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Abstract: Surface mining has profound impacts on ecosystems, contributing to land 17 
degradation, vegetation loss, pollution, and threats to biodiversity. Given the rapidly 18 
rising demand for raw materials, understanding the dynamics of mining and 19 
reclamation processes is essential to support sustainable development. Here, we 20 
integrate and analyze a large set of mines distributed worldwide based on their known 21 
land extent circa year 2020. We integrated time-series data of the Normalized 22 
Difference Vegetation Index (NDVI), nighttime light (NTL) intensity, and land use to 23 
detect and identify changes within mine sites from 1985 to 2022 and assess 24 
spatiotemporal trajectories of mining and reclamation processes. The dataset comprises 25 
74,726 polygons, covering a total area of 82,552 km2. Our dataset obtained the 26 
maximum potential mining disturbance boundary—the cumulative outer envelope of 27 
mining-induced land disturbance over the study period. China leads in both the number 28 
and the areal extent of mining sites, followed by the United States and Australia. Within 29 
the analyzed set of polygons, mining land footprint expanded steadily between 1985 30 
and 2022, with the annual disturbed area peaking at 1,943 km2 in 2015, with a slowing 31 
expansion after 2015. From 1985 to 2022, the cumulative area of land converted to 32 
mine reached 40,596 km2, accounting for 49 % of the total surface mining area in our 33 
set, while the reclaimed area was 29,285 km2. Active mining areas dominated the global 34 
mining landscape, comprising 31.6 % of all polygons, with approximately 48.9 % 35 
concentrated in Asia. The spatiotemporal processes and patterns revealed in this study 36 
provide crucial insights into the development of mine sites and provide new data to 37 
support ecological impact assessments and sustainable development research in global 38 
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mining regions.  39 
 40 
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 42 
1 Introduction 43 
Mining activities are a fundamental driver of global economic growth and play a key 44 
role in industrial development (Pavloudakis et al., 2024). However, mining causes 45 
significant disruptions to ecosystems, particularly through vegetation loss, biodiversity 46 
decline, water pollution and ecological degradation (Chen et al., 2025b; Giam et al., 47 
2018; Giljum et al., 2025; Qian et al., 2018; Xiang et al., 2021). Surface mining, 48 
involving extensive soil stripping and land excavation, alters the surface landscape, 49 
significantly modifies ecosystem structure and function, and causes habitat loss, which 50 
contributes to biodiversity decline (Firozjaei et al., 2021; Giljum et al., 2022; Ma et al., 51 
2021; Xiao et al., 2020a; Yan et al., 2024; Zhao et al., 2023). Studies in tropical regions, 52 
for example, have shown that mining activities can cause deforestation within a 70 km 53 
radius, with indirect impact up to 28 times greater than direct impacts (Ladewig et al., 54 
2024; Sonter et al., 2017). As global demand for mineral resources continues to grow, 55 
mining activities have expanded at an unprecedented rate. Global production of mineral 56 
fuels, metal ores, and industrial minerals increased by 66 % over the past two decades, 57 
reaching almost 80 billion tons by 2024 (UNEP IRP, 2024). The International Energy 58 
Agency (IEA) estimates that achieving net-zero global greenhouse gas emissions by 59 
2050 will require a sixfold increase in demand for key minerals, with some critical 60 
minerals, such as lithium, experiencing a 40-fold increase (Carr-Wilson et al., 2024). 61 
As the scale of mining inevitably expands globally, the need for monitoring and 62 
assessing its ecological impacts is becoming increasingly urgent. A systematic 63 
understanding and analysis of the precise spatial locations of global mining activities, 64 
the boundaries of mining-induced degradation, and reclamation processes form the 65 
foundation for assessing the ecological impacts of mining. However, impacts on more 66 
than half of the world’s mining areas go unrecorded due to data limitations (Maus and 67 
Werner, 2024), severely limiting the precise assessment of mining’s environmental 68 
impact and the exploration of sustainable development pathways. 69 
 70 
Globally, research focused on delineating mining area boundaries and monitoring the 71 
spatiotemporal dynamics of vegetation disturbance and reclamation is steadily 72 
increasing (Werner et al., 2019). However, these studies still have considerable room 73 
for improvement, particularly regarding the number of mining sites, boundary accuracy, 74 
and monitoring methods for vegetation disturbance. In recent years, visual 75 
interpretation of satellite imagery has been applied to studies on delineating mining area 76 
boundaries (Murguía and Bringezu, 2016). Werner et al. (2020) utilized satellite data to 77 
directly map 295 major mine sites globally, focusing on delineating and classifying each 78 
specific mine feature in high spatial detail, shifting the focus from broader affected 79 
regions to the operational footprints themselves. On a global scale, Maus et al. (2020) 80 
manually delineated 21,060 mining polygons, totalling 57,277 km2, by visual 81 
interpretation of satellite images, focusing on 10 km buffers around the approximate 82 
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coordinates of over 6,000 active mining sites across the global. This was later updated 83 
in 2022 to include 44,929 mining sites across 117 countries, covering 101,583 km2 84 
(Maus et al., 2022). Complementing this effort, Liang et al. (2021) produced a global-85 
scale geospatial dataset of mine areas, comprised of 24,605 mine area polygons that 86 
add up to 31,396.3 km2 globally, of which 45.6 % (11,221 polygons) were cross-87 
validated against the dataset of Maus et al. (2020). This validation revealed high spatial 88 
consistency, with misclassification rates below 1 % in overlapping regions. Most 89 
recently, Tang and Werner (2023) produced a finely delineated global mining footprint 90 
from high-resolution satellite imagery, mapping 74,548 polygons over ~66,000 km2 of 91 
features such as waste rock dumps, pits, water ponds, tailings dams, heap leach pads, 92 
and processing/milling infrastructure. It finds a smaller area than Maus et al. (2022), 93 
but is more finely delineated. While visually interpreting satellite imagery is a precise 94 
and effective method, it remains costly and time-consuming. Importantly, uncertainties 95 
in mine area delineation persist, primarily stemming from subjectivity in visual 96 
interpretation, temporal limitations in satellite image availability, and variations in 97 
sensor geometric precision. Beyond mapping efforts, automated methods are 98 
increasingly being developed that take these mining polygons as analytical entry points. 99 
For example, Li et al. (2025) employed machine learning with Earth observation data 100 
to construct a high-resolution global copper mining database, mapping 1,313 sites 101 
(~7,267 km2) with detailed land use categories such as pits, waste rock dumps, and 102 
tailings facilities. This work highlights the potential of automated methods to improve 103 
consistency and efficiency in mining footprint monitoring. 104 
 105 
Monitoring land surface disturbances in mining areas through time series analysis based 106 
on delineated mining boundaries provides an effective approach for capturing long-107 
term changes associated with surface mining. Among various remote sensing indicators, 108 
vegetation indices such as NDVI and the Enhanced Vegetation Index (EVI) have been 109 
widely used to detect and quantify vegetation loss and recovery in mining landscapes 110 
(Jacquin et al., 2010; Karan et al., 2016). These indices are sensitive to variations in 111 
vegetation cover and condition, making them suitable for tracking disturbance and 112 
reclamation processes using satellite imagery over extended temporal scales. For 113 
example, He et al. (2023) coupled the Land Surface Temperature (LST) and NDVI to 114 
monitor surface mining disturbances using Landsat time series. The study focused on 115 
surface mining disturbances of the Huolinhe Coalfield, one of the largest mines in China. 116 
Commonly used algorithms for time-series change detection in land surface monitoring 117 
include Landsat-based detection of Trends in Disturbance and Recovery (LandTrendr)  118 
(Kennedy et al., 2010) and the Continuous Change Detection and Classification (CCDC) 119 
method (Jiang et al., 2022a). These methods are designed to identify temporal 120 
breakpoints or gradual trends in surface reflectance or vegetation indices, enabling the 121 
detection of disturbance and recovery processes over long periods and have been 122 
applied in various studies on mining-induced land surface dynamics. For example, Xiao 123 
et al. (2020b) mapped annual land disturbance and reclamation in a surface coal mining 124 
region using Google Earth Engine and the LandTrendr algorithm. While LandTrendr 125 
and CCDC perform well for monitoring land cover within individual or local mining 126 
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areas, global-scale studies on land cover in mining areas remain insufficient (Jiang et 127 
al., 2022b; McKenna et al., 2020; Mi et al., 2019; Yang et al., 2018). At the worldwide 128 
scale, Yu et al. (2018) produced a mining dataset that includes land cover change 129 
information for mining areas by analyzing multi-source datasets, including NTL, 130 
MODIS, Landsat and high-resolution images from Google Earth. However, it was last 131 
updated in 2013 and is based on traditional MODIS datasets, which cover only a limited 132 
portion of global surface mining activities due to a lack of high spatial and temporal 133 
resolution datasets. 134 
 135 
Despite the great effort to map mines globally, existing datasets lack temporal 136 
information, providing limited ability to determine the activity status in each mining 137 
patch, such as whether open-pit mining areas are in active extraction or re-greening 138 
phases through reclamation. This study presents a systematic approach to fuse mining 139 
datasets, incorporating land change detection and morphological optimization to merge 140 
and refine surface mining patch boundaries to derive temporal indicators of activity. We 141 
further extracted temporal information on land degradation and reclamation within 142 
mining areas from 1985 to 2022 and employed a decision-tree algorithm to classify the 143 
activity status of mining polygons. The dataset was validated using random stratified 144 
sampling, achieving an overall accuracy of 67 %. Compared to existing datasets, it 145 
demonstrates improved accuracy in both the number of mining sites and boundary 146 
delineation, while filling the gap in temporal information on land disturbance within 147 
mining areas. This study provides a robust dataset for sustainable mining management 148 
and ecological monitoring, enabling a better understanding of the spatiotemporal 149 
dynamics of mining-induced environmental impacts. 150 
 151 
2 Materials and methods 152 
This study adopts an integrated strategy that combines multiple mining datasets with 153 
land change detection and morphological optimization to harmonize and refine surface 154 
mining boundaries, thereby deriving temporal indicators of mining activity. Temporal 155 
dynamics of land degradation and reclamation from 1985 to 2022 were further extracted, 156 
and a decision-tree algorithm was applied to determine the activity status of each 157 
mining patch. Figure. 1 presents a detailed chart illustrating the workflow of this study. 158 
Four major steps can be distinguished: (1) Refinement of mining area boundaries; (2) 159 
Monitoring of temporal and spatial processes of disturbance in the mining area; (3) 160 
Classification of disturbance types in the mining area; (4) Validation. 161 
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 162 

