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Abstract. Design differences in sensors and retrieval algorithms complicate the harmonisation of space-based solar-induced

fluorescence (SIF) observations. The GOME-2 series, with its identical sensor design, offers potential for constructing a long-

term coherent record. However, instrumental artefacts, such as degradation, affect the sensors differently and diverge the inter-

sensor SIF observations. Achieving internal consistency within each record is therefore a critical first step in harmonisation.

We present a combined GOME-2 SIF dataset for 2007–2023 that consists of GOME-2A (Jan. 2007–Dec. 2017) and GOME-2B5

SIF (July 2013–Dec. 2023) data. Both individual records are retrieved using the previously developed SIFTER v3 algorithm,

which applies time-, wavelength-, and scan-angle-dependent degradation corrections. Spatial agreement between GOME-2A

and GOME-2B SIF during the overlapping period was strong (r ≥0.96), although viewing geometry differences caused sub-

stantial systematic biases, specifically over high activity regions; these were reduced to within 2 % by constraining to common

viewing zenith angle ranges. In terms of temporal alignment, most analysed regions showed no significant step change at the10

July 2013 sensor transition, from full-swath GOME-2A to GOME-2B SIF. Small offsets in Eastern China and the Amazon

were corrected for using a simple additive correction, which improved the coherence and agreement with independent GPP

estimations from FluxSat. Finally, the GOME-2 records align closely with FluxSat GPP and TROPOMI SIF across various

biomes, and support monitoring of vegetation activity over 17 years. Our work presents a framework for detecting and, when

necessary, correcting intersensor offset biases, enabling the use of GOME-2A and GOME-2B SIF as a single record. Moreover,15

it offers guidance for harmonising multi-sensor datasets and for other causes of potential structural breaks in long-term obser-

vation records. The GOME-2A and GOME-2B SIF (obtained in this study) datasets are available at https://doi.org/10.21944/

gome2a-sifter-v3-solar-induced-fluorescence and https://doi.org/10.21944/gome2b-sifter-v3-solar-induced-fluorescence, re-

spectively.

1 Introduction20

Terrestrial vegetation plays a crucial role in the carbon cycle, yet it also represents one of the largest uncertainties in future

climate scenarios. Understanding changes in vegetation dynamics is essential for quantifying global carbon fluxes and sustain-

ing food production. This highlights the need for long-term, global-scale vegetation monitoring. Satellite-based retrievals of
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solar-induced fluorescence (SIF) constitute a powerful tool to track vegetation dynamics at local to global scales. SIF observa-

tions are directly related to photosynthetic activity and, thus, carbon uptake (Mohammed et al., 2019). Previous studies have25

shown SIF to be sensitive to disturbances such as droughts, wildfire impact, and land-use change and to outperform traditional

greenness indices like NDVI (e.g. Chen et al., 2021; Magney et al., 2019; Anema et al., 2024; Zhang et al., 2023; Gerlein-Safdi

et al., 2020).

In recent years, advancements in SIF retrieval from spectrometer instruments have facilitated the growing number of SIF

datasets obtained from various satellite missions, such as GOME, SCIAMACHY (Khosravi et al., 2015; Köhler et al., 2015),30

GOSAT, the GOME-2 series (Joiner et al., 2013; van Schaik et al., 2020; Anema et al., 2025c), TROPOMI (Köhler et al., 2018;

Guanter et al., 2021), OCO-2 (Sun et al., 2018), OCO-3 (Doughty et al., 2022), and upcoming missions like FLEX (Vicent et al.,

2016) and the CO2M series (Noël et al., 2024). These datasets have proven to be highly valuable for monitoring vegetation

phenology and ecosystem productivity across various spatial and temporal scales (e.g., Turner et al., 2021; Wang et al., 2019;

Zhang et al., 2022; Liu et al., 2021). However, the harmonisation of these datasets is challenging as merging is complicated35

by discrepancies in satellite characteristics and retrieval settings, such as local overpass time, observation geometry, spectral,

spatial and temporal sampling, and the retrieval window spectral range (Parazoo et al., 2019; Sun et al., 2018).

Retrieving SIF from the GOME-2 instruments offers a unique opportunity to circumvent many of the intersensor discrep-

ancies that limit harmonisation. Three instruments, launched in sequence as part of the Metop series, GOME-2A in 2006,

GOME-2B in 2012, and GOME-2C in 2019, follow the same design and have consistent equatorial overpass times, all crossing40

at 09:30 AM. The instrumental similarities minimise biases between sensors, offering potential to obtain a consistent long-term

SIF record. Currently, GOME-2A provides the longest individual SIF record with continuous global coverage to date and has

been widely used to investigate vegetation dynamics (Gerlein-Safdi et al., 2020; Chen et al., 2021; Fancourt et al., 2022). A

robust merged GOME-2 record enhances our ability to study long-term vegetation dynamics, but would also serve as a valuable

benchmark for harmonising SIF datasets, owing to its long duration and limited intersensor biases.45

To our knowledge, no study has combined GOME-2 SIF into a long-term SIF record and assessed its coherence. A major

challenge in obtaining a robust GOME-2 SIF record is its sensitivity to instrumental artefacts, particularly reflectance degra-

dation, which can lead to false temporal trends in SIF (van Schaik et al., 2020; Zhang et al., 2018; Koren et al., 2018). If not

adequately corrected for, these trends make the data unsuitable for long-term vegetation analysis (Parazoo et al., 2019), and

hinder harmonisation across sensors (Wen et al., 2020; Wang et al., 2022). Our SIFTER v3 retrieval algorithm addresses this50

issue with an advanced degradation correction that is time, wavelength, and scan-angle dependent, following the reflectance

degradation characteristics closely (Anema et al., 2025c). Other GOME-2 SIF products, such as TCSIF and LT_SIFc* (Wang

et al., 2022; Zou et al., 2024), also apply time-dependent corrections, but ignore wavelength and scan-angle dependencies of

degradation. Notably, the scan-angle dependency was found to be of similar magnitude to the temporal component, making its

omission a substantial source of bias (Anema et al., 2025c). Anema et al. (2025c) demonstrated the algorithm’s effectiveness55

by obtaining a 2007–2017 GOME-2A SIF record with temporal stability, internal consistency, and strong correlation with

independent data. Building on this work, we apply the same approach to retrieve GOME-2B SIF over mid-2013 to 2023 and

evaluate its potential to use both datasets as a single coherent combined SIF record spanning from 2007 to 2023.
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Our objectives are threefold. First, we retrieve GOME-2B SIF using the SIFTER v3 algorithm and level-1b Release-3 (R3)

data to ensure consistency with the existing GOME-2A SIF record by Anema et al. (2025c). The degradation correction param-60

eters are tailored to the specific reflectance degradation characteristics of GOME-2B. Second, we assess the spatial intersensor

consistency during their overlapping tandem phase (from July 2013), using co-sampling methods to isolate sensor-specific

biases. Third, we evaluate temporal coherence and demonstrate a framework to identify and, where necessary, correct intersen-

sor offsets, enabling a coherent long-term combined GOME-2 SIF record. Six representative vegetated regions across diverse

biomes are used as case studies to examine the intersensor agreement and GOME-2 SIF performance in capturing vegetation65

dynamics accurately. We present the GOME-2B SIF dataset, with measurement uncertainties, which can be combined with our

previous GOME-2A SIF dataset into one GOME-2 SIF data record spanning from 2007 to 2023.

