 attribute fields (Table 3), including
a unique identifier, associated mountain range, type, mapping uncertainty, location (longitude and
latitude), feature code, and a flag indicating whether the lake has disappeared. Both LTG and proglacial
lake datasets include data for two time periods: 1990 and 2022, with identical attributes for both periods.
The unique identifier is an automatically generated sequential integer, while the feature code follows the
formats GmmmmmmEnnnnnN (Feature_ID) for glaciers and GLmmmmmmEnnnnnN (Featrue ID) for
lakes, where G denotes glacier, GL denotes glacier lake, m and n represent the longitude and latitude
multiplied by 1000, respectively, and E and N indicate east longitude and north latitude. Identical LTGs
and proglacial lakes share the same feature code (Feature ID) to facilitate data linkage. Area and
perimeter are calculated automatically from the feature geometry. The type of classification follows the
criteria described in Section 3.2. Each feature’s associated mountain range is determined by overlaying

with mountain range boundaries, and mapping uncertainty is estimated according to Section 3.3.
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184

185  Table 2 Attributes of the glacier dataset

Filed name Type Description
UID Object ID  Unique code (Number)
Type String The classiﬁceftion of glaci.ers based on the relationship of interaction
between glaciers and glacial lakes (Table 1)
Mountain String Mountain name where the glaciers is in
Area Double Area of glacier coverage(km?)
Error Double Area uncertainty of glacier mapping(km?)
Latitude String Latitude of the centroid of glacier
Longitude String Longitude of the centroid of glacier
rgi id String RGI 7.0 id
Feature _ID String GmmmmmmEnnnnnN
186
187  Table 3 Attributes of the proglacial lake dataset
Filed name Type Description
UID Object ID  Unique code (Number)
Type String The clz?ssiﬁcation of g.lacial lakes , based on the relationship of
interaction between glaciers and glacial lakes (Table 1)
Mountain String Mountain name where the glacial lake is in
Area Double Area of glacial lake coverage (km?)
Error Double Area uncertainty of glacial lake mapping (km?)
Latitude String Latitude of the centroid of glacier
Longitude String Longitude of the centroid of glacier
Disappear String Whether the proglacial lake disappeared in 2022 (Y)
Feature _ID String GLmmmmmmEnnnnnN
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4 Results
4.1 Spatial distribution of LTGs and proglacial lakes

Based on the changes in glacier-proglacial lake contact relationships from 1990 to 2022, glaciers
were classified into three types (Table 1). Among them, Type 1 and Type 2 glaciers remained in contact
with proglacial lakes from 1990 to 2022 and are therefore defined as LTGs. In contrast, Type 3 glaciers
had become disconnected from proglacial lakes by 2022. Accordingly, only Type 1 and Type 2 glaciers
were included when analyzing the distribution and extent of LTGs in 2022. In 2022, a total of 1740 LTGs
were identified, with a combined area of 5082.08 + 13.15 km?. Concurrently, 1768 proglacial lakes were
detected, with a total area of 262.10 + 0.89 km?. The discrepancy between glacier and lake counts stems
from multi-lake associations per glacier and multi-glacier lakes were associated with two glaciers, and
two lakes were in contact with three glaciers.The spatial distribution of LTGs in HMA shows marked
heterogeneity (Figure 3). Predominantly concentrated along the southern margin, including the
Himalayas, Nyaingentanglha, Gangdise Mountains, and Hindu Kush, these glaciers total 994,
representing 57.13% of the study population (Figure 3b, Table A 1). The Central Himalaya hosts the
highest number, with 232 glaciers (Table A 1), while the Nyaingentanglha accounts for the largest total
glacier area (1,001.05 + 3.32 km2,Figure 3c). Glaciers were classified into nine size categories, ranging
from <0.05 km? to >100 km? (Table A2). Among these, 1,095 glaciers (62.93%) are smaller than 1 km?,
covering 399.05 + 1.07 km? (7.85% of the total area), while 93 glaciers (5.35%) exceed 10 km?, covering
2964.68 £ 4.85 km? (58.34%). Only three glaciers exceed 100 km2, spanning 785.42 + 10.96 km2. LTGs
in HMA span elevations from 2,735 to 8,016 m, with a mean elevation of 5074 m (Figure 4). They are
primarily concentrated between 5,000 and 6,000 m, where their combined area reaches 3030.2 + 5.72
km? (59.52% of the total glacier area). Regional variations in elevation distribution are evident (Figure
4). In the Central Himalaya, Eastern Himalaya, Gangdise Mountains, Tibetan Interior Mountains, and
Western Kunlun Shan, glacier area peaks occur around 6000 meters.