Figure. 1 The four steps of the study workflow. 163 
 164 
2.1 Refinment of mining area boundaries 165 
To enhance the accuracy of surface mining area boundaries, a multi-step preprocessing 166 
workflow was applied to refine the original global mining boundary dataset, 167 
encompassing data integration, classification reconstruction, stable green area 168 
exclusion, boundary overlap identification, and geometric simplification. 169 
Step 1: Dataset integration and removal of duplicate/intersecting areas. Two widely 170 
used global mining boundary datasets were first integrated: Dataset A (74,548 polygons, 171 
65,585 km2) from Tang and Werner (2023) and Dataset B (44,929 polygons, 101,583 172 
km2) from Maus et al. (2022). Through merging and union operations, a new Dataset C 173 
was generated, comprising 82,078 polygons covering 120,043 km2. 174 
 175 
Step 2: Identification of stable green areas. To delineate truly disturbed regions within 176 
mining boundaries, we combined the Google Global Landsat-based CCDC Segments 177 
(1999-2019) (Gorelick et al., 2023) with a current-epoch land-cover map from the 178 
global 30-meter land cover time-series dynamic remote sensing dataset (GLC_FCS30D) 179 
(Zhang et al., 2024) to extract areas with stable vegetation cover. This combination 180 
leverages long-term, consistent, and high-resolution observations to reliably extract 181 
areas of stable vegetation cover and detect mining-related vegetation changes. Pixels 182 

https://doi.org/10.5194/essd-2025-583
Preprint. Discussion started: 12 November 2025
c© Author(s) 2025. CC BY 4.0 License.



6 
 

were labeled as stable green if they (i) exhibited no CCDC-detected temporal 183 
breakpoints across 1999-2019, and (ii) were classified as vegetated in the current land-184 
cover map (e.g., forest, grassland, or cropland). This yields a mask of vegetated areas 185 
that remained unchanged over the past two decades. Spatially overlapping areas with 186 
mining boundaries were assumed to be undisturbed or ecologically restored and thus 187 
erased from the boundaries. 188 
 189 
Step 3: Edge-area erasure strategy. Stable green pixels were aggregated into polygon 190 
objects, and erasure was performed at the object level. Only stable green polygons that 191 
intersected mining boundaries were erased to avoid misclassifying native or residual 192 
vegetation located along pit margins and haul-road edges as mining disturbance. Stable 193 
green polygons entirely enclosed within mining boundaries (i.e., not intersecting the 194 
boundary) were retained, as they likely represent enclosed features predating mining or 195 
non-mining inclusions rather than genuine reclamation or undisturbed zones. By 196 
erasing only boundary-intersecting polygons that showed no change during 1999-2019, 197 
we obtained the maximum potential mining disturbance boundary—the cumulative 198 
outer envelope of mining-induced land disturbance over the study period.  199 
 200 
Step 4: Boundary jaggedness simplification and smoothing. Erasure of green polygons 201 
introduced jagged irregularities in boundary segments. A distance-thresholding method 202 
was applied for smoothing: adjacent boundary points within 100 meters and 203 
approximately collinear were simplified into straight line segments, simplifying 204 
geometries. The final integrated mining boundary dataset contains 74,726 polygons 205 
with a total area of 82,552 km2. 206 