2 GOME-2 instruments

The GOME-2 instruments are part of the payload on the Metop satellite series, which consists of three identical satellites,

Metop-A, Metop-B, and Metop-C, launched sequentially to enable long-term consistent monitoring of meteorology and air70

quality (Klaes et al., 2007; Munro et al., 2016). The GOME-2 instruments follow an identical design, and in the following,

we refer to this design as ’the GOME-2 instrument’. In this study, we focus on observations from the first two launched

instruments: GOME-2A and GOME-2B.

GOME-2 is an optical spectrometer instrument that measures the radiance and solar irradiance from four main spectral

channels, providing continuous spectral coverage between 240 and 790 nm. The instrument builds on the heritage of the Global75

Ozone Monitoring Experiment (GOME) instrument, continuing the monitoring of ozone and other trace gases, including NO2,

BrO, OCIO, HCHO, SO2, and H2O. Additionally, the covering of the near-infrared (NIR, channel 4) enables the retrieval of

SIF from GOME-2 (e.g. Joiner et al., 2013; Köhler et al., 2015; van Schaik et al., 2020). Channel 4 has a spectral resolution

and spectral sampling of ∼0.5 nm and ∼0.2 nm, respectively.

The GOME-2 instrument uses a scan mirror scheme that enables across-track scanning of the nominal swath with a default80

width of 1920 km. There are 24 forward pixels (80×40 km2 resolution in default swath) and eight backward scan pixels. For

the SIF retrieval, only the forward scan pixels are used. For each GOME-2 ground pixel, the effective cloud fraction is retrieved

using the Fast Retrieval Scheme for Clouds from the Oxygen A band (FRESCO+) (Wang and Stammes, 2008).

Following the launch of Metop-B in 2012, the GOME-2A and GOME-2B instruments operated in tandem. After its com-

missioning phase, Metop-B became the prime operational satellite from July 16, 2013, onwards. At that point, the swath of85

GOME-2A was reduced to 960 km, increasing its spatial resolution to 40×40 km2, while the swath of GOME-2B operated

under the nominal swath of 1920 km. The satellites are 174◦ out of phase within the same orbital plane, leading to a local time

difference of 48.9 minutes between two overlapping observations (Munro et al., 2016; Grossi et al., 2015).

Table 1 summarises the key instrumental properties of both instruments, distinguishing the periods of GOME-2A under

nominal and reduced swath configuration. The resulting coverage and overlap of both sensors are illustrated in Fig. 1. The90

tandem operation ended in 2021, when Metop-A was de-orbited. However, in this study, we limit our analysis of GOME-2A to
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the 2007–2017 period to avoid possible effects of the orbital drift, which began in early 2018. Similarly, we restrict the analysis

of GOME-2B until the end of 2023, as orbital drift started thereafter.

Table 1. Summary of instrumental properties of the GOME-2A and GOME-2B sensors.

GOME-2A
GOME-2B

Before 15-07-2013 After 15-07-2013

Launch October 2006 September 2012

Equator crossing time 09:30 AM L.T. 09:30 AM L.T.

Global coverage 1.5 days 3 days 1.5 days

Swath width 1920 km 960 km 1920 km

Viewing range -52◦, +52◦ -35◦, +35◦ -52◦, +52◦

Spatial resolution 80×40 km2 40×40 km2 80×40 km2

Spectral coverage, NIR 593–790 nm 593–791 nm

Spectral sampling 0.21 nm 0.20 nm

Spectral resolution 0.48 nm 0.50 nm

(a)
May 1, 2013 Coverage by

GOME-2A
GOME-2B
Both

(b)
May 1, 2015

Figure 1. Coverage and overlap of GOME-2A (in blue) and GOME-2B (in green) when both are (a) in nominal swath mode and (b) in tandem

mode with GOME-2A in reduced swath mode. The tandem operation started from 15 July 2013 when GOME-2B was fully operational (after

the commissioning phase), and lasted until the de-orbiting of GOME-2A in 2021.

While orbital drift constrains the time window of reliable data analysis, instrumental artefacts impacted the GOME-2 obser-

vations more persistently. Specifically, the effects of instrument degradation on the observed reflectance represent a significant95

challenge for all three instruments. These effects exhibit varying patterns over time, occur early in operational life, and have

sensor-specific characteristics (EUMETSAT, 2022). This degradation is thought to arise from build-up contamination on the

scan mirror and is shown to be wavelength and scan-angle-dependent (Tilstra et al., 2012; EUMETSAT, 2022; Anema et al.,

2025c). Although the shorter wavelengths are more heavily affected, the effects in the NIR can’t be neglected and are known
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to impact the temporal consistency of SIF retrievals (Zhang et al., 2018; Gerlein-Safdi et al., 2020; Wang et al., 2022; Anema100

et al., 2025c).

The consistency and comparability of the individual instruments’ observations are also affected by their thermal stability.

Temperature variations of the optical bench along the orbit lead to changes in the spectral alignment, with noted seasonal and

long-term effects (Munro et al., 2016). Additionally, these temperature variations also affect the slit function width. This vari-

ation in slit function width is believed to influence retrieved SIF values, potentially causing underestimation (false negatives)105

or overestimation of their magnitude (Köhler et al., 2015; Khosravi et al., 2015; van Schaik et al., 2020).

3 Application of SIFTER v3 to GOME-2B

In this study, we retrieve SIF from the GOME-2B sensor using the SIFTER v3 retrieval algorithm. The retrieval methodology

and its underlying principles are kept identical to those applied to GOME-2A (Anema et al., 2025c) to secure consistency

between the two datasets. For clarity, we briefly summarise the methodology before outlining the algorithm’s parameter settings110

tailored to GOME-2B. The SIFTER v3 retrieval consists of three main steps: degradation correction of the reflectance, the

SIF retrieval, and post-hoc correction for latitude bias effects. Details about the applied corrections and their impact on the

alignment of GOME-2A and GOME-2B observations are provided in supplement S1.

3.1 Reflectance correction

The time, wavelength, and scan-angle dependent degradation correction is derived from analysing daily global reflectance115

trends over time. First, GOME-2B reflectance data for the spectral range of 712–785 nm are collected between 60◦ S and 60◦

N, and with solar zenith angles below 85◦. Scenes are not filtered on cloud conditions or sun glint, but data corresponding to

static or narrow swath observations are excluded. Daily averages are then obtained for scan-index s (n=24) and detector pixel

at wavelength λ.

