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Dear Reviewer, 

We area very grateful for your detailed comments and constructive suggestions on our 

manuscript (essd-2025-583). The suggestions have led to important improvements in 

methodology explanation, validation, and documentation. Below we provide point-by-point 

responses, with our replies in blue text. All revised text in the manuscript is highlighted in 

yellow. Please note that all line numbers refer to the latest revised version of the manuscript 

uploaded to the system. 

Major Comment 1: Temporal Analysis Clarifications 
1a. Baseline Year Consideration 

Reviewer's Comment: “Is the start time of each mine explicitly considered? Please clarify 

the baseline year used to define mining-induced disturbance for each mining polygon.” 

Response: We greatly appreciate the reviewer's inquiry regarding the baseline year for mining 

disturbance. In our analysis, we adopt a pixel-level disturbance detection approach rather than 

defining site-specific baseline years for individual mining polygons. This methodological 

choice is driven by both practical and scientific considerations. 

First, comprehensive data on the precise operational start times of mining activities are often 

unavailable or incomplete for many mining sites globally, particularly for historical operations 

and artisanal mines that predate systematic record-keeping. Attempting to define baseline years 

for each of the 74,726 mining polygons in our dataset would introduce substantial uncertainty 

and potentially erroneous assumptions. 

Instead, our approach tracks land cover transitions at the pixel scale (30 m resolution) within 

delineated mining boundaries from 1985 to 2022. We identify disturbance when a pixel 

transitions from vegetated land cover (cropland, forest, grassland, shrubland, or sparse 

vegetation) to mine-related land cover (impervious surfaces, bare areas, water bodies, etc.). 

This first detected land-cover transition serves as the disturbance indicator for that specific 

pixel, independent of the overall mining site's operational timeline. 

This pixel-based framework offers several advantages: (1) it captures the spatial heterogeneity 

of disturbance within individual mining polygons, as different areas within a single mine may 

be disturbed at different times; (2) it avoids the propagation of errors from potentially 

inaccurate site-level operational dates. 

We acknowledge that this approach cannot capture disturbances occurring before 1985, which 



represents a limitation of our study, as noted in Section 4.3 (Uncertainty and limitations). We 

have added clarifying text in Section 2.2 to make this methodological choice more explicit. 

Revised Text (Section 2.2, Lines 231–238): “Rather than defining a site-specific baseline year 

for each mining polygon—which would be constrained by the general unavailability of 

comprehensive operational records for many global mining sites—we adopt a pixel-level 

detection approach. Disturbance is identified when a pixel first transitions from vegetated land 

cover to mine-related land cover within the study period (1985–2022). This first detected 

transition serves as the disturbance indicator, enabling fine-grained tracking of spatially and 

temporally heterogeneous mining impacts within individual polygons.” 

  

1b. Analysis Window Justification 

Reviewer's Comment: “Do all mines use the same analysis window (2018–2023) for trend 

assessment? What is the rationale for selecting this period?” 

Response: We thank the reviewer for this important methodological question. Yes, all mining 

polygons were analyzed using the same temporal window to ensure consistency and 

comparability across the global dataset. The selection of this period was guided by both 

statistical and practical considerations. 

From a statistical perspective, the Mann-Kendall trend test requires a minimum of 

approximately four to five data points to achieve adequate statistical power for detecting 

monotonic trends. Our analysis window provides sufficient observations to satisfy this 

requirement while maintaining focus on recent mining dynamics. 

From a practical perspective, the primary objective of the trend classification was to assess the 

current development status of mining areas—specifically, whether mines are actively 

expanding, undergoing reclamation, or in a stable state. A relatively short, recent window better 

captures the current operational phase of each mine. Extending the analysis window further 

into the past would potentially conflate historical patterns with present conditions, obscuring 

the distinction between mines that have recently transitioned to reclamation versus those that 

underwent reclamation many years ago but have since stabilized. 

 

1c. Static Boundary Assumption 

Reviewer's Comment: “Does the method account for the fact that mining boundaries expand 

or contract over time? This assumption should be explicitly stated and evaluated.” 

Response: We thank the reviewer for this insightful comment, which raises an important 

methodological consideration. Our current methodology does employ fixed mining boundaries, 



and we appreciate the opportunity to clarify and evaluate this assumption explicitly. 

