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Abstract. Against the backdrop of global climate change, the spatiotemporal patterns of biomass burning 36 

are undergoing significant changes. However, large discrepancies among different emission inventories 37 

hinder a consensus on the true magnitude and long-term trends of global emissions. This study constructs 38 

a framework for estimating biomass burning emissions by integrating bottom-up and top-down 39 

approaches with various combinations of multi-source data inputs, resulting in the development of the 40 

Multi-ensemble Biomass-burning Emissions Inventory (MBEI). Leveraging this framework, we develop 41 

the MBEI global emission dataset covering the period 2003–2023, which comprises eight sub-inventories 42 

and provides emission estimates for 11 representative greenhouse gases, aerosols, and atmospheric 43 

pollutants, including CO2, PM2.5, BC, NO2, and others. A unique feature of MBEI is its ability to quantify 44 

the uncertainty in biomass burning emission estimates across various spatial scales, achieved by 45 

calculating the average emissions and their Max-Min band at a 0.1° grid scale from these sub-inventories. 46 

The analysis reveals that the global annual CO2 emissions from biomass burning are approximately 7304 47 

7304 (4400–9657) Tg, with the maximum value being more than double the minimum. Furthermore, the 48 

uncertainty in global biomass burning emissions exhibits significant spatial heterogeneity: in low-49 

emission regions such as Australia and the Middle East, the ratio of maximum to minimum emission 50 

estimates can reach 6.0–7.0 fold, whereas in traditional hotspots like Africa and South America, this ratio 51 

is lower, around 1.9 fold. In terms of temporal trends, global emissions showed a decreasing trend from 52 

2003 to 2013, primarily driven by a reduction in burning activities in tropical regions. This trend, however, 53 

reversed to an increase from 2013 to 2023, with the primary drivers being intensified burning in northern 54 

high-latitude regions and the frequent occurrence of extreme events. Finally, a comparison with existing 55 

inventories confirms the reliability of the MBEI dataset. At both global and regional scales, the average 56 

of our inventory is centrally positioned among other inventory estimates in most years, offering a more 57 

robust central estimate for assessing biomass burning emission intensity during extreme event years. 58 

Moreover, its maximum-minimum range encompasses the estimates of other inventories across most 59 

regions and time periods. This capability to characterize uncertainty enables the integration of the new 60 

datasets MBEI into analytical frameworks, such as atmospheric chemistry models and exposure risk 61 

assessments, thereby enhancing the reliability of global biomass burning dynamics analyses and the 62 

robustness of the conclusions. The Multi-ensemble Biomass-burning Emissions Inventory (MBEI) 63 

dataset is publicly available at https://doi.org/10.5281/zenodo.17128279 (Liu and Yin, 2023). 64 
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1  Introduction 66 

Biomass burning, encompassing forest fires, grassland fires, and the burning of agricultural residues, is 67 

a key disturbance in terrestrial ecosystems. It profoundly influences local and global ecological processes 68 

and climate systems by releasing large quantities of greenhouse gases (GHGs) and aerosol particles 69 

(Bowman et al., 2009; Letu et al., 2023; Pellegrini et al., 2018; Shi et al., 2025; Yin, 2021). Accelerating 70 

climate change is driving significant shifts in the spatiotemporal patterns of global biomass burning, 71 

affecting its frequency, intensity, and duration. Observational data indicate that the incidence of extreme 72 

biomass burning events has increased 2.2-fold in the last two decades (Cunningham et al., 2024; Wang 73 

et al., 2023), and climate models project that high-risk areas for global biomass burning will expand by 74 

nearly one-third by the end of the 21st century (Senande-Rivera et al., 2022). Notably, while the burned 75 

area is shrinking in some traditional high-frequency burning regions (e.g., tropical rainforests) (Andela 76 

et al., 2017; Zheng et al., 2021), the fire-prone season is substantially extending. In regions such as 77 

southeastern Australia, eastern Siberia, and eastern North America, the length of fire weather season has 78 

increased by 27%–94%, significantly prolonging the period during which ecosystems are exposed to fire 79 

risk (Jones et al., 2022). 80 

The increase of biomass burning frequency is raising atmospheric concentrations of GHGs , thereby 81 

exerting a strong perturbation on Earth's biospheric processes (Andreae, 2019; Andreae and Merlet, 2001; 82 

Yin et al., 2025). Between 1997 and 2016, global carbon emissions from biomass burning averaged 2.2 83 

Pg C per year, equivalent to approximately 6% of global fossil fuel CO2 emissions in 2014 (Friedlingstein 84 

et al., 2025; Liu et al., 2024; van der Werf et al., 2017). This increase in GHGs intensifies global warming, 85 

creating a feedback loop that is projected to elevate the risk of extreme fire weather by at least 50% in 86 

key regions such as western North America, equatorial Africa, Southeast Asia, and Australia by 2080 87 

(Touma et al., 2021). Furthermore, particulate matter (e.g., black carbon, brown carbon, and organic 88 

carbon) emitted from biomass burning poses a serious threat to human health (Reid et al., 2005; Zhang 89 

et al., 2020). A meta-analysis of 81 studies (1980–2020) by Karanasiou et al (2021). showed that exposure 90 

to PM2.5 and PM10 from biomass burning is significantly associated with all-cause mortality, 91 

corresponding to a 1.31% (95% CI: 0.71–1.71) and 1.92% (95% CI: 1.19–5.03) increase for every 10 μg 92 

m-3 rise in PM10 and PM2.5. These effect sizes exceed typical estimates for all-source ambient particulate 93 

matter, indicating that biomass burning PM may pose greater health risks than general ambient PM. From 94 
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1990 to 2019, PM2.5-related excess mortality in equatorial Asia increased threefold, with approximately 95 

317 thousand of these deaths attributed to high-intensity biomass burning from Indonesian peatlands 96 

(Yin, 2023). 97 

Establishing high-precision emission inventories is crucial for assessing the impacts of biomass burning 98 

on the global atmospheric environment and public health (Bray et al., 2021; Filonchyk et al., 2024; 99 

Ramanathan and Carmichael, 2008). Trace gases and aerosols released by biomass burning not only 100 

affect global climate but also alter regional atmospheric chemistry via transboundary transport (Andreae, 101 

2019). Atmospheric Chemistry Transport Models used for air quality forecasting and source 102 

apportionment, rely on emission inventories with high spatiotemporal resolution and reliability. Such 103 

data are crucial for accurately resolving pollutant transport and transformation pathways, as well as for 104 

quantifying their contributions to pollution (Matthias et al., 2018; Wang et al., 2014). Currently, the 105 

construction of global and regional biomass burning emission inventories primarily relies on two 106 

established estimation pathways, the bottom-up and top-down approach. The bottom-up approach 107 

typically estimates emissions based on satellite-derived burned area (e.g., MODIS MCD64A1) combined 108 

with fuel load, combustion completeness, and emission factors (van der Werf et al., 2017; Wiedinmyer 109 

et al., 2023). The typical inventories of this approach include the Global Fire Emissions Database (GFED) 110 

and the Fire INventory from NCAR (FINN) (Giglio et al., 2006). In contrast, the alternative top-down 111 

approach estimates emissions based on Fire Radiative Power (FRP) retrieved from satellites in thermal 112 

infrared bands. This method utilizes the relationship between the time-integrated FRP, known as Fire 113 

Radiative Energy (FRE), and the total dry matter consumed, a relationship often calibrated using field 114 

observations (Ichoku and Ellison, 2014; Wooster et al., 2005). It estimates emissions by fitting the 115 

combustion curve of dry matter consumption derived from satellite-retrieved FRP (Santoro, 2018). The 116 

typical inventories include the Global Fire Assimilation System (GFAS) and the Quick Fire Emissions 117 

