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Abstract.  

Surface soil moisture (SSM) is a critical variable for understanding the terrestrial hydrologic 

cycle, and it influences ecosystem dynamics, agriculture productivity, and water resource 30 

management. Although SSM information is widely estimated through satellite-derived and 

model-assimilated methods, datasets with fine spatio-temporal resolutions remain unavailable 

at the continental scale, yet are essential for improving weather forecasting, optimizing 

precision irrigation, and enhancing fire risk assessment. In this study, we developed a new 3-

hour, 1-km spatially seamless SSM dataset spanning 2015 to 2023, covering the entire 35 

contiguous United States (CONUS), using a spatio-temporal fusion model. This approach 

effectively combines the distinct advantages of two long-term SSM datasets, namely, the Soil 

Moisture Active Passive (SMAP) L4 SSM product and the Crop Condition and Soil Moisture 

Analytics (Crop-CASMA) dataset. The SMAP product provides spatially seamless SSM 

observations with a 3-hour temporal resolution but at a 9-km spatial resolution, while the Crop-40 

CASMA SSM dataset offers a finer spatial resolution of 1 km but has a daily temporal 

resolution and contains spatial gaps. To overcome the spatio-temporal mismatch between the 

two products, we developed a time-series data mining approach known as the highly 

comparative time-series analysis (HCTSA) method to extract multiple spatially seamless 

characteristics (e.g., maximum and mean) from the two inter-annual SSM datasets (i.e., SMAP 45 

and Crop-CASMA). Then the fusion model was constructed using the extracted 9-km and 1-

km characteristics and each scene of the SMAP, in turn. Finally, the 3-hour, 1-km SSM data 

(named as STF_SSM) were predicted from 2015 to 2023. The comparison with in-situ data 

from multiple SSM observation networks showed that the performance of our STF_SSM 

dataset is better than the Crop-CASMA and is close to the SMAP L4 product, with mean 50 

correlation coefficients (CC) of 0.716 at the daily scale and 0.689 at the 3-hour scale. The 

STF_SSM dataset in this study is the first long time-series, spatially seamless SSM dataset to 

realize continuous intra-day 1-km SSM observations every 3 hours across the CONUS, which 

provides a new insight into the fast changes in soil moisture along with drought and wet spell 

occurrences, and ecosystem responses. Additionally, this dataset provides a valuable data 55 

source for the calibration and validation of land surface models. The STF_SSM dataset is 

available at https://doi.org/10.6084/m9.figshare.28188011 (Yang et al., 2025).  
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1. Introduction 

Surface soil moisture (SSM) is an important component of global hydrological cycling and 

serves as a key indicator of drought occurrences (Souza et al., 2021; Krueger et al., 2024), 60 

climate change (Guillod et al., 2015), and ecosystem functions (Green et al., 2019; Liu et al., 

2020a). To better understand the spatio-temporal changes in SSM, the Soil Moisture Active 

Passive (SMAP) satellite, launched in 2015, provides SSM data on a global scale at spatial 

resolutions of 9-km and 36-km using the onboard L-band radiometer (Entekhabi et al., 2010; 

Chan et al., 2016). SMAP products are generated at four levels of processing. Retrieved from 65 

brightness temperature information observed by satellites, SMAP Level 2 (L2) and Level 3 

(L3) SSM data are half-orbital and daily composited. However, considering the non-

overlapping revisit orbit and snow coverage, spatial gaps are inevitable in SMAP L2 and L3 

SSM products. To solve this problem, SMAP Level 4 (L4) SSM product assimilates SMAP L2 

and L3 data into a land surface model and provides spatially seamless SSM and root zone soil 70 

moisture estimates with a temporal resolution of 3 hours and spatial resolution of 9 km. 

Numerous studies have investigated the performance of satellite-derived SSM based on the 

triple collocation analysis (Chen et al., 2018), information theory (Kumar et al., 2018), and 

ground-based in-situ data (Kim et al., 2018). Results showed that the SMAP data typically 

have better performance at a global scale compared with other satellite-derived SSM products, 75 

such as the Soil Moisture and Ocean Salinity (SMOS), the Advanced Scatterometer (ASCAT), 

and Advanced Microwave Scanning Radiometer 2 (AMSR2). For example, Ma et al. (2019) 

and Min et al. (2023) demonstrated that SMAP data outperformed the SMOS, AMSR2, and 

the Climate Change Initiative of the European Space Agency (CCI) SSM product in terms of 

capturing temporal dynamics. Montzka et al. (2017) evaluated different SSM products in six 80 

regions and found that the SMAP data had greater accuracy than SMOS, AMSR2, and ASCAT. 

Additionally, SMAP data outperformed other satellite-derived SSM products in the Gilgel 

Abay watershed of Ethiopia (Alaminie et al., 2024), the Genhe area in China (Cui et al., 2017), 

and the Huai River basin of China (Wang et al., 2021).  

Although the SMAP data are stable and reliable, potential applications are constrained by 85 

their coarse spatial resolution. To address this issue, several downscaling strategies have been 
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applied by integrating optical/thermal-infrared data (Peng et al., 2017; Sabaghy et al., 2020; 

Abbaszadeh et al., 2021; Meng et al., 2024). In general, the universal triangle feature 

(Carlson et al., 1990, 1995) and trapezoidal feature spaces (Moran et al., 1994; Merlin et al., 

2012) provide the theoretical basis for most downscaling studies. The universal triangle feature 90 

primarily leverages land surface temperature (LST) and normalized difference vegetation index 

(NDVI) from optical/thermal-infrared data, e.g., the Moderate Resolution Imaging 

Spectroradiometer (MODIS), to capture spatio-temporal variations in SSM, highlighting that 

SSM is closely related with LST and NDVI. (Carlson, 2007). Compared to the universal 

triangle feature, the trapezoidal feature considers the influence of the fraction of water-stressed 95 

vegetation (Djamai et al., 2016). By incorporating fine-resolution LST and NDVI at various 

fractional vegetation cover conditions, the effects of evaporation (e.g., soil evaporative 

efficiency) can be quantified, enabling the development of SSM products at high spatial 

resolution (Merlin et al., 2012; Kim and Hogue, 2012; Molero et al., 2016). Therefore, fine-

resolution LST and NDVI are often employed as auxiliary data for SSM downscaling. 100 

Commonly, downscaling approaches are based on geostatistical models, which consider the 

spatial variations of LST and NDVI within and outside of the SSM pixel (Song et al., 2019). 