Proglacial lakes in HMA are predominantly concentrated along the southern margin, with 1010
lakes (57.09%) in the Himalayas, Nyainqentanglha, Gangdise Mountains, and Hindu Kush (Table A 3).
The Central Himalayas host the most lakes (240), with the largest total area (86.91 & 0.54 km?, Figure 3

e). Proglacial lakes were grouped into five size categories (<0.05 to >1 km?2,Table A 4). Lakes smaller

11

Open Access

Earth System
Science

Data

suoIssnoasiq



https://doi.org/10.5194/essd-2025-596
Preprint. Discussion started: 20 October 2025
(© Author(s) 2025. CC BY 4.0 License.

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

than 0.1 km?2 are the most abundant, totaling 1384 (78.28%) and covering a combined area of 47.12 +
0.30 km2. Proglacial lakes in HMA span elevations from 2684 to 6012 m, with most concentrated
between 5000 and 5700 m, where 748 lakes (42.34%) cover 106.46 + 0.59 km2. Regional variations in
elevation distribution are evident (Figure 5). Gangdise Mountains and Western Kunlun Shan, proglacial
lake numbers and areas peak around 5700 m. Conversely, in the Hindu Kush, Nyainqentanglha, Tanggula
Shan, and Western Kunlun Shan, peak lake areas occur at lower elevations than peak lake numbers
(Figure 5).

Significant variations exist in the number and area distributions among glacier types in HMA. From
1990 to 2022, Type 2 glaciers, those forming new proglacial lakes, were the most numerous (1073, Table
A1), dominating in all regions except Altun Shan/Eastern Kunlun Shan, Qilian Shan, and Tanggula Shan.
Conversely, Type 1 glaciers have the largest total area (3454.59 + 12.43 km?), concentrated primarily
in the Himalayas, Nyainqentanglha, Central Tien Shan, Qilian Shan, Tanggula Shan, and Western Kunlun
Shan (Table A 1). The Central Himalaya host the most glaciers across all types: 94 Type 1 (552.77 £2.71
km?), 138 Type 2 (244.80 + 1.56 km?), and 84 Type 3 (202.67 + 1.11 km?). All glacier types show
consistent area peaks between 5,000 and 6,000 m, with similar patterns across subregions (Figure 4). In
2022, Type 2 proglacial lakes were the most numerous in HMA (1123, Table A3), dominating in number
across all regions except Altun Shan/Eastern Kunlun Shan, Qilian Shan, Karakoram, and Western Kunlun
Shan. Conversely, Type 1 lakes had the largest total area (207.18 + 0.82 km?) and accounted for the
largest share of total area in all regions except the Western Pamir, Hengduan Shan, Dzhungarsky Alatau,
and Eastern Tibetan Mountains. The central Himalaya hosted the greatest abundance of all three lake
types, with 91 Type 1 (76.89 + 0.51 km?), 149 Type 2, and 80 Type 3 (15.70 + 0.21 km?) lakes. The
Eastern Himalaya had the largest Type 2 lake area (10.73 + 0.03 km?, Table A3). In HMA, the elevation
distribution of proglacial lake types is generally consistent, with peak numbers between 5000 and 5700
m and peak areas between 4700 and 5400 m (Figure 5). However, regional variations are observed in the
elevation distribution of lake numbers for different lake types. Specifically, in the Nyaingentanglha
region, Type 2 proglacial lakes exhibit a higher peak number range, between 5200 and 5400 m. Regarding

area-elevation patterns, certain subregions display lower peak elevations, encompassing Type 2 lakes in
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the Eastern Himalaya and Northern Tibetan Mountains, and Type 1 lakes in the Eastern Pamirs, Hindu

Kush, Nyaingentanglha, and Tanggula Shan (Figure 4).