Dataset (QFED) (Andela et al., 2015; Giglio et al., 2020). 118 

Although these two methods provide clear theoretical frameworks, their practical implementation varies 119 

among researchers in their choice of data sources, parameters, and algorithmic details, leading to 120 

significant discrepancies in the resulting inventories (Hoelzemann et al., 2004; Ichoku and Kaufman, 121 

2005; Ito and Penner, 2004; Zhang et al., 2014). Consequently, estimates of total emissions for the same 122 

region or period can differ considerably (N’Datchoh et al., 2025; Pereira et al., 2016; Shi and Matsunaga, 123 

2017; Whitburn et al., 2015). This discrepancy poses a key challenge in the field, as it not only directly 124 
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impacts the accuracy of atmospheric chemistry simulations and climate effect assessments (Liu et al., 125 

2020; Longo et al., 2010; Stroppiana et al., 2010; Williams et al., 2012) but also leads to a lack of clear 126 

consensus on the true magnitude and long-term trends of global biomass burning emissions. 127 

A growing body of evidence suggests that under the dual threats of climate change and human activities, 128 

the spatial distribution of global biomass burning is undergoing significant shifts. Fire activity is 129 

weakening in some traditional tropical hotspots (e.g., African savannas) while intensifying in high-130 

latitude boreal forests (Tyukavina et al., 2022; van Wees et al., 2021; Yin et al., 2020b; Zheng et al., 2021, 131 

2023). These complex and opposing regional trends obscure the long-term trajectory of global total 132 

emissions. In this context, the limitation of emission inventories, which provide only a single estimate, 133 

becomes more prominent. A single value cannot capture the extent to which observed regional trends 134 

reflect genuine physical processes versus mere algorithmic artifacts of a particular inventory. Therefore, 135 

accurately assessing the current state of biomass burning emissions requires not only improving the 136 

precision of inventories but also developing new methods to systematically quantify their uncertainty. 137 

To address this challenge, we constructed the Multi-ensemble Biomass-burning Emissions Inventory 138 

(MBEI), a global biomass burning emission dataset for 2003–2023, by integrating mainstream top-down 139 

and bottom-up algorithms. This ensemble approach incorporates two fire-detection products and four 140 

sets of key input variables, resulting in eight distinct sub-inventories that quantify emissions for 11 key 141 

species (e.g., CO2, PM2.5, BC, and NO2). By analyzing the mean and the maximum-minimum range 142 

(hereafter referred to as the "Max-Min band") of these eight sub-inventories, our study provides a new 143 

quantitative estimate of global biomass burning emissions over the past 21 years and, crucially, reveals 144 

their uncertainty across various spatial scales. It offers quantitative evidence to better interpret the shifts 145 

in global biomass burning patterns. The advantages of this new inventory allow data users (such as 146 

atmospheric chemistry modelers and climate assessment experts) to directly incorporate the variability 147 

of emission estimates into their analytical frameworks, thereby providing critical data support for 148 

dissecting complex global biomass burning dynamics and enhancing the robustness of their assessment 149 

results. 150 

 151 
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2  Materials and Methods 153 

2.1 Datasets 154 

The MBEI integrates two established methodologies: a bottom-up approach based on burned area and a 155 

top-down approach based on FRP (Vermote et al., 2009; Wiedinmyer et al., 2006). Active fire detections 156 

were sourced from the MODIS Near-Real-Time product (MCD14DL). To assess uncertainty stemming 157 

from detection confidence, we created two parallel processing streams using fire pixels from both Aqua 158 

and Terra satellites (2003–2023): one including all detected fires, and another restricted to fires with 159 

medium-to-high confidence (>30%). In addition, we introduced combination in key input ariables: the 160 

bottom-up algorithm was driven by two alternative aboveground biomass (AGB) datasets (Biomass_cci 161 

and GlobBiomass), while the top-down algorithm utilized two different biome maps (8-class and 30-162 

class) to define emission coefficients. For consistency, all input datasets were resampled to a common 163 

0.1° spatial resolution and monthly temporal resolution. A comprehensive list of the datasets used in this 164 

study is provided in Table 1.  165 

 166 
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Table 1. Datasets used in this study. 182 

Data types Name 
Temporal 

Coverage 

Spatial 

Resolution 

Temporal 

Resolution 
Reference 

Active Fire 

Data 

Aqua 

MCD14DL 
2003-2023 1 km × 1 km daily (NASA VIIRS 

Land Science 

Team, 2021) 
Terra 

MCD14DL 
2003-2023 1 km × 1 km daily 

Burning 

Efficiency 

(BE) & 

Emission 

Factor (EF) 

Data 

Land Cover Type 

MCD12Q1.061 
2003-2023 500 m × 500 m yearly 

(Friedl and Sulla-

Menashe, 2022) 

EF Classification 

Source Data GFED 
\ 0.25° × 0.25° \ 

(van der Werf et al., 

2006) 

EF Coefficients \ \ \ 
(van der Werf et al., 

2017) 

BE Coefficients \ \ \ (Shi et al., 2015) 

AGB Data 

GlobBiomass 2010 25 m × 25 m \ (Santoro, 2018) 

Biomass_cci 
2010/2015-

2021 
100 m × 100 m yearly 

(Santoro and 

Cartus, 2024) 

Conversion 

Factor (CR) 

Data 

30-class CR map \ 0.1° × 0.1° \ (Kaiser et al., 2023) 

8-class CR map \ 0.1° × 0.1° \ (Kaiser et al., 2012) 

Ancillary & 

Validation 

Data 

Annual Gross/Net 

Primary Production 

(NPP) 

MYD17A3HGF 

v061 

2003-2023 500 m × 500 m yearly 
(Running and Zhao, 

2021) 

Global Fire 

Emissions Database 

5 (GFED 5) 

2003-2022 0.25° × 0.25° daily 

(Binte Shahid et al., 

2024; Vernooij et 

al., 2023; Wiggins 

et al., 2021) 

Fire INventory from 

NCAR 2.5 (FINN 

2.5) MODIS 

2002-2022 0.1° × 0.1° daily 
(Wiedinmyer et al., 

2023) 

Global Fire 

Assimilation 

System 1.2 (GFAS 

1.2) 

2003-2022 0.1° × 0.1° daily (Kaiser et al., 2012) 

Quick Fire 

Emissions Dataset 

3.1 (QFED3.1) 

2003-2022 0.1° × 0.1° daily (Koster et al., 2015) 

Note: The 8-class biome map is derived from the 30-class biome map. See Fig. S1 for its spatial 183 

distribution. 184 

 185 
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2.1.1 Active fire detection and fire radiative power 186 

The sourced active fire data were obtained from the MODIS Near-Real-Time active fire product 187 

(MCD14DL C6.1), provided by NASA's Fire Information for Resource Management System (FIRMS). 188 

This product provides fire detections from both the Terra and Aqua satellites based on the 189 

MOD14/MYD14 thermal anomalies algorithm (Giglio et al., 2006). Each active fire detection represents 190 

the center of a 1-km pixel flagged as containing one or more fires. 191 

For the period 2003–2023, we extracted daily fire locations, detection confidence, and FRP values. These 192 

1-km daily data were then aggregated into monthly 0.1° grids, which form the primary input for both our 193 

top-down and bottom-up frameworks. 194 

2.1.2 Burning efficiency and emission factor 195 

To assign region- and vegetation-specific BE and EF, we first utilized the annual 500-m MODIS Land 196 

Cover Type product (MCD12Q1 C6.1), adopting its International Geosphere-Biosphere Programme 197 

(IGBP) classification scheme. We then assigned a BE value to each of the 17 IGBP classes using 198 

coefficients derived from Mieville et al. (2010) and Shi et al. (2015), with the specific values detailed in 199 

