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Abstract. Reversed eutrophication, called oligotrophication, has widely been documented globally over the last 30 years in 

rivers, lakes, and estuaries. However, the absence of a comprehensive and harmonized dataset has hindered a deeper 

understanding of its ecological consequences. To address this data gap, we developed the OLIGOTREND database, which 

contains multi-decadal time series of chlorophyll-a, nutrients (nitrogen and phosphorus), and related physicochemical 30 

parameters, totalling 4.3 million observations. These data originate from 1,894 unique monitoring locations across estuaries 

(n = 238), lakes (687), and rivers (969). Most time series covered the period 1986–2022 and comprised at least 15 years of 

chlorophyll-a observations. Each location is associated to catchment and hydroclimatic attributes. Trend and breakpoint 

analyses were applied to all time series. Chlorophyll-a showed temporally variable and ecosystem-specific responses to 

nutrient declines with an overall declining trend for 18% of the time series, contrasting greatly with a majority of declining 35 

trends for nutrient concentrations. We harmonized the database to ensure reproducibility, ease of access, and support future 

updates and contributions. Available at https://doi.org/10.6073/pasta/a7ad060a4dbc4e7dfcb763a794506524 (Minaudo and 

Benito, 2024) the OLIGOTREND database supports collaborative efforts aimed at further advancing our understanding of 

mailto:camille.minaudo@ub.edu
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biogeochemical and biological mechanisms underlining oligotrophication, and ecological impacts of global long-term 

environmental change. 40 

 

Short summary. Many waterbodies undergo nutrient decline globally, called oligotrophication, but a comprehensive dataset 

to understand ecosystem responses is lacking. The OLIGOTREND database comprises multi-decadal chlorophyll-a and 

nutrient time series from rivers, lakes, and estuaries with 4.3 million observations from 1,894 unique measurement locations. 

The database provides empirical evidence for oligotrophication responses with a spatial and temporal coverage exceeding 45 

previous efforts. 

Introduction 

Decades of freshwater and estuarine eutrophication in the 20th century spurred coordinated national efforts to reduce aquatic 

nutrient loads and subsequent algal blooms (Pinay et al., 2017). The most effective actions have included improved wastewater 

collection and treatment, better coordinated watershed management, and the regulation of phosphorus in detergents (Conley 50 

et al., 2009; Némery and Garnier, 2016). Evidence from rivers, lakes, and estuaries already suggests that such efforts can 

indeed reverse eutrophication at time scales ranging from months to years and decades, in a process termed oligotrophication 

or re-oligotrophication. However, our understanding of oligotrophication is still incomplete (Anneville et al., 2019; Hoyer et 

al., 2002; Ibáñez and Peñuelas, 2019), and the magnitude, direction, and timing of ecological responses to water quality 

improvements remain to be better detected and quantified.  Declines in nutrients often coincide with a transition in primary 55 

producers in terms of quantity and community composition. The most reported change in inland and estuarine ecosystems is 

the systematic replacement of phytoplankton by submerged macrophytes (Ibáñez and Peñuelas, 2019). However, these shifts 

can follow nonlinear trajectories, typically explained by the occurrence of alternative stable states in lakes (Scheffer and 

Carpenter, 2003), rivers (Verdonschot et al., 2013), and estuaries (Duarte et al., 2009; Elliott and Quintino, 2007). Additional 

complexities in predicting primary producer shifts arise due to nutrient legacies in the landscape that can create lags in 60 

ecosystem response (Van Meter et al., 2021; Stackpoole et al., 2019), and the presence of dams and weirs that alter the 

spatiotemporal variability of nutrient mobilization and transport (Zeng et al., 2023). Indeed, a wide range of contrasting trends 

in nutrients and primary production (as indicated by chlorophyll-a [chla]) are possible (Greening and Janicki, 2006; Kronvang 

et al., 2005; Murphy et al., 2022), including natural causes such as forest growth (Nilsson et al., 2024). Due to the complexity 

of ecosystem responses to watershed nutrient reduction, a common predictive framework remains elusive, highlighting the 65 

need for cross-ecosystem analysis of oligotrophication trends. 

Available water quality datasets, while plentiful, remain heterogeneous and often irregularly collected and reported, hindering 

their use in across-system studies. Moreover, oligotrophication has been primarily focused on local and regional-scale studies 

(e.g. Abonyi et al., 2018; Greening et al., 2014; Minaudo et al., 2021; Sabel et al., 2020) and isolated aquatic ecosystems. Thus, 

the spatial extent of oligotrophication trends remain poorly constrained, and we lack an understanding of the connectivity of 70 
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oligotrophication responses across the watershed to estuary continuum. Even the best available harmonized, large-scale water 

quality databases commonly exclude chla (e.g., GRQA, Virro et al., 2021), limiting their utility to evaluate oligotrophication. 

Likewise, some databases may cover large numbers of observations, but exclude parallel measurements of chla and nutrients, 

mainly phosphorus (Nilsson et al., 2024; Spaulding et al., 2024) or are temporally limited relative to oligotrophication 

timescales (Brehob et al., 2024). Therefore, there is a clear need for a centralized database of paired nutrient and primary 75 

producer observations at oligotrophication-relevant timescales across different ecosystems.  

Here we present OLIGOTREND (Minaudo and Benito, 2024), a database of 4.3 million quality assessed public and open 

access observations of water quality variables and chla from rivers, lakes and reservoirs, estuaries and coastal bays, enabling 

the joint assessment of multi-decadal oligotrophication trends across spatial scales. We collected and harmonized multi-

decadal time series to facilitate its structure and reuse. The database also covers geospatial data, including catchment and 80 

waterbody attributes, climate variables, and a robust trend analysis of all water quality time series. Here we highlight some of 

the main findings from our first analyses of the database and describe possible research directions that OLIGOTREND holds 

the potential to answer. 

2. Data and Methods 

We followed a transparent and reproducible approach to produce the OLIGOTREND database, in line with best practices for 85 

Open Science in Ecology (Powers and Hampton, 2019). In particular, the entire data processing pipeline (Figure 1) was 

developed collaboratively in a version control GitLab repository (https://gitlab.com/OLIGOTREND/wp1-unify). Data are 

referenced according to their level (“L”) in the processing pipeline. Time series extracted from various sources were defined 

as “L0a”, preserving the original data structure and formatting. Time series were then harmonized (“L0b”), and a selection of 

variables of interest (see Section 2.1) at sampling sites with at least 15 years of chla data qualified for the data quality 90 

assessment and check (QA/QC, see Section 2.2) and to be matched with geospatial data (see Section 2.3). Harmonized and 

curated time series together with catchment and waterbody attributes constitute “L1” data, i.e., analysis- and sharing-ready 

data. Any additional processing of L1 data, e.g. trend analyses, was considered as “L2” (see Section 2.4). 

