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Abstract: Surface mining has profound impacts on ecosystems, contributing to land
degradation, vegetation loss, pollution, and threats to biodiversity. Given the rapidly
rising demand for raw materials, understanding the dynamics of mining and
reclamation processes is essential to support sustainable development. Here, we
integrate and analyze a large set of mines distributed worldwide based on their known
land extent circa year 2020. We integrated time-series data of the Normalized
Difference Vegetation Index (NDVI), nighttime light (NTL) intensity, and land use to
detect and identify changes within mine sites from 1985 to 2022 and assess
spatiotemporal trajectories of mining and reclamation processes. The dataset comprises
74,726 polygons, covering a total area of 82,552 km?. Our dataset obtained the
maximum potential mining disturbance boundary—the cumulative outer envelope of
mining-induced land disturbance over the study period. China leads in both the number
and the areal extent of mining sites, followed by the United States and Australia. Within
the analyzed set of polygons, mining land footprint expanded steadily between 1985
and 2022, with the annual disturbed area peaking at 1,943 km? in 2015, with a slowing
expansion after 2015. From 1985 to 2022, the cumulative area of land converted to
mine reached 40,596 km?, accounting for 49 % of the total surface mining area in our
set, while the reclaimed area was 29,285 km?. Active mining areas dominated the global
mining landscape, comprising 31.6 % of all polygons, with approximately 48.9 %
concentrated in Asia. The spatiotemporal processes and patterns revealed in this study
provide crucial insights into the development of mine sites and provide new data to
support ecological impact assessments and sustainable development research in global
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1 Introduction

Mining activities are a fundamental driver of global economic growth and play a key
role in industrial development (Pavloudakis et al., 2024). However, mining causes
significant disruptions to ecosystems, particularly through vegetation loss, biodiversity
decline, water pollution and ecological degradation (Chen et al., 2025b; Giam et al.,
2018; Giljum et al., 2025; Qian et al., 2018; Xiang et al., 2021). Surface mining,
involving extensive soil stripping and land excavation, alters the surface landscape,
significantly modifies ecosystem structure and function, and causes habitat loss, which
contributes to biodiversity decline (Firozjaei et al., 2021; Giljum et al., 2022; Ma et al.,
2021; Xiao et al., 2020a; Yan et al., 2024; Zhao et al., 2023). Studies in tropical regions,
for example, have shown that mining activities can cause deforestation within a 70 km
radius, with indirect impact up to 28 times greater than direct impacts (Ladewig et al.,
2024; Sonter et al., 2017). As global demand for mineral resources continues to grow,
mining activities have expanded at an unprecedented rate. Global production of mineral
fuels, metal ores, and industrial minerals increased by 66 % over the past two decades,
reaching almost 80 billion tons by 2024 (UNEP IRP, 2024). The International Energy
Agency (IEA) estimates that achieving net-zero global greenhouse gas emissions by
2050 will require a sixfold increase in demand for key minerals, with some critical
minerals, such as lithium, experiencing a 40-fold increase (Carr-Wilson et al., 2024).
As the scale of mining inevitably expands globally, the need for monitoring and
assessing its ecological impacts is becoming increasingly urgent. A systematic
understanding and analysis of the precise spatial locations of global mining activities,
the boundaries of mining-induced degradation, and reclamation processes form the
foundation for assessing the ecological impacts of mining. However, impacts on more
than half of the world’s mining areas go unrecorded due to data limitations (Maus and
Werner, 2024), severely limiting the precise assessment of mining’s environmental
impact and the exploration of sustainable development pathways.

Globally, research focused on delineating mining area boundaries and monitoring the
spatiotemporal dynamics of vegetation disturbance and reclamation is steadily
increasing (Werner et al., 2019). However, these studies still have considerable room
for improvement, particularly regarding the number of mining sites, boundary accuracy,
and monitoring methods for vegetation disturbance. In recent years, visual
interpretation of satellite imagery has been applied to studies on delineating mining area
boundaries (Murguia and Bringezu, 2016). Werner et al. (2020) utilized satellite data to
directly map 295 major mine sites globally, focusing on delineating and classifying each
specific mine feature in high spatial detail, shifting the focus from broader affected
regions to the operational footprints themselves. On a global scale, Maus et al. (2020)
manually delineated 21,060 mining polygons, totalling 57,277 km?, by visual
interpretation of satellite images, focusing on 10 km buffers around the approximate
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coordinates of over 6,000 active mining sites across the global. This was later updated
in 2022 to include 44,929 mining sites across 117 countries, covering 101,583 km?
(Maus et al., 2022). Complementing this effort, Liang et al. (2021) produced a global-
scale geospatial dataset of mine areas, comprised of 24,605 mine area polygons that
add up to 31,396.3 km? globally, of which 45.6 % (11,221 polygons) were cross-
validated against the dataset of Maus et al. (2020). This validation revealed high spatial
consistency, with misclassification rates below 1 % in overlapping regions. Most
recently, Tang and Werner (2023) produced a finely delineated global mining footprint
from high-resolution satellite imagery, mapping 74,548 polygons over ~66,000 km? of
features such as waste rock dumps, pits, water ponds, tailings dams, heap leach pads,
and processing/milling infrastructure. It finds a smaller area than Maus et al. (2022),
but is more finely delineated. While visually interpreting satellite imagery is a precise
and effective method, it remains costly and time-consuming. Importantly, uncertainties
in mine area delineation persist, primarily stemming from subjectivity in visual
interpretation, temporal limitations in satellite image availability, and variations in
sensor geometric precision. Beyond mapping efforts, automated methods are
increasingly being developed that take these mining polygons as analytical entry points.
For example, Li et al. (2025) employed machine learning with Earth observation data
to construct a high-resolution global copper mining database, mapping 1,313 sites
(~7,267 km?) with detailed land use categories such as pits, waste rock dumps, and
tailings facilities. This work highlights the potential of automated methods to improve
consistency and efficiency in mining footprint monitoring.