 207 
Figure. 2 Workflow of Refinment of mining area boundaries (Example Mining Area: 208 
38.1353° N, 86.3544° W). (a) Two input datasets: Dataset A (blue lines; 74,548 209 
polygons, 65,530 km²) (Tang and Werner, 2023) and Dataset B (green lines; 44,929 210 
polygons, 101,583 km²) (Maus et al., 2022). (b) Merging and union of the two input 211 
datasets. (c) Intermediate Dataset C (red lines; 82,078 polygons, 120,043 km2); (d) 212 
Erasure of undisturbed peripheral areas. (e) Boundary simplification. (f) Final Refined 213 
Dataset D (yellow lines; 74,726 polygons, 82,552 km2). 214 
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2.2 Monitoring the spatiotemporal dynamics of mining-induced disturbance 215 
We analyzed land use changes within mining boundaries from 1985 to 2022 using the 216 
GLC_FCS30D dataset. For consistency with the objectives of this study, the original 217 
land cover classes were reclassified into four categories: (1) Mine-related land cover, 218 
(2) Cropland, (3) Sparse vegetation, and (4) Dense vegetation. Mine-related land cover 219 
was defined to include impervious surfaces, bare areas, consolidated bare areas, 220 
unconsolidated bare areas, water bodies and flooded flats, as identified in the 221 
GLC_FCS30D dataset.  222 
We define DEV and REC based on the following land use type changes: if a pixel 223 
transitions from Cropland, Sparse vegetation, or Dense vegetation to Mine-related land 224 
cover, it is defined as a Development area. If a pixel transitions from Mine-related land 225 
cover to Cropland, Sparse vegetation, or Dense vegetation, it is defined as a 226 
Reclamation area. Using the land use definitions outlined above and the global 30-meter 227 
land cover time-series dynamic remote sensing products (1985 - 2022), we obtained 228 
mining disturbance and reclamation data for over 74,726 surface mining polygons 229 
worldwide from 1985 to 2022, at 30 m pixel resolution. GLC_FCS30D dataset provides 230 
maps with a five-year frequency from 1985 to 2000 and annually thereafter. Thus, we 231 
performed time interpolation on the data from before 2000. We define Bare Surface 232 
Percentage (BSP) as the ratio of the area of Mine-related land cover to the total mining 233 
area boundary. Formally, it is expressed as: 234 

𝐵𝑆𝑃 ൌ
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑀𝑖𝑛𝑒 െ 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑙𝑎𝑛𝑑𝑐𝑜𝑣𝑒𝑟
𝑇𝑜𝑡𝑎𝑙 𝑚𝑖𝑛𝑖𝑛𝑔 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑎𝑟𝑒𝑎

 235 

This formulation assumes that a reduction in bare surface extent corresponds to 236 
vegetation regrowth or land cover restoration, and thus provides a proxy for the 237 
progress of ecological reclamation within mining sites. 238 
 239 
2.3 Classification of mining areas based on development trends 240 
To evaluate the recent developmental trajectories (2018-2023) and current status of 241 
global surface mining areas, we employed three indicators: NDVI, BSP, and NTL. 242 
NDVI was derived from the Sentinel-2 surface reflectance dataset, which provides 243 
high-resolution multispectral observations suitable for vegetation monitoring. BSP was 244 
calculated in this study based on the GLC_FCS30D dataset. Nighttime light data were 245 
obtained from the VIIRS Day/Night Band monthly product (NOAA, dataset ID: 246 
NOAA/VIIRS/DNB/MONTHLY_V1/VCMSLCFG) via Google Earth Engine. NDVI 247 
captures vegetation restoration or degradation, BSP quantifies bare land extent, and 248 
NTL reflects human activity intensity, enabling a comprehensive assessment of mining 249 
area disturbances and reclamation. All datasets were spatially harmonized and 250 
temporally aggregated to annual time series to ensure consistency across indicators.   251 
 252 
The Mann-Kendall (MK) trend test was employed to quantify the time-series trends of 253 
NDVI, BSP, and NTL in this study. This nonparametric statistical test is widely applied 254 
to detect monotonic trends in time-series data. The results of the analysis for each 255 
dataset are classified as follows: Increasing trend—indicating a significant positive 256 
trend (p < 0.05); Decreasing trend—indicating a significant negative trend (p < 0.05); 257 
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No trend—indicating no statistically significant trend (p ≥ 0.05). The results of the MK 258 
test are compiled into a unified DataFrame, with each mining area characterized by the 259 
trend classifications of NDVI, BSP, and NTL. Based on the combined trends of NDVI, 260 
BSP, and NTL, this study develops a rule-based decision-tree model to classify mining 261 
area disturbances. 262 
 263 
(1) BSP trend: As an indicator of bare land exposure, BSP is prioritized in the 264 
classification hierarchy. Mining areas with a decreasing BSP trend are classified as 265 
being in a reclamation state, while those with an increasing BSP trend are classified as 266 
being in an active mining state. Mining areas with no significant BSP trend are 267 
classified in the next step based on further analysis. 268 
(2) NDVI trend: NDVI is employed to assess vegetation restoration or degradation. 269 
Mining areas with an increasing NDVI trend are classified as being in a reclamation 270 
state, while those with a decreasing NDVI trend, reflecting vegetation loss, are 271 
classified as being in active mining. Mining areas with no significant NDVI trend are 272 
classified in the next step based on further analysis. 273 
(3) NTL trend: NTL is utilized to assess the level of human activities. Mining areas with 274 
an increasing NTL trend are classified as being in active mining, while those with a 275 
decreasing NTL trend indicate reduced human activities or mining area closure. If no 276 
significant NTL trend is detected, the area is classified as stable or undisturbed. 277 
 278 
Based on trend analyses of NDVI, BSP, and NTL, a rule-based decision tree model was 279 
developed to classify mining areas into three categories. The framework first 280 
determined mining status as expanding, shrinking, or stable, and subsequently mapped 281 
these into types: active mines (expanding, characterized by increasing bare land, 282 
decreasing NDVI, and/or rising nighttime light signals), closed mines (shrinking, 283 
indicated by decreasing bare land, increasing NDVI, and/or declining nighttime light 284 
signals), and undefined mines (stable, where no significant MK trend was detected in 285 
NDVI, BSP, or NTL, or where mixed signals reflected simultaneous extraction and 286 
reclamation). By integrating the trend analyses of NDVI, BSP, and NTL, this study 287 
reveals the spatiotemporal dynamics of mining area disturbances and reclamations on 288 
a global scale.  289 
 290 
2.4 Validation 291 
We conducted stratified random sampling over 25 years (1990, 1995, and 2000-2022) 292 
to assess the temporal accuracy of the proposed method in detecting mining-293 
reclamation transition years. For each year within the sampling period, 40 mining-294 
related pixels were randomly selected using a stratified sampling strategy, resulting in 295 
a total of 1,000 validation samples. Figure. A1 shows the spatial distribution of all 296 
validation samples. Reference labels were generated through visual interpretation of 297 
high-resolution Google Earth imagery. To enhance the consistency and accuracy of 298 
interpretation, LandTrendr-derived segmentation of the annual maximum NDVI time 299 
series was integrated, along with complementary spectral profiles from Normalized 300 
Difference Water Index (NDWI) and Normalized Burn Ratio (NBR) indices. All three 301 
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indices (NDVI, NDWI, and NBR) were derived from Sentinel-2 MSI surface 302 
reflectance data. 303 
 304 
The spatial location of the sample and the accuracy verification results using NDVI, 305 
NBR, NDWI, and high-resolution Google Earth imagery are presented in Fig. 3. Figure. 306 
3a illustrates the location of the sample mine on the island of Borneo in Indonesia. 307 
Figure. 3b shows spectral validation results for a selected sample point. The upper graph 308 
illustrates the NDVI time series (blue), LandTrendr segmentation results (orange), and 309 
the mining year inferred from the land cover time series (LCTS) as a red vertical dashed 310 
line. The lower graph shows the full time series for NDVI, NDWI, and NBR, with each 311 
point representing a satellite observation. These indices respectively reflect vegetation 312 
greenness, surface water presence, and vegetation structural change. The spectral 313 
trajectories indicate a stable condition before 2015, followed by clear disturbance 314 
signals in 2015. The mining year inferred from the LCTS, however, is 2018, 315 
highlighting the potential temporal discrepancy between spectral evidence and land 316 
cover-based detection.  317 