Table S3. 200 

Emission factors were assigned by intersecting the MCD12Q1 land cover map with the 14 continental-201 

scale regions defined by GFED (van der Werf et al., 2017). This process yielded a unique EF for each 202 

landcover region combination, allowing us to estimate emissions for 11 key atmospheric emission 203 

species as detailed in Table S4. 204 

2.1.3 Aboveground biomass 205 

To quantify available fuel load for the bottom-up framework and assess related uncertainties, we 206 

employed two independent global AGB datasets. The GlobBiomass provides a global AGB map at 25-m 207 

spatial resolution for the baseline year 2010, generated by synergistically fusing multi-source data, 208 

including observations from spaceborne Synthetic Aperture Radar (SAR), Light Detection and Ranging 209 

(LiDAR), and optical remote sensing, together with forest inventory data (Santoro, 2018). Biomass_cci, 210 

provided by the European Space Agency Climate Change Initiative (ESA CCI) project, contains global 211 

AGB maps at 100-m resolution for multiple years (2010, 2017, 2018, and annually for 2019–2021) 212 

(Mariani et al., 2016). 213 
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2.1.4 Conversion factor 214 

In the top-down method, satellite-derived FRE, which is the temporal integral of FRP, is converted into 215 

the mass of combusted dry matter. This conversion is performed using a biome-specific conversion factor 216 

(kg Dry Matter MJ⁻¹). To assess the uncertainty associated with this parameter, we implemented two 217 

distinct sets of conversion factors: one based on the 8 major biomes used in the GFAS (Kaiser et al., 218 

2012), and another based on a more detailed 30-class biome map. The spatial distributions and respective 219 

CR values for these two schemes are detailed in Figs. S1–S2 and Tables S1–S2. 220 

2.1.5 Ancillary and validation data 221 

To derive a dynamic annual AGB time series for 2003–2022 from otherwise static AGB maps, we used 222 

the MODIS annual Net Primary Production product MYD17A3HGF v061, which provides global NPP 223 

at 500 m spatial resolution. We leveraged the empirically supported linear relationship between NPP and 224 

AGB to temporally extrapolate the baseline AGB maps and generate annual AGB maps, with the detailed 225 

procedure and parameterization described in Section 2.2.1. 226 

To evaluate the performance and robustness of the new inventory, we conducted a comprehensive 227 

intercomparison with four widely used global emission products that span both bottom-up and FRP 228 

methodologies. For the bottom-up approach, GFED 5.0 serves as a key benchmark, as its reliance on the 229 

Carnegie–Ames–Stanford Approach (CASA) biogeochemical model for fuel load estimation allows for 230 

a critical assessment of how a model-driven workflow differs from our use of direct remotely sensed 231 

AGB. To specifically isolate the influence of parameter choices (e.g., emission factors and burning 232 

efficiency), we included FINN 2.5 in our analysis. Because it is built upon the same MODIS active fire 233 

and land cover inputs, a comparison with FINN 2.5 provides a controlled setting to evaluate the impact 234 

of our system's unique parameterization. For the top-down FRP-based approach, GFAS 1.2 provides a 235 

reference for evaluating the plausibility of the combustion-rate coefficient schemes tested in this study, 236 

as it converts satellite-observed FRP to dry matter combusted in a manner consistent with our framework. 237 

Finally, we incorporated QFED 3.1, which represents an optimized evolution of GFAS applying more 238 

advanced correction and gap-filling procedures, to examine how alternative imputation strategies for 239 

missing FRP retrievals affect the spatiotemporal completeness of the final emission estimates. 240 
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2.2 The framework for the MBEI 241 

We constructed the MBEI, which integrates bottom-up and top-down algorithms with multiple input 242 

datasets, yielding an ensemble of eight distinct sub-inventories (see Table 2 for the naming conventions). 243 

This framework leverages the strengths of different estimation pathways while systematically assessing 244 

uncertainties arising from methodological choices and input data. Using this framework, we compute 245 

mean emissions across global regions, thereby improving the reliability of the estimates. Crucially, in 246 

contrast to traditional single-estimate inventories, we also report grid-scale maxima and minima from the 247 

ensemble to explicitly quantify the range of emission uncertainties. The overall workflow is illustrated 248 

in Fig. 1.  249 

 250 

Figure 1.Framework for the construction of MBEI. 251 

 252 

 253 

 254 

 255 
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Table 2. The detail of the eight biomass burning emission sub-inventories. 256 

4 Bottom-Up Inventories 4 Top-Down Inventories 

Name Confidence 

Level 

Datasets Name Confidence 

Level 

Datasets 

BU-AC-GB All Confidence GlobBiomass  TD-AC-LC30 All Confidence 30-class CR 

map 

BU-AC-BC All Confidence Biomass_cci  TD-AC-LC8 All Confidence 8-class CR map 

BU-HC-GB Medium-to-

High 

confidence 

GlobBiomass  TD-HC-LC30 Medium-to-

High 

confidence 

30-class CR 

map 

BU-HC-BC Medium-to-

High 

confidence 

Biomass_cci  TD-HC-LC8 Medium-to-

High 

confidence 

8-class CR map 

2.2.1 Bottom-up emission estimation 257 

This study employs a bottom-up method, combining multi-source remote sensing data to construct four 258 

global monthly biomass burning emission inventories for 2003–2023. The core computational workflow 259 

involves four key steps: (1) constructing a dynamic annual AGB dataset based on interannual variations 260 

in NPP; (2) modeling the total burned dry matter density (BD) under multiple fire events within a year; 261 

(3) estimating total annual emissions (EM) by burned area (BA), BD and EF; (4) downscaling annual 262 

emissions to a monthly resolution using the monthly distribution of FRP. 263 

To overcome the limitation of using a static AGB benchmark map that ignores interannual variability, we 264 

constructed a dynamic annual AGB dataset. Based on the ecological assumption of a stable proportional 265 

relationship between AGB and NPP (Raich et al., 2006; Whittaker and Likens, 1972), we used the relative 266 

interannual changes in the MODIS annual NPP product to extrapolate the baseline AGB. The AGB for a 267 

target year (m) in a specific pixel (p) is calculated as: 268 

AGB(m,p) = AGB(a,p) ×
NPP(m,p)

NPP(a,p)
 (1) 

where AGB(m,p) is the AGB in year m at pixel p (Mg ha-1); AGB(a,p) is the baseline AGB at pixel p (mean 269 

of 2003–2023, Mg ha-1); NPP(m,p) is the NPP in year m at pixel p (kg C m-2 yr-1); and NPP(a,p) is the 270 

baseline mean NPP at pixel p (kg C m-2 yr-1). 271 

After obtaining annual AGB, we estimated the annual BD per unit area. Considering that a pixel may 272 

experience multiple fires in a year, we used the following model to simulate the sequential consumption 273 

of AGB by fire and accumulate the total annual burned amount: 274 
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BD(m,p)= ∑ {AGB(m,p)

I

j=1

×  (1-BEc)j-1×BEc} (2) 

where BD(m,p) is the total burned dry matter density in year m at pixel p (kg m-2); I is the fire frequency 275 

in year m at pixel p (derived from active fire data); j represents the j-th fire event of the year; AGB(m,p) is 276 

the initial AGB at the beginning of the year (kg m-2); and BEc is the dimensionless burning efficiency for 277 

the land cover type c of pixel p. 278 

The total annual emissions of each pollutant are estimated based on the method proposed by Seiler and 279 