For example, a regression kriging-based model and its modified version were used to 

disaggregate the coarse pixels in SSM data using LST and NDVI data (Jin et al., 2018; Wen 

et al., 2020; Jin et al., 2021; Yang et al., 2024). Robust ensemble learning approaches have 105 

also been used to downscale SSM (Zhao et al., 2018; Wei et al., 2019; Karthikeyan and 

Mishra, 2021). For example, by integrating multiple decision tree models, a random forest 

model was employed to downscale SMAP SSM data from 36 km to 1 km (Hu et al., 2020). 

This approach can include fine-resolution auxiliary information, such as topography, location, 

and soil texture (Abbaszadeh et al., 2019; Liu et al., 2020b; Guevara et al., 2021; Wang et 110 

al., 2022). Deep learning is another popular downscaling approach, as the strong fitting 

capability effectively characterizes the SSM using LST, NDVI, and other auxiliary information 

(Xu et al., 2022; Zhao et al., 2022; Xu et al., 2024). 

Using the aforementioned methods, many high-resolution SSM datasets have been 

developed (Vergopolan et al., 2021; Han et al., 2023; Brocca et al., 2024). However, the 115 

optical/thermal-infrared auxiliary data are usually disturbed by atmospheric conditions, such 
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as clouds and haze (Ma et al., 2022a, b), resulting in difficult disaggregation of coarse SSM 

pixels under clouds or haze. To mitigate these issues, multiple-day composited optical/thermal-

infrared data are often used as the auxiliary variables for producing the SSM dataset (Li et al., 

2022; Zheng et al., 2023). Meanwhile, reconstruction of the missing optical/thermal-infrared 120 

data is a reliable choice, which is then used for SSM generation (Long et al., 2019; Abowarda 

et al., 2021; Song et al., 2022). For example, Zhao et al. (2021) reconstructed the seamless 

LST data and used them to generate the SSM dataset at a 1-km spatial resolution. In addition, 

integrating other high-resolution SSM products is also an appropriate method, which can avoid 

the influence of the optical/thermal-infrared auxiliary data (Jiang et al., 2019; Yang et al., 125 

2022; Jiang et al., 2024). In addition, synthetic aperture radar (SAR) data are also beneficial 

for generating high-resolution SSM datasets. Since microwave signals can penetrate the cover 

of clouds or haze, the SSM estimation can avoid the influence of weather factors. However, 

producing a large-scale, fine temporal resolution SSM product is limited by the coarse revisit 

period and narrow swath width of SAR data (Wang et al., 2023; Zhu et al., 2023; Fan et al., 130 

2025). 

High-resolution SSM datasets have been developed based on the original SMAP SSM 

product. For instance, the National Aeronautics and Space Administration (NASA) combined 

data from the Sentinel-1 satellites’ synthetic aperture radar with SMAP’s passive radiometer 

to produce the SSM product (SPL2SMAP_S), which offers a spatial resolution of 3 km 135 

(Jagdhuber et al., 2019). However, differences in the revisit orbits of SMAP and Sentinel-1, 

coupled with the narrower swath width of Sentinel-1 compared to SMAP, restrict the spatial 

coverage of the SPL2SMAP_S product (Das et al., 2019; Kim et al., 2021). In addition, the 

United States Department of Agriculture's National Agricultural Statistics Service (USDA-

NASS) has developed a daily, 1-km resolution SSM product within the Crop Condition and 140 

Soil Moisture Analytics (Crop-CASMA) system (Colliander et al., 2019; Zhang et al., 2022). 

This product disaggregates the 9-km satellite-derived SMAP SSM data by incorporating 

auxiliary 1-km data from MODIS (Liu et al., 2021, 2022). Although the Crop-CASMA SSM 

product provides sufficient spatial details, it retains spatial gaps inherent to the daily SMAP 

SSM data, limiting its overall spatial continuity. Similarly, the lack of spatial information also 145 

restricts the application of other high-resolution SSM datasets (Fang et al., 2022; Lakshmi 
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and Fang, 2023; Yang et al., 2024). 

Finer spatial and temporal resolution have become increasingly important for SSM datasets 

to facilitate more accurate monitoring of dynamic soil moisture variations. For long time-series 

and large-scale SSM datasets, a 1-km spatial resolution is commonly adopted, as daily auxiliary 150 

data at 1-km resolution can be extracted from MODIS. However, the commonly used 1-km 

SSM datasets at a large scale have a daily or even coarser temporal resolution, limiting their 

capacity to depict the intra-day SSM variations. This highlights the challenge of achieving both 

high temporal and spatial resolution in SSM datasets simultaneously. 

In this work, we generated a 3-hour, 1-km SSM dataset (denoted as STF_SSM) for the 155 

contiguous United States (CONUS) from 2015 to 2023. Based on an advanced and efficient 

spatio-temporal fusion model, the advantages of high observation frequency (3-hour) in the 

SMAP L4 SSM product and satisfactory spatial details (1-km) in the Crop-CASMA SSM 

dataset were integrated into a new SSM dataset. A time-series data mining approach was 

employed to extract multiple spatially seamless characteristics from the SMAP L4 and Crop-160 

CASMA SSM datasets, effectively addressing the spatio-temporal mismatches between the 

two input datasets within the fusion model. To evaluate the performance of the STF_SSM 

dataset, ground-based in-situ measurements were used for validation at both 3-hour and daily 

scales. The generated STF_SSM dataset facilitates intra-day SSM observations, providing a 

valuable resource for the related studies. 165 
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2. Data and methods 

2.1 Data 

2.1.1 SMAP L4 SSM product 

SMAP L4 SSM data were downloaded from https://nsidc.org. The temporal and spatial 170 

resolutions of the SMAP L4 SSM product are 3-hour and 9-km, respectively. The SMAP L4 

SSM product has a spatially complete coverage at a global scale. Validation studies showed 

that the SMAP L4 product provides more accurate and stable performance than SMAP L3 

across all seasons (Tavakol et al., 2019). In this work, we used the latest version 7 SMAP L4 

geophysical dataset. 175 

2.1.2 Crop-CASMA SSM data 

The Crop-CASMA system integrates crucial vegetation and soil moisture data for the 

CONUS (such as SSM, root-zone soil moisture, and NDVI). These data are continuously 

updated and can be freely accessed from the USDA-NASS website at 

https://nassgeo.csiss.gmu.edu/CropCASMA/. The system supports direct download, analysis, 180 

and visualization. In this study, the Crop-CASMA SSM data are derived from the SMAP 

Thermal Hydraulic disaggregation of Soil Moisture (SMAP THySM) dataset, which can 

provide 1-km daily SSM data and have two days of latency (Liu et al., 2021, 2022; Zhang et 

al., 2022). 

