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Abstract. We present a gridded dataset for rainfall streamflow modeling that is fully spatially resolved and covers five complete

river basins in central Europe: upper Danube, Elbe, Oder, Rhine, and Weser. We compiled meteorological forcings and a variety

of ancillary information on soil, rock, land cover, and orography. The data is harmonized to a regular 9km×9km grid, temporal

resolution is daily from 1980 to 2024. We also provide code to further combine our dataset with publicly available river

discharge data for end-to-end rainfall streamflow modeling. We have used this data to demonstrate how neural network-driven5

hydrological modeling can be taken beyond lumped catchments, and want to facilitate direct comparisons between different

model types.

1 Introduction

In recent years, a substantial number of rainfall streamflow datasets were released that follow the example of the popular

CAMELS dataset (Newman et al., 2015; Addor et al., 2017). They cover Chile (Alvarez-Garreton et al., 2018), Great Britain10

(Coxon et al., 2020), Brazil (Chagas et al., 2020), Australia (Fowler et al., 2021), the upper Danube basin (Klingler et al.,

2021), France (Delaigue et al., 2022), Switzerland (Höge et al., 2023), Denmark (Liu et al., 2024) and Germany (Loritz et al.,

2024). These datasets bundle a range of data sources and harmonize them to a readily ingestible, common spatio-temporal

data format. Besides meteorological variables, they contain additional static information such as land cover, soil and bedrock

type and orographic features. While suitable for a range of hydrological modeling approaches, these publications specifically15

facilitated a surge in popularity of neural network models for rainfall streamflow modeling. For example, Kratzert et al. (2019);

Nearing et al. (2024) have shown that neural network models are particularly suited to learn from such multi-variate, large-scale

data.

A common downside of the above-mentioned datasets however is that they aggregate ("lump") each variable within a catch-

ment to a single value. By doing so, all information about spatial variability is lost: A pattern of soil types might be reduced20

to the most prevalent one, or a range of different amounts of precipitation over a large area might be averaged to a single,

unexpressive average value. This reduction of information is unnecessary and counter-intuitive, especially for large catchments

or catchments with high spatial variability. The principle advantage of spatially resolved inputs is that they enable the model

to capture spatial covariance among different variables, e.g. the interacting effects of soil sealing or steepness of terrain and

a torrential rainfall. Physical models, still the standard model type in active operation, resolve their equations on such a grid25
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for exactly this reason, but neural network training also benefits from vast amounts of data. Additionally, as each point on

the grid contains a complete, self-contained set of meteorological and ancillary variables, the grid locations can be processed

independently.

2 Methods

The study area of the dataset covers 5 entire basins in central Europe, namely the upper reaches of the Danube (until Bratislava),30

Elbe, Oder, Rhine and Weser. It is contiguous, 570.592 km2 large and spans 10 countries. The temporal coverage ranges

from 1 January 1980 to 31 December 2024. We bundle 6 spatiotemporal ("dynamic") meteorological features with 46 static

("ancillary") features: 3 hydro-geological features, 16 land cover features, 19 soil features and 8 orographical features. We

based our choice of which kind of dynamic and ancillary information to include on the work of Addor et al. (2017) and

Kratzert et al. (2019) to allow for maximum comparability with recent hydrological literature in general and neural network-35

based literature in particular. The dataset consists of data derived from a variety of publicly available sources - no new data

was recorded. Our contribution consists in collecting the data and harmonizing it to a common grid for convenient model

training. Figure 1 provides an overview of the study area, common grid and types of variables. The remainder of this section

explains how the different data sources were harmonized to a common grid, followed by a description of each data modality.

Original data sources are listed in Table A1, detailed lists of all dynamic and ancillary features that we derived to compile this40

dataset can be found in Tables A2 and A3. Along with the data, we release all scripts for processing the raw source data into the

dataset that we provide. This allows users to verify and adapt our data aggregation pipeline. We also provide an additional script

that combines the dataset presented here with river discharge data, after manual download from the the original provider, the

Global Runoff Data Center (GRDC). In the preprocessing code linked below, we show that our study area is covered densely

and uniformly with river gauging stations, making it suitable for training neural networks and other models. As there are much45

fewer stations in the lower Danube basin, we decided to only include the upper part in order to reduce sampling bias. The

discharge time series come at daily resolution, which is the reason that we provide our temporal features in daily resolution as

well. This data can serve as targets for end-to-end training in data-driven rainfall streamflow modeling, such as in our study

(Vischer et al., 2025b).

