This manuscript produces a 3-hour, 1-km soil moisture (SM) dataset generated using a
spatiotemporal fusion approach that integrates the 3-hour, 9-km SMAP L4 soil moisture product
with the 1-day, 1-km Crop-CASMA soil moisture data. The resulting dataset is evaluated against
in-situ SM observations. Overall, the manuscript is well-structured, and the generated SM dataset
holds significant potential for the scientific community. However, several aspects require
clarification and further discussion:

Response:
The authors gratefully appreciate your valuable comments and suggestions. We have carefully

considered your comments and have responded as follows. The revised content is marked in red
in the response.

1. Validation Approach: The methodology leverages the higher-accuracy SMAP L4 product
to capture temporal variations while using the lower-accuracy but higher-resolution Crop-CASMA
data to retain spatial details. Consequently, the accuracy of the fused product should theoretically
be higher than that of Crop-CASMA but lower than SMAP L4.

Response:

We agree with your point. In this manuscript, both the 3-hour and daily validation were
expressed in Sections 3.3 and 3.4. It can be seen that the validated results are consistent with the
reviewer’s view. That is, the accuracy of the simulated STF_SSM dataset is higher than that of the
Crop-CASMA but smaller than that of the SMAP L4. Thank you for the comments.

2. Comparative Analysis: The authors compare their product only with SMAP L4 and Crop-
CASMA but do not benchmark it against other 1-km resolution datasets or even higher-resolution
(30-m) products (DOI: 10.1038/s41597-021-01050-2). Including such comparisons, or at least
discussing them, would provide a more comprehensive evaluation of the dataset's performance.

Response:

Thank you for the comment. We have supplied a discussion in Section 4.3 to analyze six high-
resolution SSM datasets. Considering the differences in validation methods, spatial and temporal
coverages, and statistical metrics, it is not appropriate to quantify them under a standard. Hence,
we suggested that other people select according to their requirements, before using the data.

4.3 Analysis of different fine SSM datasets
Currently, some high-resolution SSM datasets have been published and used. We listed six 1-
km SSM datasets at a large scale and exhibited the details of these datasets in Table 6, such as the

spatial resolution, temporal resolution, and accuracy. Given the differences in validation methods,

spatial and temporal coverages, and statistical metrics, etc, it is difficult to harmonize these



datasets to the same standard to quantify accuracy. Therefore, before using the data, it is necessary

to further select the more suitable SSM dataset according to the requirements.

Table 6. Comparative analysis for six high-resolution SSM datasets. Statistical metrics for
accuracy include root mean square error (RMSE), unbiased root mean square error (ubRMSE),
and unbiased root mean square deviation(ubRMSD).

Spatial Temporal Accurac

Hejerencel dred rfsolution resoll?ution (m’/m’) 3

This study CONUS 1-km 3-hour ubRMSE = 0.057
(Vergopolan et al., 2021) CONUS 30-m 6-hour RMSE = 0.07
(Fang et al., 2022) Global 1-km daily ubRMSE = 0.063
(Zheng et al., 2023) Global 1-km daily ubRMSE = 0.045
(Han et al., 2023) Global 1-km daily ubRMSE = 0.050
(Song et al., 2022) China 1-km daily ubRMSD = 0.074
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3. Temporal Variability Discussion: It is recommended that the authors expand their
discussion on the temporal variations of the generated SM dataset within a single day, in addition
to the analysis presented in Figures 6 and 7. This would help highlight the advantages of the
product in capturing sudden SM changes compared to daily-scale products.

Response:

To address this problem, we have added a case of sudden change of SSM in Section 4.1, i.e.,
two flooding events in Texas and South Carolina. According to two flooding events, the SSM time-
series have been exhibited in Figure 11. On this basis, we can estimate the duration and occurrence
of flooding on a 3-hour scale. In this case, the advantages of the 3-hour SSM dataset can be further
amplified.

In addition, the two SSM time-series within a single day are displayed in Figure 5. It can be
seen that the Pixel 2 in Figure 4 was experiencing precipitation, because the SSM values are
increased from 1:30 to 7:30. The intra-day variation of SSM is difficult to be observed by daily-
scale data.

Thank you for the valuable suggestions.

Lines 515-529

In addition to droughts, SSM is also sensitive to flooding. When a flooding event begins, the
SSM value is usually rapidly increased over a short period. To highlight the advantages of the
developed 3-hour SSM dataset, we portrayed the SSM variation under two flooding events. Figure
11a shows the flooding in 2015 in Williamsburg, South Carolina, because of extreme precipitation
from 2015-10-01 to 2015-10-05. It can be seen that the SSM value in this region began to increase
dramatically from the evening of 2015-10-01 to 2015-10-02, and remained at a high level until
2015-10-05. Figure 11b presents the flooding in 2017 in Jefferson, Texas, due to Hurricane Harvey.
We found that the SSM value had started to rise on the evening of 2017-08-24 before Hurricane
Harvey reached landfall fully (2017-08-25), and peaked on 2017-08-27.
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Figure 11. Surface soil moisture (SSM) variations under flood events. Black lines represent the
average SSM values calculated from 2015 to 2023. Red lines are the SSM values for the
corresponding year. (a) the flood in Williamsburg, South Carolina in 2015. (b) the flood in
Jefferson, Texas in 2017.



4. Figure 3: The date and time of the SM data should be explicitly stated in the figure title for
clarity.

Response:
In the updated version, we have revised the title of Figure 3 and supplied the detailed date
and time. We appreciate your suggestions.