 318 

Figure. 3 (a) Spatial location of a sample mine Spatial location of a sample mine 319 
(WGS84: 3.54386°N, 117.18742°E) located on the island of Borneo, Indonesia; (b) 320 
Accuracy verification results using NDVI, NBR, NDWI, and high-resolution Landsat 321 
imagery (accessed via Google Earth). 322 
 323 
3 Results 324 
3.1 Spatial distribution characteristics of global mine areas 325 
Global surface mining exhibits pronounced spatial heterogeneity in both scale and 326 
intensity. At the continental and national levels, mining activities are unevenly 327 
distributed, with certain regions concentrating a disproportionately large number of 328 
sites or total area. Distinct spatial patterns also emerge, reflecting divergent 329 
development models—ranging from fragmented small-scale operations in Asia to 330 
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centralized large-scale mines in countries such as Australia and Brazil. Beyond these 331 
spatial trends, a critical ecological concern arises from the overlap between mining 332 
areas and Key Biodiversity Areas (KBAs), where intensive extraction activities directly 333 
threaten globally significant ecosystems and species (Boldy et al., 2021; Li et al., 2020; 334 
Lv et al., 2019; Sonter et al., 2018; Tai et al., 2020).  335 
 336 
This study identifies 74,726 surface mine area polygons globally, encompassing a 337 
cumulative areal extent of 82,552 km2, with an arithmetic mean of 1.10 km2. Figure. 4a 338 
illustrates the global distribution of mining polygons, together with their area and count 339 
aggregated along latitude and longitude. Figure. A2 shows the global mining density in 340 
a 100 km grid. The analysis was performed in an equal-area projection (Interrupted 341 
Goode Homolosine), while the visualization uses the PlateCarree projection. Mining 342 
area densities range from 0 to 15.13 % per fishnet, at an average of 0.19 %.  343 
 344 
Asia hosts the largest share in both number and areal extent, with 37,304 polygons 345 
(49.9 %) spanning 26,992 km2 (32.7 %), and an average site size of 0.72 km2, indicating 346 
highly fragmented, small-scale mining (Fig. 4b). North America ranks second, 347 
comprising 11,059 polygons (14.8 %) and 14,160 km2 (17.2 %), with a mean site size 348 
of 1.28 km2. Europe accounts for 9,167 polygons (12.3 %) over 11,799 km2 (14.3 %), , 349 
with a mean site size of 1.29 km2. Africa (6,360 polygons, 8.5 %; 8,801 km2, 10.7 %) 350 
and South America (6,923 polygons, 9.3 %; 12,345 km2, 15.4 %) exhibit comparatively 351 
larger average site sizes (1.38–1.78 km2) due to widespread surface mining. In Oceania, 352 
dominated by Australia’s mega-mines, 3,913 polygons (5.2 %) extend over 8,075 km2 353 
(9.8 %), with the largest mean site size globally (2.06 km2). 354 
 355 
The distribution of global mine areas is markedly uneven, with a strong concentration 356 
in a limited number of countries. Our dataset comprises mine area polygons from 155 357 
countries and regions. Table A1 shows summary of per-country mine areas globally 358 
mapped in this study. The top 10 countries ranking by total mining area, including China, 359 
the United States, Australia, Russia, Indonesia, Canada, South Africa, Chile, Brazil, and 360 
Peru, comprise 70.6 % (58,268 km2) of the global total. When extended to the top 30 361 
countries, this proportion increases to 90.7 % (74,915 km2), underscoring the high 362 
geographical concentration of mining activities worldwide. Table A1 presents the 363 
mining areas of the major contributing countries. China ranks first in total mining area 364 
(11,542 km2, 14 %), driven by 27,948 mining polygons with a mean areal extent of 0.41 365 
km2 per site (Fig. 4c). While China has the largest number and total area of mining 366 
polygons globally, its average site size remains significantly lower than that other high 367 
mineral demand countries (e.g., India and USA) and high mineral export countries (e.g., 368 
Australia, Canada, South Africa, and Russia), where averages exceed 1 km2. African 369 
countries, particularly in sub-Saharan Africa, show both small total areas and small 370 
scale sizes, largely due to the prevalence of artisanal and small-scale mining that occurs 371 
informally on unregulated land (Hilson et al., 2017; Oramah et al., 2015).  372 
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 373 

Figure. 4 Global distribution and characteristics of mining polygons. (a) Global 374 
distribution of mining polygons and their latitudinal/longitudinal statistics of area and 375 
count. Given the visualization effect, the centroids of the polygons are used for display 376 
here instead of the actual shapes of the polygons. (b) Continental proportion of the 377 
global mining polygons area. (c) Mining polygons area in the top 10 countries in terms 378 
of total mining area. 379 
 380 
In this study, a total of 3,248 mining areas were identified within KBAs worldwide, 381 
covering a combined area of 3,986 km2, accounting for 4.8 % of the global mining 382 
extent. Figure. 5a shows the global mining density within KBAs in a 100 km grid. These 383 
polygons are unevenly distributed across 105 countries and regions. Mining area 384 
densities range from 0 to 3.25 % per fishnet, at an average of 0.07 %. Table A2 shows 385 
summary of per-country mine areas within KBAs mapped in this study. Asia hosts the 386 
largest number of KBA-overlapping mining areas (1,412 polygons, 43.5 %), followed 387 
by South America (543 polygons), North America (394 polygons), and Europe (390 388 
polygons). In terms of area, Asia also ranks highest (1,299 km2, 32.7 %), followed by 389 
South America (1,156 km2, 28.9 %) and Africa (512 km2, 12.9 %) (Fig. 5b). 390 
Approximately 71 % of the polygons are situated within 10 countries: China, Brazil, 391 
Argentina, Mexico, Australia, South Africa, Indonesia, Namibia, Burma, and Venezuela 392 
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(Fig. 5c). China alone accounts for 858 mining areas (26.3 %) within KBAs, with a 393 
total area of 682 km2 (17.1 %). Brazil (244 polygons, 443 km2) and Argentina (22 394 
polygons, 427 km2) also show considerable overlaps area despite fewer polygons. 395 
Notably, Argentina shows largest average area per polygon (19 km2), indicating the 396 
presence of large-scale operations within sensitive ecological regions. In contrast, 397 
countries such as Australia and Mexico exhibit moderate overlap both in terms of site 398 
count and area. These results highlight spatial clustering of mining pressure within 399 
biodiversity-priority regions, particularly in Asia and South America. The coexistence 400 
of high biodiversity value and intensive mining underscores the urgent need for 401 
spatially targeted conservation strategies and the integration of ecological sensitivity 402 
into mining governance frameworks. 403 