Crutzen (1980): 280 

EM(m,p) = BA(m,p) × BD(m,p) × EF (3) 

where EM(m,p) is the annual emission of a specific pollutant in year m at pixel p (g); BA(m,p) is the total 281 

annual burned area in year m at pixel p (m2), obtained by multiplying the annual MODIS active fire 282 

location mask by the pixel's geographic area to ensure that the burned location is consistent with fire 283 

detections; BD(m,p) is the annual burned dry matter density (kg m-2) calculated from Eq. (2); and EF is the 284 

emission factor for the specific pollutant (g kg-1). 285 

To obtain a monthly-resolution emission inventory, we used satellite-observed FRP as a proxy for fire 286 

activity intensity to distribute the annual emissions EM(m,p) into each month (t): 287 

EM(m,p,t)=EM(m,p)×
FRP(m,p,t)

∑ FRP(m,p,t)
12
t=1

 (4) 

where EM(m,p,t) is the pollutant emission in month t of year m at pixel p (g); and FRP(m,p,t) is the monthly 288 

cumulative FRP in month t of year m at pixel p (MJ s-1). 289 

2.2.2 Top-down emission estimation 290 

Our top-down emission estimation is based on the FRP approach, which uses satellite-observed thermal 291 

radiation to quantify biomass burning. The entire computational framework revolves around FRE, with 292 

the final pollutant emissions calculated as: 293 

EM(p) = FRE(p) × CR(r) × EF (5) 

where EM(p) is the daily emission at pixel p (g); FRE(p) is the daily cumulative FRE at pixel p (MJ); CR(r) 294 

is the conversion factor for the biome r where pixel p is located (kg Dry Matter MJ-1); and EF is the 295 

emission factor for the specific pollutant (g kg-1). 296 

However, polar-orbiting satellites like MODIS provide only limited observations per day, making it 297 

impossible to obtain daily cumulative FRE by simple integration of instantaneous FRP. To overcome this, 298 
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we reconstruct the FRP diurnal cycle by fitting a Gaussian function, following the methodology of 299 

Vermote et al. (2009). We assume that the diurnal variation of FRP for a single biomass burning event 300 

can be represented by a Gaussian function: 301 

FRE(p)= ∫ FRP(t)(p)dt
24

0

= ∫ FRPpeak(p) (b+e
-
(t-h)2

2σ2 ) dt
24

0

 (6) 

where FRP(t)(p) is the instantaneous FRP at local time t for pixel p; FRPpeak(p) is the peak FRP of the fire 302 

event at pixel p (MJ s-1); h is the local time of peak FRP hours; σ is the standard deviation of the Gaussian 303 

function, characterizing energy release concentration of the fire; and b is a background term reflecting 304 

residual or background radiation during non-active burning periods. The Gaussian parameters b, σ, and 305 

h are empirically derived for each biome from the long-term mean FRP ratio between Terra and Aqua 306 

observations using the relationships (henceforth 
FRPTerra

FRPAqua
): 307 

b=0.86× (
FRPTerra

FRPAqua

)

2

-0.52×
FRPTerra

FRPAqua

+0.08 (7) 

σ=3.89×
FRPTerra

FRPAqua

+1.03 (8) 

h=-1.23×
FRPTerra

FRPAqua

+14.57 (9) 

where FRPTerra and FRPAqua are the long-term mean FRP values for the respective sensors within that 308 

biome (MJ s-1). 309 

The final FRPpeak is determined by selecting either the daily peak FRP from the Aqua satellite (henceforth 310 

FRPAqua peak) or the daily peak FRP from the Terra satellite after correction with Eq. (12) (henceforth 311 

FRPTerra_corr): 312 

FRPAqua peak(p)
=

FRPAqua(p)

(b+e
-
(1.5-h)2

2σ2 ) + (b+e
-
(13.5-h)2

2σ2 )

 
(10) 

FRPTerra peak(p)
=

FRP Terra_corr(p)

(b+e
-
(1.5-h)2

2σ2 ) + (b+e
-
(13.5-h)2

2σ2 )

 
(11) 

FRP Terra_corr(p)=FRP Terra(p)×
FRP Terra

FRP Aqua

 (12) 

where FRPTerra_corr(p) is the corrected Terra FRP at pixel p (MJ s-1), FRP Peak was calculated from Aqua 313 

satellite data using Eq. (10), following the approach of Vermote et al. (2009). Additionally, FRP values 314 

from the Terra satellite were adjusted using Eq. (12). This adjustment utilized long-term FRP ratios for 315 
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different biomes to normalize the morning Terra observations to the afternoon measurement time of the 316 

Aqua satellite. 317 

Independent daily FRE estimates were then calculated using the original Aqua observations (FRPAqua 318 

peak(p)) and the corrected Terra observations (FRETerra peak(p)) in Eq. (6) at pixel p (MJ s-1). The final daily 319 

FRE is the average of these two estimates: 320 

FRE(p)=
FREAqua(p)+FRETerra(p)

2
 (13) 

Through these steps, we obtained the final daily FRE data. We then used Eq. (5) to calculate emissions 321 

and aggregated them to a monthly scale, ultimately producing four independent top-down emission 322 

inventories. 323 

2.3 Trend analysis 324 

Long-term trends in biomass burning emissions (2003–2022) were quantified using the Theil-Sen median 325 

trend estimator, with statistical significance assessed by the Mann-Kendall (MK) test (Mann, 1945; Sen, 326 

1968). This non-parametric approach is particularly suitable for geophysical time series like emission 327 

data, as it is robust to outliers and does not assume a normal distribution.  328 

The Theil-Sen estimator calculates the median of the slopes between all pairs of data points in the time 329 

series, making it robust to outliers (e.g., emission peaks from extreme fire years) and providing a stable 330 

estimate of the long-term trend. The slope is calculated as: 331 

slope=median
xj-xi

j-i
(1≤i<j≤n) (14) 

where slope is the estimated trend, xi and xj are the data values at time points i and j, and n is the length 332 

of the time series. 333 
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3  Results 334 

3.1 Spatial patterns and uncertainty of global biomass burning emissions 335 

 336 

Figure 2. Spatial patterns and regional composition of global biomass burning CO2 emissions (mean of 2003–337 

2023). (a) Spatial distribution of the annual mean CO2 emission flux estimated from the mean of the eight 338 

inventories in this study. The embedded pie charts show the emission composition for 14 major regions, where: 339 

1) the number in the pie chart indicates the percentage of that region's emissions relative to the global total; 340 

and 2) the sectors of the pie chart represent the proportional contribution of six major fire types to the region's 341 

total emissions. (b) and (c) show the spatial emission patterns corresponding to the inventory with the highest 342 

global total annual emissions (TD-AC-LC30) and the lowest global total annual emissions (BU-HC-BC) 343 

among the eight inventories over the entire study period, respectively. 344 

 345 

CO2 is a principal greenhouse gas and the most widely studied species in biomass-burning inventories; 346 

accordingly, Sections 3.1–3.4 focus on CO2, and results for other species are provided in the 347 

Supplementary Information. For 2003 to 2023, the framework-mean global annual emissions for all 348 

species are summarized in Table 3 and Table S5. The framework-mean CO2 emission is 7303.63 Tg yr-1, 349 
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and the associated uncertainty, quantified as the range of annual means across the eight sub-inventories 350 

in the ensemble, spans 4400.08 to 9656.89 Tg yr-1. 351 

Fig. 2 shows the highly heterogeneous spatial pattern of mean annual CO2 emission fluxes (the spatial 352 

patterns for other major pollutants are presented in Fig. S6). Global emission activities are largely 353 

concentrated in tropical and subtropical regions, characterized by high emission fluxes (> 300 g m -2 yr-354 

