Dear Reviewer, we thank you very kindly for the constructive comments and time spent in reviewing
the manuscript. We have carefully revised the manuscript according to the comments and sugges-
tions. Below we provide a point-by-point response where we discuss the changes we have made to
the manuscript in order make novelty and scientific contribution more clear, as well as provide more
satisfying methodological detail."

e RI. The manuscript aggregates variables from multiple publicly available data sources and harmo-
nizes them onto the ERAS5-Land grid. However, it does not clarify whether this integration process
involves any methodological innovation, nor does it explain what added value the dataset provides
compared with researchers independently processing the original data themselves. Without such
clarification, the dataset’s novelty appears limited.

Al. We do not use novel methods in harmonization, but instead rely on well established algorithms
to guarantee correctness of the processed data. The added value of our contribution instead
consists in adding a new variety of dataset (spatially resolved) to a family of datasets (bundled
meteorological and surface data) that has seen increasing popularity over the last years. Our dataset
allows researchers to focus on model development rather than having to invest a lot of time into
data processing beforehand. At the same time, general-purpose and ready-to-use datasets alleviate
to a certain degree the requirements in domain knowledge on the part of modelers. As the entry
threshold is lowered, hopefully more diverse models and creative approaches will be brought in to
tackle to problem as a community. Re-using datasets not only saves time but allows for immediate
comparison between different modeling approaches. For a dataset to serve this purpose, apart
from public license of data and code, the peer review process is an indispensable requirement.
It ensures the dataset’s correctness and overall quality of composition, building trust especially
for researchers who are new to this domain. We also want to note here that our dataset is readily
extendable, as we provide code for downloading additional variables from ERAS incorporating
them to the dataset. This way our dataset can serve as a starting point for different but adjacent
modeling problems as well.

o R2. The rationale for selecting the 6 spatiotemporal (“dynamic”) meteorological variables and 46
static (“ancillary”) attributes is insufficiently justified. Although the authors state that the variable
selection is based on prior studies, the reasoning remains unclear from a reader’s perspective.
For a data paper, where the choice of variables should be supported by scientific or functional
Justification. Providing the variable lists used in previous datasets and clarifying whether the
present study includes all commonly used variables or only a subset would help readers better
understand the design and scope of the dataset.

A2. Thank you for pointing out that the selection was not sufficiently justified. We added the
following table to the appendix that provides a summary of the variables used in out dataset as
compared to the four most relevant and widely-used related datasets. It shows that apart from
minor details, our dataset includes all commonly used dynamic and ancillary variables and thus
allows for good comparability with the other datasets.



Appendix B: Comparison with Related Datasets

Table B1. This table compares the variables contained in our dataset to those contained in similar datasets. We matched the raw variables
contained in the CAMELS dataset (Addor et al. (2017) and Newman et al. (2015)) as precisely as data availability in our study area permits.
This means that e.g. the classes for describing land cover type may vary, although the kind of information is the same. Our dataset also
matches other established datasets in this domain rather closely in terms of selection of variables, namely CARAVAN (Kratzert et al., 2023),
CAMELS-DE (Loritz et al., 2024) and CAMELS-GB (Coxon et al., 2020). The only substantial difference to all these datasets is that we
opted not to include derived climate and hydrological signatures of basins, since any aggregation of our data is optional and would depend on
the application. Arguably, since spatially resolved data is more abundant and detailed, it might render "summary statistics” of entire basins
less relevant to begin with. In any case, signatures can be readily calculated from the raw data contained in our dataset according to the user’s
preference. Throughout the table, all listed temporal variables across all datasets are aggregated daily, so "mean" temperature refers to daily
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Figure 1: Comparison of variables in our dataset with related datasets.

e R3. The manuscript mentions “reprojecting and subsampling at the locations of the nodes in
this grid,” but does not provide methodological details. For a dataset paper, the resampling and
reprojection procedures should be described, including the specific interpolation or sampling
methods used. Without this information, the processing steps are not sufficiently transparent or



reproducible. A3. We agree that this information is crucial and should be contained directly in
the manuscript. We substantially extended section 2.3 (previously 2.1) "Grid Harmonization" to
provide more specific detail on all resampling methods. Please also note that we provide the full
preprocessing code for transparency and reproducibility. Below we provide the new section:

Grid Harmonization:

As a common grid format, we decided to use the grid of the ERAS5-Land reanalysis dataset
(Munoz Sabater, 2019} |CopernicusClimateChangeServicel 2022), which covers the earth’s surface
with a 0.1° X 0.1° resolution, corresponding to roughly 9km X 9km for the case of our study area.
ERAS5-Land contains a vast number of meteorological variables and has an hourly resolution,
spanning from 1950 onward. It has been widely used and is actively maintained and updated.
This means the dataset we provide with this paper remains easily extendable, should a user like to
e.g. include an additional meteorological variable in their experiments, extend the study area or
increase the temporal resolution. Our study area comprises a total of 7169 grid cells on this grid.