 404 

Figure. 5 Global distribution and characteristics of mining polygons within KBAs. (a) 405 
Global mining density within KBAs in a 100 km grid. Mining area density is calculated 406 
as the proportion of mining area within 100 x 100 km (10,000 km2) grid cells. Data was 407 
aggregated using the Interrupted Goode Homolosine equal-area projection to ensure 408 
accurate area calculations. The map is displayed using the PlateCarree projection. The 409 
boundary and attribute data of KBAs used in this study are obtained from the World 410 
Database of Key Biodiversity Areas (https://www.keybiodiversityareas.org/). (b) 411 
Counts and total area of mine within KBAs by world regions. (c) Top 10 countries by 412 
mining area within KBAs. 413 
 414 
3.2 Monitoring of spatiotemporal process of disturbance in mining area 415 
Mining activities lead to substantial modifications in land cover. By tracking land cover 416 
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change at the pixel level within delineated mining boundaries, we analyzed the global 417 
spatiotemporal dynamics of land disturbance and reclamation from 1985 to 2022. Over 418 
this period, the cumulative area of land disturbed by surface mining reached 40,596 km2, 419 
accounting for approximately 49 % of the total global surface mining footprint. In 420 
comparison, the reclaimed area totalled 29,285 km2. The annual land disturbance and 421 
reclamation areas showed distinct temporal dynamics during 1985–2022, with phase 422 
shifts in both magnitude and relative balance (Fig. 6a).  423 
 424 
From 1985 to 2000, for the mine areas included in the study, the annual disturbed area 425 
surged from 214 km2 to 940 km2, while the annual reclamation area expanded more 426 
slowly from 82 km2 to 357 km2, resulting in a substantial gap indicative of delayed 427 
ecological restoration. During 2001–2010, both metrics continued rising to 1541 km2 428 
(disturbance) and 1030 km2 (reclamation) with decelerated rates (36.7 km2 vs. 18.4 km2 429 
yr⁻¹), and the positive gap narrowed gradually. From 2011 onward, the disturbed area 430 
exhibited pronounced fluctuations, peaking at 1,943 km2 in 2015, followed by a steady 431 
decline to 1,373 km2 in 2022. In contrast, the reclaimed area continued to rise with 432 
interannual variability and reached a maximum of 1,735 km2 in 2021. A notable 433 
transition occurred in 2018, when the reclaimed area (1,576 km2) first exceeded the 434 
annual disturbed area (1,569 km2), marking a shift toward net ecological recovery. This 435 
turning point underscores a global shift toward intensified ecological restoration. For 436 
example, in China, ecological rehabilitation of mining areas has long been prioritized, 437 
with national programs over the past four decades focusing on vegetation recovery and 438 
the mitigation of geological hazards. Furthermore, the Chinese government has ordered 439 
the closure of over 20,000 mines, and these sustained efforts have led to significant 440 
advances in mine land reclamation (Chen et al., 2025a; Xiao et al., 2020c). 441 
Quantification of the disturbance-reclamation gap (i.e., disturbance area minus 442 
reclamation area) confirms consistent positive values (net degradation) during 1990–443 
2017, shifting to negative values post-2018, indicating a global transition to net land 444 
recovery. 445 
 446 
We analyzed land disturbance and reclamation in global surface mining areas across 447 
five landcover types: cropland, forest, grassland, shrubland, and sparse vegetation from 448 
1985 to 2022. Cropland had the largest damaged area (13,623 km2, 34 %), followed by 449 
shrubland (8,464 km2, 21 %), grassland (7,836 km2, 19 %), sparse vegetation (5,262 450 
km2, 13 %), and forest (5,411 km2, 13 %) (Fig. 6b). For land reclamation, cropland also 451 
boasted the largest cumulative reclaimed area (9,082 km2, 31 %), with shrubland (6,716 452 
km2, 23 %), grassland (5,885 km2, 20 %), sparse vegetation (4,221 km2, 14 %), and 453 
forest (3,380 km2, 12 %) following in sequence. Despite ongoing reclamation efforts, 454 
considerable differences remain between disturbed and restored land cover types. Here, 455 
“reclamation” refers to areas showing vegetation recovery, which may result from both 456 
active restoration practices and natural regrowth in abandoned polygons. We calculated 457 
the gap between damaged and reclaimed areas for annual areas of each landcover type 458 
(Fig. A3 and Fig. 6c). As of 2022, approximately 4,541 km2 of cropland (33.3 %) and 459 
2,039 km2 of forest (38 %) were disturbed by unreclaimed mining areas. In contrast, 460 
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the unreclaimed proportions for grassland, shrubland, and sparse vegetation are 461 
relatively lower, at 25 %, 21 %, and 20 %, respectively. This discrepancy may reflect 462 
differences in post-mining land use suitability, ecological fragility, or restoration 463 
policies targeting specific land cover types. 464 
 465 
Notably, although the forest had the lowest damaged area among all land types, the gap 466 
between its disturbance and reclamation showed a relatively compact and continuously 467 
positive distribution. The box plot revealed that the net gap in most years was 468 
concentrated in the 0–100 km2 range, with almost no extreme outliers, reflecting the 469 
overall low disturbance intensity of forest ecosystems. However, unlike other landcover 470 
types where reclaimed area exceeded damaged area in some years, the forest was almost 471 
in a “net damage” state throughout the year. This persistent reclamation lag may stem 472 
from the long natural recovery period of forests or insufficient current restoration 473 
measures for forest ecosystems (Poorter et al., 2021). Moreover, considering the crucial 474 
role of forests in biodiversity protection and carbon storage, even a small absolute 475 
damaged area can have significant ecological consequences per unit of disturbance 476 
(Cook-Patton et al., 2020; Feng et al., 2022). 477 
 478 
Among all mining-induced land disturbances globally, Asia contributed the largest 479 
share, particularly in cropland and grassland areas. Approximately 6,414 km2 of 480 
disturbed cropland (47 % of the global total) and 4,532 km2 of disturbed grassland 481 
(58 %) were located in Asia (Fig. A4). Within the region, China ranked first in both 482 
disturbed and reclaimed land areas, accounting for about 22 % of global cropland loss 483 
and 40  % of global grassland loss (Fig. 6d). Besides, forest disturbances were 484 
primarily observed in Russia, Canada, and Indonesia, contributing 20 %, 13 %, and 11 % 485 
of the global total, respectively. Shrubland loss was concentrated in North America 486 
(25 %) and Africa (23 %), with the United States alone contributing 16.5 %. 487 
 488 
By 2023, the global average reclamation rate of surface mining land reached 70.3 %, 489 
indicating substantial progress in land restoration efforts worldwide. Nevertheless, 490 
pronounced regional disparities remain. Oceania and Africa exhibited the highest 491 
reclamation rates, whereas Asia and Europe were approximately 10 % lower than the 492 
global average. Figure. 4e illustrates the spatial distribution of reclamation by showing 493 
the percentage of bare surface area within mining regions at a 100-km resolution in 494 
2022. The reclamation rate is calculated as 1-BSP and represents the proportion of 495 
vegetated land within mining areas, serving as an indicator of ecological recovery.  496 
 497 
At the national level, countries with the largest surface mining footprints exhibited 498 
pronounced variation in reclamation performance. Figure. A5 shows the reclamation 499 
rate of top 15 Countries ranking by mining area at 2023. China, hosting the largest 500 
number of mining polygons globally, reported a reclamation rate of 59.6 %, which falls 501 
below the global average—highlighting persistent challenges in ecological restoration 502 
under high-intensity mining conditions. In contrast, other major mining countries such 503 
as the United States (73.0 %) and Australia (80.8 %) demonstrated notably higher 504 
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reclamation rates, likely attributable to stronger regulatory systems and established 505 
restoration frameworks (Yonk et al., 2019). In Asia, several countries outperformed the 506 
continental average, including India (72.2 %), Kazakhstan (77.8 %), and Indonesia 507 
(76.9 %), reflecting the effective implementation of restoration practices in some 508 
contexts. In South America, while Brazil reported a high reclamation rate of 81.2 %, 509 
followed by Peru (63.0 %), countries such as Chile (53.3 %) exhibited considerably 510 
slower progress, indicating persistent internal disparities across the region. In Africa, 511 
resource-dependent economies such as Ghana (83.7 %) and the Democratic Republic 512 
of the Congo (79.6 %) also showed encouraging reclamation trends. The major mining 513 

countries of Russia (62.4 %) and Ukraine (71.4 %) reported moderate reclamation rates. 514 