In this study, we used mining boundaries derived from two existing global datasets (Maus et 

al., 2022; Tang and Werner, 2023), which were delineated based on satellite imagery from circa 

2020. Through our refinement workflow (Section 2.1), we produced what we term the 

"maximum potential mining disturbance boundary"—the cumulative outer envelope of mining-

induced land disturbance captured within the source datasets. These boundaries are indeed 

static and do not dynamically track spatial expansion or contraction over time. 

The implications of this static boundary assumption are twofold: 

(1) Mining activities that expanded beyond the delineated boundaries after the source imagery 

dates (or in areas not captured by the original datasets) would not be detected in our analysis. 

This represents a potential underestimation of total mining disturbance. 

(2) Conversely, areas included within our boundaries that were never actually mined (e.g., 

buffer zones or future expansion areas delineated conservatively in source datasets) may 

contribute to overestimation. However, our stable green area exclusion procedure (Section 2.1, 

Step 2–3) was specifically designed to mitigate this issue by removing persistently vegetated 

areas from the boundaries. 

We have added explicit discussion of this limitation in Discussion section to ensure 

transparency regarding this assumption. 

Revised Text (Section 4.3, Lines 827–835): “A further methodological consideration is the 

use of static mining boundaries. Our analysis was conducted within the maximum union of two 

pre-existing global mining datasets, which provides comprehensive spatial coverage but cannot 

capture mining activities that expanded beyond these boundaries during the study period. It 

should be noted that these boundaries are static and derived from satellite imagery circa 2020. 

Newly developed mining areas not represented in the source datasets (Maus et al., 2022; Tang 

and Werner, 2023) are necessarily excluded from our analysis. Future work integrating time-

series boundary delineation methods could address this limitation and provide a more complete 

picture of mining's evolving spatial footprint.” 

 

1d. NDVI Saturation 

Reviewer's Comment: “NDVI saturation may lead to underestimation of recovery trends in 

medium-to-high biomass areas. What would change if alternative indicators such as NIRv were 

used?” 

Response: We thank the reviewer for raising this important methodological consideration 

regarding vegetation index saturation. It is well established that NDVI tends to asymptotically 



saturate in medium-to-high biomass environments (typically NDVI > 0.8), which can reduce 

sensitivity to vegetation dynamics in dense canopies such as tropical forests. 

In this study, NDVI is not used as the sole indicator for disturbance or reclamation detection. 

The identification of mining disturbance and reclamation status primarily relies on the 

GLC_FCS30D land-cover classification product, which integrates multiple spectral bands, 

indices, and temporal features rather than NDVI alone. This multi-feature framework helps 

mitigate the influence of NDVI saturation on the initial classification of land-cover transitions. 

NDVI time series derived from MODIS 250-m products are subsequently employed for trend 

characterization of vegetation recovery. In this context, the reviewer’s concern is valid, as 

NDVI-based trends may underestimate recovery trajectories in high-biomass regions. 

Alternative indicators such as NIRv, kNDVI, or EVI have been shown to retain greater 

sensitivity under high leaf area index conditions. 

If NIRv were applied for trend assessment, vegetation recovery in densely vegetated 

reclamation sites—particularly within tropical biomes—would likely be detected more 

sensitively, potentially resulting in a higher proportion of sites classified as advanced or closed-

canopy recovery. While a full NIRv-based reanalysis is beyond the scope of the present study, 

we acknowledge this limitation and highlight NIRv-based trend analysis as a valuable direction 

for future research. 

Revised Text (Section 4.3, Lines 866–878): “NDVI saturation effects in medium-to-high 

biomass environments (typically where NDVI > 0.8) may reduce sensitivity to vegetation 

recovery trends, particularly in densely vegetated reclamation sites within tropical biomes. 

Although the GLC_FCS30D land-cover classification employed in this study integrates 

multiple spectral and temporal features that partially alleviate reliance on a single vegetation 

index, the MODIS-derived NDVI time series used for recovery trend analysis may still 

underestimate vegetation regrowth under closed-canopy conditions. Alternative indicators 

such as NIRv (near-infrared reflectance of vegetation), which maintains sensitivity at high leaf 

area index (Badgley et al., 2017, 2019), or nonlinear variants such as kNDVI (Camps-Valls et 

al., 2021), could provide more accurate characterization of recovery trajectories. Future 

regional-scale assessments, especially in tropical forest environments, should consider 

incorporating NIRv-based trend analysis to better capture advanced stages of ecological 

reclamation.” 