As an illustration, Fig. 2 shows the daily global reflectances at λ=747.2 nm and s=1 and s=24 in green. Different long-term120

temporal reflectance patterns are observed over the easternmost (s=1) and westernmost (s=24) pixel. The reflectance over the

easternmost pixel shows a clear decreasing pattern over time, whereas it remains more stable over the westernmost pixel. The

stronger eastward degradation is consistent with patterns observed in GOME-2A and predecessors GOME and SCIAMACHY

(Anema et al., 2025c; EUMETSAT, 2022). The degree of degradation, or signal attenuation, depends on the properties of the

contamination layer that develops on the scan mirrors over time and its interaction with polarised light (EUMETSAT, 2022).125

Eastward light is likely more affected due to the higher degree of polarisation.

Next, we model the temporal variation in global mean reflectance (R∗λ,s(t)). Global mean reflectances are expected to vary

seasonally due to changing geometry and scene observation. Although no long-term trends are expected, substantial long-term

trends are noted (Fig. 2). Therefore, R∗λ,s(t) is represented by a combination of a polynomial P pλ,s(t) and a finite Fourier series

F qλ,s(t):130

R∗λ,s(t) = P pλ,s(t)[1 +F qλ,s(t)] (1)
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F qλ,s(t) and P pλ,s(t) capture the seasonal variation and long-term trends, respectively. For GOME-2B, the Fourier order q is

set to 6, and the polynomial degree p to 5. A high polynomial degree was necessary for the fit of GOME-2B reflectances to

accurately capture the abrupt drop in signal from around 2020, particularly on the eastern side, as visible in Fig. 2.

Figure 2. The observed (green dots) and fitted (solid black) global mean reflectance from GOME-2B at λ=747.2 nm and scan-index (a)

s=1(easternmost) and (b) s=24 (westernmost). The dashed line shows the fitted polynomial, which captures the long-term change in the

reflectance over time that is thought to be caused by the impact of instrument degradation. The reference day t0, set at November 1, 2012, is

indicated by the pink star.

To obtain the correction factors (cλ,s(t)), Eq. 1 is fitted to the observed reflectances using least-squares regression. The135

obtained coefficients of the polynomial P pλ,s are then used to correct the long-term trends. We scale the reflectance value at day

t to the value at a reference day t0, as

cλ,s(t) = P pλ,s(t0)/P
p
λ,s(t) (2)

With cλ,s(t) as correction factor at day t, wavelength λ and scan-index s. The reference day t0 represents a day early on in

the mission, assuming no spectral degradation at that time. For GOME-2B, t0 is selected as 1 November 2012. The resulting140

correction factors are applied to each observed reflectance value before the SIF retrieval to counteract the identified degradation

patterns.

Figure 3 shows the relative change in reflectance at ∼740.1 nm across the swath for multiple years, for both GOME-2A

and GOME-2B. The reflectance degradation pattern represents an inconsistency in the relative loss of throughput between the

observed radiance and solar irradiance. As reflectance is defined as the ratio of radiance to solar irradiance signal, a decrease145

in reflectance, for instance, indicates a stronger degradation of the radiance signal. In both sensors, reflectance degradation

is more pronounced on the eastern side of the swath, and an increasing East-West bias develops over time. For GOME-2A,

reflectances at all scanning positions increase over the first six years, then decline and eventually drop below the reference

value. For GOME-2B, an overall decreasing trend in reflectances is noted.

These results confirm that the reflectance degradation of GOME-2B, similar to GOME-2A (Anema et al., 2025c), is strongly150

scan-angle dependent and of the same order of magnitude as the temporal dependency. Importantly, the degradation trends sub-
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stantially differ between sensors. Furthermore, when GOME-2B launched in 2013, GOME-2A had already drifted significantly

from its original reflectance values, amplifying intersensor divergence.

Figure 3. Reflectance degradation of (a) GOME-2A and (b) GOME-2B as a function of scanner angle for different moments and at λ=740.1

nm. The dashed line indicates the selected reference day for each instrument, where it is expected that there is no impact of reflectance

degradation (yet). The pink arrows indicate the 10th years past the reference day.

3.2 SIF retrieval

The SIFTER retrieval algorithm obtains far-red SIF by making use of the relative infilling by fluorescence of solar Fraunhofer155

absorption lines near the 740 nm peak. A narrow retrieval window of 734 to 758 nm is used. This window represents the trade-

off of minimising interference from water vapour and O2 absorption features, while still capturing sufficient Fraunhofer lines

and spectral points to ensure reliable SIF retrieval (van Schaik et al., 2020; Parazoo et al., 2019). We use the latest reprocessed

level-1b dataset, Release-3 (R3), as input. The R3 dataset ensures consistent processing and auxiliary data for GOME-2A and

GOME-2B up to July 2020 (EUMETSAT, 2022). From July 2020 onwards, a different processor version is used, but this is not160

expected to introduce significant inconsistencies in the level-1b data.

The retrieval isolates the additional vegetation fluorescence signal from atmospheric features by matching a modeled re-

flectance spectrum to the observed spectrum. We model the reflectance (R) using a Lambertian surface reflectance model, as

described by:

R(λ,µ,µ0)≈ as(λ)T ↓(λ,µ0)T ↑(λ,µ) +
πISIF(λ)
E0(λ)µ0

T ↑(λ,µ) (3)165
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where µ and µ0 are the cosines of the viewing and solar zenith angles, respectively. The surface albedo is denoted by as(λ), the

SIF emissions from the vegetated surface by ISIF, and the atmospheric transmission –both downwards and upwards– by T ↓ and

T ↑. The modeled reflectance contains 16 unknowns, one of which is the SIF signal to be extracted. These unknowns are solved

by minimising the difference between the modeled and observedR using a Levenberg-Marquardt least-squares regression (van

Schaik et al., 2020; Anema et al., 2025c). Among the other 15 unknowns, five coefficients come from the surface albedo, which170

is estimated using a fourth-order polynomial, and ten are related to the atmospheric transmittance, which is characterised by

10 principal component (PC) functions.

The atmospheric transmittance varies with each scene and atmospheric conditions. To capture its variability, we apply prin-

cipal component analysis (PCA) to a large selection of spectra across the Sahara region (16–30◦ N, 8◦ W–29◦ E). These

observations are filtered for barren areas using land classification data to ensure the absence of vegetation and, therefore, SIF175

emission. We select GOME-2B spectra from five complete years (2013–2018), matching the period length used for the PC cal-

culations of GOME-2A (2007–2012). Note that degradation corrected spectra are used (Sect. 3.1) to avoid biases. Furthermore,

as introduced in SIFTER v3 (Anema et al., 2025c), the spectra are mean-centered and scaled by standard deviation before the

PCA.