2.1. Data collection 

In-situ chla concentrations and physicochemical parameters were extracted from open-source international, national, and 95 

regional water quality databases (Table 1). We first obtained data from queries to the Earth System Science Data portal 

(https://www.earth-system-science-data.net/), the Environmental Data Initiative repository (https://edirepository.org/), and the 

Scientific Data portal (https://www-nature-com.sire.ub.edu/sdata/). We then conducted a literature search on Web of Science 

(https://www.webofscience.com/wos/) and Scopus (https://www.scopus.com/) for further existing long-term chla and nutrient 

time series. To do so, we used the following search terms: “TITLE or ABSTRACT (oligotrophication, reoligotrophication, 100 

chlorophyll, timeseries); and in TITLE or ABSTRACT (lake, river, estuary, coastal, estuarine); and in EVERYTHING (trend, 

https://gitlab.com/OLIGOTREND/wp1-unify
https://www.earth-system-science-data.net/
https://edirepository.org/
https://www-nature-com.sire.ub.edu/sdata/
https://www.webofscience.com/wos/
https://www.scopus.com/
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long term, multi-decadal)”. When public and accessible, we directly extracted the datasets and proceeded with data 

harmonization. The database architecture (Figure 1) allows researchers to easily complement it with additional time series in 

the future. New additions to the database will be eased by a set of scripts available in a dedicated version control GitLab 

repository (https://gitlab.com/OLIGOTREND/wp1-unify) allowing to reproduce, update or add more timeseries from level 105 

L0a to higher data levels and products. 

 

 
Figure 1. Data levels and procedure followed to produce the OLIGOTREND database, an ensemble of harmonized and curated time series 

of chla and water quality paired with catchment and waterbody attributes. QA/QC stands for quality assessment and quality check.  110 

We gathered data as raw measurements, i.e. unprocessed or non-aggregated time series, and defined herein this data as level 

L0a. Extracted variables included chlorophyll-a (chla), water temperature (wtemp), conductivity (cond), pH, dissolved oxygen 

as concentration (o2) and percentage of saturation (o2sat), dissolved inorganic nitrogen (din), nitrate (no3), nitrate + nitrite 

(no23), ammonium nitrogen (nh4), Kjeldahl nitrogen (nkjel), total nitrogen (tn), orthophosphate or soluble reactive phosphorus 

(po4), total phosphorus (tp), dissolved organic carbon (doc), and total suspended solids (tss). The ecosystem types covered in 115 

this database included lakes and reservoirs, rivers, estuaries and coastal bays.  

https://gitlab.com/OLIGOTREND/wp1-unify


 

5 

 

We primarily targeted databases identified with long periods of records without any filter on geographic location (Table 1). 

We discarded chla datasets obtained with remote sensing techniques, to ensure a strict comparability among observations. For 

stratifying deep lakes, we extracted values either for the euphotic layer, or from the upper 10 m if euphotic depth was 

unavailable, to avoid using data from light-limited conditions. 120 

 

Table 1. Data sources of the OLIGOTREND database. 

Source Link to data (and date of extraction when appropriate) Spatial coverage 

naiades French water quality 

portal 
https://naiades.eaufrance.fr/ (last accessed 07/05/2024) French national territory 

Naderian et al., 2024 https://doi.org/10.1016/j.resconrec.2023.107401 Global 

Chesapeake Bay Program 
https://www.chesapeakebay.net/what/downloads/cbp-water-quality-database-1984-

present (last accessed 30/01/2024) 
Chesapeake Bay and watershed 

LAGOS-NE https://doi.org/10.1093/gigascience/gix101 North-East USA 

UK Harmonized Monitoring 

Dataset 
https://datamap.gov.wales/documents/2633 (last accessed 17/06/2024) England and Wales 

Lake PCI https://doi.org/10.20383/102.0488 
Temperate and cold northern 

lakes 

Danish monitoring program https://odaforalle.au.dk/login.aspx (last accessed 14/06/2024) Denmark 

Sacramento Bay Interagency 

monitoring 
https://doi.org/10.6073/pasta/f58f8217c18f469e7fd565997a47813c 

Sacramento-San Joaquin Delta 

(USA) 

Elbe monitoring program 
https://www.fgg-elbe.de/fachinformationssystem.html (last accessed 12/12/2023) 

 

Elbe River watershed and 

estuary (Germany) 

Filazzola et al., 2020 https://doi.org/10.1038/s41597-020-00648-2 Global 

USGS-NWIS Data Retrieval https://doi.org/10.5066/P9X4L3GE (last accessed 19/12/2023) USA 

GEMStat https://gemstat.org/ (last accessed 11/06/2024) Global 

LTER Florida Everglades https://doi.org/10.6073/pasta/f45fbf88dcf1f78f0d74c1dbdaaa8c7d Florida Everglades (USA) 

Danube River public program 

(HUN-REN CER, IAE) 
https://doi.org/10.1111/fwb.13084 

Middle section of the Danube 

River (N-Budapest, Hungary) 

Victoria State Government http://www.data.water.vic.gov.au/ (last accessed 17/05/2024) Victoria State (Australia) 

Commission pour la 

Protection des Eaux du Léman 

(CIPEL) 

https://www.cipel.org/en/ (last accessed 03/02/2023) 
Lake Geneva, France-

Switzerland 

Ebro River monitoring 

program 
https://doi.org/10.1016/j.scitotenv.2011.11.059 Ebro River at Tortosa (Spain) 

Romero et al., 2013 https://doi.org/10.1007/s10533-012-9778-0 Southwestern Europe 

 

2.2. Data harmonization and quality control 

First, L0a time series were individually reformatted into standard units and data matrix headers, forming an ensemble of time 125 

series defined here as level L0b. Nutrient concentrations were expressed as mg L-1 except chla, which remained in µg L -1. 

Time series were named with a unique identifier (uniquID) per site corresponding to the concatenation of the following data 

separated by underscores: “ecosystem type”, “basin”, “station ID”, e.g., “river_loire_04000100”. Basin names were derived 

https://naiades.eaufrance.fr/
https://doi.org/10.1016/j.resconrec.2023.107401
https://www.chesapeakebay.net/what/downloads/cbp-water-quality-database-1984-present
https://www.chesapeakebay.net/what/downloads/cbp-water-quality-database-1984-present
https://doi.org/10.1093/gigascience/gix101
https://datamap.gov.wales/documents/2633
https://doi.org/10.20383/102.0488
https://odaforalle.au.dk/login.aspx
https://doi.org/10.6073/pasta/f58f8217c18f469e7fd565997a47813c
https://www.fgg-elbe.de/fachinformationssystem.html
https://doi.org/10.1038/s41597-020-00648-2
https://doi.org/10.5066/P9X4L3GE
https://gemstat.org/
https://doi.org/10.6073/pasta/f45fbf88dcf1f78f0d74c1dbdaaa8c7d
https://doi.org/10.1111/fwb.13084
http://www.data.water.vic.gov.au/
https://www.cipel.org/en/
https://doi.org/10.1016/j.scitotenv.2011.11.059
https://doi.org/10.1007/s10533-012-9778-0
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from site geographic coordinates and the corresponding watershed according to the FAO dataset (Major hydrological basins 

of the world, 2025). Ecosystem type was either “estuary”, “lake” or “river”, corresponding to estuary or coastal bay, lake or 130 

reservoir, and river, respectively. The “station ID” was the one provided by the original data source. For each sampling site, 

the geographic coordinates found in the original metadata were used to create a point shapefile labelled with the station unique 

identifier (uniquID) as explained above. Stations with no geographic coordinates were discarded from the database. 