References to Add: 

Badgley, G., Field, C. B., and Berry, J. A.: Canopy near-infrared reflectance and terrestrial 
photosynthesis, Sci. Adv., 3, e1602244, https://doi.org/10.1126/sciadv.1602244, 2017. 



Badgley, G., Anderegg, L. D. L., Berry, J. A., and Field, C. B.: Terrestrial gross primary 
production: Using NIRV to scale from site to globe, Global Change Biol., 25, 3731–3740, 
https://doi.org/10.1111/gcb.14729, 2019. 

Camps-Valls, G., Campos-Taberner, M., Moreno-Martínez, Á., Walther, S., Duveiller, G., 
Cescatti, A., Mahecha, M. D., Muñoz-Marí, J., García-Haro, F. J., Guanter, L., Jung, M., 
Gamon, J. A., Reichstein, M., and Running, S. W.: A unified vegetation index for quantifying 
the terrestrial biosphere, Sci. Adv., 7, eabc7447, https://doi.org/10.1126/sciadv.abc7447, 2021. 

 

1e. High Proportion of Undefined Mines 

Reviewer's Comment: “Nearly half of the mining polygons are classified as 'undefined'. This 

proportion is unexpectedly large and suggests limitations in indicator sensitivity or threshold 

selection.” 

Response: 

We thank the reviewer for raising this important concern. We have carefully considered 

whether the 48.9% proportion reflects methodological limitations, and our analysis suggests 

that this proportion actually represents an improvement over existing approaches rather than a 

deficiency. 

We respectfully argue that our approach demonstrates enhanced rather than limited sensitivity. 

Wang et al. (2025), using NDVI change rates alone for a similar analysis period (2018–2022), 

classified 64.3% of mining polygons as “Stable.” By integrating three complementary 

indicators (NDVI for vegetation dynamics, BSP for bare soil exposure, and NTL for human 

activity intensity), our method reduced this proportion to 48.9%—detecting dynamic trends in 

approximately 15% more mining areas than single-indicator approaches. This improvement 

confirms that combining multiple indicators captures mining activities that vegetation-based 

methods alone would miss, particularly in arid environments where bare soil dominates, or in 

regions where mining operations continue under partial vegetation cover.  

The proportion of stable mines also reflects the inherent heterogeneity of the global mining 

landscape. Our dataset encompasses 74,726 polygons across 155 countries, spanning scales 

from small artisanal operations (averaging 0.72 km² in Asia) to mega-mines (exceeding 2.0 

km² in Oceania). Many operations worldwide genuinely maintain steady-state conditions—

neither expanding nor contracting their surface footprint—due to mature production phases, 

care-and-maintenance status, or underground extraction with minimal surface expression. The 

48.9% proportion thus represents a meaningful finding about global mining dynamics: 

approximately half of the world's mining areas currently operate at equilibrium. 

Following this comment and the parallel concern from Reviewer 1, we have renamed the 



category from "Undefined Mines" to "Stable Mines" and provided a positive definition 

specifying the operational states this category represents. Please see our detailed response to 

Reviewer 1 Comment 1 for the complete revised text, which includes modifications to Sections 

2.3, 3.3, and 4.3. 

 

Major Comment 2: Comparisons and Validations 
Reviewer's Comment: “The dataset is derived from merging two existing mining inventories, 

but the manuscript does not convincingly demonstrate accuracy improvements. The authors 

should conduct cross-dataset quantitative comparisons using the same validation samples or 

adding case-based evaluations.” 

Response:  

We thank the reviewer for this constructive suggestion. We acknowledge that the original 

manuscript lacked a systematic cross-dataset comparison to demonstrate the accuracy 

improvements of our refined boundaries. Following the reviewer's recommendation, we have 

designed and implemented a stratified cross-validation framework that directly compares the 

three datasets (Tang and Werner 2023, Maus et al. 2022, and our refined dataset) using the 

same validation samples. 