 515 

Figure. 6 (a) Annual land disturbance and reclamation area of global surface mines 516 
(1985-2022). To ensure the continuity of the graph, the values for 1990, 1995, and 2000 517 
correspond to the average annual changes over five-year intervals—specifically, they 518 
represent the five-year averages for the periods 1985–1990, 1991–1995, and 1996–519 
2000, respectively. (b) Gain and loss of land cover types during mining disturbance 520 
events. (c) Boxplot of "gap" for land cover types (gap = loss - gain). (d) Losses and 521 
gains of five land cover types in the top 15 countries ranked by total area of land with 522 
changes. (e) Percentage of bare surface area in global mining areas, aggregated to 100 523 
km resolution (2022). 524 
 525 
3.3 Classification of global surface mining areas 526 
Overall, the global distribution of mining development status reveals a dominant trend 527 
of active mining, both in terms of site counts and spatial extent, with notable regional 528 
and national variations. Figure. 7a presents the classification of the development status 529 
of mining areas over the recent years, encompassing three categories: active, undefined, 530 
and closed. For the change maps corresponding to each development status category, 531 
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two distinct change directions are denoted by specific colors: Red pixels indicate a land 532 
cover transition from non-mining-related types to mining-related types, representing 533 
the expansion of mining areas. Green pixels indicate the inverse transition—from 534 
mining-related land cover types to non-mining-related types—representing the 535 
shrinkage of mining areas. 536 
 537 
Globally, of the 74,726 surface mining polygons identified, 14,546 (19.5 %) were 538 
classified as closed mines, 36,542 (48.9 %) as undefined mines, and 23,638 (31.6 %) 539 
as active mines (Fig. 7b). In terms of area, active mines accounted for 30,147 km2 (36.5 % 540 
of the global total), followed by closed mines at 25,389 km2 (30.8 %). These results 541 
indicate that active mining areas dominate both numerically and in spatial extent 542 
worldwide. Regional analysis (Fig. 7c) shows that active mines outnumber closed 543 
mines across all continents except Europe, which is the only continent having more 544 
closed mines (2003) than active mines (1885). Mineral-rich Africa exhibits the lowest 545 
proportion of closed mines (18.7 %) and the highest proportion of active mines (33.5 %) 546 
(Ross and Werker, 2024). Asia has approximately 20.0 % of green mines and 32.0 % 547 
active mines, with 11,953 active mines representing 50.6 % of the global active mine 548 
count, highlighting intensive mining operations. In North America, active mines 549 
constitute 33.5 % of polygons, underscoring their role as major mineral producers 550 
(Giljum et al., 2025). 551 
 552 
Among the major mining countries, almost all exhibit a predominance of active mines 553 
over closed mines, indicating that most nations remain in an expansionary phase of 554 
mining development (Fig. 7d). Fourteen of the fifteen leading mining countries follow 555 
this pattern, with South Africa as the sole exception. Several major mining nations, 556 
including China, the United States, Australia, Russia, Indonesia, and Canada, show a 557 
markedly higher proportion of active mines relative to closed mines. China, which 558 
possesses the largest mining area globally, and the United States, ranking second, both 559 
display similar proportions, with active mines accounting for approximately 31 % and 560 
closed mines around 21 %. Chile has the highest share of active mines (52.0 %) and 561 
one of the lowest shares of closed mines (12.4 %), reflecting its copper-dominated 562 
sector’s strong reliance on ongoing mineral extraction (Abbas et al., 2024). Peru shows 563 
a similar trend, with closed mines comprising only 10.4 % and active mines 33.8 %. In 564 
contrast, South Africa stands out as the only major mining country where closed mines 565 
(30.1 %) exceed active mines (19.4 %), diverging from the overall global trend. 566 
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 567 

Figure. 7 (a) Classification of development status of mining areas in the recent five 568 
years: active, undefined, closed. While the figure illustrates the period 2019–2023, the 569 
actual dataset used spans from 2018 to 2023. (b) Global distribution of three types of 570 
mining areas. (c) Continental counts of mining areas types (d). Type structures of the 571 
top 15 countries (sorted by total mining areas descendingly). 572 
 573 
4 Discussion 574 
4.1 Comparison of results of prior mining area datasets 575 
Our refined global surface mining area dataset demonstrates substantial improvements 576 
in comprehensiveness, offering detailed insights into spatiotemporal processes related 577 
to mining and reclamation. Compared with existing datasets, it achieves greater 578 
completeness in terms of data volume, while also filling the gap in long-term 579 
spatiotemporal change information of mining - induced land disturbances. 580 
 581 
To evaluate its performance, we systematically compared our dataset against two 582 
widely used global mining boundary datasets—Dataset A (Tang and Werner, 2023)  583 
and Dataset B (Maus et al., 2022)—as well as the intermediate merged dataset (Dataset 584 
C) generated during our workflow (Fig. 2). Dataset A comprises 74,548 polygons 585 
(65,585 km2) and delineates mining areas with relatively tight outlines, thereby 586 
capturing polygon shape variability in detail. In contrast, Dataset B consisting of 44,929 587 
polygons (101,583 km2), applies a 10 km manual buffering approach that broadly 588 
encompasses mining extents but frequently exaggerates disturbed areas. These 589 
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methodological differences are evident in Fig. 2a, where the boundaries from Maus et 590 
al. (2022) (green lines in Fig. 2a) cover much larger regions, whereas the boundaries 591 
from Tang and Werner (2023) (blue lines in Fig. 2a) are more closely aligned with actual 592 
mine features. Building on these, the boundaries of our refined dataset (yellow lines in 593 
Fig. 2f) further improve delineation by more accurately fitting the true extent of mining 594 
disturbances, thereby reducing both overestimation and omission. 595 
 596 
Our intermediate Dataset C, obtained through merging and union operations, contained 597 
82,078 polygons (120,043 km2), which maximized spatial coverage but introduced 598 
redundancy and misclassification. Through multi-step optimization, we refined this 599 
dataset to 74,726 polygons (82,552 km2), thereby striking a balance between coverage 600 
and accuracy. Compared with Maus et al. (2022), our dataset contains 165 % of its 601 
polygons while covering only 81.3 % of its total area, effectively reducing boundary 602 
overestimation. Relative to Tang and Werner (2023), our dataset adds 178 polygons and 603 
represents 125.9 % of its mapped area. By integrating CCDC-derived land surface 604 
dynamics with fine-resolution land cover datasets, we erased long-term stable 605 
vegetation patches and eliminated spurious inclusions, which led to a 31.2 % reduction 606 
(37,493 km2) in overestimated areas compared with the simple merged result. This 607 
refinement yields the maximum potential mining disturbance boundary, defined as the 608 
cumulative outer envelope of mining-induced land disturbance across the study period, 609 
thereby substantially improving boundary precision. As summarized in Table 1, the 610 
refined dataset (present study) balances spatial coverage and accuracy, reducing both 611 
overestimation and omission, and thus provides a more reliable basis for global-scale 612 
mining disturbance assessments. 613 
 614 
In this study, we analyzed the spatiotemporal dynamics of 74,726 mining polygons 615 
worldwide, covering the period from 1985 to 2022, and further examined recent 616 
development trends of mining areas. The monitoring of mining disturbance and 617 
reclamation processes was conducted at the pixel scale, enabling fine-grained tracking 618 
of temporal land-use transitions within each mining site. By comparison, Yu et al. (2018) 619 
focused on the spatial locations of 790 mines and carried out time-series monitoring of 620 
land-cover changes, but its temporal coverage was limited to the 1980s–2013. Our 621 
dataset not only extends the temporal span to nearly four decades (1985–2022) but also 622 
substantially broadens the scope to a global coverage of 74,726 mining polygons. In 623 
addition, we classified the current development status of mines into three categories—624 
active, closed, and undefined—providing a new dimension of information that 625 
complements previous datasets. The broader spatial coverage, combined with improved 626 
temporal resolution and accuracy, offers enhanced capacity to track fluctuations in both 627 
mining expansion and reclamation. This advancement facilitates a more comprehensive 628 
understanding of the temporal evolution of global surface mining disturbances and 629 
establishes a stronger foundation for ecological restoration research and impact 630 
assessment in mining regions. 631 
 632 
Table 1 Comparison of results with prior mine area studies. 633 
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Source 
Regions 
/scales 