Data quality was assessed and checked for all L0b time series from sampling stations presenting at least 15 years of chla data. 

The resulting dataset comprises the OLIGOTREND L1 data level (Figure 1). We did not remove any data in response to data 135 

curation (QA/QC) to allow users to design their own quality check procedure. Instead, we flagged potentially anomalous or 

suspicious observations. Valid observations were indicated with flag = 0. Quality control identified missing values (flag = 1), 

possible outliers (flag = 2), and abnormally repetitive values (flag = 3). Observations were considered as outliers when the 

corresponding values exceeded 3 times the interquartile range defined by site. Observations were considered abnormally 

repetitive when, at a given site and for a given variable, the corresponding value appeared more than 5 % of the time in the 140 

time series, not necessarily consecutively. Obvious mistakes in the units found in the original datasets at level L0b were 

identified and corrected by plotting the density of distribution of observed concentrations and scatter plots by pairs of variables 

(e.g., chla vs tp, tp vs po4, ...etc.) throughout the database.  

2.3. Link with watershed and ecosystem properties 

We linked inland sampling stations with the global HydroATLAS database (Lehner et al., 2022; Linke et al., 2019). The 145 

HydroATLAS has three distinct datasets: BasinATLAS, RiverATLAS, and LakeATLAS which represent sub-basin 

delineations (polygons), the river network (lines), and lake shorelines (polygons), respectively. Although we proceeded with 

the spatial join between HydroATLAS and OLIGOTREND stations, we acknowledge there may be a potential temporal 

mismatch between HydroATLAS properties and OLIGOTREND temporal coverage. Yet, we considered this spatial join 

would succeed at demonstrating the great variability of watershed and ecosystem properties encountered in the OLIGOTREND 150 

database. 

First, we linked all OLIGOTREND sampling stations to the BasinATLAS by spatial selection of polygons of sub-basins 

(Pfafstetter level 12, i.e., the highest hierarchical sub-basin level in the BasinATLAS), overlapping with the point shapefile of 

L1 OLIGOTREND stations. A selection of watershed properties related to their physiography, climate, land cover, hydrology 

and anthropogenic pressures were extracted and linked to each station present in the database at the L1 level and intersecting 155 

with one of the BasinATLAS sub-basins. Similarly, the intersection of LakeATLAS lake polygons with L1 stations provided 

an ensemble of lake characteristics for 61% of the lake stations (418 out of 687). Finally, OLIGOTREND L1 river stations 

were linked to the RiverATLAS database by identifying the three nearest river segments using the function joinbynearest() in 

QGIS 3.26.2. For each possible station-segment match, the distance between the station and each segment was calculated, and 

the quality of the spatial join was assessed using a flagging system: if the distance to the nearest segment exceeded 500 m, a 160 

flag (flag = 1) was raised, indicating that the distance might be too large for the join to be considered valid. If the distance to 



 

7 

 

the second or third nearest segment was less than 10% greater than the distance to the nearest segment, a flag (flag = 2) was 

raised indicating that several river segments could potentially be selected. In that case, if these segments were associated with 

multiple sub-basins (HYBAS_L12 in HydroATLAS documentation), a flag value of 2.1 was set. If these segments were linked 

to multiple drainage basins (MAIN_RIV in HydroRIVERS), a flag value of 2.2 was set. All other associations identified during 165 

the spatial join were considered as valid, and flag value was set to flag = 0. Only stations with flag = 0 were considered reliable. 

Overall, out of 924 river stations, 90% were considered as valid. We found that 6.1% of stations were more than 500 m away 

from the closest HydroRIVERS segment, and 3.9% shown possible multiple associations (flag ≥ 2), sometimes with different 

sub-basins (1.3%, flag = 2.1) or drainage basins (0.3%, flag = 2.2). We acknowledge that there is some uncertainty in the 

spatial join between OLIGOTREND river stations and HydroRIVERS given the spatial resolution of the HydroSHEDS (15 170 

arc-second). This uncertainty could be reduced by using a river network derived from a higher-resolution Digital Elevation 

Model. Stations with unmatched basin, lake or river segment from the HydroATLAS database were not removed from the 

OLIGOTREND database, but we did not account for them in the statistics and description of watershed attributes. 

2.4. Time series metrics and trend analysis 

We described the OLIGOTREND time series based on multiple metrics. These included the number of observations by each 175 

variable, the extent of the period of record, as well as the median, average and standard deviation of all valid values over the 

entire time series. 

As a first step into the trend analysis, we quantified the proportion of time series showing lower annual averages in the second 

half of the time series compared to the first one. We chose annual averages over growing season averages to increase robustness 

in the metric because sampling frequency was sometimes unequally distributed seasonally. This further simplified the question 180 

of how to identify the growing season among sites across latitudes. We considered that a lower average value in the 2nd half 

of the time series indicated decline, regardless of the level of trend-complexity found in the time series. 

A breakpoint and segmented regression analysis was performed using the R package segmented (Fasola et al., 2018). Whenever 

the Davies test (Davies, 1987) did not identify any non-constant linear regressions in time series, we conducted a Mann-

Kendall trend analysis on annual averages with the R package trend (Pohlert, 2023).  When the Mann-Kendall test detected a 185 

monotonic trend (p < 0.01), we calculated a Sen’s slope over the complete dataset. Whenever the Davies test identified non-

constant linear regressions, we fitted a segmented regression to the data with two joined segments, and the position of the 

temporal breakpoint and the corresponding interval estimation were identified. The Sen’s slope was then quantified for both 

sides of the given breakpoint. For each segment, there were three possible trend types: declining, no trend, rising, noted as “-

”, “0” and “+”, respectively. The combination of two joined segments or a single segment only when no breakpoint was 190 

detected provided a total of 12 possible trend types: "-","--", "+-", "0-", "-0", "0","00", "+0", "-+","0+","+", “++”. We 

acknowledge a segmented regression with one breakpoint unlikely captures all the variety in trend patterns, but it may provide 

a comprehensive first assessment for non-linear and non-monotonic temporal patterns, robust enough to provide a first 
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overview on multi-decadal temporal trajectories. Outputs from the trend analysis and above-described statistical descriptors 

constitute level L2 data. 195 

3. Database characteristics 

3.1. Time series characteristics 

We collected L0 data from 3,718 sampling stations, producing a total of 41,979 time series. Among these, 1,894 stations had 

at least chla for over 15 years and were selected for quality check and harmonization at level L1 (Figure 1). Following quality 

check, the OLIGOTREND database includes 4.3 million observations. Across all variables and time series, 83,807 200 

observations (1.7 % of total observations) were flagged as outliers, and 691,000 (13.7 % of total observations) as repetitive 

observations. The highest proportion of abnormally repetitive observations were found for nh4 and tp (34 % and 21 % of the 

observations, respectively, Table 2), likely related to detection and/or quantification limits above the actual concentrations. 