1). Within these areas, the most intense emission hotspots (> 500 g m-2 yr-1) are clearly identified over 355 

the Congo Basin, surrounding savannas, and parts of Southern Africa. This high spatial concentration of 356 

intense burning directly translates to Africa's dominant role in the global emission budget. Based on 357 

regional statistics (Global 14 regions defined in Fig. S3), Southern Hemisphere South Africa (SHAF) 358 

and Northern Hemisphere South Africa (NHAF) collectively contribute 49.2% of global CO2 emissions 359 

(29.2% and 20.0%, respectively). Furthermore, Southern Hemisphere South America (SHSA, 15.1%), 360 

Boreal Asia (BOAS, 7.0%), and Southeast Asia (SEAS, 5.9%) also stand out as major source regions for 361 

global biomass burning. 362 

The dominant types of biomass burning vary substantially by region (see Fig. S4 for the classification of 363 

fire types), leading to distinct emission profiles (see Fig. S5 for the composition of fire types in each 364 

region). In the top three emitting regions (SHAF, NHAF, and SHSA), which collectively account for 365 

nearly two-thirds (64.4%) of global CO2 emissions, burning is driven primarily by savanna fires (SAVA) 366 

and deforestation fires (DEFO). The contribution of different fire types varies significantly among these 367 

top regions (see Fig. 2a for detailed emission values). In SHAF, the largest source, SAVA are 368 

overwhelmingly dominant, accounting for 83% of its CO2 emissions. A similar pattern occurs in NHAF, 369 

where SAVA contributes 78% of emissions, although agricultural waste burning (AGRI) also plays a 370 

notable role (6%). In contrast, the emissions in SHSA are more evenly split between SAVA (59%) and 371 

DEFO fires (37%). In the high-latitude regions of BOAS and Boreal North America (BONA), fires in 372 

boreal forests (BORF) are a characteristic emission source, contributing 14% and 22% of regional CO2 373 

emissions, respectively. Notably, our analysis identifies fires classified as SAVA as the largest contributor 374 

in both regions (83% in BOAS and 77% in BONA). It is critical to note that SAVA in this context refers 375 

to the burning of extensive grasslands and shrublands located within the boreal climate zone, as defined 376 

by our underlying land cover dataset, rather than tropical savannas. This highlights that non-forest fires 377 

are the dominant source of emissions even in these high-latitude zones.  378 
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The emission composition of Equatorial Asia (EQAS) is unique. Although its total emissions are 379 

relatively low, it is the only region dominated by peatland fires (PEAT), with PEAT emissions 380 

contributing as much as 91.34 Tg yr-1 of CO2 (48.4% of the regional total). This uniqueness stems from 381 

its specific fire regime: vast areas of organic-rich peatlands become highly flammable after being drained 382 

and converted to agricultural land (e.g., oil palm plantations). Such fires often manifest as long-duration, 383 

hard-to-extinguish subsurface smoldering, leading to extremely high carbon emission intensities and 384 

making EQAS a unique and closely watched case in global biomass burning research.  385 

The spatial heterogeneity of this uncertainty is illustrated in Figs. 2b and 2c, which map the highest and 386 

lowest emission estimates across the ensemble. Globally, the uncertainty is substantial, with the 387 

maximum estimate of annual CO2 emissions being 2.2 times higher than the minimum estimate across 388 

the MBEI sub-inventories. 389 

Importantly, high  biomass burning emission uncertainty is not found in traditional biomass burning 390 

hotspots. Instead, some of the highest uncertainties are found in regions with lower overall emissions. 391 

Specifically, Australia and New Zealand (AUST) and the Middle East (MIDE) exhibit the greatest 392 

uncertainty, with maximum-to-minimum (max/min) emission ratios reaching 7.18 and 6.40, respectively. 393 

In AUST, this extreme uncertainty is linked to its fire regime dominated by highly intermittent and 394 

catastrophic megafires (e.g., the 2019–2020 events), which pose significant challenges to consistent 395 

estimation across different algorithms. In MIDE, which contributes only 0.52% to the global total, the 396 

high uncertainty stems from small, scattered AGRI and SAVA. These weak fire signals are near the lower 397 

limit of satellite detection capabilities, a fact confirmed by the large discrepancy observed when 398 

comparing estimates derived from 'all confidence' versus 'high and medium confidence' active fire data. 399 

In contrast, the major tropical burning regions show much lower relative uncertainty, despite their 400 

massive contribution to global emissions. The African (SHAF, NHAF) and South American (SHSA) 401 

hotspots have max/min ratios consistently below 2.0. This greater consensus among methods is 402 

attributable to the nature of their fires: large-scale, intense, and seasonally predictable SAVA that are 403 

robustly captured by various estimation approaches. Meanwhile, temperate and high-latitude regions 404 

such as Central Asia (CEAS), BONA, and Europe (EURO) show intermediate levels of uncertainty, with 405 

max/min ratios between 3.5 and 4.0. 406 

In summary, this analysis reveals a critical divergence between the spatial patterns of emission 407 

magnitudes and their estimation uncertainties. While emission hotspots are concentrated in tropical 408 
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regions dominated by regular SAVA and DEFO, the highest uncertainties occur in areas characterized by 409 

either highly intermittent megafires (e.g., AUST) or weak, scattered burning (e.g., MIDE), posing distinct 410 

challenges to current estimation methods. 411 

Table 3. Total annual CO2 emissions (Maximum, Minimum, and Average, unit: Tg) for 2003–412 

2023. 413 

Year Max Min Avg Year Max Min Avg 

2003 10882.90 4487.65 7673.68 2014 9258.62 4489.87 7265.29 

2004 10842.08 4271.50 7522.16 2015 9688.74 5035.46 7701.46 

2005 10391.58 4350.62 7328.15 2016 8476.61 4059.68 6789.30 

2006 9663.37 4160.83 7077.83 2017 9250.64 4436.15 7042.77 

2007 11063.35 4641.22 7751.48 2018 8727.34 4160.93 6911.22 

2008 9725.05 4030.68 6925.95 2019 9747.60 4971.22 7657.46 

2009 8661.02 3930.36 6669.83 2020 9295.62 4375.98 7249.50 

2010 10253.23 4748.50 7554.59 2021 10696.69 4767.44 7705.11 

2011 9653.73 4119.74 7205.26 2022 7289.55 3348.45 6442.83 

2012 10537.30 4721.32 7895.63 2023 10527.88 5206.72 8506.96 

2013 8161.82 4087.36 6489.87 Mean 9656.89 4400.08 7303.16 

 414 
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3.2 Seasonality of biomass burning emissions 415 

 416 

Figure 3. Seasonal cycle and spatial dynamics of global biomass burning CO2 emissions (mean of 2003–2023). 417 

(a) Global monthly emissions partitioned by source region. (b) Monthly emissions for the four primary 418 

contributing regions, showing the composition by fire type. (c-f) Spatial distribution of mean monthly 419 

emission flux during key seasonal phases: April, July, September, and December. 420 