2.1.3 In-situ data 185 

In-situ data are measured and recorded by ground-based sensors at different depths, which 

has often been used as the reference for validation of satellite-derived SSM datasets (Dorigo 

et al., 2015). In this study, in-situ data from 2015 to 2023 were obtained from the International 

Soil Moisture Network (https://ismn.earth/en/) and the Oklahoma Mesonet 

(https://www.mesonet.org/), with measurements taken at a depth of 5 cm (McPherson et al., 190 

2007). Noted that the available in-situ data were further filtered to ensure that only one site was 

included per SSM pixel. Detailed information and locations of the in-situ networks were 

presented in Table 1 and Figure 1.  
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Table 1. Details of the selected in-situ data and soil moisture observation network for 195 

validation. 

Network 
Site 

number 
Sensor 

ARM 14 Hydraprobe II Sdi-12 E 

CW3E 16 CS616/ Stevens-Hydra-Probe 

FLUXNET-

AMERIFLUX 
2 CS655/ ThetaProbe-ML2X 

MESONET 123 Campbell Scientific 229-L 

PBO_H2O 130 GPS 

SCAN 183 
Hydraprobe-Analog-(2.5-Volt)/ Hydraprobe-Digital-Sdi-

12-(2.5-Volt) 

SNOTEL 261 
Hydraprobe-Analog-(2.5-Volt)/ Hydraprobe-Analog-(5.0-

Volt) 

TxSON 15 CS655 

USCRN 91 Stevens-Hydraprobe-II-Sdi-12 

 

 

Figure 1. Spatial distribution of the in-situ soil moisture observation sites used in this study 

for soil moisture validation. Each red point refers to one site. The eight marked sites show 200 

temporal variations of Surface Soil Moisture (SSM) in Figures 6 and 7, respectively. The 

basemap is from Esri, Earthstar Geographics, and the GIS User Community. 
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2.1.4 Land cover and terrain data 

In this study, we validated the performance of our developed datasets for different land 

cover types and different terrain conditions. Land cover type data were from the National Land 205 

Cover Database (NLCD) product available at https://www.mrlc.gov/, which includes annual 

land cover type at a spatial resolution of 30 m (Homer et al., 2020; Jin et al., 2023). 

Additionally, 30-m digital elevation models (DEM) from the NASA Shuttle Radar Topography 

Mission project were utilized to describe the terrain information in the CONUS (Rabus et al., 

2003).  210 

2.2 Method 

2.2.1 Characteristic extraction 

Because of the spatial gaps in the Crop-CASMA SSM data, it is difficult to directly exploit 

the daily Crop-CASMA SSM scene for the construction of the spatio-temporal fusion model 

(see next section). To deal with this problem, a time-series mining approach, i.e., highly 215 

comparative time-series analysis (HCTSA), was adopted to extract four spatially seamless 1-

km characteristics (including maximum, minimum, mean and median) in each pixel from the 

Crop-CASMA SSM time-series data (Fulcher et al., 2013; Fulcher and Jones, 2017). 

Additionally, to match the extracted characteristics from the Crop-CASMA SSM data, the 

same characteristics were also extracted at 9-km resolution from the corresponding SMAP L4 220 

time-series data. 

Even though the location of spatial gaps in the Crop-CASMA SSM time-series are varying 

over time, the extracted HCTSA-based characteristics are not affected (Yang and Wang, 2023). 

Typically, some factors that significantly influence SSM (e.g., precipitation, vegetation, and 

temperature) exhibit periodic changes in the year, indicating that inter-annual fluctuations in 225 

SSM tend to follow a periodic pattern. Thus, we selected a one-year temporal span for 

extracting these characteristics of maximum, minimum, mean, and median SSM. The extracted 

characteristics were then utilized to generate the corresponding STF_SSM scene. 

2.2.2 Spatio-temporal fusion model 

In this study, the virtual image pair-based spatio-temporal fusion (VIPSTF) model was 230 
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employed to generate the 3-hour, 1-km STF_SSM dataset, due to its stable performance, 

superior computational efficiency, and flexible usage (Wang et al., 2020; Yang et al., 2023). 

The spatial weighting version of the VIPSTF model was adopted in this study, because of the 

reliable accuracy. The operation of the VIPSTF model requires at least one or multiple known 

image pairs at different spatial resolutions (a data pair is defined as one coarse and one fine 235 

resolution characteristic extracted from the same year). Here, the extracted 1-km and 9-km 

HCTSA-based characteristics (i.e., maximum, minimum, mean, and median of SSM time-

series) from the SMAP L4 and Crop-CASMA SSM time-series (i.e., four image pairs) were 

blended using the VIPSTF model. Specifically, each STF_SSM scene is produced as follows: 

STF_SSM̂
t
= STF_SSM

VIP
+ ∆STF_SSM

t
 , (1) 

where STF_SSM̂
t
 is the generated 3-hour, 1-km SSM scene at time t, ∆STF_SSM

t
 refers to 240 

the increment data of the model at a 1-km spatial resolution at time t. The virtual STF_SSM
VIP

 

scene was predicted using a linear combination of the four extracted 1-km characteristics from 

the Crop-CASMA SSM time-series data in Eq. (2): 

STF_SSM
VIP

= ∑ aiF_C
i

n

i=1

+ b , (2) 

where ai is the coefficient for the i-th extracted fine characteristic F_C
i
 at a 1-km spatial 

resolution. n is the number of the characteristics (n = 4 in this study), and b denotes a constant. 245 

Based on the assumption of scale invariance (Wang and Atkinson, 2018), the optimal 

coefficients ai and b for each 3-hour SMAP scene were calculated in a linear regression, as 

follows: 

SMAPt= ∑ aiC_C
i

n

i=1

+ b + ∆SMAPt , (3) 

where SMAPt refers to the known SMAP L4 SSM scene at time t, and C_C
i
 is the i-th 

extracted coarse characteristic at a 9-km spatial resolution from the SMAP L4 SSM time-series 250 

data. ∆SMAPt  represents the residual data from the regression at time t. Moreover, the 

increment data (i.e., ∆STF_SSM
t
) in Eq. (1) can be disaggregated by the following spatial 

weighting scheme: 
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∆STF_SSM
t
(x0,y0)= ∑ wj∆SMAPt

s

k=1

(xk,yk) , (4) 

In Eq. (4), (xk,yk) denotes the spatial distribution of the k-th similar pixel surrounding the 

center pixel (x0,y0). The number of surrounding similar pixels is represented by s. Additionally, 255 

wj represents a weight calculated based on the distance between the center pixel and the k-th 

surrounding similar pixels. ∆SMAPt was interpolated from 9 km to 1 km using the bicubic 

method. 