Monitoring land surface disturbances in mining areas through time series analysis based
on delineated mining boundaries provides an effective approach for capturing long-
term changes associated with surface mining. Among various remote sensing indicators,
vegetation indices such as NDVI and the Enhanced Vegetation Index (EVI) have been
widely used to detect and quantify vegetation loss and recovery in mining landscapes
(Jacquin et al., 2010; Karan et al., 2016). These indices are sensitive to variations in
vegetation cover and condition, making them suitable for tracking disturbance and
reclamation processes using satellite imagery over extended temporal scales. For
example, He et al. (2023) coupled the Land Surface Temperature (LST) and NDVI to
monitor surface mining disturbances using Landsat time series. The study focused on
surface mining disturbances of the Huolinhe Coalfield, one of the largest mines in China.
Commonly used algorithms for time-series change detection in land surface monitoring
include Landsat-based detection of Trends in Disturbance and Recovery (LandTrendr)
(Kennedy et al., 2010) and the Continuous Change Detection and Classification (CCDC)
method (Jiang et al., 2022a). These methods are designed to identify temporal
breakpoints or gradual trends in surface reflectance or vegetation indices, enabling the
detection of disturbance and recovery processes over long periods and have been
applied in various studies on mining-induced land surface dynamics. For example, Xiao
et al. (2020b) mapped annual land disturbance and reclamation in a surface coal mining
region using Google Earth Engine and the LandTrendr algorithm. While LandTrendr
and CCDC perform well for monitoring land cover within individual or local mining
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areas, global-scale studies on land cover in mining areas remain insufficient (Jiang et
al., 2022b; McKenna et al., 2020; Mi et al., 2019; Yang et al., 2018). At the worldwide
scale, Yu et al. (2018) produced a mining dataset that includes land cover change
information for mining areas by analyzing multi-source datasets, including NTL,
MODIS, Landsat and high-resolution images from Google Earth. However, it was last
updated in 2013 and is based on traditional MODIS datasets, which cover only a limited
portion of global surface mining activities due to a lack of high spatial and temporal
resolution datasets.

Despite the great effort to map mines globally, existing datasets lack temporal
information, providing limited ability to determine the activity status in each mining
patch, such as whether open-pit mining areas are in active extraction or re-greening
phases through reclamation. This study presents a systematic approach to fuse mining
datasets, incorporating land change detection and morphological optimization to merge
and refine surface mining patch boundaries to derive temporal indicators of activity. We
further extracted temporal information on land degradation and reclamation within
mining areas from 1985 to 2022 and employed a decision-tree algorithm to classify the
activity status of mining polygons. The dataset was validated using random stratified
sampling, achieving an overall accuracy of 67 %. Compared to existing datasets, it
demonstrates improved accuracy in both the number of mining sites and boundary
delineation, while filling the gap in temporal information on land disturbance within
mining areas. This study provides a robust dataset for sustainable mining management
and ecological monitoring, enabling a better understanding of the spatiotemporal
dynamics of mining-induced environmental impacts.

2 Materials and methods

This study adopts an integrated strategy that combines multiple mining datasets with
land change detection and morphological optimization to harmonize and refine surface
mining boundaries, thereby deriving temporal indicators of mining activity. Temporal
dynamics of land degradation and reclamation from 1985 to 2022 were further extracted,
and a decision-tree algorithm was applied to determine the activity status of each
mining patch. Figure. 1 presents a detailed chart illustrating the workflow of this study.
Four major steps can be distinguished: (1) Refinement of mining area boundaries; (2)
Monitoring of temporal and spatial processes of disturbance in the mining area; (3)
Classification of disturbance types in the mining area; (4) Validation.
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163  Figure. 1 The four steps of the study workflow.
164
165 2.1 Refinment of mining area boundaries
166 To enhance the accuracy of surface mining area boundaries, a multi-step preprocessing
167  workflow was applied to refine the original global mining boundary dataset,
168  encompassing data integration, classification reconstruction, stable green area
169  exclusion, boundary overlap identification, and geometric simplification.
170 Step 1: Dataset integration and removal of duplicate/intersecting areas. Two widely
171  used global mining boundary datasets were first integrated: Dataset A (74,548 polygons,
172 65,585 km?) from Tang and Werner (2023) and Dataset B (44,929 polygons, 101,583
173 km?) from Maus et al. (2022). Through merging and union operations, a new Dataset C
174  was generated, comprising 82,078 polygons covering 120,043 km?.
175
176 Step 2: Identification of stable green areas. To delineate truly disturbed regions within
177  mining boundaries, we combined the Google Global Landsat-based CCDC Segments
178 (1999-2019) (Gorelick et al., 2023) with a current-epoch land-cover map from the
179  global 30-meter land cover time-series dynamic remote sensing dataset (GLC_FCS30D)
180  (Zhang et al., 2024) to extract areas with stable vegetation cover. This combination
181  leverages long-term, consistent, and high-resolution observations to reliably extract
182  areas of stable vegetation cover and detect mining-related vegetation changes. Pixels
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were labeled as stable green if they (i) exhibited no CCDC-detected temporal
breakpoints across 1999-2019, and (ii) were classified as vegetated in the current land-
cover map (e.g., forest, grassland, or cropland). This yields a mask of vegetated areas
that remained unchanged over the past two decades. Spatially overlapping areas with
mining boundaries were assumed to be undisturbed or ecologically restored and thus
erased from the boundaries.

Step 3: Edge-area erasure strategy. Stable green pixels were aggregated into polygon
objects, and erasure was performed at the object level. Only stable green polygons that
intersected mining boundaries were erased to avoid misclassifying native or residual
vegetation located along pit margins and haul-road edges as mining disturbance. Stable
green polygons entirely enclosed within mining boundaries (i.e., not intersecting the
boundary) were retained, as they likely represent enclosed features predating mining or
non-mining inclusions rather than genuine reclamation or undisturbed zones. By
erasing only boundary-intersecting polygons that showed no change during 1999-2019,
we obtained the maximum potential mining disturbance boundary—the cumulative
outer envelope of mining-induced land disturbance over the study period.

Step 4: Boundary jaggedness simplification and smoothing. Erasure of green polygons
introduced jagged irregularities in boundary segments. A distance-thresholding method
was applied for smoothing: adjacent boundary points within 100 meters and
approximately collinear were simplified into straight line segments, simplifying
geometries. The final integrated mining boundary dataset contains 74,726 polygons
with a total area of 82,552 km?.

:f»‘c) Intermediate dataset: C V{

Boundary of Dataset A (Tang and Werner, 2023)
B dary of Dataset B (Maus et al., 2022)

Boundary of Intermediate Dataset C

Boundary of Final Refined Dataset D

Figure. 2 Workflow of Refinment of mining area boundaries (Example Mining Area:
38.1353° N, 86.3544° W). (a) Two input datasets: Dataset A (blue lines; 74,548
polygons, 65,530 km?) (Tang and Werner, 2023) and Dataset B (green lines; 44,929
polygons, 101,583 km?) (Maus et al., 2022). (b) Merging and union of the two input
datasets. (c) Intermediate Dataset C (red lines; 82,078 polygons, 120,043 km?); (d)
Erasure of undisturbed peripheral areas. (e) Boundary simplification. (f) Final Refined
Dataset D (yellow lines; 74,726 polygons, 82,552 km?).
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2.2 Monitoring the spatiotemporal dynamics of mining-induced disturbance

We analyzed land use changes within mining boundaries from 1985 to 2022 using the
GLC_FCS30D dataset. For consistency with the objectives of this study, the original
land cover classes were reclassified into four categories: (1) Mine-related land cover,
(2) Cropland, (3) Sparse vegetation, and (4) Dense vegetation. Mine-related land cover
was defined to include impervious surfaces, bare areas, consolidated bare areas,
unconsolidated bare areas, water bodies and flooded flats, as identified in the
GLC_FCS30D dataset.