 421 

The MBEI 2003–2023 CO2 emission inventory reveals a distinct bimodal seasonal cycle (Fig. 3a). Global 422 

emissions reach a minimum in February and then climb to a primary peak in the Northern Hemisphere's 423 

late summer (August–September). This global pattern results from the combined effect of staggered fire 424 

seasons in key regions. Four regions in particular (SHAF, NHAF, SHSA, and BOAS) drive this cycle, 425 

collectively accounting for over 71% of total annual emissions (Fig. 3b). For a detailed view of the 426 

emission sources, Fig. S7 shows the monthly composition of CO2 emissions by the six fire types for each 427 

of the 14 global regions during 2003–2023. 428 
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The annual cycle begins its ascent after the global minimum in February, initially driven by fire activity 429 

in the Northern Hemisphere. Persistent dry-season burning in NHAF transitions into an intensifying fire 430 

season across Eurasia. By April, the focus of burning activity clearly shifts northward, with emissions 431 

surging in regions like BOAS, while the major Southern Hemisphere burning regions (SHAF and SHSA) 432 

remain in a period of low activity (Fig. 3c).  433 

From May onwards, global emissions accelerate rapidly, driven by the increasing overlap of fire seasons 434 

in both hemispheres. While boreal fires in regions like BOAS reach their annual peak in July, the 435 

dominant driver of this global surge is the explosive onset of the fire season in SHAF. Concurrently, 436 

burning intensifies in SHSA, and this synergistic effect pushes global emissions towards their annual 437 

maximum (Fig. 3d). 438 

The global emission peak in August and September is dominated by the Southern Hemisphere, as fire 439 

activity wanes in the major Northern Hemisphere regions. During this period, burning in SHSA reaches 440 

its annual zenith, fueled by a combination of DEFO and SAVA. Although past its own peak, SHAF 441 

remains the single largest regional contributor to global emissions (Fig. 3e). 442 

Beginning in October, the onset of the rainy season in the Southern Hemisphere rapidly suppresses fire 443 

activity there, causing a sharp decline in global emissions. This marks a decisive shift in the global 444 

burning pattern. The focus of activity returns entirely to NHAF, which enters its primary fire season that 445 

lasts through the subsequent winter (Fig. 3f). This distinct hemispheric seesaw effect completes the 446 

annual cycle. Fig. S8 present the spatial distribution patterns of monthly CO₂ emissions from global 447 

biomass burning during the period 2003–2023. 448 
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3.3 Interannual variability and long-term trends 449 

 450 

Figure 4. Temporal and spatial trends of global biomass burning CO2 emissions from 2003 to 2023. (a, c, e) 451 

Interannual variation of total emissions and (b, d, f) trends in emission flux for three periods: 2003–2023, 452 

2003–2013, and 2013–2023. 453 

 454 

Over the 2003–2023 study period, global biomass burning CO2 emissions are characterized not by a 455 

significant long-term trend but by pronounced interannual variability. Specifically, the time series of 456 

global annual CO2 emissions, derived from the MBEI, which integrates eight sub-inventories, shows no 457 

statistically significant long-term trend (p > 0.05; Fig. 4a). This pattern of high interannual variability, 458 

coupled with a lack of a significant long-term trend, is also observed for other major emitted species (Fig. 459 

S9). This strong interannual variability is a well-documented feature of global fire activity, primarily 460 

linked to climate anomalies such as the El Niño-Southern Oscillation (ENSO) (Chen et al., 2017; Mariani 461 

et al., 2016; Li et al., 2023). Our time-series analysis confirms this link: emission peaks (e.g., 2010, 2015, 462 
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2019) consistently coincide with major El Niño events that trigger widespread drought, while emission 463 

troughs (e.g., 2009, 2022) align with wetter La Niña conditions. The sharp contrast between the low 464 

emissions during the 2022 La Niña and the subsequent spike during the 2023 El Niño starkly illustrates 465 

the powerful influence of the ENSO cycle on global fire activity. 466 

Alongside these climate-driven variations, the MBEI is characterized by a broad uncertainty range, 467 

stemming from differences in algorithm structures and input data. The spread between MBEI estimates 468 

(the Max-Min band in Figs. 4a, c, e) is considerable, with the difference between the highest and lowest 469 

annual totals exceeding 2600 Tg in some years (e.g., 2004, 2022). This divergence arises from 470 

methodological differences, particularly between top-down (FRP-based) and bottom-up (burned area-471 

based) approaches in areas like fire detection and combustion parameterization. Critically, however, 472 

despite the large spread in absolute emission values, the MBEI sub-inventories show strong agreement 473 

on the relative interannual patterns, consistently identifying the same peak and trough years. 474 

This apparent global stability masks significant and opposing regional trends, producing a highly 475 

heterogeneous spatial pattern of change (Fig. 4b). Over the full 21-year period, statistically significant 476 

trends were concentrated in Asia. BOAS exhibited a strong and significant increasing trend in emission 477 

flux at a rate of 15.71 g m-2 yr-1 (p < 0.01). In contrast, CEAS and SEAS showed significant decreasing 478 

trends of -1.72 g m-2 yr-1 (p < 0.01) and -2.08 g m-2 yr-1 (p < 0.05), respectively. Fig. 4b suggests decreases 479 

in equatorial Africa and central-southern South America, and increases in BONA, these trends were not 480 

statistically significant when aggregated over the entire 14 GFED regions for the 2003–2023 period. This 481 

highlights an offsetting pattern, where declining emissions in some regions are partially balanced by 482 

increases elsewhere, contributing to the lack of a significant global trend. 483 

A decadal comparison between 2003–2013 and 2013–2023 reveals substantial evolution in these spatial 484 

patterns, indicating a major shift in the global distribution of biomass burning emissions (Figs. 4d, f). 485 

During the first decade (2003–2013), a slight but statistically non-significant global decrease (p > 0.05; 486 

Fig. 4c) masked a profound spatial redistribution of fire activity. The dominant feature was a significant 487 

increase in fire emissions in SHAF, which saw an upward trend of 4.41 g m-2 yr-1 (p < 0.05). By contrast, 488 

South America experienced significant decreases, particularly in NHSA where emissions declined at a 489 

rate of -4.97 g m-2 yr-1 (p < 0.05). Simultaneously, a strong decreasing trend was observed in CEAS, with 490 

a rate of -2.96 g m-2 yr-1 (p < 0.05). Boreal regions and Southeast Asia showed no statistically significant 491 

regional trends during this period (Fig. 4d).  492 
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In the subsequent decade (2013–2023), this pattern shifted markedly. Although the global emission 493 

trajectory did not exhibit a statistically significant linear trend (p > 0.05), it transitioned from a slight 494 

decline to an overall increase (Fig. 4e), signaling a clear decadal change in biomass burning dynamics. 495 

This shift is more appropriately characterized as a structural transformation rather than a linear 496 

progression, driven by a marked increase in both the frequency and intensity of extreme emission years 497 

(e.g., 2015, 2019, 2023). The 2015–2016 ENSO cycle exemplifies this mechanism, as the super El Niño 498 

event in 2015 induced catastrophic PEAT in Indonesia (EQAS) and elevated global emissions to a record 499 

peak, which was subsequently followed by a pronounced decline in 2016 with the onset of a strong La 500 

Niña (Whitburn et al., 2016; Yin et al., 2020a). The 2023 fire season was even more pronounced, as an 501 

unprecedented wildfire season in boreal Canada (BONA) coincided with a developing El Niño, jointly 502 

driving global annual emissions to the highest level in our 21-year record (Jain et al., 2024; Luo et al., 503 

2025). 504 

Spatially, this decadal shift is characterized by a reversal of trends in Africa and South America (Fig. 4f). 505 

Africa, which previously showed increasing trends in the south, now exhibited a pronounced and 506 

significant decrease in NHAF, with emissions declining at -5.14 g m-2 yr-1 (p < 0.05). In a direct reversal 507 

of the previous decade, SHSA showed a strong and significant increase of 8.01 g m-2 yr-1 (p < 0.01). 508 

Notably, despite the visually striking increases in BONA and northern Eurasia driven by the extreme fire 509 

years mentioned previously, the linear trends for these aggregated regions over the 2013–2023 period 510 

were not statistically significant, suggesting that the changes were dominated by episodic events rather 511 

than a consistent year-over-year increase.  512 

In summary, beneath the overall stable trend of global biomass burning emissions over the past 21 years, 513 

there lies a key decadal shift, from a declining phase dominated by weakening fire activity in the tropics 514 

(2003–2013) to an increasing phase driven by intensifying fire activity in high-latitude regions and parts 515 

of the Southern Hemisphere (2013–2023). 516 

https://doi.org/10.5194/essd-2025-588
Preprint. Discussion started: 6 October 2025
c© Author(s) 2025. CC BY 4.0 License.