Figure 3. Spatial pattern of Surface Soil Moisture (SSM) in the Crop-CASMA SSM dataset (left),
SMAP L4 SSM product (middle), and the STF SSM dataset (right) on 2015-04-01 (01:30), 2017-
06-08 (07:30), 2019-08-16 (13:30), and 2021-10-25 (19:30). Both the SMAP L4 and STF _SSM
datasets are exhibited at the 3-hour scale, while the Crop-CASMA SSM dataset is displayed at the
daily scale. The basemap is from Esri, Earthstar Geographics, and the GIS User Community.

5. Figure 8 / Table 4: It is recommended that the authors provide the number of validation
sites corresponding to each land cover type, either in Figure 8 or Table 4, to enhance transparency
in the validation process.

Response:
Thank you for the suggestion. The number of validation sites for each land cover type has

been added to Table 4. Moreover, we have also revised the title of Figure 8 and supplied the
corresponding number for each land cover type.
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Figure 8. Accuracy of the surface soil moisture (SSM) datasets under different land cover types.
The “changed” type refers to areas where land cover type changed between 2015 and 2023. (a)
and (b) are the correlation coefficient (CC) and the root mean square error (RMSE) of SSM
datasets at the 3-hour scale. (c) and (d) are the CC and RMSE of SSM datasets at the daily scale.



For each land cover type, the number of validation sites is 45 (developed), 7 (barren), 190 (forest),
211 (shrub), 148 (grassland), 97 (pasture), 69 (crops), 10 (wetlands), and 49 (changed),

respectively.

Table 4. Mean correlation coefficient (CC) and root mean square error (RMSE) of surface soil
moisture (SSM) datasets under different land cover types.

3-hour Daily

Land cover type SMAP L4 STF SSM | SMAP L4 Crop-CASMA STF SSM
(number of validation sites) RMSE RMSE RMSE RMSE RMSE

- (m’/m’) - (m’/m’) e (m’/m’) ag (m’/m’) ad (m’/m’)
Developed (45) 0.554 0.117 0.530 0.135 (0.653 0.091 0.480 0.114 0.640 0.104
Barren (7) 0.591 0.105 0.564 0.083 0.601 0.103 0.208 0.117 0.576 0.092
Forest (190) 0.530 0.151 0.472 0.156 0.634 0.104 0.327 0.123 0.570 0.110
Shrub (211) 0.615 0.091 0.562 0.089 0.669 0.078 0.481 0.083 0.627 0.076
Grassland (148) 0.691 0.083 0.662 0.089 0.753 0.083 0.669 0.090 0.734 0.082
Pasture (97) 0.680 0.101 0.639 0.107 0.704 0.091 0.517 0.112 0.678 0.093
Crops (69) 0.626 0.102 0.585 0.099 0.654 0.097 0.494 0.108 0.623 0.095
Wetlands (10) 0.532 0.138 0.463 0.138 0.551 0.124 0.279 0.145 0.498 0.134
Changed (49) 0.677 0.084 0.639 0.094 |0.730 0.078 0.505 0.104 0.693 0.088
Mean 0.611 0.108 0.569 0.110 10.661 0.094 0.440 0.111 0.627 0.097

6. Figure 9: If feasible, the authors are encouraged to analyze and present the relationship

between RMSE, slope, and altitude, as this could provide additional insights into the dataset’s
accuracy under varying topographic conditions.

Response:
We appreciate your suggestions to make our manuscript complete. In the latest version, we

have modified the content in Section 3.5. Meanwhile, the relationship between RMSE, slope, and
elevation has been supplied (Figures 9¢ to 9h). The results further prove the advantage of the
generated STF_SSM dataset.

3.5 SSM data accuracy across topographic conditions

As a significant soil-forming factor, terrain is one of the determinants of SSM variations.
Particularly, SSM could have strong spatial variability in areas with complex topographic
conditions. We analyzed the accuracy (including CC and RMSE) of the 1-km Crop-CASMA and
STF _SSM datasets under different topographic conditions. As shown in Figures 9a and 9b, both
the Crop-CASMA and STF SSM datasets show a decrease in the CC value with increasing

elevation. However, the STF _SSM dataset shows a slower decline in accuracy (with a slope of -



0.055) compared to the Crop-CASMA dataset (with a slope of -0.100). Under complex terrain
conditions (i.e., larger slope), the accuracy of both SSM datasets is reduced. It can be seen from
Figures 9c and 9d that the CC of the Crop-CASMA dataset decreases more sharply as the slope
increases (with a slope of -0.023) while the CC in the generated STF _SSM dataset declines more
gradually (with a slope of -0.011). Likewise, Figures 9e and 9f shows that the RMSE values of both
SSM datasets increase with elevation. According to the intercept, the STF SSM dataset has a
slightly greater RMSE than the Crop CASMA dataset, especially at high altitudes. Meanwhile,
with an increase in slope, the STF _SSM dataset has a slower rise in RMSE values than the Crop-
CASMA dataset (Figure 9g and 9h). This suggests that the STF _SSM dataset is more reliable than

the Crop-CASMA dataset in complex terrain conditions.
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Figure 9. Accuracy of the estimated surface soil moisture (SSM) from the 1-km Crop-CASMA and
generated STF _SSM datasets along changing topographic conditions, denoted by elevation and
slope. (a), (c), (e) and (g) refer to the I-km Crop-CASMA SSM dataset. (b), (d), (f) and (h) are the
generated STF _SSM dataset.