We define DEV and REC based on the following land use type changes: if a pixel
transitions from Cropland, Sparse vegetation, or Dense vegetation to Mine-related land
cover, it is defined as a Development area. If a pixel transitions from Mine-related land
cover to Cropland, Sparse vegetation, or Dense vegetation, it is defined as a
Reclamation area. Using the land use definitions outlined above and the global 30-meter
land cover time-series dynamic remote sensing products (1985 - 2022), we obtained
mining disturbance and reclamation data for over 74,726 surface mining polygons
worldwide from 1985 to 2022, at 30 m pixel resolution. GLC_FCS30D dataset provides
maps with a five-year frequency from 1985 to 2000 and annually thereafter. Thus, we
performed time interpolation on the data from before 2000. We define Bare Surface
Percentage (BSP) as the ratio of the area of Mine-related land cover to the total mining
area boundary. Formally, it is expressed as:

Area of Mine — related landcover
BSP =

Total mining boundary area
This formulation assumes that a reduction in bare surface extent corresponds to
vegetation regrowth or land cover restoration, and thus provides a proxy for the
progress of ecological reclamation within mining sites.

2.3 Classification of mining areas based on development trends

To evaluate the recent developmental trajectories (2018-2023) and current status of
global surface mining areas, we employed three indicators: NDVI, BSP, and NTL.
NDVI was derived from the Sentinel-2 surface reflectance dataset, which provides
high-resolution multispectral observations suitable for vegetation monitoring. BSP was
calculated in this study based on the GLC_FCS30D dataset. Nighttime light data were
obtained from the VIIRS Day/Night Band monthly product (NOAA, dataset ID:
NOAA/VIIRS/DNB/MONTHLY V1/VCMSLCFG) via Google Earth Engine. NDVI
captures vegetation restoration or degradation, BSP quantifies bare land extent, and
NTL reflects human activity intensity, enabling a comprehensive assessment of mining
area disturbances and reclamation. All datasets were spatially harmonized and
temporally aggregated to annual time series to ensure consistency across indicators.

The Mann-Kendall (MK) trend test was employed to quantify the time-series trends of
NDVI, BSP, and NTL in this study. This nonparametric statistical test is widely applied
to detect monotonic trends in time-series data. The results of the analysis for each
dataset are classified as follows: Increasing trend—indicating a significant positive
trend (p < 0.05); Decreasing trend—indicating a significant negative trend (p < 0.05);
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No trend—indicating no statistically significant trend (p > 0.05). The results of the MK
test are compiled into a unified DataFrame, with each mining area characterized by the
trend classifications of NDVI, BSP, and NTL. Based on the combined trends of NDVI,
BSP, and NTL, this study develops a rule-based decision-tree model to classify mining
area disturbances.

(1) BSP trend: As an indicator of bare land exposure, BSP is prioritized in the
classification hierarchy. Mining areas with a decreasing BSP trend are classified as
being in a reclamation state, while those with an increasing BSP trend are classified as
being in an active mining state. Mining areas with no significant BSP trend are
classified in the next step based on further analysis.

(2) NDVI trend: NDVI is employed to assess vegetation restoration or degradation.
Mining areas with an increasing NDVI trend are classified as being in a reclamation
state, while those with a decreasing NDVI trend, reflecting vegetation loss, are
classified as being in active mining. Mining areas with no significant NDVI trend are
classified in the next step based on further analysis.

(3) NTL trend: NTL is utilized to assess the level of human activities. Mining areas with
an increasing NTL trend are classified as being in active mining, while those with a
decreasing NTL trend indicate reduced human activities or mining area closure. If no
significant NTL trend is detected, the area is classified as stable or undisturbed.

Based on trend analyses of NDVI, BSP, and NTL, a rule-based decision tree model was
developed to classify mining areas into three categories. The framework first
determined mining status as expanding, shrinking, or stable, and subsequently mapped
these into types: active mines (expanding, characterized by increasing bare land,
decreasing NDVI, and/or rising nighttime light signals), closed mines (shrinking,
indicated by decreasing bare land, increasing NDVI, and/or declining nighttime light
signals), and undefined mines (stable, where no significant MK trend was detected in
NDVI, BSP, or NTL, or where mixed signals reflected simultaneous extraction and
reclamation). By integrating the trend analyses of NDVI, BSP, and NTL, this study
reveals the spatiotemporal dynamics of mining area disturbances and reclamations on
a global scale.

2.4 Validation

We conducted stratified random sampling over 25 years (1990, 1995, and 2000-2022)
to assess the temporal accuracy of the proposed method in detecting mining-
reclamation transition years. For each year within the sampling period, 40 mining-
related pixels were randomly selected using a stratified sampling strategy, resulting in
a total of 1,000 validation samples. Figure. Al shows the spatial distribution of all
validation samples. Reference labels were generated through visual interpretation of
high-resolution Google Earth imagery. To enhance the consistency and accuracy of
interpretation, LandTrendr-derived segmentation of the annual maximum NDVI time
series was integrated, along with complementary spectral profiles from Normalized
Difference Water Index (NDWI) and Normalized Burn Ratio (NBR) indices. All three
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indices (NDVI, NDWI, and NBR) were derived from Sentinel-2 MSI surface
reflectance data.

The spatial location of the sample and the accuracy verification results using NDVI,
NBR, NDWI, and high-resolution Google Earth imagery are presented in Fig. 3. Figure.
3a illustrates the location of the sample mine on the island of Borneo in Indonesia.
Figure. 3b shows spectral validation results for a selected sample point. The upper graph
illustrates the NDVI time series (blue), LandTrendr segmentation results (orange), and
the mining year inferred from the land cover time series (LCTS) as a red vertical dashed
line. The lower graph shows the full time series for NDVI, NDWI, and NBR, with each
point representing a satellite observation. These indices respectively reflect vegetation
greenness, surface water presence, and vegetation structural change. The spectral
trajectories indicate a stable condition before 2015, followed by clear disturbance
signals in 2015. The mining year inferred from the LCTS, however, is 2018,
highlighting the potential temporal discrepancy between spectral evidence and land
cover-based detection.

~
=
~

[

W “‘.TE"

g

NDVI (scaled by 1000)

/m

Normalized value (scaled by 1000)

4 @ Google Earth
L
R

Imagery Date 12/31/2014  Imagery Date 12/31/2015  Imagery Date 12/31/2016

Figure. 3 (a) Spatial location of a sample mine Spatial location of a sample mine
(WGS84: 3.54386°N, 117.18742°E) located on the island of Borneo, Indonesia; (b)
Accuracy verification results using NDVI, NBR, NDWI, and high-resolution Landsat
imagery (accessed via Google Earth).