 

24 

 

3.4 Inter-comparison with other inventories 517 

 518 

Figure 5. Comparison of multi-year mean spatial patterns of global CO2 emissions estimated by different 519 

biomass burning inventories (2003–2022). (a) The mean of the eight inventories constructed in this study. (b) 520 

Fire INventory from NCAR version 2.5 (FINN 2.5), (c) Global Fire Assimilation System version 1.2 (GFAS 521 

1.2), (d) Global Fire Emissions Database version 5.0 (GFED 5.0), and (e) Quick Fire Emissions Dataset version 522 

3.1 (QFED 3.1). 523 

 524 
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 525 

Figure 6. Time series of interannual variability in biomass burning CO2 emissions from different inventories 526 

at global and regional scales (2003–2022). (a) Total annual global CO2 emissions from this study's inventory 527 

and four other inventories. (b) to (o) Total annual CO2 emissions from this study's inventory and four other 528 

inventories across 14 regions. 529 

 530 

A comparison of biomass burning CO2 emissions reveals broad spatial agreement across all inventories 531 

(including the MBEI from this study, FINN 2.5, GFAS 1.2, GFED 5.0, and QFED 3.1) (Fig. 5). 532 

Furthermore, the emission magnitudes from these inventories are largely consistent, with no significant 533 

discrepancies. In addition, comparative analyses are performed for three emission species, namely SO2, 534 

PM2.5 and BC and the results are presented in Figs. S10–S15 in the Supplementary Material. These 535 

species represent different components and combustion phases of biomass burning. SO2 reflects the 536 

combustion of naturally occurring sulfur-containing organic matter and inorganic sulfides in biomass, 537 

PM2.5 represents the overall intensity of total particulate matter emissions, and BC indicates incomplete 538 

combustion during the high-temperature flaming phase, Similar to CO2, the spatial patterns for these 539 

species are largely consistent across inventories. While the products capture similar interannual 540 

variability, their estimates of emission magnitudes reveal substantial inter-inventory uncertainty (results 541 

show in Figs. S10–S15). All products successfully identify the primary global fire hotspots, including 542 

those in Africa (SHAF, NHAF), South America (SHSA), Southeast Asia (SEAS), and the northern boreal 543 

forests (BONA, BOAS). 544 
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However, significant discrepancies exist in both emission magnitude and spatial detail among various 545 

inventories (Fig. 6). The uncertainty range (Max–Min band) of the MBEI generally encompasses the 546 

estimates from all reference products across most regions, suggesting that it effectively captures the 547 

structural uncertainty among inventories. Moreover, the mean estimate of the MBEI typically resides 548 

near the center of the various inventories. With respect to magnitude and trend, our inventory exhibits 549 

the closest alignment with GFAS. GFED consistently provides the highest global estimates, while FINN 550 

ranks second and in some regions even exceeds GFED, whereas QFED remains generally lower. Despite 551 

these differences in magnitude, all inventories demonstrate strong consistency in interannual variability, 552 

successfully capturing major global fire years (e.g., 2010, 2015, 2019). 553 

A regional analysis highlights significant divergences among emission inventories, particularly in the 554 

high-emission tropics where the MBEI's uncertainty band is often substantial. In the African savannas 555 

(NHAF, SHAF), the MBEI mean estimate is consistently lower than GFED 5.0, often residing in the 556 

lower half of the inter-inventory range (Figs. 6i, j). For instance, in SHAF, GFED 5.0 estimates are 557 

frequently approximately 10 Tg yr-1 higher than the MBEI mean, while our estimate aligns closely with 558 

GFAS 1.2 and QFED 3.0. Conversely, in regions with significant DEFO and AGRI fires like SHSA and 559 

SEAS, FINN 2.5 estimates consistently occupy the upper portion of the inter-inventory range. In these 560 

areas, the MBEI mean is again more conservative, and our Max-Min band effectively captures the cluster 561 

of lower estimates from GFED, GFAS, and QFED (Figs. 6f, m).  562 

In contrast, inter-inventory agreement is generally higher in low- to moderate-emission regions at mid- 563 

to high latitudes, where the MBEI mean closely tracks the multi-inventory average (e.g., Temperate North 564 

American (TENA) and EURO; Figs. 6c, 6g). However, this consistency breaks down in boreal forests 565 

during years with episodic, large-scale fires. In these instances, the value of the Max-Min band becomes 566 

particularly evident. During the extreme BONA fire year of 2004, estimates spanned a wide range from 567 

FINN 2.5 (2.2 Tg) to GFED 5.0 (6.7 Tg). Critically, our own Max-Min band for that year expanded 568 

dramatically (from 1.0 to 8.0 Tg), explicitly quantifying the immense challenge and uncertainty in 569 

capturing such events. A similar expansion of our uncertainty band is observed in BOAS during its severe 570 

2021 fire season, where our maximum estimate reached 26.8 Tg, encompassing the high values from 571 

other inventories. 572 

Regions dominated by specific fuel types, such as the peatlands of EQAS, reveal fundamental 573 

methodological differences that are well-framed by our uncertainty analysis. While all inventories 574 
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captured the 2015 El Niño-driven fire peak, the estimated magnitude varied by more than five-fold, from 575 

QFED 3.0 (2.7 Tg) to FINN 2.5 (14.6 Tg) (Fig. 6n). The MBEI mean estimate (6.0 Tg) and its associated 576 

uncertainty band (3.2–8.6 Tg) are positioned centrally among these estimates, with its upper bound 577 

approaching the GFED 5.0 value (9.3 Tg) while excluding the extreme high and low outliers. This 578 

indicates that, under substantial uncertainty in quantifying PEAT emissions, the MBEI delineates a 579 

comprehensive Max–Min band and provides a stable central mean estimate within it. 580 

In summary, our comparison demonstrates that while existing inventories agree on broad spatiotemporal 581 

patterns, significant quantitative disagreements persist, particularly in tropical regions and during 582 

extreme fire events. Against this backdrop, the MBEI provides a new, synthesized central estimate and a 583 

robust uncertainty range (Min-Max band). Its central estimate is consistent with the ensemble median, 584 

and its uncertainty bounds effectively encompass the spread across different inventories. This central 585 

estimate and a quantified uncertainty range not only offers a reliable measure of biomass burning 586 

emissions but also serves as a diagnostic tool, highlighting the specific regions (e.g., African savannas, 587 

Southeast Asian peatlands) and conditions (e.g., extreme boreal fires) that drive the largest inter-588 

inventory discrepancies, thereby providing a clear basis for future inventory refinement. 589 