Mines 
/Polygons 

Occupied 
land (km2) 

Average  
area 

(km2) 
(Tang and Werner, 2023) Global 74,548 65,585 0.88 

(Maus et al., 2022) Global 44,929 101,583 1.8 
(Liang et al., 2021) Global 24,605 31,396 1.3 
(Maus et al., 2020) Global 21,060  57,277 2.7 

Present Study Global 74,726 82,552 1.1 
 634 
4.2 Advantages of this method and future application directions 635 
By integrating and refining existing datasets and applying automated morphological 636 
optimization, this study substantially improved both the coverage and boundary 637 
accuracy of global surface mining area delineation relative to previous products. 638 
Specifically, the delineated boundaries were enhanced by erasing stable green pixels—639 
identified through the Google Global Landsat-based CCDC Segments (1999–2019) and 640 
the GLC_FCS30D dataset—that intersected with mining polygons over a 20-year 641 
period. This procedure effectively reduced misclassification of non-mining vegetation 642 
within mining extents, thereby increasing the spatial precision of boundary mapping. 643 
As a result, we derived the maximum potential mining disturbance boundary, defined 644 
as the cumulative outer envelope of mining-induced land disturbance throughout the 645 
study period. This approach not only ensures more reliable detection of historical 646 
mining footprints but also provides a solid data foundation for future monitoring of 647 
disturbance–reclamation dynamics at multiple spatial and temporal scales. 648 
 649 
For classifying development trends of mining areas, we integrated three remote 650 
sensing-derived indices, NDVI, BSP, and NTL, that capture spatiotemporal changes 651 
from multiple dimensions. NDVI, BSP, and NTL represent vegetation recovery, bare 652 
soil exposure, and human activities, respectively, providing a robust framework for 653 
disturbance analysis. The non-parametric MK test effectively reduces noise and 654 
irregular fluctuations in the data, ensuring the reliability and stability of trend analysis. 655 
This approach objectively and accurately detects monotonic trends in diverse datasets, 656 
providing a solid scientific basis for classifying disturbance types. Moreover, the 657 
method is simple, transparent, and easy to implement, making it suitable for large-scale 658 
spatial data analysis. Classification rules and data processing methods can be adjusted 659 
according to the specific characteristics of different mining areas. 660 
 661 
Future research can integrate more detailed ecological restoration monitoring data, 662 
ecological environment data, human activity data, and socioeconomic data by 663 
incorporating the spatial boundaries of mining areas and time-series data on internal 664 
land disturbances. This integration will enable exploration of the impacts and 665 
relationships between global surface mining and the ecological environment, as well as 666 
help human society better distinguish different qualities of restored ecosystems after 667 
reclamation of former mining areas. 668 
 669 
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4.3 Uncertainty and limitations 670 
This study is subject to several uncertainties and limitations stemming from the input 671 
data and the methodological framework. First, the temporal baseline of the analysis is 672 
constrained by the GLC_FCS30D dataset, which commences in 1985. Consequently, 673 
mining disturbances and any subsequent reclamation activities occurring prior to this 674 
date are not captured in our results. Furthermore, the temporal granularity of this dataset 675 
is coarse prior to 2000, with observations limited to five-year intervals. This reduces 676 
the precision for pinpointing the exact timing of disturbance and reclamation events, 677 
particularly in the early decades of the study period. Uncertainty is also introduced 678 
through the classification schemes inherent in global land cover products. For example, 679 
cropland appears as the largest cumulative reclaimed area, likely reflecting 680 
misclassification of early successional vegetation, bare soil, or agricultural areas rather 681 
than actual land use (Sonter et al., 2025).  682 
 683 
A primary methodological limitation is the sensitivity of the disturbance detection 684 
algorithm. The approach identified disturbance signals across 40,596 km2, 685 
corresponding to approximately 49 % of the total delineated mining area. The 686 
remaining 51 % of the area did not exhibit a detectable disturbance signature under our 687 
framework. This incomplete detection rate can be attributed to a combination of 688 
inherent uncertainties within the GLC_FCS30D source dataset and the intrinsic 689 
limitations of the algorithm in capturing the complex spectral-temporal signatures of 690 
highly dynamic mining environments. Furthermore, the reliability of vegetation-based 691 
metrics is also geographically variable, posing particular challenges in extreme 692 
environments such as arid deserts and tundra (Xu et al., 2023). In these regions, natural 693 
bare land dominates, potentially leading to high rates of false negatives, while data 694 
processing accuracy and classification reliability are generally lower, complicating the 695 
detection of mining-induced disturbances.  696 
 697 
Furthermore, mines that lacked sufficient confidence for classification into active or 698 
closed categories were designated as "undefined." This undefined category may 699 
encompasses mines undergoing simultaneous extraction and reclamation—a scenario 700 
where concurrent increases in BSP (indicating ongoing disturbance from extraction) or 701 
NTL (indicating operational activity) and NDVI (indicating vegetation growth from 702 
reclamation) create ambiguities that hinder clear determination of their dominant status.  703 
 704 
Finally, the reclamation rate in this study was calculated as 1−BSP, representing the 705 
proportion of vegetated cover within mining areas. While this proxy provides a 706 
consistent and scalable measure of greening by quantifying the proportion of vegetated 707 
cover within mining boundaries, it does not necessarily reflect actual reclamation 708 
practices or ecological restoration outcomes. Therefore, the global average reclamation 709 
rate of 70.3 % reported for 2023 should be viewed as an indicator of vegetation presence, 710 
which likely overestimates the extent of true ecological recovery.  711 
 712 
The accuracy assessment covered 14 major terrestrial ecoregion types globally, 713 
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commonly referred to as “biomes”, such as Boreal Forests/Taiga, Deserts and Xeric 714 
Shrublands, Flooded Grasslands and Savannas, and Mangroves (Olson et al., 2001). 715 
The overall accuracy was 67 %, but significant regional variations existed (Table A3). 716 
Excluding the Tropical and Subtropical Coniferous Forests (with only one sample), the 717 
28 samples in Tropical and Subtropical Dry Broadleaf Forests showed the highest 718 
average accuracy (79 %). Four zones—Montane Grasslands and Shrublands, Temperate 719 
Broadleaf and Mixed Forests, Tropical and Subtropical Grasslands, Savannas and 720 
Shrublands, and Tropical and Subtropical Moist Broadleaf Forests—exceeded 70 % 721 
accuracy. In contrast, Deserts and Xeric Shrublands had an average accuracy of 61 %, 722 
likely due to high environmental heterogeneity and limited method adaptability in 723 
complex arid environments. The Mangroves zone exhibited a high standard deviation 724 
(0.58), indicating large fluctuations in accuracy, while Tropical and Subtropical Dry 725 
Broadleaf Forests had a lower standard deviation (0.42), reflecting more consistent 726 
results. 727 
 728 
The confusion matrix between predicted and reference transition years (Fig. A6 a) 729 
demonstrated a clustered diagonal distribution, indicating temporal proximity between 730 
predictions and ground-truth data. Cumulative temporal accuracy analysis (Fig. A6 c) 731 
revealed 67 % of samples achieved ±5-year agreement, with progressive accuracy 732 
improvements observed at broader tolerance thresholds. Temporal lag histograms (Fig. 733 
A6 b) quantified prediction errors. Error propagation analysis identified systematic 734 
limitations: 13.7 % of samples (n=137) exhibited pre-1985 mining disturbances that 735 
were misclassified as transition events. This discrepancy arises from the land cover 736 
classification dataset’s temporal scope (initiated in 1985), which prevents the detection 737 
of pre-existing disturbances. Such errors predominantly occurred in regions with legacy 738 
mining activities prior to the observational baseline. 739 
 740 
5 Conclusion 741 
In this study, we developed and validated a new global dataset that delineates the 742 
maximum potential disturbance boundaries for 74,726 surface mining polygons and 743 
tracks their land change dynamics from 1985 to 2022. By integrating existing products 744 
with an automated morphological optimization that systematically removed stable, non-745 
mining vegetation, we substantially improved the spatial precision of historical mining 746 
area boundaries. The classification of mine development trends was further enhanced 747 
by integrating multi-dimensional remote sensing indices (NDVI, BSP, and NTL) within 748 
a robust Mann-Kendall trend analysis. 749 
 750 
The resulting dataset, covering a total extent of 82,552 km², reveals the vast scale of 751 
global mining's footprint. Our analysis shows that cumulative land disturbance reached 752 
40,596 km² (49 % of the total delineated area) over the 38-year period, while cumulative 753 
reclamation amounted to 29,285 km². Cropland was the land cover type most severely 754 
affected by surface mining. Significant disparities in reclamation progress were 755 
observed across regions, particularly in ecologically fragile areas such as the Amazon 756 
and tropical rainforests, where deforestation and delayed reclamation remain pressing 757 
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issues. Over the past several years, active mines have consistently dominated, 758 
constituting 31.6 % of the total. The high share of active mines reflects the continued 759 
expansion of mining. 760 
 761 
This high-precision boundary and disturbance dataset provides a foundational 762 
geospatial framework for the Earth system science community. Its primary value lies in 763 
addressing a critical knowledge gap by providing a new and more detailed global 764 
database that documents the long-term time series of both mining disturbance and 765 
reclamation dynamics. Ultimately, this work offers an essential data product to advance 766 
the monitoring of land degradation, assess the effectiveness of restoration efforts, and 767 
support policies aimed at achieving more sustainable mining practices globally. 768 
 769 
Code and data availability 770 
The global mining disturbance and reclamation dataset presented in this study is 771 
publicly available in the Zenodo repository at https://doi.org/10.5281/zenodo.17085099 772 
(Xu et al., 2025). Code supporting this study is publicly available at GitHub: 773 
https://github.com/NickCarraway96/GlobalMiningDatabase.  774 
 775 
Appendix A 776 
Figure. A1 Global spatial distribution of 1,000 validation samples. 777 