2.1 Harmonized Grid50

As a common grid format, we decided to use the grid of the ERA5-Land reanalysis dataset (Muñoz Sabater, 2019; Coper-

nicusClimateChangeService, 2022), which covers the earth’s surface with a 0.1◦× 0.1◦ resolution, corresponding to roughly

9km× 9km for the case of our study area. ERA5-Land contains a vast number of meteorological variables and has an hourly

resolution, spanning from 1950 onward. It has been widely used and is actively maintained and updated. This means the dataset

we provide with this paper remains easily extendable, should a user like to e.g. include an additional meteorological variable55

in their experiments, extend the study area or increase the temporal resolution. The spatial data originally comes in different

formats (vector or grid), projections and resolutions. All data sources were thus harmonized to the grid of ERA5-Land by
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Figure 1. Overview of study area, input grid and data types. (a) Study Area: The study area comprises 5 basins that cover a contiguous area in

central Europe. (b) Input Grid and Station Network in Upper Danube Basin: Cells of input grid (orange) for Upper Danube basin. Catchment

boundaries (black) are overlaid with corresponding stations (blue), as well as connecting arrows representing the station connectivity network.

Code to reproduce the river network is released together with this paper. (c) Input Types: Visualizations for one example feature of each type

of input. Basin outlines (black) and borders of Germany (turquoise) are plotted for reference.

Orography in panel (a) was adapted from the European Space Agency’s Copernicus Global 90 m DEM (GLO-90, doi:10.5270/ESA-c5d3d65)

© EuroGeographics for the administrative boundaries in panel (a) and (c). Watershed boundaries in panel (a), (b), and (c) were taken from

the Global Runoff Data Center.

means of reprojecting and subsampling at the locations of the nodes in this grid. Our study area comprises a total of 7169 grid

cells.

2.2 Meteorological Forcings60

The meteorological forcings in our study were derived from the ERA5-Land dataset1 (Muñoz Sabater, 2019; CopernicusCli-

mateChangeService, 2022). Temporal aggregation from hourly to daily resolution was achieved differently for each variable:

1The dataset was downloaded from the Copernicus Climate Change Service (2022). The results contain modified Copernicus Climate Change Service

information 2020. Neither the European Commission nor ECMWF is responsible for any use that may be made of the Copernicus information or data it

contains.
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The temperature two meters above surface was aggregated by calculating minimum, mean and maximum values. Potential

evapotranspiration was summed. Precipitation is provided in ERA5-Land as sub-daily values, meaning that the daily total sum

corresponds to the value stored at 24:00. We added a measure of variability of precipitation by taking the variance over the65

increment at every hourly time step. Table A2 provides a detailed list of all dynamic variables.

2.3 Ancillary Data

Hydrogeological properties were derived from the International Hydrogeological Map of Europe (IHME) 2 (Günther and

Duscher, 2019). The original dataset features six hydrogeological classes as well as two classes for snow-ice-fields and inland

water bodies. The six classes represent the productivity of rock type, which indicates how easily water can dissipate through70

the bedrock. Classes are ordinal in that they are sorted by the corresponding productivity in ascending order. This allows

us to take a non-rigorously defined but nonetheless informative average over the classes’ proportions within each grid cell.

We concatenate this productivity score with the binary categorical classes for snow-ice-fields and inland water bodies, each

represented by a ratio of prevalence of this type of binary class within the grid cell.

Land Cover information was obtained from the Corine Land Cover Map3 (CLC). This dataset classifies land cover at three75

different levels of detail, with increasingly differentiated (sub)classes. We decided to use the second level, which containing

16 classes in total. Similarly to the procedure applied to the hydrogeological properties, we calculated a distributional vector

representing the proportion of a given class covering the grid cell.

Soil type information was obtained from the dataset European Soil Database Derived Data 4 (Hiederer, 2013a, b). This dataset

features 17 different physical properties, separately for top soil and lower soil. We calculate the average value of each feature80

within a grid cell.

Orographic information was derived from the European Union Digital Elevation Map5 (EU-DEM). Elevation was averaged

within each grid cell, as well as the gradient in latitudinal and longitudinal direction, and the steepness or magnitude of the

two-dimensional gradient. This yielded a total of four orographic features.