For chla, 13 % of the observations were flagged as repetitive (9.9%) or extreme outliers (3.4%). We only included the valid 

data points for all subsequent analysis and time series descriptions. Most L1 time series were multi-decadal with a median 205 

time series length of 33 years (Table 2).  

The majority of chla time series included 5 observations per year (Table 2); only 16 % of time series were based on monthly 

sampling. We counted that 95% of chla time series exceeded 15 years, and 75%, 43% and 11% covered 20, 30 and 40 years, 

respectively. The longest chla time series covering more than 45 years originated from the LakePCI dataset (10 lake chla time 

series located in Sweden), the UK Harmonized Monitoring Program (42 rivers in England and Wales), and the Sacramento 210 

Bay Interagency monitoring (13 stations in estuarine area).  

 

Table 2. Overview of L1 data and percentage of data points flagged as invalid for each of the main variables. Ranges are presented 

as “median (10th percentile– 90th percentile)”. The percentage of flagged observations (last column) correspond to possible outliers 

and abnormally repetitive values. 215 

Variable  Number of time 

series  

Time series 

length [yr]  

Number of individual 

years covered  

Number of 

observations  

Frequency 

[observations/yr-1]  

% of flagged 

observations  

chla  1885  29 (16-41)  22 (15-36)  158 (58-463)  5 (3-14)  13.3  

cond  783  36 (20-43)  31 (18-42)  270 (168-527)  8 (5-13)  1.1  

din  207  34 (15-35)  35 (16-36)  429 (176-588)  12 (11-17)  1.7  

doc  157  23 (14-35)  22 (15-35)  267 (147-550)  11 (7-21)  2.8  

nh4  916  33 (16-43)  26 (15-42)  139 (54-344)  4 (2-10)  38.1  

nkjel  654  30 (15-43)  23 (12-35)  104 (31-221)  3 (1-6)  57.8  

no23  176  22 (16-43)  20 (11-34)  188 (36-480)  7 (2-14)  18.9  

no3  1008  34 (19-43)  30 (17-42)  245 (138-453)  8 (4-12)  4.8  

o2  1005  35 (21-42)  33 (18-42)  302 (179-567)  10 (5-15)  0.8  

o2sat  997  35 (21-42)  33 (18-42)  299 (182-557)  10 (5-15)  1.5  
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ph  1028  34 (17-42)  28 (16-38)  130 (64-377)  4 (2-11)  45.5  

po4  1014  34 (19-43)  29 (17-42)  218 (87-422)  7 (3-11)  20.5  

tn  434  32 (17-37)  24 (16-36)  262 (50-574)  10 (2-16)  1.3  

tp  1451  32 (16-39)  26 (15-36)  167 (43-474)  6 (2-14)  23  

tss  1027  34 (20-42)  33 (18-42)  237 (123-500)  7 (4-14)  15.8  

wtemp  1155  35 (19-42)  33 (18-42)  305 (182-573)  10 (6-15)  0.7 

 

Time series duration and mean observation frequency for all other variables was generally similar to the chla time series. The 

median period of record was 32 years for both tp and tn. Median sampling frequency was 6 and 10 observations per year for 

tp and tn, respectively. A small proportion (2% and 1.8%, respectively) of tp and tn time series were shorter than 15 years. For 

tp, 84%, 57% and 9% of the time series were longer than 20, 30 and 40 years, respectively. For tn, 83%, 61% and 5% of the 220 

time series were longer than 20, 30 and 40 years, respectively. There were 444 stations with joint chla, N and P observations 

for over 15 years. Among these, 220 corresponded to river stations, 169 to estuary stations, and 55 to lake stations. 

Across all timeseries, the median temporal coverage was 1986 to 2022 (Table 3 and Figure 2). Yet, OLIGOTREND featured 

early and long chla time series with 19 of them starting before 1970 and an average of 50 year-long timeseries, most of them 

found in the Lake PCI dataset. Across all variables, the 2000s and 2010s are the decades with the highest coverage. The 2020s 225 

were not as covered as the 2010s were, likely indicating that databases are not systematically updated with the most recent 

observations. 
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Figure 2. Temporal coverage of OLIGOTREND timeseries for each environmental variable. The y-axis “count” shows the number 

of time series with valid observations for each year between 1960 and 2024. Only 35 time series started before 1960; 20 concerned 230 
tss and only one chla. Vertical red lines indicate median starting and ending years across the pooled dataset, i.e. the periods with the 

highest number of observations globally. 

3.2. Spatial coverage 

The OLIGOTREND L1 database contains 13,992 time series originating from 1,894 sampling stations spanning across 5 

continents (Table 1, Figure 3). There are 238, 687, and 969 stations located in estuaries or coastal bays, lakes or reservoirs, 235 

and rivers, respectively (Table 3). The 3 largest data sources are the French national water quality monitoring (775 stations), 

a global database of water quality measurements in lakes (Naderian et al., 2024 — 378 stations), and the United States' 

Chesapeake Bay Program (199 stations).  
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Geographically, the L1 dataset includes stations from 33 different large watersheds (Figure 3 and see Table S1 for detailed list 

of these watersheds). The 5 most represented large watersheds are the Seine (France, 320 stations), the United States North 240 

Atlantic Coast (266 stations), the Mississippi-Missouri basin (231 stations), the French West Coast (183 stations), and England 

and Wales (163 stations). In total, 7 large watersheds contain more than 100 stations. Data from the Chesapeake Bay (United 

States North Atlantic Coast watershed) and the Elbe River watershed are particularly remarkable in terms of data contribution, 

covering hundreds of stations along the main rivers, encompassing both freshwater and estuarine zones.  

 245 

Table 3. Characteristics of the time series constituting the OLIGOTREND database, organized by data source (see Table 1). See 

Table S1 in the Supplementary material for similar statistics organized by basins. For the length of time series, number of 

observations per time series, and chla sampling frequencies, we provide the median value, and 10th and 90th percentiles are 

indicated in brackets. 