2.2.3 Data generation 

Based on the VIPSTF model, the 3-hour, 1-km STF_SSM dataset was generated from 2015-260 

04-01 to 2023-12-31. The generation flowchart is depicted in Figure 2. The specific process 

steps for producing the STF_SSM dataset are described as follows: 

(1) For each year, 1-km and 9-km spatially seamless characteristics (i.e., maximum, 

minimum, mean, and median) were extracted from the Crop-CASMA and SMAP L4 

SSM time-series using the HCTSA method, respectively. 265 

(2) To generate a STF_SSM scene at time t, a VIPSTF model was constructed using the 

extracted characteristics in step (1) and a SMAP L4 SSM scene at time t within the year. 

Then, the STF_SSM scene at time t was generated. 

(3) The aforementioned steps were repeated each 3-hour period to produce the 3-hour, 1-

km STF_SSM data. 270 

Finally, a total of 25,567 STF_SSM scenes were produced, accounting for approximately 

1.78 TB. Each STF_SSM scene requires approximately 73.0 MB of storage space. The Pete 

High-Performance Computing (HPC) facility at Oklahoma State University was employed for 

data generation. 
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 275 

Figure 2. Flowchart for generating the 3-hour, 1-km STF_SSM dataset from 2015 to 2023. 

2.3 Validation 

In this paper, we divided the soil moisture observations (Figure 1) into two groups (3-hour 

group and daily group) for the validation of our generated data. Considering that the time of 

SMAP L4 and STF_SSM data is not on the hour (at 1:30, 4:30, 7:30, 10:30, 13:30, 16:30, 19:30, 280 

and 22:30), the average SSM value between two adjacent integer times was used to represent 

the SSM value at the specific time. For example, when validating the SMAP L4 and STF_SSM 

scenes at 4:30, the mean value of the 4:00 and 5:00 in-situ data was used to represent the soil 

moisture at 4:30. For daily scale validation, the hourly in-situ data were averaged to obtain 

daily values. Similarly, the 3-hour SMAP L4 and STF_SSM data were composited into daily 285 

scenes. To assess accuracy, five widely used statistical metrics were adopted, that is, the 

correlation coefficient (CC), root mean square error (RMSE), bias (Bias), unbiased root mean 

square error (ubRMSE), and Kling-Gutpa efficiency (KGE). 
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3. Results 290 

3.1 Spatial pattern of the developed SSM dataset 

The spatial pattern of the Crop-CASMA SSM, the SMAP L4 SSM, and the generated 

STF_SSM datasets are shown in Figure 3 at four randomly selected time points (i.e., 2015-04-

01, 2017-06-08, 2019-08-16, and 2021-10-25). The 1-km Crop-CASMA SSM dataset has 

spatial gaps and does not have wall-to-wall data covering the entire CONUS. In contrast, both 295 

the SMAP L4 and STF_SSM datasets can provide spatially seamless observations. It is noted 

that the SMAP L4 SSM scenes contain some abnormal pixels with extremely high SSM values 

(SSM values of 0.6 and higher), especially in the northern part of the CONUS (e.g., some pixels 

around the Great Lakes in Figure 3). 
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Figure 3. Spatial pattern of Surface Soil Moisture (SSM) in the Crop-CASMA SSM dataset 300 

(left), SMAP L4 SSM product (middle), and the STF_SSM dataset (right) on 2015-04-01 

(01:30), 2017-06-08 (07:30), 2019-08-16 (13:30), and 2021-10-25 (19:30). Both the SMAP L4 
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and STF_SSM datasets are exhibited at the 3-hour scale, while the Crop-CASMA SSM dataset 

is displayed at the daily scale. The basemap is from Esri, Earthstar Geographics, and the GIS 

User Community. 305 

To illustrate the advantages of the STF_SSM dataset, we zoomed into a sub-region in the 

CONUS at a date with rainfall (2018-08-14) and showed SSM in the three different datasets in 

Figure 4. It is clear that both the 3-hour SMAP L4 SSM and STF_SSM datasets can capture 

increased SSM values from 1:30 to 7:30 in the southwest region of the sub-region. Moreover, 

The STF_SSM and Crop-CASMA SSM datasets provide more detailed spatial information 310 

than those in the SMAP L4 SSM product. The spatial texture of the STF_SSM dataset closely 

resembles that of the 1-km Crop-CASMA SSM dataset, which is smoother than that of the 

SMAP L4 SSM product. 

Next, we selected two random pixels in Nebraska (shown in Figure 4) to exhibit intra-day 

SSM variation (Figure 5). Although the Crop-CASMA SSM scene provides spatial information 315 

at a 1-km resolution, it only provides SSM value at the daily scale. In contrast, both the SMAP 

L4 and STF_SSM datasets show the changes in SSM every 3 hours. Furthermore, the changing 

patterns of SSM over time are similar between the SMAP L4 and STF_SSM datasets (the CC 

values in Figure 5a and Figure 5b are 0.997 and 0.999), indicating the stability and consistency 

of the STF_SSM dataset. 320 

 

Figure 4. A sub-region in the western Continental United States (CONUS) to exhibit the spatial 

textures of the three Surface Soil Moisture (SSM) datasets on 2018-08-14. The basemap is 

from Esri, Earthstar Geographics, and the GIS User Community. 
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 325 

Figure 5. The intra-day Surface Soil Moisture (SSM) variation for two randomly selected 

pixels on 2018-08-14. The Crop-CASMA SSM dataset does not provide the intra-day SSM 

variation, shown as the flat black line. (a) and (b) refer to the pixels 1 and 2 in Figure 4, 

respectively. Since pixel 2 is located in the spatial gaps of the Crop-CASMA SSM scene, it 

does not exhibit the flat black line in (b). 330 

3.2 Validation based on daily soil moisture observations 

At the daily scale, the three daily SSM datasets (the Crop-CASMA SSM, SMAP L4 SSM, 

and STF_SSM datasets) were compared against the daily in-situ data from 9 soil moisture 

observation networks. Figure 6 shows the SSM time-series acquired from four randomly 

selected sites distributed across the CONUS: the Windy_Gap site in the CW3E network, CENT 335 

site in the MESONET network, DELVALLE site in the PBO_H2O network, and LCRA_4 site 

in the TxSON network. Although there are gaps in the in-situ data at these sites, the available 

in-situ data are sufficient for the validation of these three SSM datasets. Moreover, the SSM 

daily variations of the three SSM datasets are similar to those of the in-situ data. For example, 

the CC values for the SMAP L4, Crop-CASMA, and STF_SSM datasets in Figure 6a 340 

(Windy_Gap site in the CW3E network) are 0.924, 0.879, and 0.886, respectively. In addition, 

there are some biases between different SSM datasets due to differences in spatial resolution 

and derived methods. Specifically, the SMAP records a lower minimum SSM value at the 

Windy_Gap site and a higher SSM maximum at the Delvalle site, compared with the Crop-

CASMA and STF_SSM datasets. 345 

 

 

 

 

 350 
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Figure 6. Temporal variations of daily surface soil moisture (SSM) from the SMAP L4 (blue), 

Crop-CASMA (black), STF_SSM (red), and in-situ observation data (dark yellow) at four 

different sites. (a) Windy_Gap site in the CW3E network. (b) CENT site in the MESONET 355 

network. (c) DELVALLE site in the PBO_H2O network. (d) LCRA_4 site in the TxSON 

network. 
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Table 2. Accuracy of the daily surface soil moisture (SSM) from the SMAP L4, the Crop-CASMA and the STF_SSM 

datasets. Values in bold indicate the dataset with the best performance for each statistic in each row. Underlined values 360 

indicate second best. 