Figure 4 presents the first principal component (PC) for both GOME-2A and GOME-2B, and the cumulative explained180

variance for each PC (10 in total) for both datasets. For both sensors, PC #1 shows a similar overall structure, but the GOME-

2A pattern is more sharply defined, with more pronounced features, such as deeper troughs and higher peaks. The less defined

pattern in GOME-2B may reflect its generally higher reflectance uncertainty in the NIR compared to GOME-2A. Nevertheless,

the PCs capture 99.95 % of the total variance, indicating that the main spectral structures are consistently represented in both

sensors.185
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Figure 4. Panel (a) shows the leading principal component, PC #1, obtained for GOME-2A under nominal swath and GOME-2B. Panel (b)

shows the cumulative explained variance of PCs 1 to 10 for both instruments. In both panels GOME-2A is shown in blue and GOME-2B is

shown in green.
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3.3 Latitude bias correction

The SIFTER retrieval algorithm detects the SIF signal as variations in the relative depth of Fraunhofer lines; however, instru-

mental artifacts can also cause false "in-filling" or "deepening" of these lines and can therefore mimic fluorescence signals

(e.g. Khosravi et al., 2015; Joiner et al., 2012; van Schaik et al., 2020). These biases are latitude-dependent and may stem

from temperature-driven changes in slit function width throughout the orbit, affecting the observed depth of Fraunhofer lines.190

Moreover, recent work by Sanghavi et al. (2025) demonstrated that rotational Raman scattering can induce seemingly large SIF

values. Such effects are particularly evident over oceans and deserts, where fluorescence should be near zero, as a zero-level

offset.

Figure 5 shows the zero-level offset observed in GOME-2A and GOME-2B SIF over the Pacific Ocean (130◦–150◦ W),

plotted by latitude. In GOME-2A SIF, a clear annual pattern of negative SIF values is noticeable, which shifts from north to195

south across latitudes. Additionally, the negative offsets intensify over time, with larger negative values observed in the later

years. In GOME-2B, a different pattern is noticeable with strong positive offsets appearing early in the years ranging between

20◦ N–20◦ S. Additionally, GOME-2B shows strong variation between positive and negative offsets across latitude. Due to

the differing patterns observed in both instruments, SIF values from GOME-2A and GOME-2B are not directly comparable.

Consequently, it is necessary to apply a correction to account for these discrepancies, reduce intersensor biases, and ensure200

spatial consistency within and across the datasets.

To address the latitude bias effects and create higher consistency between GOME-2A and GOME-2B, we apply the post-

hoc correction method from SIFTER v3 (Anema et al., 2025c). This additive correction adjusts the retrieved SIF retrieval

based on daily- and latitude-specific biases observed across reference areas over the Pacific and Atlantic Ocean. The latitude

bias correction brings SIF values over the Pacific Ocean region, within the expected near-zero range for both GOME-2A205

and GOME-2B (shown in Fig. S3). This confirms that latitude-dependent offsets were effectively corrected for, reducing the

correlated intersensor divergence.

4 Comparison of GOME-2A and GOME-2B SIF

4.1 Spatial consistency

Here, we compare the spatial distribution of SIF as retrieved from GOME-2A and GOME-2B over the period when both210

sensors operated in tandem. For both datasets, valid SIF data were selected and seasonally averaged over the 2013–2017 period

at a 0.5◦×0.5◦ spatial resolution. To avoid potential biases, we excluded the GOME-2B commissioning phase and only used

complete seasons.

Figure 6 shows the mean SIF retrieved from GOME-2A and GOME-2B for the December—February (DJF) and June—August

(JJA) seasons. Both datasets exhibit similar spatial distributions in SIF and align strongly with each other. However, slight dif-215

ferences are noted. GOME-2B SIF tends to be more negative over barren areas, such as Western China. Moreover, on average,

9

https://doi.org/10.5194/essd-2025-561
Preprint. Discussion started: 28 November 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 5. Observed zero-level offset of SIF retrieved from (a) GOME-2A and (b) GOME-2B across the Pacific ocean – where SIF is expected

to be 0 – per latitude and over time. The SIF values shown are not adjusted for the latitude bias. The shown data are monthly averaged, gridded

at 0.5◦×0.5◦ resolution, and subsequently averaged over 130◦–150◦ W.

GOME-2B SIF values exceed those of GOME-2A SIF by approximately 5–6 %. This positive bias appears to be most pro-

nounced in regions with high vegetation activity, such as the Corn Belt region in JJA and the Amazon in DJF.

Aside from the differences in SIF values, GOME-2B also shows consistently higher uncertainty in SIF than GOME-2A, on

the order of 17–18 %. This likely reflects a combination of larger uncertainties in the input reflectance, lower spectral resolution220

(Table 1), and the less sharply defined principal components (Fig. 4), all of which can propagate through the retrieval and

increase the final uncertainty.

Overall, GOME-2A and GOME-2B SIF values agree well with consistent spatial patterns and strong correlations (r=0.96

for JJA, and r=0.97 for DJF). These results indicate coherence between both datasets. Nonetheless, GOME-2B SIF values are

slightly but systematically biased against GOME-2A SIF values. In the following subsections, we examine to what extent this225

divergence reflects true biases or results from sampling differences.
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Figure 6. Seasonal averaged GOME-2A and GOME-2B SIF over December–February (DJF), and June–August (JJA) 2014–2017. DJF

includes December of the preceding year, e.g., DJF 2014 includes December 2013. Panels (e) and (f) show the correlation between GOME-

2A and GOME-2B SIF for these periods; panels (g) and (h) show the correlation between their respective uncertainty. Major axis regressions

are used for the correlations (pink line). Only land pixels are shown and presented to focus on biosphere-relevant differences. SIF values are

filtered for cloud fractions <0.3 (FRESCO+ v2) and gridded at 0.5◦×0.5◦. The blue rectangles mark selected study regions.

4.2 Impact of viewing geometry differences

During the operational tandem phase, GOME-2A and GOME-2B operated under different swath configurations. The swath

reduction of GOME-2A limited the viewing zenith angle (VZA) range of the observations from ∈ [−52◦, +52◦] to [−35◦,

+35◦] (Table 1). As a result, the GOME-2B SIF averages shown in Fig. 6 include observations made under larger VZA230
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angles (|VZA|>35◦) than GOME-2A. To understand how these discrepancies in viewing geometry might induce biases between

GOME-2A and GOME-2B SIF, we first discuss the principle behind the angular dependence of SIF observations.

The SIF signal detected by the satellite sensor reflects the fraction of total emitted chlorophyll fluorescence that escaped

the canopy and reached the sensor. This fraction depends on the photon scattering, leaf properties, and canopy architecture,

influencing the propagation of SIF photons through the canopy (e.g., van Wittenberghe et al., 2015; Peltoniemi et al., 2005;235

Joiner et al., 2020; Sun et al., 2023). As a result, the SIF signal is anisotropic and therefore depends on the viewing geometry

between the Sun, vegetation, and the satellite sensor (e.g. Yang and van der Tol, 2018; van Wittenberghe et al., 2015; Dechant

et al., 2020).

