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Abstract. Air–sea turbulent heat fluxes—latent heat flux (𝐿𝐻𝐹) and sensible heat flux (𝑆𝐻𝐹)—are 

fundamental to the Earth’s energy and moisture budgets and to ocean–atmosphere coupling. Global flux 

estimates via bulk aerodynamic algorithms depend on sea surface temperature (SST), surface wind speed 

(SSW), near-surface air temperature (𝑇𝑎), and specific humidity (𝑄𝑎), but orbital sampling and cloud 

contamination leave gaps in satellite inputs that propagate uncertainty to 𝑇𝑎/𝑄𝑎, and hence to LHF/SHF. 15 

Here we present DeepFlux, a global daily 1° × 1° heat-flux dataset for 29 years (January 1992–December 

2020). The dataset is produced with a concise completion-then-retrieval workflow: Special Sensor 

Microwave/Imager (SSM/I) variables (SSW, cloud liquid water, total column water vapor, and rain rate) 

are first gap-filled using the AI-based Generalized Data Completion Model (GDCM) to yield 

spatiotemporally continuous inputs; these—together with Optimum Interpolation SST (OISST)—are 20 

then used to retrieve 𝑇𝑎 and 𝑄𝑎 via the AI-based Matrices-Points Fusion Network (MPFNet). 𝐿𝐻𝐹 and 

𝑆𝐻𝐹 are then computed using a bulk algorithm. Validation against in-situ buoy observations shows that 

the dataset closely matches the true measurements, with RMSEs of 0.53 °C (𝑇𝑎), 0.70 g kg⁻¹ (𝑄𝑎), 5.53 

W m⁻² (𝑆𝐻𝐹), and 25.28 W m⁻² (𝐿𝐻𝐹). Comparisons with widely used flux products indicate differences 

among products, reflecting variability in flux estimates from different sources. DeepFlux provides an 25 

open, consistent, observation-constrained view of near-surface meteorology and air–sea heat exchange 
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for climate diagnostics, model evaluation, and process studies. DeepFlux v1.0 is openly available under 

CC BY 4.0 at [repository] (DOI: http://dx.doi.org/10.12157/IOCAS.20250823.001).  

Keywords: Deep Learning, Ocean Remote Sensing, Air-Sea Heat Flux 
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1 Introduction  

Air–sea turbulent heat fluxes—latent heat flux (𝐿𝐻𝐹) and sensible heat flux (𝑆𝐻𝐹)—govern the 

exchange of energy and moisture at the air-sea interface and thereby influence weather, climate 

variability, and ocean circulation across scales (Andersson et al., 2010; Bentamy et al., 2013; Large and 

Pond, 1982; Trenberth et al., 2001). Variations in 𝐿𝐻𝐹 and 𝑆𝐻𝐹 modulate sea surface temperature (SST) 35 

and atmospheric conditions, with broad implications for diagnosing air–sea coupling and improving 

climate prediction (Cayan, 1992; Yu et al., 2004; Zhang and McPhaden, 1995; Bentamy et al., 2017; 

Zhou et al., 2019, 2020). High-quality, spatially and temporally continuous flux fields are therefore 

essential for process studies and model evaluation. 

Flux estimates over the global ocean are typically derived from bulk aerodynamic formulations (e.g., 40 

the COARE family) that depend on input fields such as SST, near-surface wind speed (SSW), air 

temperature (𝑇𝑎), and specific humidity (𝑄𝑎) (Fairall et al., 1996a, 1996b, 2003; Large and Pond, 1982). 

In situ measurements provide accurate point observations but are sparse in space and time, being limited 

to research cruises and moored arrays such as TAO/TRITON (Bourlès et al., 2008; McPhaden et al., 

1998). Satellites offer broad coverage but most passive sensors do not directly observe 𝑇𝑎  and 𝑄𝑎 45 