 SMAP L4 SSM (9 km) Crop-CASMA SSM (1 km) STF_SSM (1 km) 

 CC 
RMSE 

(m3/m3) 

Bias 

(m3/m3) 

ubRMSE 

(m3/m3) 
KGE CC 

RMSE 

(m3/m3) 

Bias 

(m3/m3) 

ubRMSE 

(m3/m3) 
KGE CC 

RMSE 

(m3/m3) 

Bias 

(m3/m3) 

ubRMSE 

(m3/m3) 
KGE 

ARM 0.752 0.089 -0.001 0.058 0.538 0.712 0.086 0.030 0.069 0.589 0.710 0.078 0.023 0.062 0.595 

CW3E 0.859 0.070 -0.012 0.042 0.408 0.531 0.111 -0.046 0.078 -0.058 0.818 0.093 -0.053 0.047 0.181 

FLUXNET-

AMERIFLUX 
0.925 0.055 -0.012 0.051 0.758 0.875 0.069 -0.028 0.062 0.740 0.892 0.070 -0.034 0.061 0.645 

MESONET                                                                                                  0.721 0.096 0.042 0.064 0.509 0.633 0.102 0.046 0.077 0.507 0.710 0.089 0.035 0.064 0.525 

PBO_H2O 0.724 0.063 0.002 0.050 0.415 0.614 0.066 0.020 0.055 0.404 0.704 0.061 0.018 0.050 0.445 

SCAN 0.660 0.087 -0.012 0.056 0.191 0.470 0.102 -0.012 0.078 0.007 0.621 0.089 -0.019 0.057 0.155 

SNOTEL 0.622 0.102 0.027 0.074 0.254 0.335 0.120 0.036 0.093 0.091 0.561 0.107 0.031 0.078 0.202 

TxSON 0.771 0.085 -0.019 0.045 0.361 0.598 0.079 0.025 0.059 0.340 0.751 0.065 0.018 0.043 0.521 

USCRN 0.709 0.084 -0.017 0.052 0.357 0.488 0.109 -0.025 0.081 0.166 0.675 0.097 -0.038 0.054 0.282 

Mean 0.749 0.081 -0.001 0.055 0.421 0.584 0.094 0.005 0.072 0.310 0.716 0.083 -0.002 0.057 0.395 
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At the network level, the results of the accuracy assessment (Table 2) show that the 9-km 

SMAP L4 SSM product has the greatest accuracy among the three datasets. At a spatial 365 

resolution of 1 km, the generated STF_SSM dataset outperforms the Crop-CASMA SSM 

dataset. Specifically, the mean CC for the SMAP L4 SSM product is 0.749, which is 0.033 and 

0.165 higher than the STF_SSM and Crop-CASMA datasets, respectively. The RMSE and 

ubRMSE for the SMAP L4 SSM dataset are 0.081 m3/m3 and 0.055 m3/m3, which are the 

smallest among the three datasets. The STF_SSM dataset has RMSE and ubRMSE values of 370 

0.083 m3/m3 and 0.057 m3/m3, which is slightly higher than those for the SMAP L4 SSM 

product but smaller than those for the Crop-CASMA dataset. The Bias for the SMAP L4 SSM 

product (with a Bias of -0.001 m3/m3) and the STF_SSM dataset (with a Bias of -0.002 m3/m3) 

are closer to SSM observation data than that of the Crop-CASMA SSM dataset. The STF_SSM 

dataset has a mean KGE of 0.395, which is 0.026 smaller than that of the SMAP L4 but 0.185 375 

larger than that of the Crop-CASMA dataset. At the three SSM observation networks of 

MESONET, PBO_H2O, and TxSON, the STF_SSM dataset demonstrates better performance 

compared to the other datasets. However, for the other networks, the SMAP L4 SSM product 

outperforms the other datasets in terms of accuracy. 

3.3 Validation based on 3-hour soil moisture observations 380 

The 9-km SMAP L4 product and the 1-km STF_SSM dataset were compared with the 3-

hour in-situ data from 7 networks. We randomly selected 4 sites (Omega site in the ARM 

network, Tonzi_Ranch site in the FLUXNET-AMERIFLUX network, Bragg_Farm site in the 

SCAN network, and Medora_7_E site in the USCRN network) to exhibit the SSM comparison 

(Figure 7). The temporal variations of SSM time-series from the in-situ data, SMAP L4 product, 385 

and STF_SSM dataset are similar to each other, e.g., the CC values of the SMAP L4 and 

STF_SSM datasets in Figure 7a are 0.749 and 0.745 by referring to the in-situ data, revealing 

that both the SSM datasets can well capture the dynamics of SSM at the 3-hour scale. Moreover, 

the difference between the 9-km SMAP L4 product and 1-km STF_SSM dataset is small, 

indicating that the downscaling of our STF_SSM dataset does not introduce significant errors 390 

in SMAP L4 SSM. Therefore, our STF_SSM dataset can be regarded as a reliable high-

resolution version of the SMAP L4 product. 
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Figure 7. Temporal variations of 3-hour surface soil moisture (SSM) from SMAP L4 (blue), 395 

STF_SSM (red), and in-situ observation data (dark yellow) at four different sites. (a) Omega 

site in the ARM network. (b) Tonzi_Ranch site in the FLUXNET-AMERIFLUX network. (c) 

Bragg_Farm site in the SCAN network. (d) Medora_7_E site in the USCRN network. 

The quantitative statistical metrics based on the 3-hour in-situ data are listed in Table 3. The 

results indicate that the 9-km SMAP L4 SSM product has better accuracy than the 1-km 400 

STF_SSM dataset. Specifically, the mean CC and KGE for the SMAP L4 SSM product are 

0.728 and 0.414, which are 0.039 and 0.028 higher than those for the STF_SSM dataset. 