Figure 7 illustrates the scan and illumination dependencies of the observed SIF by GOME-2. At nadir, the sensor mainly

detects photons emitted from the top of the canopy. Toward the swath edges, at larger viewing zenith angles (VZA), the sensor240

observes the canopy from a slanted angle, thereby enhancing the probability of detecting photons originating deeper within

the canopy. Moreover, the viewing perspective determines whether the sunlit or shaded side of the canopy is viewed, leading

to higher or lower observed values, respectively. For GOME-2A observations, the western ground pixels are typically sunlit,

whereas eastern ground pixels tend to be shaded.

Across track

Flight direction
Nadir (0°)

Viewing zenith angle

West direction East direction

Viewing angle effect GOME-2
Sun-vegetation-sensor geometry

• Viewing perspective

Equator crossing time: 09:30 LT

• Top view • Side view
• Shadow side

EastNadir

• Side view
• Sunlit side

West

ScanningWest
24

Less light 
available

Swath width: 1920 km

Flight direction
(Descending)

SZA24

SZA1

SZA24>SZA1

East
1

• Local time variations across track    

Leaf-level scattering of SIF

Sunlight

SIF escaping
the canopy

SIF 
emission

Scattered

Figure 7. Schematic of the scan-angle dependencies of GOME-2 SIF observations. The instrument scans from east (pixel 1) to west (pixel

24), with a total scanning time of around 50 minutes.

Wide-swath instruments, such as GOME-2 and TROPOMI, also introduce across-track variations in incoming solar irra-245

diance (Joiner et al., 2020). The wide swaths cover an extensive longitudinal range that spans different local solar times and
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thus solar zenith angles (SZA). As a result, GOME-2 observes eastern pixels later in the morning when solar illumination is

typically higher (lower SZA), leading to potentially higher SIF values. Together, these viewing geometry factors can lead to

systematic asymmetry in the observed SIF values across-track (Joiner et al., 2020). The geometry effects on observed SIF are

well known, and SIF is generally averaged over a sufficient number of observations to mitigate these effects (e.g. Turner et al.,250

2021).

To assess the effect of discrepancy in viewing geometry between GOME-2A and GOME-2B, we average both datasets

across scan positions. Figure 8 shows seasonal SIF as a function of VZA for both sensors across various geographical regions.

A consistent across-track asymmetry is observed in all regions during the peak seasons, specifically JJA in the Northern

Hemisphere and DJF in the Southern Hemisphere. During these high activity seasons, large SIF values near the eastern and,255

more prominently, the western edges of GOME-2B’s 1920-km swath contribute to a higher overall average (xB), compared to

GOME-2A SIF (xA). For instance, GOME-2B SIF has a bias of 13.9 % compared to GOME-2A SIF over Zambia. SIF values

from both sensors align well when restricted to the shared VZA range of [−35◦, +35◦]. The largest divergence across-track

emerges when the |VZA| exceeds ∼30◦. Within GOME-2B’s wide swath, westward pixels can exhibit up to 35 % higher SIF

values than eastward pixels during peak seasons (see supplement S2.2 for more detail).260

Figure 8. Seasonally averaged SIF from GOME-2A (blue) and GOME-2B (green) across the viewing zenith angle (in ◦). Showing seasonal

SIF for June–August (JJA) 2014–2017 (top plots) and December–February (DJF) 2014–2017 (bottom plots), over Eastern Europe, the United

States Corn Belt, Eastern China, the Amazon, and Zambia.
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Figure 9 shows zonal averages of SIF from GOME-2A (in solid blue), GOME-2B using observations from the full VZA

range (in solid green), and VZA ranges matched with GOME-2A (in dashed green). Overall, GOME-2A and GOME-2B SIF

values converge when their VZA ranges match. For instance, the difference in DJF SIF between GOME-2A and GOME-2B

over 0◦ to 40◦ S decreased from 13.8 % to 4.9 %. These results indicate that a significant portion of the inter-sensor differences

in SIF can be attributed to variations in VZA sampling. Nonetheless, some divergence between GOME-2A and GOME-2B265

SIF remains. The remaining biases may result from differences in spatial and temporal sampling, as well as from differences

in sensor and orbit characteristics.
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Figure 9. Zonal averaged SIF from GOME-2A (solid blue line), GOME-2B considering all observations (solid green line), and only those

with |VZA|<35 ◦ (dashed green line), for (a) DJF 2016 and (b) JJA 2016. Zonal averages reflect all land pixels. Pixels over the Sahara region

(15◦ N–32◦ N, 16◦ W–52◦ E) were filtered to limit distortion of observations over desert areas and focus primarily on vegetated regions. The

SIF values are plotted by latitude at 2◦ resolution.

4.3 Isolating sensor-specific differences

To further evaluate the divergence between GOME-2A and GOME-2B SIF, we perform two co-sampling experiments (see

supplement S2.3). In Experiment 1, GOME-2A and GOME-2B pixels are spatially and temporally collocated. Matching pixel270

pairs had a maximum 50 km distance between their centers, at least 60 % spatial overlap of the smaller GOME-2A pixel with

the GOME-2B pixel, and observation times less than 50 minutes apart. Experiment 2 applies the same constraints, with an

additional requirement that both observations are within the same viewing geometry range of [−35◦, +35◦]. These constraints

help to isolate instrument-specific biases from those arising from sampling mismatches. Due to the limited spatial overlap of

GOME-2A and GOME-2B ground pixels, sampling in Experiment 2 is practically limited to the Northern latitudes.275
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Figure 10 shows GOME-2A and GOME-2B SIF data, sampled to both experiments accordingly, and averaged over JJA

2014–2017. GOME-2A and GOME-2B SIF are better aligned for Experiment 2 (1.9 % bias) than for Experiment 1 (5.6 %

bias) – as expected. This is confirmed by the empirical cumulative distribution functions (ECDFs) (bottom plots in Fig. 10).

ECDFs visualise the cumulative distribution of each dataset, enabling clear detection of systematic shifts between datasets.

When only spatially and temporally co-sampled, Exp. 1, GOME-2B SIF values at the 90th percentile are 7.1 % higher than280

the corresponding GOME-2A value. Including co-sampling of viewing angles, Exp. 2, reduces the bias of GOME-2B SIF to

GOME-2A SIF to 2.1 %.

Figure 10. (a,c) GOME-2A and (b,d) GOME-2B sampled according to Experiments 1 and 2, averaged over June–August (JJA) from 2014

to 2017 on a 0.5◦×0.5◦ grid. SIF values are shown for grid cells with valid and sufficient observations (exceeding the 10th percentile of

data counts) in both datasets and experiments. The mean SIF is shown as x. The two bottom panels show the ECDF plots of GOME-2A and

GOME-2B SIF according to (e) Experiment 1 and (f) Experiment 2. The dotted line indicates the 90th percentile, with the text indicating the

corresponding SIF values.