4.2 Temporal changes in LTGs and proglacial lakes

From 1990 to 2022, glacier size has been continuously shrinking (Figure 3d). The total
area of all glacier types decreased by approximately 324.43 + 19.22 km?, with Type 1 glaciers
experiencing the largest absolute loss of 137.46 + 17.62 km?, accounting for 42.37% of the total
reduction (Table A 5). The Central Himalay showed the most pronounced absolute area loss,
with a decrease of 74.46 + 3.46 km?, while the Hengduan Shan exhibited the highest relative
shrinkage at 16.42%. The Central Himalaya also recorded the largest absolute losses for all
three glacier types, with reductions of 37.20 £ 3.91 km? for Type 1, 20.13 + 2.26 km? for Type
2,and 17.13 + 1.62 km? for Type 3 glaciers. In contrast, the Hengduan Shan had the highest
relative losses for all three types, at 25.34%, 13.95%, and 17.37%, respectively (Table A 5).

Small glaciers (<0.5 km?) exhibited a significant increase in number, particularly those
smaller than 0.05 km?2, which grew by 51 in count with a total area increase of 1.68 + 0.08 km
2(Table A 6). In contrast, glaciers in the 0.5-50 km? range showed a declining trend in number.
Among them, glaciers sized 0.5-1 km? experienced the largest numerical decrease (—57) and
the greatest relative area loss (—13.56%), while those in the 1-5 km? range incurred the most
substantial absolute area reduction, losing 97.17 & 3.5 km? (Table A 6).

Among the different glacier types, Type 1 glaciers experienced the greatest absolute area
loss, decreasing by 137.46 + 17.62km? (Table A 5). However, their relative area reduction of
3.83% was the smallest among the three types. By size class (Table A 6), Type 1 glaciers showed
the largest loss (63.39 + 6.38 km?) in the 10-50 km? range; Type 2 glaciers experienced the
greatest reduction (52.52 + 2.21 km?) in the 1-5 km? range. Type 3 glaciers showed the most
significant loss (27.51 + 1.57 km?) in the 5-10 km? range. For all three types, the 0.5-1 km?
size class exhibited the highest relative area reduction, at 9.06%, 15.37%, and 15.15%,
respectively.

Between 1990 and 2022, the total area of proglacial lakes increased by 138.19 £ 1.18 km?,
representing a 62.09% expansion (Figure 3f and Table A2). The Central Himalaya experienced
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285
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288

the most significant absolute growth, with an increase of 42.32 + 0.72 km? (70.19%), while the
Western Pamirs recorded the fastest relative growth, surging by 210.24%. The Central
Himalaya also saw the largest area increases across all three glacier types, with growth of 30.42
+ 0.64 km? for Type 1 lakes, 10.02 + 0.16 km? for Type 2, and 1.88 + 0.29 km? for Type 3.
Regionally, the Dzhungarsky Alatau had the highest proportional increase in Type 1 lake area
at 176.38%, whereas the Eastern Himalaya recorded the largest proportional growth for Type 3
lakes at 29.48% (Table A7).