We designed a four-zone stratified sampling scheme based on the spatial overlap relationships 

among the three datasets. The zones are defined as follows: 

Zone A (Excluded by Ours): Areas identified as mining by both Tang and Maus datasets but 

excluded by our refined boundaries (n = 150 samples); 

Zone B (Three-way Consensus): Areas identified as mining by all three datasets (n = 300 

samples); 

Zone C (Maus + Ours, not Tang): Areas identified by Maus and our dataset but not by Tang 

(n = 150 samples); 

Zone D (Tang + Ours, not Maus): Areas identified by Tang and our dataset but not by Maus 

(n = 150 samples). 

A total of 750 validation points were randomly sampled across these four zones. Each point 

was independently verified through visual interpretation of high-resolution Google Earth 

imagery in combination with Landsat 8/9 Collection 2 Level 2 surface reflectance data (July 

2019 to June 2021). The validation results are summarized in Table R1. 

Table R1. Cross-dataset validation results 

Zone Mining Non-mining Total Mining Rate 



Zone A (Excluded by Ours) 43 107 150 28.7% 

Zone B (Three-way 

Consensus) 

274 26 300 91.3% 

Zone C (Maus + Ours, not 

Tang) 

122 28 150 81.3% 

Zone D (Tang + Ours, not 

Maus) 

129 21 150 86.0% 

These results provide important quantitative evidence for the accuracy improvements achieved 

by our boundary refinement approach: 

(1) The low mining rate in Zone A (28.7%) demonstrates that the areas excluded by our 

refinement process were predominantly non-mining areas. This means 71.3% of the excluded 

areas were correctly identified as non-mining, validating the effectiveness of our CCDC-based 

stable vegetation exclusion approach in reducing commission errors (false positives) from the 

merged dataset. 

(2) The high mining rate in Zone B (91.3%) confirms the reliability of consensus areas where 

all three datasets agree, providing a solid foundation for subsequent time-series analysis. 

(3) Zones C and D show mining rates of 81.3% and 86.0% respectively, indicating that our 

dataset captures genuine mining areas that were missed by one of the source datasets. This 

demonstrates improved coverage while maintaining acceptable accuracy. 

(4) Compared to directly merging the two source datasets without refinement, our approach 

reduces the inclusion of non-mining areas (as evidenced by Zone A results) while preserving 

high-confidence mining areas identified through dataset intersection. 

We have revised the manuscript accordingly: the validation methodology is now described in 

Section 2.4.2, and the validation results along with their interpretation are presented in Section 

4.1. This separation follows the standard structure of scientific papers, with methods in the 

Methods section and results/discussion in the Discussion section. 

 

Revised text： 

(Section 2.4.2, Lines 320–360): 

2.4.2 Validation 

To comprehensively evaluate the performance of the proposed method, we designed a dual-

track validation framework addressing both spatial accuracy and temporal accuracy. The 

spatial validation focuses on assessing the reliability of mining area delineation by comparing 



our refined dataset with two existing global mining datasets through stratified cross-validation 

across four spatially defined zones. The temporal validation targets the accuracy of mining-

reclamation transition year detection through multi-index spectral trajectory analysis over a 25-

year period (1990–2022). Both validation components employed stratified random sampling 

and integrated high-resolution Google Earth imagery with Landsat/Sentinel-derived spectral 

indices for reference label generation. 

To quantitatively assess the accuracy improvements of the refined dataset compared to the 

source datasets, we designed a stratified cross-validation framework based on the spatial 

overlap relationships among the three datasets: Dataset A (Tang and Werner, 2023), Dataset B 

(Maus et al., 2022), and our refined Dataset D. Four validation zones were defined based on 

dataset agreement patterns (Fig. 3): 

(1) Zone A: Areas identified by both Tang and Maus but excluded in our refined dataset, 

representing potentially over-estimated mining extents in the source datasets; 

(2) Zone B: Three-way consensus areas identified by all three datasets; 

(3) Zone C: Areas identified by Maus and our dataset but not by Tang; 

(4) Zone D: Areas identified by Tang and our dataset but not by Maus. 