The spatial data originally comes in different formats (vector or grid), projections and resolutions.
All data sources were thus harmonized to the grid of ERAS-Land. The first step consisted in
converting the maps to a common coordinate system. For the sake of compatibility with ERAS,
we decided to use the geographic coordinate system WGS 84. Then for each map separately,
polygons covering 0.1- in latitude and longitude with the grid cell at the center were extracted.
For categorical maps like hydrogeology and land cover, consisting of classes such as "Artificial
surfaces: Urban fabric", the fractions covered by each class within each polygon were calculated.
This results in a distributional description of class occurrence maximally conserves the original
information, as no averaging or other kind of aggregation is necessary. Quantitative information,
like e.g. clay content in topsoil, was however aggregated in a final step within the polygon. As a
downside to this approach, note that both cases require calculating coverage areas in a geographic
coordinate system. This treats the surfaces as flat instead of accounting for the earth’s curvature,
making the calculations imprecise. We consider this effect negligible here since the surfaces
contained in the grid cells are so small that they can be safely considered approximately flat. A
more severe limitation is the fact that at high latitudes, polygons defined by a given latitudinal
and longitudinal extent become substantially more narrow on the side facing the pole, which also
impairs the calculation of area. We could not change the polygons to counteract this effect since
they are implicitly dictated by the ERAS grid. At the moderate latitudes of our study area and
especially the small polygons used in the grid, this distortion can still be considered acceptable
for the sake of harmonization with ERAS, depending on the application. However, applying this
approach in polar regions for example would necessitate an intermediate step of choosing a suitable
projected coordinate system for calculating the areas in order to make the distortion explicit and
thus better understand its effects. Boundary effects are not an issue with this vector approach as
no interpolation is required, however. All maps covered regions well exceeding the study area.

Specifically for the four map types, the hydrogeological map already came in the WGS 84 reference
system. The land cover map came in vector format and LAEA coordinate system, so the polygon’s
coordinates could simply be calculated point-wise using the geopandas Python package (den
Bossche et al.,[2025)) with pyproj (Snow et al., 2025)) as a backend. This was followed by calculating
the fraction of each class within the polygon described above. The soil map came in LAEA
reference system but as a raster. We decided against interpolating as it would not contribute any
additional information. Instead, we simply considered each cell in the raster as a separate polygon
and calculated the fractions using the vector method described above. The situation was the same
for the elevation map, with the added initial step of down-sampling the map from 25 m resolution
to 500 m resolution using weighted average resampling implemented in rasterio (Mapbox), 2024)).

R4. The manuscript does not address several essential aspects related to data quality and reliability.
It does not discuss whether resampling introduces information loss, whether the gridding process
may generate boundary effects, or whether any variables contain missing values and how such
cases are handled. These issues are fundamental for a data paper, as they allow users to assess
the reliability of the dataset for their applications.

A4. Similar to the comment before, we hope that our modified subsection on grid harmonization
now addresses all these valid concerns in a satisfactory manner.

R5. The conclusion section is brief and lacks a comprehensive synthesis expected of a dataset
paper. A proper conclusion should summarize the dataset’s scientific contributions, outline the
types of research it can support, and explicitly discuss its limitations.

AS5. We updated the conclusion section to elaborate more on contribution, supported types of
research and are more explicit about the limitations. This is the new conclusions section:



Combining a variety of data sources, we provide the first spatially resolved dataset for multivariate
rainfall-streamflow modeling. It covers five entire river basins and it thus particularly suited for
large-scale modeling of hydrological processes. With the publication of this dataset, we hope to
stimulate further development of spatially resolved, high-resolution hydrological modeling beyond
the scope of lumped catchments. Suitable for neural network models as well as conceptual and
physical modeling approaches, we hope this dataset will facilitate model comparison and stimulate
future development in the spatially resolved domain. Using the same spatial grid as ERAS as well
as daily resolution limits its expressiveness of small scale, e.g. convective events, where higher
spatial and temporal resolution would be preferable. If users decide to spatially aggregate our data
and want to use derived variables like hydrological or climate signatures as input for their models,
they would have to manually compute them from the raw data contained in our dataset. This is
especially the case for snow-related variables, as particularly the Southeast of our study area is
dominated by snowmelt dynamics. Lastly, the dataset is of only limited use for training training
models that are to be deployed world-wide. We focus on a contiguous area in central Europe,
which means in turn that the dataset contains only a particular subset of all hydrological dynamics
that can be observed.

e R6. The manuscript frequently emphasizes the dataset’s applicability for neural network—based
hydrological modeling, yet the Introduction does not sufficiently cite relevant literature or explain
the research gap. the authors should include supporting references and more clearly articulate
how this dataset connects to and advances existing machine learning hydrology research.

A6. We appreciate your feedback on this point. Since we used neural network models in our own
research to show that such large amounts of data can be numerically handled, we were biased to
bring them up too frequently. We changed the manuscript to make it more clear that any spatially
distributed modeling approach is suited for this dataset. We also added recent supporting references
regarding both neural-network and physical modeling to substantiate our motivation to publicly
release this dataset. Please refer to the difference file for a convenient but concise overview of all
the changes in this regard.
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