During the study period, 1123 new proglacial lakes formed, while 25 lakes disappeared.
The number of small proglacial lakes (<0.5 km?2) increased significantly, especially those
smaller than 0.05 km2, which increased by 702 and accounted for 64.11% of the total increase
in lake numbers (Table A 8). Lakes larger than 1 km? contributed the largest increase in area
(60.44 + 0.81 km?2), accounting for 43.74% of the total area growth. Moreover, lakes smaller
than 0.05 km2 had the highest proportional area growth at 114.49%. Type 1 proglacial lakes
exhibited the most significant area growth, reaching 79.36 + 1.02 km?, with a growth rate of
62.09%. Among size categories, the number of Type 1 lakes increased most in the 0.05-0.1 km
2 range, with 49 new lakes added, while lakes larger than 1 km?2 showed the greatest area

increase at 52.07 + 0.79 km? and the highest proportional growth at 85.19%.
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Figure 3: (a) Geographic extent of the mountain ranges in HMA. (b) Distribution of the three types of LTGs
in 2022 and their numerical proportions across mountain regions. (c) Size distribution (Types 1 and 2) in 2022
and their area proportions. (d) Area changes of the three types of glaciers from 1990 to 2022 and their area-
change proportions across mountain regions. (e) Area distribution of proglacial lakes (associated with Types
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types of proglacial lakes from 1990 to 2022 and their area-change proportions across mountain regions.
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5 Discussion
5.1 Assessment of accuracy and errors

The uncertainty estimates indicate that as the glacier or lake area increases, the relative error of
individual features decreases. In the study area, the total absolute area error for glaciers in 1990 and 2022
were +13.65km?2 and +13.53 km?2, respectively, with average relative errors of +7.24% and +8.12%.
The relative error of glacier area shows a significant power-law relationship with the glacier size (y =
0.056 x x~9427 R2 = 0.92, Figure 6a). Additionally, the total absolute area error for proglacial lakes
in 1990 and 2022 were +0.69 km2 and +0.96 km2, respectively, with average relative errors of +21.99%
and +23.69%, following a similar significant power-law relationship (y = 0.050 X x~%463, R? = 0.94,

Figure 6b).
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Figure 6: Estimation of relative errors for glaciers and proglacial lakes in the study area. (a) Glaciers (b)

Proglacial lakes
5.2 Comparison and limitations

Publicly available data on LTGs and their proglacial lakes in HMA remain scarce, with recent
datasets primarily focusing on glacial lakes. Consequently, this study selected two glacial lake datasets
that partially overlap in time with our research and include proglacial lakes for comparison (Table 4).
The results indicate that, within the same study area, our data closely align with those of Zhang et al.
(2023). In 1990, the overlap rate of proglacial lakes between the dataset of Zhang et al. (2023) and ours
exceeded 90%, while in 2020/2022, the overlap rate was 79%. In contrast, significant discrepancies were
observed with the dataset of Chen et al. (2021). For the period 2017/2022, the dataset of Chen et al. (2021)
identified 7850 proglacial lakes, whereas our study identified only 1,768, with an overlap rate of 67.82%.
Through examining these datasets, we attribute these differences to variations in the identification of

glacier-proglacial lake contact. Our study employs strict classification criteria (see Section 3.2), which
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348
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are reflected in three key aspects: (1) the lake must be located at the forefront of the glacier’s flow
direction; (2) a comprehensive evaluation of the glacier-lake contact surface based on the spatiotemporal
evolution of both lake and glacier surface morphology; and (3) exclusion of ambiguous cases to ensure
classification reliability. Additional factors, such as image quality, acquisition dates, and vectorization
workflows, may also contribute to the observed discrepancies.

A global inventory of LTGs was released in 2025 (Steiner et al., 2025). This dataset was derived
from the RGI7 glacier outlines, primarily using Landsat 5-7 TM/ETM+ imagery (ca. 1998-2002),
supplemented by ASTER data in some high-latitude regions. Existing regional proglacial lake inventories
(when close to 2000) were also incorporated, and the identification of LTGs was conducted through
manual interpretation and expert cross-validation. Based on the degree of glacier—lake contact, glaciers
were classified into four types. In HMA, a total of 1912 LTGs were identified. Although the glacier
termini in this dataset were delineated for 2000 + 2, the overlap with our 2022 dataset is 47.4%. Given
that our results indicate that glacier—lake contact is not always stable, differences in the timing of
terminus delineation are likely the primary source of the observed discrepancies.