A total of 750 validation points (Fig. A1):were randomly sampled across these zones using 

stratified random sampling (150 points each for Zones A, C, and D; 300 points for Zone B to 

ensure adequate representation of consensus areas). Each point was verified through visual 

interpretation of high-resolution Google Earth imagery, supplemented by Landsat 8/9 

Collection 2 Level 2 surface reflectance imagery (July 2019 to June 2021). Cloud-free median 

composites were generated using true-color visualization (bands B4, B3, B2), and the 

Normalized Difference Vegetation Index (NDVI) and Normalized Difference Built-up Index 

(NDBI) were calculated to assist in distinguishing mining areas from vegetated or built-up land 

covers. 



 
Figure 3. Illustration of the four validation zones defined by spatial overlap relationships 

among three mining datasets at two representative sites. Left: a mining site in Tasmania, 

Australia (145.197°E, 41.450°S); Right: a mining site in Georgia, USA (83.171°W, 32.756°N). 

The boundary lines represent mining area delineations from Dataset A (Tang and Werner, 2023; 

blue), Dataset B (Maus et al., 2022; green), and our refined Dataset D (yellow). The filled zones 

indicate: Zone A (red) – areas identified by both source datasets but excluded in our refined 

dataset; Zone B (cyan) – three-way consensus areas identified by all three datasets; Zone C 

(magenta) – areas identified by Dataset B and our dataset but not by Dataset A; Zone D (orange) 

– areas identified by Dataset A and our dataset but not by Dataset B. Background imagery: 

Google Earth. 

(Appendix A, Lines 952–953): 

Figure. A1 Global spatial distribution of 750 cross-validation samples 



 
(Section 4.1, Lines 752–776): 

The cross-dataset validation results provide quantitative evidence for the accuracy 

improvements achieved by our boundary refinement approach (Table 2). Zone A, representing 

areas identified by both Tang and Maus but excluded in our refined dataset, exhibited a mining 

rate of only 28.7% (43 out of 150 samples). This indicates that 71.3% of the areas excluded by 

our refinement process were correctly identified as non-mining land covers, validating the 

effectiveness of our CCDC-based stable vegetation exclusion strategy in reducing commission 

errors inherited from the merged dataset. Zone B, the three-way consensus area, showed a 

mining rate of 91.3% (274 out of 300 samples), confirming the high reliability of areas where 

all three datasets agree. This high accuracy in consensus areas provides a solid foundation for 

the subsequent time-series analysis of mining disturbance and reclamation dynamics. Zones C 

and D demonstrated mining rates of 81.3% (122/150) and 86.0% (129/150), respectively. These 

results suggest that our integrated dataset successfully captures additional mining areas that 

were missed by individual source datasets while maintaining reasonable accuracy. The slightly 

higher mining rate in Zone D compared to Zone C may reflect differences in the mapping 

strategies employed by Tang and Werner (2023) and Maus et al. (2022). 

Collectively, these validation results demonstrate that our boundary refinement approach 

achieves two key objectives: (1) effectively reducing commission errors (false positives) from 

the merged dataset, as evidenced by the substantial proportion of non-mining areas in Zone A 

(71.3%); and (2) preserving genuine mining areas with high confidence, as indicated by the 

consistently high mining rates in Zones B, C, and D (81.3%–91.3%). This balance between 

precision and coverage represents a meaningful improvement over using either source dataset 

alone or a simple union of both. 



Table 2. Cross-dataset validation results for boundary refinement assessment 

Zone Definition Mining Non-

mining 

Total Mining Rate 

(%) 

Zone A Tang + Maus, excluded 

by Ours 

43 107 150 28.7 

Zone B Three-way consensus 274 26 300 91.3 

Zone C Maus + Ours, not Tang 122 28 150 81.3 

Zone D Tang + Ours, not Maus 129 21 150 86.0 

 

Minor Comments 

Reviewer's Comment: 

1. Line 306-312：These sentences should be moved to the relevant figure caption. Please 

check for similar cases throughout the manuscript. 

2. Figure 3(a): The lower chart duplicates information already shown in Figure 3(b). 

Please remove it to reduce visual clutter. 

3. Figure 3(b), upper plot: The purpose for scaling the y-axis by 1,000 is unclear and 

seems unnecessary. 

4. Figure 3(b), lower images: The images are too blurry. Please regenerate them using 

downloaded satellite imagery rather than screenshots from Google Earth. 

5. Percentages in Sections 3.2 and 3.3 are inconsistently formatted (some integers, some 

with one decimal place). Please harmonize formatting across the manuscript. 