Source 
Median period 

of record 

n stations 

(in estuary – 

lake – river) 

Length 

[years] 

nobs per 

time series 

Average chla sampling 

frequency [n/year] 

Total number of 

observations 

naiades French water quality portal 1988-2023 
774 

(24 - 1 - 749) 

34 

(16-42) 

201 

(71-416) 

4 

(2-6) 
2,118,792 

Naderian2024 1986-2011 
378 

(0 - 378 - 0) 

25 

(17-35) 

120 

(37-260) 

6 

(3-11) 
106,480 

Chesapeake Bay program 1985-2019 
199 

(157 - 0 - 42) 

34 

(19-35) 

408 

(193-588) 

12 

(10-17) 
822,961 

LAGOS-NE 1985-2010 
140 

(0 - 140 - 0) 

24 

(18-32) 

85 

(35-248) 

5 

(2-12) 
56,616 

UK Harmonized Monitoring 

Dataset 
1978-2012 

133 

(0 - 0 - 133) 

35 

(20-44) 

299 

(177-547) 

10 

(6-15) 
168,474 

Lake PCI 1988-2018 
95 

(0 - 95 - 0) 

23 

(15-49) 

246 

(116-1174) 

11 

(5-21) 
93,580 

Danish monitoring program 1983-2020 
56 

(0 - 56 - 0) 

33 

(21-42) 

165 

(33-481) 

6 

(2-15) 
75,608 

Sacramento Bay Interagency 

monitoring 
1975-2021 

46 

(46 - 0 - 0) 

42 

(18-46) 

297 

(109-592) 

13 

(7-18) 
50,126 

Elbe monitoring program 1985-2016 
25 

(2 - 0 - 23) 

31 

(22-38) 

581 

(145-8490) 

15 

(4-20) 
701,431 

Filazzola et al., 2020 2001-2018 
13 

(0 - 13 - 0) 

17 

(16-28) 

123 

(32-387) 

3 

(1-12) 
7,852 

USGS-NWIS Data Retrieval 1991-2021 
10 

(0 - 0 - 10) 

30 

(21-31) 

682 

(512-1093) 

22 

(17-35) 
7,337 

GEMStat 1980-2016 
9 

(0 - 3 - 6) 

26 

(16-41) 

398 

(158-645) 

11 

(9-24) 
12,737 

LTER Florida Everglades 1991-2008 
9 

(9 - 0 - 0) 

17 

(16-33) 

207 

(188-366) 

11 

(10-12) 
25,027 

Danube River public program 

(HUN-REN CER, IAE) 
1979-2012 

2 

(0 - 0 - 2) 

33 

(33-33) 

1100 

(1010-

1127) 

32 

(32-32) 
13,032 

Victoria State Government 1990-2024 
2 

(0 - 0 - 2) 

34 

(26-34) 

782 

(329-1685) 

39 

(36-41) 
17,536 

Commission pour la Protection des 

Eaux du Léman (CIPEL) 
1980-2018 

1 

(0 - 1 - 0) 
38 

815  

(815-815) 
12 

8,150 

Ebro River monitoring program 1980-2004 
1 

(0 - 0 - 1) 

24 

(15-24) 

284 

(133-323) 

18 

(18-18) 
2,039 
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Romero et al., 2013 1982-2016 
1 

(0 - 0 - 1) 

34 

(29-34) 

304 

(176-362) 

4 

(4-4) 
1,684 

TOTAL 1986-2022 1,894 
33 

(17-42) 

220 

(71-507) 

5 

(3-14) 
4,281,312 

 250 

 

Figure 3. a) Map highlighting the 1894 sampling stations included in the OLIGOTREND database at level L1, categorized by 
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ecosystem types. b) close-up on the Eastern side of the US, and c) on Europe showcasing most data points from France, UK and 

Denmark. 255 

The OLIGOTREND database covers 1,229 sub-basins from the HydroATLAS database, distributing over 257 spatially 

independent large watersheds with no hydrological connections. OLIGOTREND covers a wide range of eco-physiographic 

contexts (Table 4). It covers medium to large watersheds (10th to 90th percentiles were 142 to 11,416 km2), primarily lowlands. 

Stations extend to four climate zones, from extremely cold and mesic to hot and dry. Share among land-use types also covers 

a wide range, from 100% forest or natural grassland areas to heavily impacted urban areas and croplands. Some of the stations 260 

are located in nearly pristine areas, but most of them are in highly populous areas. 

Similarly, lakes and rivers represented by the OLIGOTREND database cover a wide range of morphometry, from shallow 

(e.g., Hickling Broad lake, England, average water column depth ~0.7 m) to deep and large lakes (e.g., Lake Geneva, France-

Switzerland,  average depth ~155 m), and from headwater streams (e.g., the Evel river in French Brittany draining a basin of 

5 km2) to large rivers (e.g., Mississippi, Danube, Rhine, Loire, Seine, Ebro, Susquehanna Rivers). 265 

Table 4. Basin characteristics covered by the OLIGOTREND database based on the HydroATLAS (level 12), the HydroLAKES and 

HydroRIVERS databases. Column “Range” indicates median values; and percentiles 10 and 90 are shown in brackets. 

Category Variable Description Aggregation Range Units 

 up_area Watershed area Upstream sub-basin 573.8 (142-11,416) km2 

Physiography ele_mt_sav Elevation Sub-basin 125 (28-417) m a.s.l. 

 slp_dg_uav Terrain slope Upstream sub-basin 25 (10-71) degrees 

 tmp_dc_syr Air temperature average Sub-basin 10.1 (6.3-12.5) degrees Celsius 

Climate pre_mm_sy Precipitation average Sub-basin 755 (625-1,106.2) mm 

 clz_cl_smj Climate zone(*) Sub-basin 10 (7-11) class 

 for_pc_use Forest cover extent Upstream sub-basin 15 (0-90) % 

Land cover crp_pc_use Cropland cover extent Upstream sub-basin 33 (4-64) % 

 pst_pc_use Pasture cover extent Upstream sub-basin 10 (1-36) % 

 dis_m3_pyr Natural discharge Sub-basin 7.7 (1.5-131) m3/s 

Hydrology run_mm_sy Land surface runoff Sub-basin 376 (204-776) mm 

 lka_pc_use Limnicity Upstream sub-basin 2 (0-60) % 

 dor_pc_pva Degree of regulation Upstream sub-basin 0 (0-176) % 

 pop_ct_usu Population Upstream sub-basin 38 (2.5-874) inhab. (x1000) 

Anthropogenic ppd_pk_ua Population density Upstream sub-basin 53.7 (11-294) inhab./km2 

 urb_pc_use Urban cover extent Upstream sub-basin 2 (0-15) % 

 Lake_area Lake area Lake body 1.1 (0.2-25) km2 

Lake characteristics Depth_avg Average lake depth Lake body 5 (2.9-14.7) m 

 Res_time Residence time Lake body 289 (33-1394) days 

 upland_skm Watershed area Upstream river segment 629 (65-13,249) km2 

River characteristics dis_av_cms Average interannual discharge River segment pourpoint 8.3 (0.8-143) m3/s 
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 ord_stra Strahler order River segment 3 (2-5) d.l. 