(Simonot and Gautier, 1989), prompting indirect approaches based on empirical relationships or 

statistical retrievals from satellite-derived variables (Wells and King-Hele, 1990; Liu, 1986; Schulz et 

al., 1997; Schlüssel et al., 1995). While such methods reduce typical flux errors to the order of 10–30 W 

m⁻², they remain sensitive to atmospheric regime, regional biases, and uncertainties in near-surface 

humidity and temperature (Berry and Kent, 2011). 50 

Reanalysis and blended products integrate multiple observing systems and data assimilation to 

provide global fields of 𝑇𝑎, 𝑄𝑎, and surface fluxes (Hersbach et al., 2023; Kalnay et al., 2018; Bentamy 

et al., 2003, 2013; Tomita and Kubota, 2006; Tomita et al., 2018; Schulz et al., 1997). These datasets are 

invaluable, yet spread among products persists—especially over data-poor basins—owing to differences 

in parameterizations, assimilation strategies, and input data quality (Bourassa et al., 2013; Esbensen et 55 

al., 1993; Meng et al., 2007). A persistent bottleneck is the spatiotemporal incompleteness of satellite 

inputs, arising from orbital sampling and cloud contamination, which degrades the continuity of flux 
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estimates and propagates uncertainties through the retrieval chain (Chou et al., 1995; Kubota et al., 2002; 

Schulz et al., 1997). 

Recent advances in data-driven methods have shown promise in capturing nonlinear ocean–60 

atmosphere relationships and improving geophysical retrievals (Wang et al., 2023; Wang and Li, 2023; 

Wang et al., 2024; Wang and Li, 2024; Zhang and Li, 2024). To mitigate error propagation from missing 

inputs, we developed the Flux Model, which consists of two components: the Generalized Data 

Completion Model (GDCM) (Wang et al., 2025) and the Matrices-Points Fusion Network (MPFNet) 

(Wang et al., 2025). The Flux Model adopts an integrated “completion-then-retrieval” strategy: first 65 

constructing spatiotemporally continuous input fields to address data gaps using the previously 

developed GDCM (Wang et al., 2025), and then performing the flux-related retrievals. In particular, we 

complete the key SSM/I variables—SSW, cloud liquid water (CLW), total column water vapor (WV), 

and rain rate (RR)—and account for the distinct diurnal signals associated with orbital sampling by 

processing ascending and descending passes separately before merging (Chou et al., 1995; Kubota et al., 70 

2002; Schulz et al., 1997; Hollinger et al., 1990). 

Using these completed inputs (together with SST), we retrieve 𝑇𝑎 and 𝑄𝑎 with the MPFNet and 

compute 𝑆𝐻𝐹 and 𝐿𝐻𝐹 with a bulk algorithm, yielding a new daily flux dataset for the global open 

ocean at 1° × 1° resolution for 1992–2020 (hereafter DeepFlux. We evaluate DeepFlux against buoy 

observations and widely used benchmark products. Validation against buoy measurements indicates 75 

that DeepFlux aligns more closely with the buoy observations than the benchmark products in both 𝑇𝑎/𝑄𝑎 

and fluxes, while comparisons among the benchmark products show differences between them (Bourlès 

et al., 2008; McPhaden et al., 1998; Bentamy et al., 2003, 2013).The dataset, code, and documentation 

are openly available (see Data/Code Availability).  

This paper is structured as follows: Section 2 details the satellite, in situ, and reanalysis datasets 80 

used. Section 3 provides a detailed description of the DeepFlux products generated using the Flux Model, 

which is composed of two components: the GDCM for data completion and the MPFNet for inversion 

and bias correction.  In Section 4, we rigorously validate DeepFlux against in situ observations and 

compare its performance with six state-of-the-art products. Section 5 discusses the spatiotemporal 

characteristics and long-term trends revealed by our dataset. Section 6 presents the code and data 85 
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availability and Section 7 concludes the study. 

2 Data and Processing 

This section provides an overview of the data and preprocessing procedures used for data 

completion and model inversion. Satellite remote sensing products from the SSM/I sensor serve as the 

model’s input. Missing dates in the satellite data are filled using interpolated ERA5 reanalysis data. In 90 

situ observations of 𝑇𝑎, 𝑄𝑎, 𝐿𝐻𝐹, and 𝑆𝐻𝐹 are used as ground-truth references. ERA5 data are also 

used for model pretraining and, along with NCEP, Institut Français de Recherche pour l’Exploitation de 

la Mer (IFREMER), Objectively Analyzed air-sea Fluxes (OAFlux), and Ocean Heat Fluxes Climate 

Data Record (OHF-CDR) products, for performance comparison. 