3 Results

3.1 Spatial distribution characteristics of global mine areas

Global surface mining exhibits pronounced spatial heterogeneity in both scale and
intensity. At the continental and national levels, mining activities are unevenly
distributed, with certain regions concentrating a disproportionately large number of
sites or total area. Distinct spatial patterns also emerge, reflecting divergent
development models—ranging from fragmented small-scale operations in Asia to
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centralized large-scale mines in countries such as Australia and Brazil. Beyond these
spatial trends, a critical ecological concern arises from the overlap between mining
areas and Key Biodiversity Areas (KBAs), where intensive extraction activities directly
threaten globally significant ecosystems and species (Boldy et al., 2021; Li et al., 2020;
Lv et al., 2019; Sonter et al., 2018; Tai et al., 2020).

This study identifies 74,726 surface mine area polygons globally, encompassing a
cumulative areal extent of 82,552 km?, with an arithmetic mean of 1.10 km?. Figure. 4a
illustrates the global distribution of mining polygons, together with their area and count
aggregated along latitude and longitude. Figure. A2 shows the global mining density in
a 100 km grid. The analysis was performed in an equal-area projection (Interrupted
Goode Homolosine), while the visualization uses the PlateCarree projection. Mining
area densities range from 0 to 15.13 % per fishnet, at an average of 0.19 %.

Asia hosts the largest share in both number and areal extent, with 37,304 polygons
(49.9 %) spanning 26,992 km? (32.7 %), and an average site size of 0.72 km?, indicating
highly fragmented, small-scale mining (Fig. 4b). North America ranks second,
comprising 11,059 polygons (14.8 %) and 14,160 km? (17.2 %), with a mean site size
of 1.28 km?. Europe accounts for 9,167 polygons (12.3 %) over 11,799 km? (14.3 %), ,
with a mean site size of 1.29 km?. Africa (6,360 polygons, 8.5 %; 8,801 km?, 10.7 %)
and South America (6,923 polygons, 9.3 %; 12,345 km?, 15.4 %) exhibit comparatively
larger average site sizes (1.38—1.78 km?) due to widespread surface mining. In Oceania,
dominated by Australia’s mega-mines, 3,913 polygons (5.2 %) extend over 8,075 km?
(9.8 %), with the largest mean site size globally (2.06 km?).

The distribution of global mine areas is markedly uneven, with a strong concentration
in a limited number of countries. Our dataset comprises mine area polygons from 155
countries and regions. Table Al shows summary of per-country mine areas globally
mapped in this study. The top 10 countries ranking by total mining area, including China,
the United States, Australia, Russia, Indonesia, Canada, South Africa, Chile, Brazil, and
Peru, comprise 70.6 % (58,268 km?) of the global total. When extended to the top 30
countries, this proportion increases to 90.7 % (74,915 km?), underscoring the high
geographical concentration of mining activities worldwide. Table Al presents the
mining areas of the major contributing countries. China ranks first in total mining area
(11,542 km?, 14 %)), driven by 27,948 mining polygons with a mean areal extent of 0.41
km? per site (Fig. 4c). While China has the largest number and total area of mining
polygons globally, its average site size remains significantly lower than that other high
mineral demand countries (e.g., India and USA) and high mineral export countries (e.g.,
Australia, Canada, South Africa, and Russia), where averages exceed 1 km?. African
countries, particularly in sub-Saharan Africa, show both small total areas and small
scale sizes, largely due to the prevalence of artisanal and small-scale mining that occurs
informally on unregulated land (Hilson et al., 2017; Oramah et al., 2015).

10

Open Access

Earth System
Science

Data

suoIssnoasiq



https://doi.org/10.5194/essd-2025-583
Preprint. Discussion started: 12 November 2025
(© Author(s) 2025. CC BY 4.0 License.

373

374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

< 1000
@ g g
3 s 1000 2
Count E
s £ 0 °
s S < 180 180°E
60°N 60°N
30°N 30°N
0° 0°
30°8 3008
@® Mining polygons \£ -~
60°S 60°S
=3 5 S 180°W 120°W 60°W 0° 60°E 120°E 180°E
2 g
Area (Km?)
(b) (©)
South America Oceania
1.00]
154%  9.8% QE
. x 0.75
Africa North America
10.7% 17.2% é 0.50
<
2
< 0.25
14.3%
32.7% 0.00
PE RPN S DS
FTEFF I EOFSNSSES
T P& & &P T D& P
Europe (,&g v}‘%\ Q-\&e‘” C";@ w O \{"&o{ e}o Fo
&
Asia R %e" &

Figure. 4 Global distribution and characteristics of mining polygons. (a) Global
distribution of mining polygons and their latitudinal/longitudinal statistics of area and
count. Given the visualization effect, the centroids of the polygons are used for display
here instead of the actual shapes of the polygons. (b) Continental proportion of the
global mining polygons area. (c) Mining polygons area in the top 10 countries in terms
of total mining area.

In this study, a total of 3,248 mining areas were identified within KBAs worldwide,
covering a combined area of 3,986 km?, accounting for 4.8 % of the global mining
extent. Figure. 5a shows the global mining density within KBAs in a 100 km grid. These
polygons are unevenly distributed across 105 countries and regions. Mining area
densities range from 0 to 3.25 % per fishnet, at an average of 0.07 %. Table A2 shows
summary of per-country mine areas within KBAs mapped in this study. Asia hosts the
largest number of KBA-overlapping mining areas (1,412 polygons, 43.5 %), followed
by South America (543 polygons), North America (394 polygons), and Europe (390
polygons). In terms of area, Asia also ranks highest (1,299 km?, 32.7 %), followed by
South America (1,156 km?, 28.9 %) and Africa (512 km?% 12.9 %) (Fig. 5b).
Approximately 71 % of the polygons are situated within 10 countries: China, Brazil,
Argentina, Mexico, Australia, South Africa, Indonesia, Namibia, Burma, and Venezuela
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393  (Fig. 5¢). China alone accounts for 858 mining areas (26.3 %) within KBAs, with a
394  total area of 682 km? (17.1 %). Brazil (244 polygons, 443 km?) and Argentina (22
395 polygons, 427 km?) also show considerable overlaps area despite fewer polygons.
396  Notably, Argentina shows largest average area per polygon (19 km?), indicating the
397  presence of large-scale operations within sensitive ecological regions. In contrast,
398  countries such as Australia and Mexico exhibit moderate overlap both in terms of site
399  count and area. These results highlight spatial clustering of mining pressure within
400  biodiversity-priority regions, particularly in Asia and South America. The coexistence
401  of high biodiversity value and intensive mining underscores the urgent need for
402  spatially targeted conservation strategies and the integration of ecological sensitivity
403  into mining governance frameworks.
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404
405  Figure. 5 Global distribution and characteristics of mining polygons within KBAs. (a)
406  Global mining density within KBAs in a 100 km grid. Mining area density is calculated
407 as the proportion of mining area within 100 x 100 km (10,000 km?) grid cells. Data was
408  aggregated using the Interrupted Goode Homolosine equal-area projection to ensure
409  accurate area calculations. The map is displayed using the PlateCarree projection. The
410  boundary and attribute data of KBAs used in this study are obtained from the World
411  Database of Key Biodiversity Areas (https://www.keybiodiversityareas.org/). (b)
412 Counts and total area of mine within KBAs by world regions. (c) Top 10 countries by
413 mining area within KBAs.
414
415 3.2 Monitoring of spatiotemporal process of disturbance in mining area
416  Mining activities lead to substantial modifications in land cover. By tracking land cover
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change at the pixel level within delineated mining boundaries, we analyzed the global
spatiotemporal dynamics of land disturbance and reclamation from 1985 to 2022. Over
this period, the cumulative area of land disturbed by surface mining reached 40,596 km?,
accounting for approximately 49 % of the total global surface mining footprint. In
comparison, the reclaimed area totalled 29,285 km?. The annual land disturbance and
reclamation areas showed distinct temporal dynamics during 1985-2022, with phase
shifts in both magnitude and relative balance (Fig. 6a).