*: Climate zone classes encompass the following classes: Extremely cold and mesic, Cool temperate, Warm temperate and Hot and dry. 

3.3. OLIGOTREND time series ranges and relationships 

For most variables, long-term averages are clustered by ecosystem type (Figure 4). The lowest chla concentrations were found 270 

in rivers (7.8 ± 10.7 ug L -1) followed by estuaries (11.8 ± 9.9 ug L -1) and then lakes (18.0 ± 25.3 ug L -1). This greatly contrasted 

with most P, N, and oxygen time series: for instance, tp and tn distributions showed the highest ranges in rivers (0.13 ± 0.11 

mg P L -1 and 3.1 ± 1.8 mg N L -1), and the lowest in lakes (0.06 ± 0.13 mg P L -1 and 1.9 ± 0.9 mg N L -1). For DOC, most time 

series remained within a similar range of values regardless of ecosystem type, except for four lakes located in the North-East 

US (global lake database; Naderian et al., 2024). The highest conductivity values appeared in estuaries, much higher than in 275 

rivers or lakes. There were only 9 lakes with conductivity time series, explaining the density distribution peaks for this 

ecosystem type. The warmest waters were also found in estuaries.  

 

Figure 4. Distribution of inter-annual average concentrations of all the OLIGOTREND time series. Number of time series for each 

variable are indicated in brackets for each variable. 280 

Across the entire database, chla annual averages showed moderate to strong correlation with tp and tn (Figure 5). Chla was 

strongly and positively correlated with tp (Pearson, r = 0.39) across all ecosystem types. The positive correlation was the 
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strongest for lakes (r = 0.82), moderate for rivers (r = 0.37), and estuaries showed the weakest relationship (r = 0.29). Chla 

was positively correlated with tn (Pearson, r = 0.40), which was the highest in lakes (r = 0.75), moderate in rivers (r = 0.49) 

and lowest in estuaries (r = 0.30). Variables tp and tn were positively correlated across all ecosystem types (Pearson, r = 0.59), 285 

with the strongest correlation found in lakes (r = 0.74), slightly lower in rivers (r = 0.63), and the weakest one in estuaries (r = 

0.35). There was a clear cluster outlier for these variables in estuaries, characterized by low chla and tp but rather high tn. 

These observations corresponded exclusively to the Florida Coastal Everglades. 

 
Figure 5. Relationships between chla and tp (a), chla and tn (b), and tp and tn (c). Each dot represents the annual mean for a given 290 
time series. Dark dots for estuary stations highlight the observations in the Florida Coastal Everglades which clearly stand out from 

all other estuarine observations. Pearson correlations are all statistically significant (p-value < 2e-16) and corresponding coefficients 

(r) are indicated in each panel. 

3.4. Trends in the OLIGOTREND database 

Comparing the mean value of annual averages between the second and the first halves of time series proved to be a simple but 295 

effective way to overview temporal behaviour of time series in the database. Across all variables and ecosystem types, 60% 

of time series showed a lower average value in the second half. 63% of chla time series showed lower values in the second 

half (Figure 6). For N and P nutrient time series, 78% to 87% showed an average concentration lower in the second half (it 

was 85%, 87%, 78%, 85%, 86% for tp, po4, tn, din, nh4, respectively). An exception was found for no3 with only 45% time 
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series with a lower concentration in the second half of the time series. Interestingly, we found that the majority (74%) of tss 300 

time series had a lower concentration in the second half, whereas o2, o2sat, pH, and cond  showed no clear differences in the 

second half of the time series with 49%, 43%, 42%, and 42%. For wtemp, there was a clear indication of a warming trend with 

64% of time series with higher averages in the second half of the time series. 

 
Figure 6. Distribution of ratio between 2nd half time series averages over 1st half averages. Values significatively below 1 likely 305 
indicate declining trends, regardless of the complexity of the temporal trajectory. 

The breakpoint and trend analysis (Figure 7) revealed 15% of chla time series were best represented with a segmented trend 

component while 62% had no trend detected, 18% presented a monotonic declining trend, 5% a monotonic rising trend 

(predominantly found in estuaries, see Figure 8). The predominant segmented trend types were “00” (32%), “0-” (21%), “-0” 

(19%) and “+-” (7%).  310 

For tp and po4, 29-31% of the time series had a breakpoint with a segmented trend, 26-32% had no trend detected, while 35-

42% presented a declining monotonic trend and 1-2% were rising. For tp time series, 72% of segmented trends had a declining 

trend type, while it was 65% for po4 time series. Compared to rivers and estuaries, a lower proportion of declining tp trends 

were observed in lake time series.  

For N species, time series were dominated by the no-trend type (38-61%) and significant trends were contrasted: tn, din and 315 

nh4 showed a large number of declining trends (36-42%) and a small proportion of rising trends (less than 2%), while no3 and 

no23 were characterized by a larger proportion of rising trends (7% for no23 and 17% for no3) and segmented trends (14% 

for no23 and 25% for no3). For no3, 57% of segmented trends had a declining trend type on the most recent part of the time 
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series as 34% were “0-” and 23% were “+-”. Other variables were characterized by 50-60% of no-trend time series. 

Interestingly, among the detected trends, tss showed a significant proportion of declining trend types, while o2, o2sat, pH and 320 

wtemp showed a predominance of rising trends. 

 

Figure 7. Overview of trend significance and trend types identified in the OLIGOTREND database. Blue stripes are indicative of 

declining trends, grey stripes of no-trend, and red stripes of rising trends. Empty stripes indicate variables or ecosystems where the 325 
number of time series available was lower than 30. Refer to Section 2.4 for a detailed explanation of trend symbols indicated in the 

legend. 
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Figure 8. Overview of all chla annual time series normalized by interannual averages (thin lines), organised by trend types (panels) 

and ecosystem type (colour). Thick grey lines are smoothed curves of all time series within a given panel, only displayed to guide the 330 
reader. Refer to Section 2.4 for a detailed explanation of trend symbols indicated on top of each panel. 