Although this study employed standardized criteria for the qualitative identification of LTGs and
their proglacial lakes, subjective factors remain challenging to eliminate entirely during remote sensing
imagery analysis. Differences in how analysts interpret imagery, apply calibration standards, and process
data quality directly impact the results. While measures such as independent labeling and cross-validation
by multiple analysts can reduce subjective bias, uncertainties stemming from variations in individual
experience, judgment criteria, and image quality remain difficult to fully resolve. Consequently, further
quantification of identification criteria is of paramount importance. In the future, more refined technical
approaches can optimize the identification of glacier-lake contact lines, leveraging high-resolution
imagery and automated analysis tools to enhance accuracy. Additionally, quantifying the depth of glaciers
within lakes will provide more precise data support. These quantitative standards not only effectively
minimize human-induced variability but also significantly improve the precision of glacier-lake contact
relationship assessments, laying a more reliable data foundation for subsequent studies of glacier

dynamics.
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Table 4: Comparisons of glacial lake mapping in this study with previous studies for the similar extended

region.
Year
Area threshod Count (Area/km?) Count (Area/km?) Overlap
(previous/this Region Source
(km?) Previous studies This study count
study)
1990/1990 651(129.76+0.89) 645(122.08+0.59) 615(95.35%)
Greater (Zhang et al.,
Himalaya oo 2023 1029
2020/2022 1mataya ) 1115(192.42+1.23) 841(79.11%)
(199.83+0.79)
(Chen et al.,
2017/2022 HMA 0.0081 7850(684.62+10.06) 1768(262.03+0.89) 1199(67.82%)

2021)

6 Conclusions

Using Landsat imagery, we applied a semi-automated mapping approach in Google Earth Engine
(GEE) to inventory proglacial lakes across High Mountain Asia (HMA) in the 1990s and 2020s, and
compiled the first region-wide dataset of LTGs and their proglacial lakes. In 2022, HMA contained 1740
LTGs (5082.08 + 13.15 km?), of which 667 glaciers (3454.59 + 12.43 km?) maintained lake contact
since 1990, and 1073 glaciers (1,627.49 + 4.30 km?) developed new proglacial lakes. These glaciers
were mainly distributed between 2735 and 8016 m a.s.l. Additionally, 468 glaciers (960.13 + 3.18 km
2) lost lake contact during the period.

A total of 1768 proglacial lakes (262.10 + 0.89 km?) were connected to glaciers in 2022, including
645 lakes (207.18 + 0.82 km?) with continuous glacier contact and 1123 newly formed lakes (54.85 +
0.35 km?). Lakes were mainly distributed between 2684 and 6012 m a.s.l. Meanwhile, 485 lakes (45.31
+ 0.34 km?) lost glacier contact, with 25 disappearing entirely. From 1990 to 2022, LTGs retreated by
32443 + 19.23 km? (-5.1%), while proglacial lake area increased by 138.19 + 1.18 km?2 (+81.7%).
The development and evolution of lake-terminating glacier—proglacial lake systems are predominantly
concentrated along the southern margin of HMA, including the Hindu Kush, Himalayas,
Nyaingentanglha, and Gangdise Mountains.

This dataset offers a robust basis for examining spatially heterogeneous glacier responses to climate
change, coupled glacier—lake evolution, glacier hydrological modeling, glacial lake outburst flood

(GLOF) assessment, and water resource management. Nevertheless, further improvements in data quality
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remain necessary, particularly in quantifying glacier-lake contact line length, the degree of glacier—lake

contact (e.g., lake depth and subaqueous glacier front depth), and water temperature measurements.
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Table A 7 Area changes of different glacial lake types in each subregion (1990-2022)