Despite the reduced structural bias in Experiment 2, the correlation between GOME-2A and GOME-2B SIF is lower (r=0.92)

than in Experiment 1 (r=0.97) (shown in Fig. S12). However, the SIF averages corresponding to Experiment 1 are based on
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nearly three times as many observations per grid cell as those in Experiment 2. This discrepancy in data density between the285

two experiments might reduce the comparability of their results. To enable a more balanced comparison, we constructed a

reduced version of Experiment 1. The additional test involved averaging Experiment 1 data over a randomly selected subset

of days from the JJA 2014–2017 period to match the data density of Experiment 2 better. The comparison between this

reduced Experiment 1 and Experiment 2 was performed using only grid cells with valid and sufficient observations in both

experiments. The divergence between GOME-2A and GOME-2B SIF remained similar to that of Fig. 10, but the correlation290

between GOME-2A and GOME-2B SIF for Experiment 2 (r=0.96) now exceeds that of Experiment 1 (r=0.95) (shown in

Fig. S15). These results confirm that the co-sampling requirements as set in Experiment 2 result in the best agreement among

GOME-2A and GOME-2B SIF. The details on this additional test are in the supplement S2.3.1.

GOME-2A and GOME-2B SIF show strong coherence in terms of spatial distribution. However, our results indicate the

importance of similar sampling to reduce systematic biases between the two datasets. Particularly, discrepancies in viewing295

geometry sampling have been shown to distort the coherence between inter-sensor SIF datasets. When both datasets are sam-

pled similarly, GOME-2A and GOME-2B SIF agree to within 2 %. A slight discrepancy is expected, as they are separate

sensors with minor differences in instrumental characteristics (Table 1). These results provide confidence in the consistency

of GOME-2A SIF (pre-July 2013) and GOME-2B SIF (from July 2013 onwards), when both sensors operated with the same

1920 km swath and viewing zenith angle ranges (VZA∈ [-52◦, +52◦]).300

5 Long-term time series analysis

This section evaluates the combined 2007–2023 GOME-2 SIF record over time. It uses GOME-2A data from January 2007 to

June 2013 and GOME-2B data from July 2013 onwards. We focus on SIF observations from the GOME-2A instrument under

its nominal swath configuration to ensure similar viewing angle ranges within both datasets, limiting the bias between GOME-

2A and GOME-2B SIF and advancing their connection (as found in Section 4.3). The record’s performance is evaluated in two305

ways. First, the coherence between GOME-2A and GOME-2B SIF is assessed in Sect. 5.1 using statistical tests and analysis.

In Section 5.2, the temporal consistency of the record is evaluated using independent datasets. Both analyses use monthly-

averaged SIF across six vegetative regions. The monthly and spatial averaging mitigate the effects of variation in geometry on

SIF.

5.1 Temporal coherence of GOME-2A and GOME-2B SIF310

Figure 11 shows the monthly regional averages of SIF from January 2007 to December 2023. For most regions, the transition

from GOME-2A SIF (in blue) to GOME-2B SIF (in green) appears seamless. However, in the Amazon, a slight downward

shift in GOME-2B SIF, relative to GOME-2A SIF, is noted. To test whether this shift is related to the instrument transition, we

proceed with statistical and analytical tests.

To statistically investigate whether a structural break occurs at the transition month T0, July 2013, from GOME-2A to315

GOME-2B SIF data, we fit a simple model to the monthly SIF time series, which includes a linear trend (αt), seasonal
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Figure 11. Time series of monthly averaged Level-2 SIF values retrieved from GOME-2A (in blue) and GOME-2B (in green) over (a) Eastern

Europe, (b) the United States Cornbelt, (c) Eastern China, (d) the Amazon, (e) the Congo Basin, and (f) the Pampas region. GOME-2B SIF

observations during the instrument’s commissioning phase are indicated by the dashed green line.

component (St), and a mean level shift term (δUt):

yt = µ+αt+St + δUt + εt (4)
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where yt represents the regional SIF value at month t, µ the monthly mean and εt the residual of the observed and fitted SIF.

This equation is adapted from Weatherhead et al. (1998) and commonly used to model trends in environmental variables that320

include a sudden level shift (e.g. van der A et al., 2006). The seasonal component St represents the annual cycle of SIF as a

first-order harmonic:

St = β1 sin(
2π(t−φ)

12
) +β2 cos(

2π(t−φ)
12

) (5)

where β1 and β2 control the amplitude, φ is the phase shift, and the angular frequency corresponds to annual periodicity.

Before fitting the full model, the phase shift φ is fixed through a pre-optimalisation step. We estimated its value by evaluating325

the model with 100 evenly spaced values of φ, ranging from 0 to 1, and selecting the value under which the model performs

best. This ensures good alignment of the modelled SIF with the real seasonal timing and avoids non-linearity in the model.

The possible offset in GOME-2 SIF related to the moment when the time series shifts from GOME-2A to GOME-2B data

in July 2013, or T0, is accounted for by the step-change indicator Ut as:

Ut =





0, if t < T0

1, if t≥ T0

(6)330

In this equation, Ut is set to 0 during the GOME-2A period (Jan. 2007–June 2013) and switches to 1 from July 2013 onwards

during the GOME-2B period. Finally, Ordinary Least Squares (OLS) regression is used to fit the five remaining unknowns: µ,

α, β1, β2, and δ.

We use the fitted coefficient δ and its p-value to evaluate the existence and magnitude of any step change at transition T0.

Additionally, we apply both the Chow and the Likelihood Ratio (LR) test to evaluate the statistical significance of the potential335

break. The Chow test evaluates whether regression parameters differ before and after the breakpoint. It tests if the data structure

is best described with one or two regressions by fitting the same model to (i) the full GOME-2 dataset, (ii) the data before T0

(GOME-2A), and (iii) the data after T0 (GOME-2B). The LR test complements this by comparing the regression results from

the full model (including the δUt term) with a reduced model that excludes the step-change term. A significant p-value from

the LR test indicates that including the step-change term significantly improved the fit.340

Table 2 shows the fit and statistical test results for all cases. The modelled and observed SIF are strongly correlated (r≥0.91),

implying that the model in Eq. 4 effectively captures the seasonal patterns and long-term trends necessary to detect structural

breaks. In most regions, the step change coefficient δ is insignificant, indicating no jump in SIF from T0. However, significant

step changes (p<0.05) are detected within the records across Eastern China and the Amazon. This bias is 0.13±0.04 mW m−2

sr−1 nm−1 over Eastern China and −0.10±0.03 mW m−2 sr−1 nm−1 over the Amazon region, respectively reflecting 16.6 %345

and 8.9 % of monthly averaged SIF over 2007–2023.