For chla, Sen’s slopes in estuaries were smaller in magnitude compared to lakes and rivers, regardless of the trend type (Figure 

9a). Lakes exhibited a median Sen’s slope of –0.7 µg L-1 year-1; it was –0.4 µg  L-1 year-1 in rivers and -0.3 µg  L-1 year-1 in 

estuaries. The fastest declines (below –4 µg  L-1 year-1) were found in the Sacramento Bay in California, the River Loire 

(France), and several shallow lakes in the Mississippi-Missouri basin, the Denmark Germany Coast, and England and Wales. 335 

The largest positive chla trends were found in rivers, with a median slope of 0.79 µg  L-1 year-1, compared to 0.13 and 0.23 µg  

L-1 year-1 in estuaries and lakes, respectively. The fastest rises (above 4 µg  L-1 year-1) were found in the River Loire (France).  

For tp, the fastest rises and declines were observed in river ecosystems (Figure 9b) with median slopes of 4.0 x10-3 and –4.7 

x10-3 mgP  L-1 year-1, respectively, one order of magnitude greater than the slopes observed in lakes and estuaries. The fastest 

declines (below –0.1 mgP  L-1 year-1) were observed in the Rhône and Seine Rivers (France).  340 

For tn, although the fastest declines were observed in estuary stations (Florida Coastal Everglades) down to –0.4 mgN  L-1 

year-1, the median value for declining slopes was overall faster in rivers with median slopes of –0.14 mgN  L-1 year-1 (Figure 

9c). It was –6 x10-3 mgN  L-1 year-1 in estuaries and -7 x10-3 mgN  L-1 year-1 in lakes. Only 11 stations showed rising tn trends 

(Figure 7), and among them, 3 were in the Chesapeake Bay (US North Atlantic Coast) which contrasted with the 145 other 
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estuarine stations in this basin which either showed declining trends (n=89) or no trends (n=56). Note that only 7 lacustrine 345 

stations showed rising tn and in rivers, and none of the tn time series showed a rising pattern. 

Figure 9. Overview of all Sen’s slopes calculated for chla (a), tp (b) and tn (c) whether they are showing a declining (negative values) 

or a rising trend (positive values). Medians by ecosystem type are indicated with a plain circle, 10th and 90th percentiles correspond 

to the segment ends. The numbers of time series found for each variable, ecosystem and trend type are indicated at the bottom or 350 
the top of each segment. See Fig. S1 in the Supplementary material for a similar figure for all variables included in OLIGOTREND. 

We identified 444 stations with joint chla, P and N data over 15 years and more than 6 observations per year. Among these, 

100 (or 23%) chla time series showed a linear declining trend, 251 (or 57%) had no trend, and 37 (or 8%) were rising. Declining 

chla time series were also linked to declining trends in N and P (Figure 10a). Nearly half of the chla time series with no trend 

had corresponding no-trend or declining patterns in nutrient time series (Figure 10b). Rising chla time series predominantly 355 

corresponded to no-trend or declining patterns in nutrient time series. Only 18% of the rising chla time series also had 

significant rising trends in N or P. 

Figure 10. Relative share of trend types found for nitrogen and phosphorus concentrations related to chla time series with declining 
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trends (a), no trends (b), and rising trends (c). This analysis is based on 444 stations having parallel measurements of chla, and N 360 
(din and/or no3 and/or tn) and P (po4 and/or tp) for at least 15 years. Empty rows correspond to variables with less than 30 time 

series. 

4. Potential implications of OLIGOTREND for future research 

The OLIGOTREND database has the potential to answer some important questions in large-scale aquatic ecology, 

biogeochemistry, and global change studies. Below, we highlight the most important findings of the database and discuss 365 

potential implications for future research beyond disciplinary boundaries. 

4.1. Unravelling the ambiguous links between chla and nutrient levels for lakes, rivers, and estuaries 

The development of primary producers is far more complex than a single relationship with nutrient availability, especially if 

one also considers the differences among ecosystem types. Hydraulic flushing, turbulence, exposition to solar radiation, 

temperature (e.g. Reynolds, 2006), and light climate (Hilt et al., 2011) are crucial environmental variables in lotic systems. 370 

Water residence time, internal loading (Jeppesen et al., 2005; Krishna et al., 2021), stratification regime, and underwater light 

climate are other crucial factors controlling lentic ecosystems (Donis et al., 2021). Such differences are also reflected in the 

OLIGOTREND database. For instance, on one hand rivers had the highest P and N concentrations, followed by estuaries and 

lakes, and on the other hand, the highest chla concentrations were found in lakes followed by estuaries and then rivers (Figure 

4). Further, only 18% of the chla time series showed a linear declining trend which contrasted greatly with a dominating 375 

decreasing trend for most nutrient concentrations (Figures 6, 7 and 10). Moreover, although lake time series showed the highest 

correlation between chla and nutrients (Figure 4), they were also the ones with the highest proportion of non-significant trends 

(Figure 7). In this context, we argue that the OLIGOTREND database provides a unique opportunity and foundation to further 

investigate the ambiguous links existing between chla and nutrient levels over many contrasted water bodies located in basins 

with different environmental and climatic conditions. 380 

4.2. Is oligotrophication specific to aquatic ecosystem types? 

The OLIGOTREND database evidenced different responses of the individual ecosystem types to nutrient declines (Figures 7, 

8 and 10). For instance, compared to estuaries and lakes, rivers showed the highest proportion of declining chla (Figure 7). 

The inherent specificities of different ecosystems could partly explain why oligotrophication seems to be ecosystem-specific: 

i) the successful P reduction in many rivers worldwide (e.g., Le Moal et al., 2019) has led to more frequent P limitation for 385 

phytoplankton (Elser et al., 2007), although N or Si may also be limiting primary production (Paerl et al., 2016); ii) in lakes, 

longer water residence time, and internal nutrient loading can either delay (Jeppesen et al., 2005) or amplify (i.e., through algal 

blooms; e.g., Krishna et al., 2021) the ecological response following nutrient declines; iii) temporal shifts in phytoplankton 

assemblages towards taxa better adapted to low P levels, or taxa that are barely controlled by zooplankton grazing  (e.g. 

filamentous cyanobacteria; Selmeczy et al., 2019) can often represent overlooked effects explaining rising or weak trends in 390 



 

21 

 

primary producers despite nutrient decline over time (Anneville et al., 2019); iv) in estuaries, the dynamic of primary producers 

is also largely affected by marine waters, where coastal phytoplankton, sensitive to N (Elser et al., 2007), or N and P availability 

meets freshwater phytoplankton primarily sensitive to P (Kemp et al., 2005). Future analysis of OLIGOTREND time series 

together with catchment and waterbody attributes could improve our understanding of how aquatic ecosystems respond to 

nutrient trends in a wide variety of aquatic ecosystems. 395 

4.3. Abrupt and gradual changes in long-term water quality time series 

The OLIGOTREND database could be explored to further evidence the extent of gradual changes or abrupt regime shifts in 

water quality time series. In fact, some of the waterbodies represented in OLIGOTREND are known for shifting their primary 

producer’s structure and function following oligotrophication. This is the case of the Loire (France) and the Ebro Rivers 