Table A3 provides an detailed list of all ancillary variables in the same ordering as we just introduced, which is also the ordering85

in the data file.
2IHME1500 - Internationale Hydrogeologische Karte von Europa 1:1.500.000, version 1.2 © Bundesanstalt für Geowissenschaft und Rohstoffe, 2022.
3Corine Land Cover Map, version 2012. Generated using European Union’s Copernicus Land Monitoring Service information; https://doi.org/10.2909/

916c0ee7-9711-4996-9876-95ea45ce1d27. The Corine Land Cover Map data was created with funding by the European union. It was adapted and modified

by the authors.
4European Soil Database Derived Data, created by the European Soil Data Centre with funding by the European union. It was adapted and modified by the

authors. The authors’ activities are not officially endorsed by the Union.
5European Union Digital Elevation Map, version 1.1. Generated using European Union’s Copernicus Land Monitoring Service information. The European

Union Digital Elevation Map created with funding by the European union. It was adapted and modified by the authors. The authors’ activities are not officially

endorsed by the Union.
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3 Conclusions

Combining a variety of data sources, we provide a dataset that is suitable for spatially resolved, multivariate rainfall-streamflow

modeling at large scale and of entire river basins. Recent advances in computer memory have made parallel processing of such

data without prior aggregation practically feasible: In Vischer et al. (2025b), we show that a neural network model is capable of90

efficiently handling this large amount of data. With the publication of this dataset, we hope to stimulate further development of

hydrological, particularly network models beyond the scope of lumped catchments, as well as facilitate comparisons between

different modeling approaches.

Code and data availability. The dataset is available at https://doi.org/10.4211/hs.d7f2cbb587ab4a75ac7987854e8f62ca, (Vischer et al., 2025a).

Dynamic meteorological forcing data and static ancillary data are stored in two separate NetCDF4 (Rew et al., 2006) files, "ancillary_pub.nc"95

and "dynamic_pub.nc". This format allows for labeled coordinates such as latitude, longitude and date for convenient selection on spatial

and temporal domains, respectively. All variables are named in a self-explanatory manner and we provide labeled metadata. See Tables A2

and A3 for a detailed reference of the included variables.

The data was processed in several Python Jupyter Notebooks (Granger and Pérez, 2021) that can be found in this repository. The code

requires Python 3.11 (Van Rossum and Drake Jr, 2009) and is licensed under the Clear BSD licence. Additional dependencies are specified in100

an Anaconda environment (Anaconda, 2020) specification contained in the repository. The scripts are stand-alone and do not require further

input parameters. Along with the code to process the data, we provide a script that loads the data, selects subsets and visualizes them. This

can serve as a starting point for the user to interact with the data. Furthermore, we provide code to wrap all the data in a PyTorch (Ansel et al.,

2024) Dataset class for further processing in a machine learning context. Since dense arrays are required for this, we provide an alternative

format version of our features in the files "ancillary_paper.nc" and "dynamic_paper.nc", where dimensions were transformed from latitude105

and longitude to a unique grid cell index. In this version, all features were standardnormalized in order to suit better the requirements of

neural networks.

All data sources from which we obtained the original data have been widely used across various scientific fields for years, so we assume

the original data to be valid. In order to technically validate our processing steps, we feature a testing script in our repository with extensive

tests and visualizations of the compiled data. We also successfully employed this dataset in training a neural network model for rainfall110

streamflow modeling (Vischer et al., 2025b).
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Appendix A: Data Origins and Detailed List of Features

Table A1. Overview of source datasets and their authors for dynamic data / meteorological forcings contained in file forcings_pub.nc and

static / ancillary data contained in ancillary_pub.nc. See tables A2 and A3 for more details on derived features.

Type Dataset Author Citation

Forcings / Dynamic Inputs

Meteorological Variables ERA5-Land Copernicus Climate Change Service (CCCS) Muñoz Sabater (2019)

CopernicusClimateChangeService (2022)

Ancillary Data / Static Inputs

Hydrogeological Properties IHME hydrogeological map v1.2 in vector data format German Federal Institute for Geosciences and Natural Resources (BGR) Günther and Duscher (2019)

Land Cover Corine Land Cover Map, version 2012 Copernicus Land Monitoring Service (CLMS)

Soil Type (Top and Lower Soil) European Soil Database Derived Data European Soil Data Centre (ESDAC) Hiederer (2013a, b)

Orographic European Union Digital Elevation Map (EU-DEM), version 1.1 Copernicus Land Monitoring Service (CLMS)
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Table A2. Overview of dynamic input features in the file forcings_pub.nc. Empty cells indicate that the value is identical to the one above.