To interpret the detected offset bias δ, we evaluate its magnitude against the underlying uncertainty in SIF. Uncertainty

in SIF retrieval can be distinguished into random errors and systematic errors. The first vary stochastically, arise from, for

example, fit residual noise or sampling divergence, and decrease through averaging. Due to the spatial and temporal averaging

applied here, random errors are small relative to the detected offsets. Systematic errors originate from algorithmic settings350
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Table 2. Results of the regression fit, Chow test, and Likelihood Ratio (LR) test. The given uncertainty in δ represents one standard deviation

of the estimated coefficient. The column r provides the Pearson correlation between the model fit and the monthly SIF time series. Significance

is indicated by ”Y” (yes) when the coefficient or test is statistically significant at the 95% confidence level with p<0.05. If the p value exceeds

0.05, ”N” (no) is indicated. For clarity, ”Y” is underlined. More detailed results of the regression fit is shown in Table S5, and the results of

the Chow and LR test are summarised in Table S6.

Regression fit
Breakpoint significance following

r
coefficient δ

Regions
Value/bias A-B

[mW m−2 sr−1 nm−1]

Significant?

(Y/N)

Chow test

(Y/N)

Likelihood Ratio test

(Y/N)

Eastern Europe 0.92 9.66× 10−4± 0.05 N N N

Corn Belt, US 0.94 0.06± 0.06 N N N

Eastern China 0.94 0.13± 0.04 Y N Y

Amazon 0.94 −0.10± 0.03 Y N Y

Zambia 0.95 0.03± 0.03 N N N

Pampas 0.91 −0.03± 0.04 N N N

and persist despite averaging (Jacob et al., 2016). To obtain a first-order estimate of these systematic errors, independently

of regional offsets, we performed sensitivity tests over the Congo Basin, a region previously used as a sensitivity testbed by

Anema et al. (2025c). We perturbed the settings of four distinct retrieval steps: (i) the degradation correction, (ii) the PC’s, (iii)

the interpolation across the slit function (discussed in more detail in Anema et al. (2025c)), and (iv) the latitude bias correction

to assess their sensitivity. The largest sensitivity arises from the PCs used within the fitting model, particularly the number of355

PCs chosen to represent the atmospheric transmission. Varying the number of PC’s from 10 to 6 led to a divergence of 0.47

mW m−2 sr−1 nm−1 for GOME-2B SIF at 14 January 2017 over the Congo Basin. Combining the uncertainties from the four

perturbed retrieval settings gives an illustrative value of 0.55 mW m−2 sr−1 nm−1. Retrieval sensitivities of comparable order

are expected in other regions, including Eastern China and the Amazon. Details on these tests are provided in supplement S5.

The offsets δ detected in Eastern China (+0.13) and the Amazon (−0.10) are smaller than the estimated systematic error360

of 0.55 mW m−2 sr−1 nm−1. This indicates that the offsets lie within the range of retrieval sensitivities, but they nevertheless

represent a persistent inter-sensor difference. Additionally, the LR test confirms that the addition of an offset term enhances the

model fit for these two regions (Table 2). On the other hand, the Chow test results suggest the regression parameters remain

consistent over the full GOME-2 record. These results imply that, while there is confidence in a mean-level bias at T0, the

seasonal pattern and structure did not differ significantly before and after July 2013. Therefore, we add the found δ magnitudes365

as a correction term to the monthly regional SIF values during the GOME-2B period (from July 2013 onward) to align the

records of GOME-2A and GOME-2B and support the use of both records as one consistent record. The corrected time series

for Eastern China and the Amazon are shown and evaluated in subsection 5.2.
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Finally, we verify the impact of the correction on the record’s coherence by using an independent dataset as a reference.

Specifically, we use FluxSat GPP data, which overlaps with the analysed period from January 2007 to December 2020 (Joiner370

et al., 2018). FluxSat GPP is a satellite-derived global product that uses geometry-adjusted, daily-scaled MODIS MCD43D

reflectance data and a machine learning approach to upscale eddy-covariance flux measurements from FLUXNET 2015. As-

suming that FluxSat GPP correlates with SIF similarly across both sensors, it serves as a common reference to reveal intersensor

biases. Each dataset – GOME-2 SIF with/without intersensor offset correction, and FluxSat GPP – is standardised over Jan-

uary 2007–December 2020 to enable cross-evaluation of their temporal variability. The standardisation relates the temporal375

variability to the data’s standard deviation. We then compare the average difference between GOME-2 SIF and FluxSat GPP

before and from T0 (July 2013), using both uncorrected and GOME-2 SIF corrected for the detected intersensor offset. The

period before T0 covers January 2007 to June 2013, and the period from T0 covers July 2013 to December 2020.

Figure 12 shows the improvement in temporal consistency between GOME-2 SIF and FluxSat GPP over Eastern China

and the Amazon after applying the intersensor offset correction. Before the correction, or the alignment of GOME-2A and380

GOME-2B SIF, the mean difference in SIF and GPP shifts substantially around T0. Since the datasets are standardised, this

shift in SIF−GPP directly reflects the divergence between GOME-2A (<T0, January 2007–June 2013) and GOME-2B SIF

(≥T0, July 2013–December 2020) as a fraction of the total variability over time. For example, the alignment of SIF from both

sensors reduced their divergence from 27.7 % to 4.6 % of the total variability over the Amazon region – a reduction of 23.1 %.

This confirms that the application of the intersensor offset correction enhanced the temporal consistency within the combined385

GOME-2 record. Note that remaining differences around T0 (July 2013) may also reflect changes in the SIF–GPP relationships

due to changed environmental conditions over time.

Figure 12. Differences in standardised FluxSat GPP and standardised GOME-2 SIF over the period before T0 (January 2007 to June 2013)

and after T0 (July 2013 to December 2020). Each monthly averaged dataset is standardised by subtracting its mean value (µ) from each value

(x0) and dividing it by its standard deviation (σ); then x = (x0-µ)/σ. T0 represents the transition of GOME-2A to GOME-2B SIF in July

2013. The box plots on the right, plotted against a pink background, show the difference between the intersensor offset corrected GOME-2

SIF and FluxSat GPP. The black arrows indicate the difference between averaged SIF−GPP before and after T0, with the numbers indicating

this difference as a percentage of total variability over the 2007–2020 period. The SIF−GPP differences are shown over (a) Eastern China

and (b) the Amazon.
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Overall, the presented approach to detect and correct for intersensor biases seems effective in enhancing the record’s co-

herence. The methodology shown in this section can be used as a framework to detect, assess, and correct for potential biases

between GOME-2A and GOME-2B SIF time series.390

5.2 Evaluation of GOME-2 SIF against independent datasets

To evaluate whether the combined GOME-2 SIF records consistently track vegetation activity, we compared them to indepen-

dent satellite-based proxies for photosynthesis: FluxSat GPP (Joiner et al., 2018) and TROPOMI SIF data obtained by (Köhler

et al., 2018). Since TROPOMI SIF data is available from early 2018, it is explicitly used for cross-evaluation against the