From 1985 to 2000, for the mine areas included in the study, the annual disturbed area
surged from 214 km? to 940 km?, while the annual reclamation area expanded more
slowly from 82 km? to 357 km?, resulting in a substantial gap indicative of delayed
ecological restoration. During 2001-2010, both metrics continued rising to 1541 km?
(disturbance) and 1030 km? (reclamation) with decelerated rates (36.7 km? vs. 18.4 km?
yr'), and the positive gap narrowed gradually. From 2011 onward, the disturbed area
exhibited pronounced fluctuations, peaking at 1,943 km? in 2015, followed by a steady
decline to 1,373 km? in 2022. In contrast, the reclaimed area continued to rise with
interannual variability and reached a maximum of 1,735 km? in 2021. A notable
transition occurred in 2018, when the reclaimed area (1,576 km?) first exceeded the
annual disturbed area (1,569 km?), marking a shift toward net ecological recovery. This
turning point underscores a global shift toward intensified ecological restoration. For
example, in China, ecological rehabilitation of mining areas has long been prioritized,
with national programs over the past four decades focusing on vegetation recovery and
the mitigation of geological hazards. Furthermore, the Chinese government has ordered
the closure of over 20,000 mines, and these sustained efforts have led to significant
advances in mine land reclamation (Chen et al., 2025a; Xiao et al., 2020c).
Quantification of the disturbance-reclamation gap (i.e., disturbance area minus
reclamation area) confirms consistent positive values (net degradation) during 1990—
2017, shifting to negative values post-2018, indicating a global transition to net land
recovery.

We analyzed land disturbance and reclamation in global surface mining areas across
five landcover types: cropland, forest, grassland, shrubland, and sparse vegetation from
1985 to 2022. Cropland had the largest damaged area (13,623 km?, 34 %), followed by
shrubland (8,464 km?, 21 %), grassland (7,836 km?, 19 %), sparse vegetation (5,262
km?, 13 %), and forest (5,411 km?, 13 %) (Fig. 6b). For land reclamation, cropland also
boasted the largest cumulative reclaimed area (9,082 km?, 31 %), with shrubland (6,716
km?, 23 %), grassland (5,885 km?, 20 %), sparse vegetation (4,221 km?, 14 %), and
forest (3,380 km?, 12 %) following in sequence. Despite ongoing reclamation efforts,
considerable differences remain between disturbed and restored land cover types. Here,
“reclamation” refers to areas showing vegetation recovery, which may result from both
active restoration practices and natural regrowth in abandoned polygons. We calculated
the gap between damaged and reclaimed areas for annual areas of each landcover type
(Fig. A3 and Fig. 6¢). As of 2022, approximately 4,541 km? of cropland (33.3 %) and
2,039 km? of forest (38 %) were disturbed by unreclaimed mining areas. In contrast,

13

Open Access

Earth System
Science

Data

suoIssnoasiq



https://doi.org/10.5194/essd-2025-583
Preprint. Discussion started: 12 November 2025
(© Author(s) 2025. CC BY 4.0 License.

461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504

the unreclaimed proportions for grassland, shrubland, and sparse vegetation are
relatively lower, at 25 %, 21 %, and 20 %, respectively. This discrepancy may reflect
differences in post-mining land use suitability, ecological fragility, or restoration
policies targeting specific land cover types.

Notably, although the forest had the lowest damaged area among all land types, the gap
between its disturbance and reclamation showed a relatively compact and continuously
positive distribution. The box plot revealed that the net gap in most years was
concentrated in the 0-100 km? range, with almost no extreme outliers, reflecting the
overall low disturbance intensity of forest ecosystems. However, unlike other landcover
types where reclaimed area exceeded damaged area in some years, the forest was almost
in a “net damage” state throughout the year. This persistent reclamation lag may stem
from the long natural recovery period of forests or insufficient current restoration
measures for forest ecosystems (Poorter et al., 2021). Moreover, considering the crucial
role of forests in biodiversity protection and carbon storage, even a small absolute
damaged area can have significant ecological consequences per unit of disturbance
(Cook-Patton et al., 2020; Feng et al., 2022).

Among all mining-induced land disturbances globally, Asia contributed the largest
share, particularly in cropland and grassland areas. Approximately 6,414 km? of
disturbed cropland (47 % of the global total) and 4,532 km? of disturbed grassland
(58 %) were located in Asia (Fig. A4). Within the region, China ranked first in both
disturbed and reclaimed land areas, accounting for about 22 % of global cropland loss
and 40 % of global grassland loss (Fig. 6d). Besides, forest disturbances were
primarily observed in Russia, Canada, and Indonesia, contributing 20 %, 13 %, and 11 %
of the global total, respectively. Shrubland loss was concentrated in North America
(25 %) and Africa (23 %), with the United States alone contributing 16.5 %.

By 2023, the global average reclamation rate of surface mining land reached 70.3 %,
indicating substantial progress in land restoration efforts worldwide. Nevertheless,
pronounced regional disparities remain. Oceania and Africa exhibited the highest
reclamation rates, whereas Asia and Europe were approximately 10 % lower than the
global average. Figure. 4e illustrates the spatial distribution of reclamation by showing
the percentage of bare surface area within mining regions at a 100-km resolution in
2022. The reclamation rate is calculated as 1-BSP and represents the proportion of
vegetated land within mining areas, serving as an indicator of ecological recovery.