Each of these features is a three-dimensional array with dimensions latitude, longitude and date. Labeled coordinate indices for all dimensions

are contained in the file.

Index Name Feature Origin Aggregation Unit

00 t2m_min Temperature 2m above

ground

ERA5-

Land

Daily Minimum K

01 t2m_mean Daily Mean

02 t2m_max Daily Maximum

03 pev Potential evapotranspira-

tion

Daily Sum mm

04 tp_sum Precipitation Daily Sum

05 tp_var Daily Variance unitless
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Table A3. Overview of static input features in the file ancillary_pub.nc. Empty cells indicate that the value is identical to the one above.

Explanations of the features derived from Corine Land Cover map (CLC) and elevation map were omitted because the names are self-

explanatory. Each of these features is a two-dimensional array with dimensions latitude and longitude. Labeled coordinate indices for all

dimensions are contained in the file.

Index Name Feature Origin Aggregation Unit

00 IHME_AQUIF_CODE Rock Productivity IHME Averaged Classes untiless

01 IHME_INLAND_WATER Inland Water Body Fraction frac. area

02 IHME_SNOW_ICE_FIELD Permanent Snow-Ice Field

03 CLC_11_Artificial_surfaces_Urban_fabric CLC

04 CLC_12_Artificial_surfaces_Industrial,_commercial_and_transport_units

05 CLC_13_Artificial_surfaces_Mine,_dump_and_construction_sites

06 CLC_14_Artificial_surfaces_Artificial,_non_agricultural_vegetated_areas

07 CLC_21_Agricultural_areas_Arable_land

08 CLC_22_Agricultural_areas_Permanent_crops

09 CLC_23_Agricultural_areas_Pastures

10 CLC_24_Agricultural_areas_Heterogeneous_agricultural_areas

11 CLC_31_Forest_and_seminatural_areas_Forest

12 CLC_32_Forest_and_seminatural_areas_Shrub_and_or_herbaceous_vegetation_associations

13 CLC_33_Forest_and_seminatural_areas_Open_spaces_with_little_or_no_vegetation_

14 CLC_41_Wetlands_Inland_wetlands

15 CLC_42_Wetlands_Coastal_wetlands

16 CLC_51_Water_bodies_Inland_waters

17 CLC_51_Water_bodies_Marine_waters

18 CLC_No_data

19 SOIL_STU_EU_S_SILT Subsoil: Silt Content ESDAC Arithmetic Mean %

20 SOIL_STU_EU_T_SAND Topsoil: Sand Content

21 SOIL_SMU_EU_S_TAWC Subsoil: Total Available Water Content (Pedotr. Rule) mm

22 SOIL_SMU_EU_T_TAWC Topsoil: Total Available Water Content (Pedotr. Rule)

23 SOIL_STU_EU_T_BD Topsoil: Bulk Density g/cm3

24 SOIL_STU_EU_T_TAWC Topsoil: Total Available Water Content (Pedotr. Function) mm

25 SOIL_STU_EU_S_GRAVEL Subsoil: Coarse Fragments %

26 SOIL_STU_EU_DEPTH_ROOTS Depth Available to Roots cm

27 SOIL_STU_EU_T_GRAVEL Topsoil: Coarse Fragments %

28 SOIL_STU_EU_S_TEXT_CLS Subsoil: Texture Class unitless

29 SOIL_STU_EU_T_OC Topsoil: Organic Content %

30 SOIL_STU_EU_S_SAND Subsoil: Sand Content

31 SOIL_STU_EU_T_CLAY Topsoil: Clay Content

32 SOIL_STU_EU_T_TEXT_CLS Topsoil: Texture Class unitless

33 SOIL_STU_EU_T_SILT Topsoil: Silt Content %

34 SOIL_STU_EU_S_BD Subsoil: Bulk Density g/cm3

35 SOIL_STU_EU_S_TAWC Subsoil: Total Available Water Content (Pedotr. Function) mm

36 SOIL_STU_EU_S_OC Subsoil: Organic Carbon Content %

37 SOIL_STU_EU_S_CLAY Subsoil: Clay Content %

38 DEM_elevation_mean EU-DEM m

39 DEM_grad_x_mean 1/m

40 DEM_grad_y_mean

41 DEM_steepness_mean 1/m2

42 DEM_elevation_std Standard Deviation unitless

43 DEM_grad_x_std

44 DEM_grad_y_std

45 DEM_steepness_std
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