4  Discussion 590 

4.1 Advancement and uncertainty assessment 591 

This study introduces the MBEI, a systematic emission estimation framework built upon a framework of 592 

eight sub-inventories, integrating both bottom-up and top-down approaches with various combinations 593 

of key input data. The emission range of the MBEI provides a direct measure of structural uncertainty, 594 

allowing modelers to assess the sensitivity of their simulations to inventory choice (high-end vs. low-595 

end estimates). This addresses a long-standing challenge in climate and atmospheric chemistry modeling, 596 

where discrepancies among emission inventories are a recognized major source of the simulation 597 

uncertainty (Pan et al., 2020; Su et al., 2023). The MBEI framework systematically quantifies this 598 

uncertainty, revealing two key findings. First, the uncertainty is substantial in magnitude, with the 599 

maximum global annual CO2 estimate across the sub-inventories being 2.2 times the minimum. Second, 600 

and perhaps more importantly, the uncertainty exhibits significant spatial heterogeneity, with the highest 601 
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relative uncertainty not coinciding with traditional emission hotspots, but instead found in regions with 602 

lower emissions, such as AUST and MIDE. 603 

This divergence is strongly linked to how regional land cover and fire regime characteristics amplify the 604 

sensitivity of different estimation methodologies. For instance, in AUST, the fire regime is dominated by 605 

event-driven, extremely high-intensity megafires. These events pose significant challenges for both FRP-606 

based algorithms, which can be prone to saturation, and burned area-based methods, which struggle to 607 

accurately map such intense and rapidly spreading fires. Conversely, in the MIDE, the high uncertainty 608 

arises from weak, small-scale, and scattered AGRI or SAVA. These fires are often near the detection 609 

limits of satellite sensors, causing emission estimates to be highly sensitive to the chosen active fire 610 

detection confidence thresholds. In stark contrast, African savannas, despite their high emission fluxes, 611 

show lower relative uncertainty. Their widespread and seasonally predictable fires are robustly captured 612 

by both top-down and bottom-up approaches, leading to greater convergence among the different 613 

methods. This finding implies that future efforts to refine emission inventories should extend beyond 614 

traditional hotspots to better understand and parameterize the distinct combustion processes in these 615 

atypical fire regimes. 616 

The MBEI’s 21-year analysis also uncovers a critical shift in the long-term dynamics of global emissions. 617 

Despite a stable trend overall, we identify a clear decadal transition: from a slight decline dominated by 618 

weakening tropical fires (2003–2013) to a rising phase driven by intensifying boreal fires and more 619 

frequent extreme events (2013–2023). This dynamic, characterized by a decline in tropical fire activity 620 

and an increase in boreal fire activity, synthesizes seemingly disparate observations, such as the global 621 

decrease in burned area (Andela et al., 2017) and the lengthening of fire seasons in high-latitude regions 622 

(Jones et al., 2022), into a coherent narrative at the emission level. Particularly in the second decade, 623 

climate-driven extreme events, such as the 2015 Indonesian peat fires, the 2019–2020 Australian 624 

megafires, and the 2023 Canadian wildfires, significantly reshaped the global emission record. This 625 

underscores the growing influence of climate change on global biomass burning emissions, a shift with 626 

profound implications for the global carbon cycle and its associated climate feedbacks. 627 

4.2 Perspective of the MBEI framework 628 

A key feature of the MBEI framework is its flexibility and scalable design, allowing for future 629 

improvements as new data and methods become available. The accuracy of the inventory is intrinsically 630 
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linked to its inputs, and we identify clear pathways for enhancement in both the bottom-up and top-down 631 

approaches. For the bottom-up path, fuel load remains the dominant source of uncertainty. This 632 

uncertainty is amplified by the combustion structures unique to each biome, an issue that the static nature 633 

of current AGB products struggles to resolve. For example, in boreal forests, the thick litter and duff 634 

layers on the forest floor can sustain long-duration smoldering, making total fuel consumption highly 635 

sensitive to burn depth, which is notoriously difficult to estimate. Similarly, in peatlands, the immense 636 

carbon stock in subterranean organic soil means that emission estimates are critically dependent on the 637 

depth of burn, a highly variable parameter. In tropical forests, while total biomass is high, fires are often 638 

patchy, and a large fraction of the coarse woody debris may not combust in a single event. In contrast, 639 

savanna and grassland fuels, being well-ventilated and predominantly composed of fine, dry herbaceous 640 

matter, tend to have a higher and more stable combustion completeness. The inability of current static 641 

AGB products to capture these dynamic, biome-dependent variations in fuel availability and 642 

consumption is a fundamental limitation. While our use of NPP data for dynamic annual adjustment is 643 

an interim solution to capture some interannual variability, the advent of new-generation sensors fusing 644 

LiDAR, SAR, and passive microwave data promises to deliver high-resolution, dynamic AGB fields, 645 

which would fundamentally advance fuel load estimation (Cao et al., 2016; Liu et al., 2019; Rodríguez-646 

Fernández et al., 2018). For the top-down path, the primary challenge is extrapolating full-day FRE from 647 

the snapshots provided by polar-orbiting satellites. Our Gaussian model for reconstructing the diurnal 648 

FRP cycle represents a significant improvement over simple linear methods. However, the true 649 

breakthrough will come from the direct integration of the FRP diurnal cycle using minute-level 650 

observations from new-generation geostationary satellites (e.g., FY-4, Himawari-8/9), which will 651 

eliminate the need for empirical models and greatly enhance the physical realism of FRE estimates. 652 

Finally, both pathways depend on EFs to convert energy release or biomass burned into pollutant 653 

emissions. Current static look-up tables fail to capture the vast EF variability within biomes or even 654 

across the lifecycle of a single fire (van Leeuwen et al., 2013; Yin, 2022). Future improvements lie in 655 

two areas. One is the development of more comprehensive EF libraries through advanced molecular-656 

level speciation of aerosols (Jen et al., 2019; Koss et al., 2018), and the other is the creation of dynamic, 657 

high-resolution EF datasets by leveraging co-located trace gas measurements (e.g., CO/NO2 ratios from 658 

TROPOMI) to monitor combustion characteristics like the flaming-to-smoldering ratio in near-real-time 659 

(van der Velde et al., 2021). Therefore, while the MBEI currently quantifies uncertainty by integrating 660 
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existing methods, its flexible architecture is explicitly designed to serve as a platform for incorporating 661 

these future data streams. This ensures a clear pathway for the iterative refinement of biomass burning 662 

inventories, moving the field toward more comprehensive and accurate assessments. 663 

5  Conclusion 664 

This study systematically assessed global biomass burning emissions and their uncertainties from 2003–665 

2023 using the MBEI, an ensemble framework of eight sub-inventories that integrates both bottom-up 666 

and top-down approaches. A key finding is the spatial separation between the emission hotspots and the 667 

uncertainty hotspots. While high-emission regions in Africa and South America account for 64.4% of 668 

global CO2 emissions, the structural uncertainty there is relatively constrained (max/min ratio < 2.0). In 669 

contrast, the greatest uncertainty (max/min ratio > 6.0) is found in lower-emission regions characterized 670 

by extreme, intermittent fires (e.g., AUST) or scattered agricultural burning (e.g., the MIDE).  671 

Temporally, our analysis reveals a significant shift in the drivers of global biomass burning emissions 672 

over the past two decades. Although the overall long-term trend is not statistically significant, we identify 673 

a clear transition, the period dominated by declining tropical fire activity (2003–2013) was followed by 674 

a period increasingly influenced by intensifying high-latitude boreal fires and frequent climate-driven 675 

extreme events (2013–2023). 676 

The spatial heterogeneity and temporal shift highlight the growing complexity of the global biomass 677 

burning emission regimes. The primary contribution of the MBEI framework is therefore its ability to 678 

explicitly quantify this structural uncertainty. It provides a central estimate consistent with the multi-679 

inventory average, along with an uncertainty range that encompasses the estimates of major existing 680 

products. MBEI offers the crucial boundary conditions needed for Earth system models to estimate 681 

related environmental or exposure risk. 682 

To effectively assess the complex dynamics of global biomass burning emission, the results of this study 683 

indicate that the focus should evolve from pursuing a single best estimate to embracing a probabilistic, 684 

uncertainty-aware approach. It is suggested that such data-constrained uncertainty information should be 685 

directly integrated into atmospheric chemistry and Earth system models. This is essential not only for 686 

improving model fidelity but also for conducting more robust risk assessments that consider plausible 687 
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high-end emission scenarios. Ultimately, the MBEI’s explicit quantification of uncertainty provides a 688 

more solid scientific foundation for developing resilient environmental and climate policies. 689 
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