Furthermore, the SMAP L4 SSM product has a mean RMSE and ubRMSE of 0.086 m3/m3 and 

0.059 m3/m3. Additionally, the Bias of the SMAP L4 SSM product is -0.005 m3/m3, which is 

closer to the SSM observation data than that of the STF_SSM dataset. For specific networks, 405 

we found that the CC and KGE of the SMAP L4 SSM dataset at the FLUXNET-AMERIFLUX 

network are 0.920 and 0.889, which are the highest among the 7 networks. On the other hand, 

the STF_SSM dataset provides an RMSE of 0.081 m3/m3 and 0.067 m3/m3 for the ARM and 

TxSON networks, which is 0.009 m3/m3 and 0.019 m3/m3 less than the SMAP L4 SSM dataset, 

respectively. 410 
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Table 3. Accuracy of the 3-hour surface soil moisture (SSM) from the SMAP L4 SSM product 

and the STF_SSM datasets. Values in bold indicate the dataset with better performance for 

each statistic in each row. 415 

 SMAP L4 SSM (9 km) STF_SSM (1 km) 

 CC 
RMSE 

(m3/m3) 

Bias 

(m3/m3) 

ubRMSE 

(m3/m3) 
KGE CC 

RMSE 

(m3/m3) 

Bias 

(m3/m3) 

ubRMSE 

(m3/m3) 
KGE 

ARM 0.744 0.090 0.001 0.060 0.544 0.696 0.081 0.023 0.065 0.593 

CW3E 0.818 0.074 -0.008 0.046 0.398 0.777 0.097 -0.047 0.051 0.216 

FLUXNET-

AMERIFLUX 
0.920 0.060 -0.009 0.055 0.746 0.889 0.073 -0.030 0.066 0.645 

SCAN 0.628 0.097 -0.011 0.065 0.305 0.582 0.097 -0.016 0.066 0.304 

SNOTEL 0.512 0.111 0.021 0.084 0.189 0.457 0.114 0.033 0.086 0.136 

TxSON 0.769 0.086 -0.018 0.047 0.358 0.750 0.067 0.020 0.045 0.514 

USCRN 0.708 0.088 -0.012 0.055 0.357 0.674 0.097 -0.032 0.057 0.295 

Mean 0.728 0.086 -0.005 0.059 0.414 0.689 0.090 -0.007 0.062 0.386 

3.4 SSM data accuracy across land cover types 

Generally, the accuracy of satellite-derived SSM datasets varies between land cover types, 

because the penetration capacity of remote sensing signals can be affected by land cover types. 

Therefore, it is necessary to assess the performance of the SSM datasets under different land 

cover types. According to the NLCD land cover product from 2015 to 2023, we separated the 420 

CONUS into nine types, including the developed, barren, forest, shrub, grassland, pasture, 

crops, wetlands, and changed. The former eight types are the existing categories (e.g., shrub 

and grassland) or composite categories (e.g., forest is composed of deciduous, evergreen, and 

mixed forest) in the NLCD product. The "changed" category refers to the areas where land use 

has changed between 2015 and 2023. 425 

At the 3-hour scale, it is seen from Figures 8a and 8b that the SMAP L4 product has slightly 

better performance than the generated STF_SSM dataset for most land cover types. As shown 

in Table 4, the mean CC and RMSE values of the SMAP L4 product are 0.611 and 0.107, which 

are 0.042 and 0.002 better than those of the STF_SSM dataset, respectively. However, both 

SSM datasets exhibit lower accuracy in wetlands compared to other land cover types. 430 

Meanwhile, the SSM accuracy has a larger variation across forest pixels, shrub pixels, and 

developed area pixels than the other land cover types. This is primarily because the topsoil in 

these land cover types is covered by woody plants and man-made features, which influences 
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SSM observations and leads to a loss of accuracy. The highest accuracy is observed in barren 

(with an RMSE of 0.083 m3/m3 for the STF_SSM dataset) and grassland areas (with an RMSE 435 

of 0.083 m3/m3 for the SMAP L4 product), as these types tend to have less cover. The land 

cover changes observed in the "changed" category also provide satisfactory accuracy. This is 

because approximately 50% of the land cover change samples consist of barren or grassland 

areas, which contribute to higher SSM accuracy. These patterns are also reflected in the daily 

SSM datasets (Figures 8c and 8d). Moreover, the Crop-CASMA dataset (with mean CC and 440 

RMSE values of 0.440 and 0.111, respectively) has a lower performance than the STF_SSM 

dataset across all land use covers, highlighting the reliability of the generated STF_SSM dataset 

at a 1-km spatial resolution. 

 445 

Figure 8. Accuracy of the surface soil moisture (SSM) datasets under different land cover types. 

The “changed” type refers to areas where land cover type changed between 2015 and 2023. (a) 

and (b) are the correlation coefficient (CC) and the root mean square error (RMSE) of SSM 

datasets at the 3-hour scale. (c) and (d) are the CC and RMSE of SSM datasets at the daily 

scale. For each land cover type, the number of validation sites is 45 (developed), 7 (barren), 450 

190 (forest), 211 (shrub), 148 (grassland), 97 (pasture), 69 (crops), 10 (wetlands), and 49 

(changed), respectively. 

 

 

 455 

 

 

 

 

 460 
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Table 4. Mean correlation coefficient (CC) and root mean square error (RMSE) of surface soil 

moisture (SSM) datasets under different land cover types. 465 

 

Land cover type 

(number of validation sites) 

3-hour Daily 

SMAP L4 STF_SSM SMAP L4 Crop-CASMA STF_SSM 

CC 
RMSE 

(m3/m3) 
CC 

RMSE 

(m3/m3) 
CC 

RMSE 

(m3/m3) 
CC 

RMSE 

(m3/m3) 
CC 

RMSE 

(m3/m3) 

Developed (45) 0.554 0.117 0.530 0.135 0.653 0.091 0.480 0.114 0.640 0.104 

Barren (7) 0.591 0.105 0.564 0.083 0.601 0.103 0.208 0.117 0.576 0.092 

Forest (190) 0.530 0.151 0.472 0.156 0.634 0.104 0.327 0.123 0.570 0.110 

Shrub (211) 0.615 0.091 0.562 0.089 0.669 0.078 0.481 0.083 0.627 0.076 

Grassland (148) 0.691 0.083 0.662 0.089 0.753 0.083 0.669 0.090 0.734 0.082 

Pasture (97) 0.680 0.101 0.639 0.107 0.704 0.091 0.517 0.112 0.678 0.093 

Crops (69) 0.626 0.102 0.585 0.099 0.654 0.097 0.494 0.108 0.623 0.095 

Wetlands (10) 0.532 0.138 0.463 0.138 0.551 0.124 0.279 0.145 0.498 0.134 

Changed (49) 0.677 0.084 0.639 0.094 0.730 0.078 0.505 0.104 0.693 0.088 

Mean 0.611 0.108 0.569 0.110 0.661 0.094 0.440 0.111 0.627 0.097 

3.5 SSM data accuracy across topographic conditions 

As a significant soil-forming factor, terrain is one of the determinants of SSM variations. 