(Spain), which are known for their long-term gradual regime shifts from phytoplankton to macrophytes in response to 400 

phosphorus decline (Diamond et al., 2021; Ibáñez et al., 2012; Minaudo et al., 2015, 2021). Similarly, phytoplankton of the 

middle Danube now more frequently contains benthic taxa, predominantly diatoms, potentially indicating a long-term regime 

shift from pelagic to benthic production in recent decades (Abonyi et al., 2018). Moreover, oligotrophication can result in a 

shift from heterotrophic conditions to dominantly autotrophic processes with lower pollution, as observed for the Elbe River 

(Wachholz et al. 2024). OLIGOTREND time series could be further analysed to detect possible temporal changes in variance 405 

(as a possible early-warning signal, Dakos et al., 2015), seasonal patterns, and relationships between chla, nutrients and 

ecosystem metabolism. This could enhance our understanding of crucial factors underlying regime shifts in river ecosystems, 

which are comparatively less well known than in lakes (Gilarranz et al., 2022). 

In OLIGOTREND, we highlighted a significant number of no-trend or rising chla time series despite declining nutrient levels 

(Figure 10c). This could be related to climatic effects and long-term changes of ecosystem structure, such as in the Chesapeake 410 

Bay (Harding et al., 2019). Future analysis of the OLIGOTREND will provide an invaluable source of data to disentangle the 

effects of climate change and watershed biogeochemistry on multi-decadal chla and nutrient trends. 

4.4. Combining OLIGOTREND with large-scale datasets to foster interdisciplinary aquatic data science 

The OLIGOTREND database can help boost water quality research if it is combined with other large-scale or long-term 

ecological datasets. For instance, it is known that shifting baselines because of temporal changes in different, covarying 415 

environmental factors can preclude the return of primary producer to pre-eutrophication conditions (Carstensen et al., 2011; 

Duarte et al., 2009). As global change intensifies, leading to novel ecosystems (Hobbs et al., 2009), the temporal extension of 

most available water quality datasets limits a correct estimation of pre-eutrophication baselines. Only a fraction of the 

OLIGOTREND database covers chla and/or nutrients during the eutrophication phase, which renders pre-oligotrophication 

reference conditions impossible to discern; and hence, makes it difficult to validate nutrient remediation actions (Pinay et al., 420 

2017). In this context, combining paleolimnological observations with water quality monitoring data could have a potential 
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not fully implemented at large spatial scales and across different aquatic ecosystem types (Bennion et al., 2015; Bhattacharya 

et al., 2022; Dong et al., 2012). 

Recent research has shown that nutrient concentrations link to nutrient loads (point and nonpoint sources) at the catchment 

scale (Ehrhardt et al., 2021; Jarvie et al., 2012; Murphy et al., 2022). Yet, only a few studies have established a mechanistic 425 

link between nutrient input management and the development of the phytoplankton biomass. Data-based approaches that 

jointly analyse decreasing nutrient loadings over multiple decades and sites with corresponding measurements of chla and 

nutrients can help better characterize how successful catchment management and environmental measures can be to reverse 

eutrophication. OLIGOTREND holds the potential to approach oligotrophication longitudinally at the basin scale, where long-

term trajectories can be assessed from small streams, rivers, lakes/reservoirs towards estuaries/coastal ecosystems along with 430 

their hydrologically connected time series. 

Remote sensing could further supplement crucial water quality information organised in OLIGOTREND. Remote sensing can 

provide time series data on water quality for inland and coastal aquatic ecosystems, which, if combined with in-situ 

measurements, can increase chla data coverage both spatially and temporally (Ross et al., 2019; Spaulding et al., 2024). 

Moreover, regional and Earth System numerical models will improve further if calibrated or validated by in situ observations 435 

(Casquin et al., 2024; Liu et al., 2024). The OLIGOTREND database readily represents a centralized and harmonized dataset 

open for calibration and validation by remotely sensed water quality data, and available for training and validating regional 

and large-scale numerical models.  

Finally, there is a growing interest in large-scale observations that integrate new and existing databases to answer key questions 

in aquatic ecology (Barquín et al., 2015). Long-term observations of community data (e.g. via LTER and eLTER, GBIF, 440 

Biofresh) may include key functional groups of aquatic food webs, such as phytoplankton, zooplankton, macroinvertebrates 

(Welti et al., 2024), and fish (Comte et al., 2021). For a selection of sites, chla trends can be further analysed jointly with long-

term community data to investigate the role that community composition and biodiversity may play in responding to long-

term environmental change (Jochimsen et al., 2013). Some of the OLIGOTREND time series are linked to lotic community 

data (i.e., phytoplankton), which have been seldom explored compared to lakes when testing the biodiversity effect on 445 

ecosystem functioning and services (Filstrup et al., 2019; Ptacnik et al., 2008). 

5. Code and data availability 

All the data are openly available along with the R scripts used for data processing from raw measurements at L0a level to 

higher data processing levels. All R scripts produced to extract, harmonize and process the OLIGOTREND data were stored 

and organized in a dedicated GitLab repository (https://gitlab.com/OLIGOTREND/wp1-unify). Data at levels L1 and L2 450 

(Figure 1) were deposited in an Environmental Data Initiative Data Package accessible on the EDI data portal 

(https://doi.org/10.6073/pasta/a7ad060a4dbc4e7dfcb763a794506524, Minaudo & Benito, 2024). Original links to data sources 

of L0a data are provided in Table 1 and in the EDI Data Package. Additionally, we also provide in the GitLab repository all 

https://gitlab.com/oligotrend/wp1-unify
https://doi.org/10.6073/pasta/a7ad060a4dbc4e7dfcb763a794506524
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the GIS files emerging from the data extraction step, including shapefiles of L0 and L1 stations, the corresponding basins, 

lakes and rivers characteristics resulting from the spatial join between OLIGOTREND stations and the HydroATLAS. 455 

6. Conclusions 

The OLIGOTREND database provides invaluable information in aquatic ecology and Earth system science. We evidenced 

oligotrophication at large temporal and spatial scales and unveiled the complexity of the chlorophyll-a response following 

oligotrophication and the relationships between chlorophyll-a and nutrients in inland and transitional waters covering a wide 

range of climatic and environmental conditions. While the database is not exhaustive, its flexible structure and reproducible 460 

processing pipeline facilitate the inclusion of additional datasets in the future. We also see a strong need to continuously update 

the database due to the accelerating climate change and the resulting impacts on the loading and processing of nutrients and 

the associated ecological implications (van Vliet et al., 2023). Finally, OLIGOTREND will support collaborative efforts aimed 

at advancing our understanding of the complex biogeochemical and biological mechanisms driving oligotrophication and the 

broader ecological impacts of global environmental change. 465 
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