Area change (km?) Area change (%)
Region

Type 1 Type 2 Type 3 Total Type 1 Type 3 Total

Central Himalaya 30.42+0.64 10.02+0.16 1.88+0.29 42.32+£0.72  65.46 13.6 70.19
Western Himalaya 4.84+£0.19  4.13+0.09 0.3120.07  9.28+0.22 115.95 25.8 172.62
Eastern Himalaya 12.83£0.45 10.89+0.18 1.49£0.17 25.22+0.51  53.63 29.49 87.04
Gangdise Mountains 0.77+0.14  2.3240.07 -0.52+0.11 2.57+0.19 20.7 -16.32 37.21
Hindu Kush 1.86+0.13  1.81+0.06 -0.110.05 3.55+0.15 62.57 -18.1 99.15
Nyaingentanglha 16.04+0.35 8.16+0.14 1.74+0.19 25.95£0.42  128.03 30.11 141.75
Altun Shan/Eastern Kunlun Shan  0.85+0.2  1.06+0.05 -0.05+0.02 1.86+0.21 17.59 -30.3 37.21
Northern/Western Tien Shan  1.14+0.09  1.97+0.06 0.07+0.08 3.17+0.13 98.76 4.86 122.14
Western Pamir 1.54+0.09 3.04+0.08 -0.02£0.06 4.57+0.14  121.66 22 210.24
Central Tien Shan -0.41£0.27 1.81+0.06 0.11£0.06 1.51+0.28 -3.8 15.59 13.14

Qilian Shan 1.43£0.12 0.26£0.02 -0.07+0.06 1.610.14 50.93 -7.34 42.8

Eastern Tien Shan 0.96+0.08 1.56£0.05 0.07+0.06 2.59+0.11 126.23 9.62 174

Karakoram 0.94+0.11  0.98+0.04 -0.28+0.03 1.64+0.12 55.52 -86.41 813

Tanggula Shan 3.04+0.14 0.57+0.03 -0.93+0.1 2.69+0.18 98.01 -40.83 50
Tibetan Interior Mountains 1.02+0.18  1.75+0.06 -0.03+£0.07  2.73+0.2 39.92 -3.18 78.03
Dzhungarsky Alatau 0.66+0.06 1.38+0.05 0.08+0.07  2.120.1 176.38 6.85 137.53
Hengduan Shan 0.55+0.07 1.84+0.06 0.28+0.09 2.660.13 76.97 17.13 113.23
Pamir Alay 0.27+0.05  0.94+0.04 -0.02+0.03 1.19+0.07 54.26 -5.82 141.49
Western Kunlun Shan 0.42+0.12 0 0 0.42+0.12 13.26 13.26
Eastern Pamir 0.11£0.04  0.16+0.02 -0.01+0.01 0.26+0.04 50.87 -20.66 98.25
Eastern Tibetan Mountains ~ 0.08+0.02  0.21£0.02 -0.01+0.01 0.28+0.04 77.14 -27.51 199.92
Total 79.36+1.02 54.85+0.35 3.98+0.47 138.19+1.18  62.09 9.63 81.7

Table A 8 Area and number changes of proglacial lakes of three glacier types across different size classes

Number change Area change(km?) Area change(%)
Glacier size (km?)

Type 1 Type 2 Type 3 Total Type 1 Type 2 Type 3 Total Type 1 Type 3 Total

<0.05 -141 887 -44 702 -1.91+0.16 20.58+0.19 -1.36+0.16 17.31x0.3  -25.07 -18.14 114.49
0.05-0.1 49 155 -1 203 3.44+0.19 10.81+0.15 0.11£0.17 14.36+0.29  52.27 1.71 110.23
0.1-0.5 47 72 21 140 14.61£0.44 13.19£0.17 5.47+0.32 33.27+0.57 45 30.77 66.22
0.5-1 17 6 -3 20 11.15£0.4  4.43+0.14 -2.76+0.21 12.82+0.48  55.66 -32.72 45.04

>1 25 3 2 30 52.07+0.79 5.84+0.12 2.53+0.13 60.44+0.81  85.19 215.49 97.02

Total -3 1123 25 1095 79.36+1.02 54.85+0.35 3.98+0.46 138.19+1.18  62.09 9.63 81.7
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