 778 

Figure. A2 Global mining density in a 100 km grid. Mining area density is calculated 779 
as the proportion of mining area within 100 x 100 km (10,000 km2) grid cells. Data was 780 
aggregated using the Interrupted Goode Homolosine equal-area projection to ensure 781 
accurate area calculations. The map is displayed using the PlateCarree projection.   782 
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 783 

Figure. A3 Annual gap between damaged and reclaimed areas for five land cover types 784 
and total land (calculated every five years before 2000). 785 

 786 

Figure. A4 Annual reclamation and damage of five land cover types across continents. 787 
To ensure the continuity of the graph, the values for 1990, 1995, and 2000 represent the 788 
average annual changes over five-year intervals. 789 
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 790 
Figure. A5 Reclamation rate of top 15 countries by mining area, 2023. 791 

 792 
Figure. A6 Validation results. (a) Confusion matrix between predicted and reference 793 
change years; (b) Histogram of temporal lags between predicted and reference years; 794 
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(c) Cumulative accuracy progression with increasing tolerance thresholds, validating 795 
the robustness of the ±5-year criterion. 796 

 797 
 798 

Table A1 Summary of per-country mine areas mapped in this study. 799 

Countries Polygons 
Occupied land 

(km2) 
Average (km2/polygon) 

China 27948 11542.33 0.41 
United States 5813 9196.03 1.58 

Russia 4183 7477.71 1.79 
Australia 3522 7867.07 2.23 
Canada 3158 3864.09 1.22 
Brazil 2753 2763.75 1.00 

Indonesia 2040 5630.99 2.76 
South Africa 1891 3794.82 2.01 

India 1686 2124.85 1.26 
Mexico 1583 820.30 0.52 
Ukraine 1528 1201.34 0.79 
Turkey 1117 768.48 0.69 

Peru 1029 2485.79 2.42 
Chile 989 3645.88 3.69 

Kazakhstan 936 2014.00 2.15 
Other countries 

(N=140) 
14550 17354.57 1.19 

 800 
Table A2 Summary of per-country mine areas within KBAs mapped in this study. 801 

Countries Polygons 
Occupied land 

(km2) 
Average 

(km2/polygon) 
China 858 682.24  0.80  

https://doi.org/10.5194/essd-2025-583
Preprint. Discussion started: 12 November 2025
c© Author(s) 2025. CC BY 4.0 License.



26 
 

Brazil 244 442.83  1.81  
Argentina 22 427.22  19.42  
Mexico 258 264.55  1.03  

Australia 158 212.87  1.35  
South Africa 166 209.80  1.26  

Indonesia 81 207.24  2.56  
Namibia 19 136.88  7.20  
Burma 34 135.62  3.99  

Venezuela 51 115.67  2.27  
Turkey 185 99.44  0.54  
Spain 64 85.96  1.34  

Ukraine 15 77.93  5.20  
Russia 83 67.74  0.82  

United States 54 61.57  1.14  
Other countries 

(N=90) 
956 758.64 0.79 

 802 

Table A3 Distribution and accuracy rate of validation samples across global biomes. 803 

Biomes 
Sample 

size 
Average 

accuracy rate 
Standard 
deviation 

Boreal Forests/Taiga 173 0.66 0.48 
Deserts and Xeric Shrublands 109 0.61 0.49 

Flooded Grasslands and Savannas 5 0.60 0.55 
Mangroves 3 0.67 0.58 

Mediterranean Forests, 
Woodlands and Scrub 

39 0.69 0.47 

Montane Grasslands and 
Shrublands 

53 0.72 0.45 

Temperate Broadleaf and Mixed 
Forests 

204 0.70 0.46 

Temperate Conifer Forests 58 0.69 0.47 
Temperate Grasslands, Savannas 

and Shrublands 
133 0.65 0.48 

Tropical and Subtropical 
Coniferous Forests 

1 1.00  

Tropical and Subtropical Dry 
Broadleaf Forests 

28 0.79 0.42 

Tropical and Subtropical 
Grasslands, Savannas and 

Shrublands 
68 0.74 0.44 

Tropical and Subtropical Moist 
Broadleaf Forests 

113 0.74 0.44 

Tundra 12 0.67 0.49 
 804 
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