6. Please provide a dataset user guide / metadata documentation, explaining the meaning, 

units, and calculation logic of each field in the dataset. This will significantly improve 

usability. 

Response:  

We sincerely thank the reviewer for these constructive and detailed minor comments. We have 

carefully revised the manuscript accordingly. Our responses are provided point by point below. 

1. Lines 306–312: We have relocated the methodological details to the caption of Figure 3 

and carefully reviewed the entire manuscript for similar instances, making corresponding 

revisions where appropriate.  

2. Figure 3(a) redundancy: The redundant lower chart has been removed from Figure 3(a) 

to improve visual clarity.  



3. Figure 3(b) y-axis scaling: We have revised the figure to display the original NDVI 

values on the y-axis without artificial scaling.  

4. Figure 3(b) image quality:  

We sincerely thank the reviewer for this constructive suggestion. We have completely revised 

Figure 4(b) by replacing the original screenshots with satellite imagery downloaded directly 

from Google Earth Engine (GEE) using the Landsat 8 Collection 2 Level-2 Surface Reflectance 

product (LANDSAT/LC08/C02/T1_L2). 

For Point 688 (coordinates: 3.552883°N, 117.169372°E, located in Borneo, Indonesia), we 

generated annual median composites for 2014, 2015, and 2016 using cloud-masked imagery 

with less than 50% cloud cover. The images were processed with optimized visualization 

parameters (true color composite with min: 7000, max: 16000, gamma: 1.2) and exported at 10 

m spatial resolution through 3× supersampling of the native 30 m Landsat data. This 

supersampling approach enhances visual presentation quality while preserving the spectral 

characteristics of the original observations. 

We acknowledge that the imagery may still appear less sharp compared to very high-resolution 

commercial satellites. However, this reflects the inherent spatial resolution limitation of 

Landsat 8 OLI (30 m), which represents the finest freely available optical imagery with 

consistent global coverage for the 2014–2016 study period. Since our validation focuses on 30 

m resolution land-cover products (GLC_FCS30D), the use of Landsat imagery at its native 

resolution ensures methodological consistency between the validation imagery and the dataset 

being validated. 

Higher-resolution commercial imagery (e.g., WorldView, Pleiades, SPOT) for this specific 

remote tropical location and time period is either unavailable or requires costly licensing 

beyond the scope of this study. The Google Earth historical high-resolution imagery coverage 

for this region during 2014–2016 is also limited and inconsistent. 

The revised Figure 4(b) now includes GeoTIFF imagery exported directly from GEE with the 

following specifications: (1) Landsat 8 Collection 2 Level-2 Surface Reflectance data; (2) 

Annual median composites with cloud masking; (3) True color visualization (RGB: Bands 4, 

3, 2); (4) 10 m export resolution for enhanced visual quality; (5) 1 km × 1 km region of interest 

centered on Point 688; and (6) A yellow marker clearly indicating the 30 m validation pixel 

location. These improvements ensure that the figure accurately represents the satellite 

observations while maintaining appropriate resolution for validating our 30 m land-cover 

dataset. 

Revised Text (Section 2.4, Lines 382–392): 



 
Figure 4. (a) Spatial location of a sample mine (WGS84: 3.552883°N, 117.169372°E) located 

on the island of Borneo, Indonesia. (b) Spectral validation results for the selected sample point 

(Point 688). The upper panel displays the NDVI time series (blue), LandTrendr segmentation 

results (orange), and the mining year inferred from the land cover time series (LCTS) indicated 

by a red vertical dashed line. The lower panel shows high-resolution Landsat 8 OLI imagery 

(Collection 2 Level-2 Surface Reflectance) downloaded directly from Google Earth Engine for 

2014, 2015, and 2016. The yellow marker indicates the location of the 30 m validation pixel. 

Imagery was exported at 10 m resolution (3× supersampling) to enhance visual clarity while 

maintaining spectral fidelity of the original 30 m Landsat data. 

5. Percentage formatting: All percentages in Sections 3.2 and 3.3 have been standardized 

to one decimal place for consistency throughout the manuscript.  

6. Dataset documentation: We have prepared comprehensive metadata documentation that 

details the meaning, units, and calculation logic for each field in the dataset. 

 


	Major Comment 1: Temporal Analysis Clarifications
	Major Comment 2: Comparisons and Validations