Particularly, SSM could have strong spatial variability in areas with complex topographic 

conditions. We analyzed the accuracy (including CC and RMSE) of the 1-km Crop-CASMA 470 

and STF_SSM datasets under different topographic conditions. As shown in Figures 9a and 9b, 

both the Crop-CASMA and STF_SSM datasets show a decrease in the CC value with 

increasing elevation. However, the STF_SSM dataset shows a slower decline in accuracy (with 

a slope of -0.055) compared to the Crop-CASMA dataset (with a slope of -0.100). Under 

complex terrain conditions (i.e., larger slope), the accuracy of both SSM datasets is reduced. It 475 

can be seen from Figures 9c and 9d that the CC of the Crop-CASMA dataset decreases more 

sharply as the slope increases (with a slope of -0.023) while the CC in the generated STF_SSM 

dataset declines more gradually (with a slope of -0.011). Likewise, Figures 9e and 9f shows 

that the RMSE values of both SSM datasets increase with elevation. According to the intercept, 

the STF_SSM dataset has a slightly greater RMSE than the Crop_CASMA dataset, especially 480 

at high altitudes. Meanwhile, with an increase in slope, the STF_SSM dataset has a slower rise 
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in RMSE values than the Crop-CASMA dataset (Figure 9g and 9h). This suggests that the 

STF_SSM dataset is more reliable than the Crop-CASMA dataset in complex terrain conditions. 

 

 485 
Figure 9. Accuracy of the estimated surface soil moisture (SSM) from the 1-km Crop-CASMA 

and generated STF_SSM datasets along changing topographic conditions, denoted by elevation 

and slope. (a), (c), (e) and (g) refer to the 1-km Crop-CASMA SSM dataset. (b), (d), (f) and (h) 

are the generated STF_SSM dataset.  
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4. Discussion 490 

4.1 Implications 

Ma et al. (2021) adopted the daily 25-km, 10-day composited CCI SSM time-series to 

define agricultural drought events. However, this 10-day composition approach may not 

capture the rapidly developed drought phenomena (e.g., flash drought). In contrast, the 

generated 3-hour, 1-km STF_SSM dataset has advantages over the CCI dataset, because the 495 

STF_SSM dataset provides more detailed and continuous SSM information in both the 

temporal and spatial dimensions. This implies that the STF_SSM dataset can detect both long-

term and flash drought events at a finer scale. 

Figure 10 exhibits the SSM variation under four drought events in Oklahoma (January to 

February, 2018), Alabama (May to December, 2016), California (January to December, 2020), 500 

and Nevada (January to December, 2020) (U.S. Drought Monitor, 2024). The SSM in our 

dataset shows a clear response to the drought event. As shown in Figure 10a, during the 

Oklahoma’s drought in early 2018 (Shephard et al., 2021), SSM is about 0.08 m3/m3 lower 

than the multi-year average value from 2015 to 2023. The drought was gradually alleviated in 

February. Alabama’s drought in 2016 began around May and continued into December (Figure 505 

10b) (Noel et al., 2020), as the SSM value began to deviate from the average in May and 

remained in a lower range. In 2020, California and Nevada suffered extreme and long-term 

droughts (Williams et al., 2022), Figures 10c and 10d show that SSM values in the two states 

were generally less than the average and continued for the entire year. 

510 

 

Figure 10. Surface soil moisture (SSM) variations under drought events. Black lines refer to 

the average SSM values calculated from 2015 to 2023. Red lines represent the SSM values for 
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the corresponding year. (a) the drought in Oklahoma in 2018. (b) the drought in Alabama in 

2016. (c) the drought in California in 2020. (b) the drought in Nevada in 2020. 515 

In addition to droughts, SSM is also sensitive to flooding. When a flooding event begins, 

the SSM value is usually rapidly increased over a short period. To highlight the advantages of 

the developed 3-hour SSM dataset, we portrayed the SSM variation under two flooding events. 

Figure 11a shows the flooding in 2015 in Williamsburg, South Carolina, because of extreme 

precipitation from 2015-10-01 to 2015-10-05. It can be seen that the SSM value in this region 520 

began to increase dramatically from the evening of 2015-10-01 to 2015-10-02, and remained 

at a high level until 2015-10-05. Figure 11b presents the flooding in 2017 in Jefferson, Texas, 

due to Hurricane Harvey. We found that the SSM value had started to rise on the evening of 

2017-08-24 before Hurricane Harvey reached landfall fully (2017-08-25), and peaked on 2017-

08-27. 525 

 

Figure 11. Surface soil moisture (SSM) variations under flood events. Black lines represent 

the average SSM values calculated from 2015 to 2023. Red lines are the SSM values for the 

corresponding year. (a) the flood in Williamsburg, South Carolina in 2015. (b) the flood in 

Jefferson, Texas in 2017. 530 

It is clear from the mentioned analysis that SSM information is closely linked to drought 

and flooding. This suggests that SSM can be applied to identify these events and quantify their 

severity. Thus, the developed STF_SSM dataset has great potential for application, especially 

in agriculture. For instance, near real-time crop conditions could be observed directly by 

dynamically monitoring SSM. It will provide a rational basis for refining irrigation 535 

management. In addition, severe drought and flooding affect crop yields, implying that SSM 

information with fine spatio-temporal resolution also has the potential to play an important role 

in crop yield estimation. 

4.2 Accuracy and latency time of updated STF_SSM data  

Drought monitoring needs real-time or near real-time soil moisture data, which requires 540 
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high data accuracy and short latency time. Since the strategies of characteristics extraction for 

training the STF_SSM dataset from 2015 to 2023 depend on the complete SSM time-series 

data over the entire year, it is difficult to directly update the near real-time data using this 

strategy. Therefore, we propose three alternative strategies for characteristics extraction to 

examine on a randomly selected date in 2023 (2023-01-10). This first alternative is using all 545 

data in 2022; the second alternative is using available data in 2023 (before 2023-01-10); the 

third is using all data in 2022 plus available data in 2023. By referring to the corresponding 

STF_SSM scenes (predict using all data in 2023), we found that using available data in 2023 

has the greatest performance among the three strategies of characteristics extraction, with a 

mean CC and RMSE of 0.999 and 0.006 m3/m3 (Table 5). Meanwhile, the CC and KGE of 550 

using all data in 2022 plus available data in 2023 are 0.964 and 0.947, which are 0.004 and 

0.009 higher than those using data only in 2022. This means that using characteristics extracted 

from temporally adjacent data in 2023 improves fusion accuracy.  