GOME-2B SIF period. Both datasets are widely used to track inter-annual vegetation dynamics. True validation of SIF obser-395

vation is restricted due to the lack of ground truth. Direct in situ validation is limited due to the mismatch in spatial resolution

and the dependence of SIF values on observation time, viewing geometry, and the instrument’s spectral characteristics (Mo-

hammed et al., 2019). Therefore, cross-comparison with established independent datasets provides the common practice (e.g.,

Joiner et al., 2016; Köhler et al., 2018, 2015; Anema et al., 2025c). The correlations between GOME-2 SIF and independent

data are shown in supplement S4.400

Figure 13 shows the regional monthly time series of GOME-2 SIF, TROPOMI SIF, and FluxSat GPP, with GOME-2 SIF

corrected for intersensor offsets in Eastern China and the Amazon (Section 5.1). All datasets were standardised to enable

comparison. Across all regions, GOME-2 SIF consistently follows the seasonal cycle of FluxSat GPP with high correlations

of r ≥0.98 outside the Amazon and r =0.92 over the Amazon. The application of the intersensor offset correction showed a

positive impact on these correlations with an increase from r =0.97 to r=0.98 over Eastern China and from r =0.91 to r =0.92405

over the Amazon (shown in Fig. S19). Although these improvements are modest, they nonetheless suggest that applying the

bias correction enhances the temporal consistency.

GOME-2 SIF also agreed strongly with TROPOMI SIF (January 2018 to December 2022), with r=0.86 over the Amazon and

r ≥0.95 elsewhere. In Eastern China, GOME-2 SIF often reveals an early-season peak, which FluxSat GPP does not capture.

This feature is also present in TROPOMI SIF (e.g., in 2022), suggesting that SIF is sensitive to subtle phenological features410

not reflected in reflectance-based GPP.

When evaluated separately, e.g. in Zambia, GOME-2A SIF generally demonstrates slightly higher correlations with FluxSat

GPP (r=0.98) than GOME-2B SIF (r =0.94), resulting in an overall lower correlation for the combined record (r=0.96). While

these analyses are based on different periods and should therefore be interpreted with caution, they suggest enhanced robustness

within the GOME-2A SIF record. This is consistent with larger uncertainty within GOME-2B SIF as compared to GOME-2A415

SIF (Fig. 6). Nevertheless, GOME-2B SIF maintains strong correlations with both FluxSat GPP and TROPOMI SIF, indicating

that the underlying signals remain sufficiently robust.

Overall, these results indicate that the combined GOME-2 SIF record does not exhibit temporal biases or inconsistencies,

including false trends induced by instrumental artifacts. Together with the findings by Anema et al. (2025c), this confirms the

effectiveness of the advanced degradation correction applied by SIFTER v3 to enable robust and temporally consistent SIF420

records from both GOME-2A and GOME-2B SIF. When small intersensor offsets are present, our framework in Section 5.1
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Figure 13. Time series of standardized SIF retrieved from GOME-2 (solid blue), FluxSat GPP (dashed black) and TROPOMI SIF (dashed

orange). Since the GOME-2 dataset covers the entire FluxSat GPP period, it is standardised based on the same timespan (Jan. 2007–Dec.

2020). This enhances the alignment of GOME-2 SIF and FluxSat GPP.

has proven effective in resolving these biases and enabling GOME-2A and GOME-2B to be treated as one long-term dataset

for monitoring vegetation activity.
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6 Conclusions and outlook

We presented a combined GOME-2 SIF dataset spanning from 2007 to 2023, which combines SIF observations retrieved425

from both GOME-2A and GOME-2B. The GOME-2A SIF record (2007–2017) was previously retrieved using the SIFTER

v3 retrieval algorithm (Anema et al., 2025c). Here, we extended this dataset by applying the same algorithm to GOME-2B

data from 2013 to 2023. SIFTER v3 incorporates an advanced correction that addresses time, wavelength, and scan-angle

dependencies of reflectance degradation – resolving temporal inconsistency issues.

Although GOME-2A and GOME-2B are identical in sensor design, they are affected differently by instrumental artefacts.430

We showed that, if not properly corrected for, these differences can induce intersensor biases. During the overlapping tandem

phase, seasonally averaged SIF values from both sensors agreed within 2.1 % when co-sampled across time, space, as well as

viewing geometry. In contrast, failing to address differences in viewing zenith angle (VZA) sampling can introduce biases in

GOME-2B SIF of up to 15 % over high SIF regions. This discrepancy mainly arises from intersensor differences in captured

VZA ranges, due to the reduced swath mode of GOME-2A.435

Statistical analysis revealed no significant step change at the transition from GOME-2A to GOME-2B in mid-2013 for

most case studies; however, it detected small offsets in Eastern China and the Amazon. Applying an additive intersensor

offset correction in these regions enhanced the temporal coherence of the GOME-2 record and increased its correlation with

independent FluxSat GPP. In the Amazon, the correction reduced the absolute SIF−GPP difference across the sensor transition

by more than 20 %. Finally, we demonstrated strong coherence between the GOME-2 SIF record and FluxSat GPP (r ≥0.92),440

as well as between GOME-2 SIF and TROPOMI SIF (r ≥0.87) across regions with different biomes – supporting its use for

long-term monitoring of vegetation activity. Our methodology provides a framework to detect and, when necessary, correct for

intersensor-related offsets, enabling the use of GOME-2A and GOME-2B SIF as a one coherent record.

Beyond the use of GOME-2 SIF for long-term monitoring, this study offers practical guidance for harmonising multi-

sensor datasets. First, achieving internal consistency within each record is essential before merging. Second, differences in445

viewing geometry sampling can substantially bias intersensor observations and should be addressed, particularly for wide-

swath instruments. Finally, the presented framework could be applied to identify and correct for structural breaks in other

multi-sensor records. These insights will be valuable for extending the GOME-2 record with GOME-2C observations and

for preparing to combine future SIF observations from Sentinel-5 aboard the upcoming Metop Second Generation A series

(Metop-SG-A) satellites, for which SIF retrievals are expected to be technically feasible.450

7 Code and data availability

The GOME-2A SIF data used in this work are publicly available under data doi https://doi.org/10.21944/gome2a-sifter-v3-

solar-induced-fluorescence (Anema et al., 2025a). The GOME-2B SIF data obtained and used in this work can be accessed

at https://doi.org/10.21944/gome2b-sifter-v3-solar-induced-fluorescence (Anema et al., 2025b). The GOME-2 SIF data are

provided by KNMI within the framework of the EUMETSAT Satellite Application Facility on Atmospheric Composition455
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Monitoring (AC SAF). The code to detect and correct for intersensor offset biases within GOME-2 timeseries is available on

request.
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