At the national level, countries with the largest surface mining footprints exhibited
pronounced variation in reclamation performance. Figure. A5 shows the reclamation
rate of top 15 Countries ranking by mining area at 2023. China, hosting the largest
number of mining polygons globally, reported a reclamation rate of 59.6 %, which falls
below the global average—highlighting persistent challenges in ecological restoration
under high-intensity mining conditions. In contrast, other major mining countries such
as the United States (73.0 %) and Australia (80.8 %) demonstrated notably higher
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reclamation rates, likely attributable to stronger regulatory systems and established
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506  restoration frameworks (Yonk et al., 2019). In Asia, several countries outperformed the
507  continental average, including India (72.2 %), Kazakhstan (77.8 %), and Indonesia
508  (76.9 %), reflecting the effective implementation of restoration practices in some
509  contexts. In South America, while Brazil reported a high reclamation rate of 81.2 %,
510 followed by Peru (63.0 %), countries such as Chile (53.3 %) exhibited considerably
511  slower progress, indicating persistent internal disparities across the region. In Africa,
512  resource-dependent economies such as Ghana (83.7 %) and the Democratic Republic
513  of the Congo (79.6 %) also showed encouraging reclamation trends. The major mining
514  countries of Russia (62.4 %) and Ukraine (71.4 %) reported moderate reclamation rates.
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516  Figure. 6 (a) Annual land disturbance and reclamation area of global surface mines
517  (1985-2022). To ensure the continuity of the graph, the values for 1990, 1995, and 2000
518  correspond to the average annual changes over five-year intervals—specifically, they
519  represent the five-year averages for the periods 1985-1990, 1991-1995, and 1996—
520 2000, respectively. (b) Gain and loss of land cover types during mining disturbance
521  events. (c¢) Boxplot of "gap" for land cover types (gap = loss - gain). (d) Losses and
522  gains of five land cover types in the top 15 countries ranked by total area of land with
523  changes. (¢) Percentage of bare surface area in global mining areas, aggregated to 100
524  km resolution (2022).
525
526 3.3 Classification of global surface mining areas
527  Overall, the global distribution of mining development status reveals a dominant trend
528  of active mining, both in terms of site counts and spatial extent, with notable regional
529  and national variations. Figure. 7a presents the classification of the development status
530 ofmining areas over the recent years, encompassing three categories: active, undefined,
531

and closed. For the change maps corresponding to each development status category,
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two distinct change directions are denoted by specific colors: Red pixels indicate a land
cover transition from non-mining-related types to mining-related types, representing
the expansion of mining areas. Green pixels indicate the inverse transition—from
mining-related land cover types to non-mining-related types—representing the
shrinkage of mining areas.

Globally, of the 74,726 surface mining polygons identified, 14,546 (19.5 %) were
classified as closed mines, 36,542 (48.9 %) as undefined mines, and 23,638 (31.6 %)
as active mines (Fig. 7b). In terms of area, active mines accounted for 30,147 km? (36.5 %
of the global total), followed by closed mines at 25,389 km? (30.8 %). These results
indicate that active mining areas dominate both numerically and in spatial extent
worldwide. Regional analysis (Fig. 7c) shows that active mines outnumber closed
mines across all continents except Europe, which is the only continent having more
closed mines (2003) than active mines (1885). Mineral-rich Africa exhibits the lowest
proportion of closed mines (18.7 %) and the highest proportion of active mines (33.5 %)
(Ross and Werker, 2024). Asia has approximately 20.0 % of green mines and 32.0 %
active mines, with 11,953 active mines representing 50.6 % of the global active mine
count, highlighting intensive mining operations. In North America, active mines
constitute 33.5 % of polygons, underscoring their role as major mineral producers
(Giljum et al., 2025).

Among the major mining countries, almost all exhibit a predominance of active mines
over closed mines, indicating that most nations remain in an expansionary phase of
mining development (Fig. 7d). Fourteen of the fifteen leading mining countries follow
this pattern, with South Africa as the sole exception. Several major mining nations,
including China, the United States, Australia, Russia, Indonesia, and Canada, show a
markedly higher proportion of active mines relative to closed mines. China, which
possesses the largest mining area globally, and the United States, ranking second, both
display similar proportions, with active mines accounting for approximately 31 % and
closed mines around 21 %. Chile has the highest share of active mines (52.0 %) and
one of the lowest shares of closed mines (12.4 %), reflecting its copper-dominated
sector’s strong reliance on ongoing mineral extraction (Abbas et al., 2024). Peru shows
a similar trend, with closed mines comprising only 10.4 % and active mines 33.8 %. In
contrast, South Africa stands out as the only major mining country where closed mines
(30.1 %) exceed active mines (19.4 %), diverging from the overall global trend.
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Figure. 7 (a) Classification of development status of mining areas in the recent five
years: active, undefined, closed. While the figure illustrates the period 2019-2023, the
actual dataset used spans from 2018 to 2023. (b) Global distribution of three types of
mining areas. (c) Continental counts of mining areas types (d). Type structures of the
top 15 countries (sorted by total mining areas descendingly).

4 Discussion

4.1 Comparison of results of prior mining area datasets

Our refined global surface mining area dataset demonstrates substantial improvements
in comprehensiveness, offering detailed insights into spatiotemporal processes related
to mining and reclamation. Compared with existing datasets, it achieves greater
completeness in terms of data volume, while also filling the gap in long-term
spatiotemporal change information of mining - induced land disturbances.

To evaluate its performance, we systematically compared our dataset against two
widely used global mining boundary datasets—Dataset A (Tang and Werner, 2023)
and Dataset B (Maus et al., 2022)—as well as the intermediate merged dataset (Dataset
C) generated during our workflow (Fig. 2). Dataset A comprises 74,548 polygons
(65,585 km?) and delineates mining areas with relatively tight outlines, thereby
capturing polygon shape variability in detail. In contrast, Dataset B consisting of 44,929
polygons (101,583 km?), applies a 10 km manual buffering approach that broadly
encompasses mining extents but frequently exaggerates disturbed areas. These
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methodological differences are evident in Fig. 2a, where the boundaries from Maus et
al. (2022) (green lines in Fig. 2a) cover much larger regions, whereas the boundaries
from Tang and Werner (2023) (blue lines in Fig. 2a) are more closely aligned with actual
mine features. Building on these, the boundaries of our refined dataset (yellow lines in
Fig. 2f) further improve delineation by more accurately fitting the true extent of mining
disturbances, thereby reducing both overestimation and omission.

Our intermediate Dataset C, obtained through merging and union operations, contained
82,078 polygons (120,043 km?), which maximized spatial coverage but introduced
redundancy and misclassification. Through multi-step optimization, we refined this
dataset to 74,726 polygons (82,552 km?), thereby striking a balance between coverage
and accuracy. Compared with Maus et al. (2022), our dataset contains 165 % of its
polygons while covering only 81.3 % of its total area, effectively reducing boundary
overestimation. Relative to Tang and Werner (2023), our dataset adds 178 polygons and
represents 125.9 % of its mapped area. By integrating CCDC-derived land surface
dynamics with fine-resolution land cover datasets, we erased long-term stable
vegetation patches and eliminated spurious inclusions, which led to a 31.2 % reduction
(37,493 km?) in overestimated areas compared with the simple merged result. This
refinement yields the maximum potential mining disturbance boundary, defined as the
cumulative outer envelope of mining-induced land disturbance across the study period,
thereby substantially improving boundary precision. As summarized in Table 1, the
refined dataset (present study) balances spatial coverage and accuracy, reducing both
overestimation and omission, and thus provides a more reliable basis for global-scale
mining disturbance assessments.