Due to a data-driven approach to production, real-time updates of the STF_SSM data have 

unavoidable latency time. This is because the latency time of the STF_SSM dataset depends 555 

on that of other auxiliary data. According to the investigation from the official website, the near 

real-time SMAP L4 SSM product and Crop-CASMA SSM dataset usually have three and two 

days of latency, respectively. Thus, if only available data within the year are adopted to update 

the STF_SSM data, the latency time of the near real-time STF_SSM scene is at least three days. 

Table 5. Accuracy of near real-time STF_SSM data (on 2023-01-10) production using different 560 

strategies of characteristics extraction. 

 CC 
RMSE 

(m3/m3) 

Bias 

(m3/m3) 

ubRMSE 

(m3/m3) 
KGE 

Accuracy using all data in 2022  0.960 0.035 -0.010 0.033 0.938 

Accuracy using all data in 2022 plus available data 

in 2023 
0.964 0.032 -0.008 0.031 0.947 

Accuracy using available data in 2023 0.999 0.006 0.000 0.006 0.992 

4.3 Analysis of different fine SSM datasets 

Currently, some high-resolution SSM datasets have been published and used. We listed six 

1-km SSM datasets at a large scale and exhibited the details of these datasets in Table 6, such 

as the spatial resolution, temporal resolution, and accuracy. Given the differences in validation 565 
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methods, spatial and temporal coverages, and statistical metrics, etc, it is difficult to harmonize 

these datasets to the same standard to quantify accuracy. Therefore, before using the data, it is 

necessary to further select the more suitable SSM dataset according to the requirements. 

Table 6. Comparative analysis for six high-resolution SSM datasets. Statistical metrics for 

accuracy include root mean square error (RMSE), unbiased root mean square error (ubRMSE), 570 

and unbiased root mean square deviation(ubRMSD). 

Reference Area 
Spatial 

resolution 

Temporal 

resolution 

Accuracy 

(m3/m3) 

This study CONUS 1-km 3-hour ubRMSE = 0.057  

(Vergopolan et al., 2021) CONUS 30-m 6-hour RMSE = 0.07 

(Fang et al., 2022) Global 1-km daily ubRMSE = 0.063 

(Zheng et al., 2023) Global 1-km daily ubRMSE = 0.045 

(Han et al., 2023) Global 1-km daily ubRMSE = 0.050 

(Song et al., 2022) China 1-km daily ubRMSD = 0.074 

 

4.4 Uncertainties and future works 

Although the STF_SSM dataset has good performance in representing the fast changes in 

soil moisture, two uncertainties in the data generation need to be noted. First, the spatio-575 

temporal fusion model used in this study is a data-driven method, which depends on the stable 

and accurate SMAP L4 SSM product and Crop-CASMA SSM dataset. If either of these datasets 

stops updating or contains significant errors, the generation and accuracy of the STF_SSM 

dataset will be impacted. Second, many environmental and ecological variables affect the SSM, 

such as precipitation, vegetation, temperature, evaporation, and terrain. However, these 580 

variables are not fully considered in the STF_SSM production, decreasing the interpretability 

of the STF_SSM dataset.  

Currently, geostationary satellites have a large potential to provide hourly and spatially fine 

auxiliary variables to produce SSM datasets. Fusing the auxiliary variables from the 

geostationary satellites for the generation of hourly SSM data is an ongoing work. However, 585 

the extensive data acquisition and necessary preprocessing steps can significantly increase the 

time cost of data production without leading to a substantial improvement in accuracy. Thus, 

balancing data accuracy and generation efficiency is necessary for the downscaling of the SSM 

dataset in the future. Compared with existing SSM datasets, the generated SSM dataset in this 
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study has advantages in terms of spatio-temporal resolution. It is worthwhile to further explore 590 

its potential applications, such as monitoring drought severity and occurrences, quantifying 

wildfire danger levels, evaluating responses of agriculture and natural ecosystems to soil 

moisture dynamics, and understanding local and regional hydrological processes. 
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5. Conclusions 595 

In this study, we developed a spatio-temporal fusion model to generate the first spatially 

seamless 3-hour, 1-km STF_SSM dataset in the CONUS from 2015 to 2023. This dataset 

integrated the 3-hour, 9-km SMAP L4 SSM product from NASA and the daily, 1-km Crop-

CASMA SSM dataset from USDA-NASS. The former provided fine temporal resolution and 

the latter provided detailed spatial details. To deal with the mismatch between the two datasets 600 

in terms of temporal resolution and spatial coverage, the HCTSA-based time-series mining 

method was used to extract spatially seamless characteristics from both SSM time-series data 

for each year. Four characteristics extracted at 1-km and 9-km spatial resolutions (minimum, 

maximum, mean, and median of SSM time-series) were employed as inputs of the fusion model. 

By coupling with each 3-hour, 9-km SMAP L4 scene, the downscaled 3-hour, 1-km STF_SSM 605 

scene was simulated, in turn. Data validation at the daily scale showed that the generated 1-km 

STF_SSM dataset (with a mean CC and ubRMSE of 0.716 and 0.057 m3/m3) outperforms the 

1-km Crop-CASMA SSM dataset (with a mean CC and ubRMSE of 0.584 and 0.072 m3/m3) 

when compared to in-situ measurements. At the 3-hour scale, the accuracy of the 9-km SMAP 

L4 SSM product (with a mean CC and ubRMSE of 0.728 and 0.059 m3/m3) is slightly higher 610 

than that of the 1-km STF_SSM dataset (with a mean CC and ubRMSE of 0.689 and 0.062 

m3/m3). Additionally, the STF_SSM dataset has a better performance than the Crop-CASMA 

dataset under complex terrain conditions. Overall, the generated 3-hour, 1-km STF_SSM 

dataset is reliable and has great potential for applications at various spatio-temporal scales. The 

proposed STF_SSM dataset can be freely acquired from 615 

https://doi.org/10.6084/m9.figshare.28188011. 

  



30 

 

Data availability 

The STF_SSM dataset is available at https://doi.org/10.6084/m9.figshare.28188011 (Yang 

et al., 2025). The code for generating the STF_SSM dataset can be downloaded at 620 

https://github.com/hhhhhaoxuanyang/STF_SSM-dataset.git. 
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