In this study, we analyzed the spatiotemporal dynamics of 74,726 mining polygons
worldwide, covering the period from 1985 to 2022, and further examined recent
development trends of mining areas. The monitoring of mining disturbance and
reclamation processes was conducted at the pixel scale, enabling fine-grained tracking
of temporal land-use transitions within each mining site. By comparison, Yu et al. (2018)
focused on the spatial locations of 790 mines and carried out time-series monitoring of
land-cover changes, but its temporal coverage was limited to the 1980s—2013. Our
dataset not only extends the temporal span to nearly four decades (1985-2022) but also
substantially broadens the scope to a global coverage of 74,726 mining polygons. In
addition, we classified the current development status of mines into three categories—
active, closed, and undefined—providing a new dimension of information that
complements previous datasets. The broader spatial coverage, combined with improved
temporal resolution and accuracy, offers enhanced capacity to track fluctuations in both
mining expansion and reclamation. This advancement facilitates a more comprehensive
understanding of the temporal evolution of global surface mining disturbances and
establishes a stronger foundation for ecological restoration research and impact
assessment in mining regions.

Table 1 Comparison of results with prior mine area studies.
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Regions Mines Occupied Average

Source /scales /Polygons  land (km?) area

(km?)

(Tang and Werner, 2023) Global 74,548 65,585 0.88
(Maus et al., 2022) Global 44,929 101,583 1.8
(Liang et al., 2021) Global 24,605 31,396 1.3
(Maus et al., 2020) Global 21,060 57,277 2.7
Present Study Global 74,726 82,552 1.1

4.2 Advantages of this method and future application directions

By integrating and refining existing datasets and applying automated morphological
optimization, this study substantially improved both the coverage and boundary
accuracy of global surface mining area delineation relative to previous products.
Specifically, the delineated boundaries were enhanced by erasing stable green pixels—
identified through the Google Global Landsat-based CCDC Segments (1999-2019) and
the GLC _FCS30D dataset—that intersected with mining polygons over a 20-year
period. This procedure effectively reduced misclassification of non-mining vegetation
within mining extents, thereby increasing the spatial precision of boundary mapping.
As a result, we derived the maximum potential mining disturbance boundary, defined
as the cumulative outer envelope of mining-induced land disturbance throughout the
study period. This approach not only ensures more reliable detection of historical
mining footprints but also provides a solid data foundation for future monitoring of
disturbance—reclamation dynamics at multiple spatial and temporal scales.

For classifying development trends of mining areas, we integrated three remote
sensing-derived indices, NDVI, BSP, and NTL, that capture spatiotemporal changes
from multiple dimensions. NDVI, BSP, and NTL represent vegetation recovery, bare
soil exposure, and human activities, respectively, providing a robust framework for
disturbance analysis. The non-parametric MK test effectively reduces noise and
irregular fluctuations in the data, ensuring the reliability and stability of trend analysis.
This approach objectively and accurately detects monotonic trends in diverse datasets,
providing a solid scientific basis for classifying disturbance types. Moreover, the
method is simple, transparent, and easy to implement, making it suitable for large-scale
spatial data analysis. Classification rules and data processing methods can be adjusted
according to the specific characteristics of different mining areas.

Future research can integrate more detailed ecological restoration monitoring data,
ecological environment data, human activity data, and socioeconomic data by
incorporating the spatial boundaries of mining areas and time-series data on internal
land disturbances. This integration will enable exploration of the impacts and
relationships between global surface mining and the ecological environment, as well as
help human society better distinguish different qualities of restored ecosystems after
reclamation of former mining areas.
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4.3 Uncertainty and limitations

This study is subject to several uncertainties and limitations stemming from the input
data and the methodological framework. First, the temporal baseline of the analysis is
constrained by the GLC_FCS30D dataset, which commences in 1985. Consequently,
mining disturbances and any subsequent reclamation activities occurring prior to this
date are not captured in our results. Furthermore, the temporal granularity of this dataset
is coarse prior to 2000, with observations limited to five-year intervals. This reduces
the precision for pinpointing the exact timing of disturbance and reclamation events,
particularly in the early decades of the study period. Uncertainty is also introduced
through the classification schemes inherent in global land cover products. For example,
cropland appears as the largest cumulative reclaimed area, likely reflecting
misclassification of early successional vegetation, bare soil, or agricultural areas rather
than actual land use (Sonter et al., 2025).

A primary methodological limitation is the sensitivity of the disturbance detection
algorithm. The approach identified disturbance signals across 40,596 km?
corresponding to approximately 49 % of the total delineated mining area. The
remaining 51 % of the area did not exhibit a detectable disturbance signature under our
framework. This incomplete detection rate can be attributed to a combination of
inherent uncertainties within the GLC_FCS30D source dataset and the intrinsic
limitations of the algorithm in capturing the complex spectral-temporal signatures of
highly dynamic mining environments. Furthermore, the reliability of vegetation-based
metrics is also geographically variable, posing particular challenges in extreme
environments such as arid deserts and tundra (Xu et al., 2023). In these regions, natural
bare land dominates, potentially leading to high rates of false negatives, while data
processing accuracy and classification reliability are generally lower, complicating the
detection of mining-induced disturbances.

Furthermore, mines that lacked sufficient confidence for classification into active or
closed categories were designated as "undefined." This undefined category may
encompasses mines undergoing simultaneous extraction and reclamation—a scenario
where concurrent increases in BSP (indicating ongoing disturbance from extraction) or
NTL (indicating operational activity) and NDVI (indicating vegetation growth from
reclamation) create ambiguities that hinder clear determination of their dominant status.

Finally, the reclamation rate in this study was calculated as 1-BSP, representing the
proportion of vegetated cover within mining areas. While this proxy provides a
consistent and scalable measure of greening by quantifying the proportion of vegetated
cover within mining boundaries, it does not necessarily reflect actual reclamation
practices or ecological restoration outcomes. Therefore, the global average reclamation
rate of 70.3 % reported for 2023 should be viewed as an indicator of vegetation presence,
which likely overestimates the extent of true ecological recovery.

The accuracy assessment covered 14 major terrestrial ecoregion types globally,
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commonly referred to as “biomes”, such as Boreal Forests/Taiga, Deserts and Xeric
Shrublands, Flooded Grasslands and Savannas, and Mangroves (Olson et al., 2001).
The overall accuracy was 67 %, but significant regional variations existed (Table A3).
Excluding the Tropical and Subtropical Coniferous Forests (with only one sample), the
28 samples in Tropical and Subtropical Dry Broadleaf Forests showed the highest
average accuracy (79 %). Four zones—Montane Grasslands and Shrublands, Temperate
Broadleaf and Mixed Forests, Tropical and Subtropical Grasslands, Savannas and
Shrublands, and Tropical and Subtropical Moist Broadleaf Forests—exceeded 70 %
accuracy. In contrast, Deserts and Xeric Shrublands had an average accuracy of 61 %,
likely due to high environmental heterogeneity and limited method adaptability in
complex arid environments. The Mangroves zone exhibited a high standard deviation
(0.58), indicating large fluctuations in accuracy, while Tropical and Subtropical Dry
Broadleaf Forests had a lower standard deviation (0.42), reflecting more consistent
results.

The confusion matrix between predicted and reference transition years (Fig. A6 a)
demonstrated a clustered diagonal distribution, indicating temporal proximity between
predictions and ground-truth data. Cumulative temporal accuracy analysis (Fig. A6 c)
revealed 67 % of samples achieved +5-year agreement, with progressive accuracy
improvements observed at broader tolerance thresholds. Temporal lag histograms (Fig.
A6 b) quantified prediction errors. Error propagation analysis identified systematic
limitations: 13.7 % of samples (n=137) exhibited pre-1985 mining disturbances that
were misclassified as transition events. This discrepancy arises from the land cover
classification dataset’s temporal scope (initiated in 1985), which prevents the detection
of pre-existing disturbances. Such errors predominantly occurred in regions with legacy
mining activities prior to the observational baseline.

5 Conclusion

In this study, we developed and validated a new global dataset that delineates the
maximum potential disturbance boundaries for 74,726 surface mining polygons and
tracks their land change dynamics from 1985 to 2022. By integrating existing products
with an automated morphological optimization that systematically removed stable, non-
mining vegetation, we substantially improved the spatial precision of historical mining
area boundaries. The classification of mine development trends was further enhanced
by integrating multi-dimensional remote sensing indices (NDVI, BSP, and NTL) within
a robust Mann-Kendall trend analysis.

The resulting dataset, covering a total extent of 82,552 km?, reveals the vast scale of
global mining's footprint. Our analysis shows that cumulative land disturbance reached
40,596 km? (49 % of the total delineated area) over the 38-year period, while cumulative
reclamation amounted to 29,285 km?. Cropland was the land cover type most severely
affected by surface mining. Significant disparities in reclamation progress were
observed across regions, particularly in ecologically fragile areas such as the Amazon
and tropical rainforests, where deforestation and delayed reclamation remain pressing
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issues. Over the past several years, active mines have consistently dominated,
constituting 31.6 % of the total. The high share of active mines reflects the continued
expansion of mining.

This high-precision boundary and disturbance dataset provides a foundational
geospatial framework for the Earth system science community. Its primary value lies in
addressing a critical knowledge gap by providing a new and more detailed global
database that documents the long-term time series of both mining disturbance and
reclamation dynamics. Ultimately, this work offers an essential data product to advance
the monitoring of land degradation, assess the effectiveness of restoration efforts, and
support policies aimed at achieving more sustainable mining practices globally.

Code and data availability

The global mining disturbance and reclamation dataset presented in this study is
publicly available in the Zenodo repository at https://doi.org/10.5281/zenodo.17085099
(Xu et al., 2025). Code supporting this study is publicly available at GitHub:
https://github.com/NickCarraway96/GlobalMiningDatabase.

Appendix A
Figure. A1 Global spatial distribution of 1,000 validation samples.

° Samples

Figure. A2 Global mining density in a 100 km grid. Mining area density is calculated
as the proportion of mining area within 100 x 100 km (10,000 km?) grid cells. Data was
aggregated using the Interrupted Goode Homolosine equal-area projection to ensure
accurate area calculations. The map is displayed using the PlateCarree projection.
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Figure. A3 Annual gap between damaged and reclaimed areas for five land cover types
and total land (calculated every five years before 2000).
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Figure. A4 Annual reclamation and damage of five land cover types across continents.
To ensure the continuity of the graph, the values for 1990, 1995, and 2000 represent the
average annual changes over five-year intervals.
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Figure. A6 Validation results. (a) Confusion matrix between predicted and reference
change years; (b) Histogram of temporal lags between predicted and reference years;
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795  (c¢) Cumulative accuracy progression with increasing tolerance thresholds, validating
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798
799  Table A1 Summary of per-country mine areas mapped in this study.
Countries Polygons Occlzﬁi:;(zi)land Average (km?/polygon)
China 27948 11542.33 0.41
United States 5813 9196.03 1.58
Russia 4183 7477.71 1.79
Australia 3522 7867.07 2.23
Canada 3158 3864.09 1.22
Brazil 2753 2763.75 1.00
Indonesia 2040 5630.99 2.76
South Africa 1891 3794.82 2.01
India 1686 2124.85 1.26
Mexico 1583 820.30 0.52
Ukraine 1528 1201.34 0.79
Turkey 1117 768.48 0.69
Peru 1029 2485.79 2.42
Chile 989 3645.88 3.69
Kazakhstan 936 2014.00 2.15
Other countries
(N=140) 14550 17354.57 1.19
800
801  Table A2 Summary of per-country mine areas within KBAs mapped in this study.
Countries Polygons Occiﬂiﬁ(})land (krlij;:)zl‘fgon)
China 858 682.24 0.80
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Brazil 244 442.83 1.81
Argentina 22 427.22 19.42
Mexico 258 264.55 1.03
Australia 158 212.87 1.35
South Africa 166 209.80 1.26
Indonesia 81 207.24 2.56
Namibia 19 136.88 7.20
Burma 34 135.62 3.99
Venezuela 51 115.67 2.27
Turkey 185 99.44 0.54
Spain 64 85.96 1.34
Ukraine 15 77.93 5.20
Russia 83 67.74 0.82
United States 54 61.57 1.14
Other countries
(N=90) 956 758.64 0.79
802
803  Table A3 Distribution and accuracy rate of validation samples across global biomes.
. Sample Average Standard
Biomes A ..
size accuracy rate deviation
Boreal Forests/Taiga 173 0.66 0.48
Deserts and Xeric Shrublands 109 0.61 0.49
Flooded Grasslands and Savannas 5 0.60 0.55
Mangroves 3 0.67 0.58
Mediterranean Forests,
Woodlands and Scrub 39 0.69 047
Montane Grasslands and
Shrublands 53 0.72 0.45
Temperate Broadleaf and Mixed 204 0.70 0.46
Forests
Temperate Conifer Forests 58 0.69 0.47
Temperate Grasslands, Savannas
and Shrublands 133 0.65 048
Tropical and Subtropical
. 1 1.00
Coniferous Forests
Tropical and Subtropical Dry
Broadleaf Forests 28 0.79 042
Tropical and Subtropical
Grasslands, Savannas and 68 0.74 0.44
Shrublands
Tropical and Subtropical Moist
Broadleaf Forests 13 0.74 044
Tundra 12 0.67 0.49

804
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