2.1 Data and method  95 

2.1.1 SSM/I data 

The Special Sensor Microwave/Imager (SSM/I), flown on the Defense Meteorological Satellite 

Program (DMSP) series, is a conically scanning passive microwave radiometer designed to measure 

naturally emitted microwave radiation from Earth’s surface and atmosphere. Since its initial deployment 

in 1987, SSM/I has been an indispensable source of oceanic and atmospheric observations, supporting 100 

studies of climate variability and surface radiation processes (Hollinger et al., 1990). The instrument 

carries seven frequency channels (19.35–85.5 GHz) that enable the retrieval of a variety of geophysical 

parameters. Operating on near-polar, sun-synchronous orbits at roughly 830 km altitude, SSM/I achieves 

global coverage twice per day through separate ascending (~06:00 local time) and descending (~18:00 

local time) overpasses, providing nearly all-weather observational capability. SSM/I sensors were 105 

sequentially hosted on DMSP F8, F10, F11, F13, F14, and F15, delivering an almost continuous 21-year 

data record through 2008. Beginning in 2003, the Special Sensor Microwave Imager/Sounder (SSM/IS) 

replaced SSM/I, adding 24 sounding channels and extended high-frequency capabilities, thereby 

enhancing the accuracy of precipitation and cloud microphysical retrievals (Bommarito, 1993). SSM/IS 

instruments have been deployed on F16–F19 satellites, maintaining continuity of observations. Due to 110 
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the satellite orbital geometry and conical scanning design, swath gaps remain between adjacent passes, 

particularly over low-latitude regions. 

In this study, we use four key ocean-atmosphere variables detected by SSM/I—SSW, CLW, WV, 

and RR, along with SST data from National Oceanic and Atmospheric Administration (NOAA) OISST 

to retrieve global 𝑇𝑎 and 𝑄𝑎. A global daily gridded dataset encompassing 𝑇𝑎, 𝑄𝑎, 𝑆𝐻𝐹, and 𝐿𝐻𝐹 115 

was compiled for the period from January 1992 through December 2020. 

2.1.2 OISST 

The NOAA OISST dataset integrates observations from multiple platforms, including satellite 

infrared and microwave sensors, ship measurements, and buoy data. Using an optimum interpolation 

algorithm, it fills spatial gaps and merges data to produce daily global SST fields at a spatial resolution 120 

of 0.25°× 0.25°, covering the period from September 1981 to the present. In this study, we use global 

SST data from OISST v2.1 (January 1, 1992 to December 31, 2020) along with GDCM-completed SSM/I 

SSW, CLW, WV, and RR data over the same period as input for the MPFNet model to retrieve global 

𝑇𝑎  and 𝑄𝑎. 

2.1.3 In Situ Data 125 

Continuous, systematic, and comprehensive in situ observations are essential for ocean climate 

research. In this study, we utilize three types of in situ datasets: the Global Tropical Moored Buoy Array 

(GTMBA), the coastal moored buoy network maintained by the National Data Buoy Center (NDBC), 

and version 3.0.2 of the ICOADS. Among them, the GTMBA and NDBC datasets are derived from buoy 

platforms, while ICOADS primarily contains ship-based observations. 130 

The GTMBA is part of the Tropical Ocean Global Atmosphere (TOGA) program. It aims to support 

research on seasonal to interannual climate variability in tropical regions through in situ buoy 

measurements. The NDBC, operated by the NOAA, is responsible for deploying and maintaining moored 

buoys and coastal meteorological stations across the U.S. coastal and offshore regions, providing long-

term, high-quality meteorological and oceanographic observations. ICOADS is the world’s most 135 

extensive and longest-running collection of surface marine observations, incorporating data from ships, 
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buoys, and other platforms. Version 3.0.0 includes monthly updates from 1992 to 2014, while version 

3.0.2 has provided near real-time monthly updates since 2015. 

In this study, we select variables necessary for surface heat flux estimation from these three in situ 

sources, aligned temporally with SSM/I satellite observations from January 1, 1992, to December 31, 140 

2020 (including 𝑆𝑆𝑊, CLW, WV, and RR), to construct a matched satellite–in situ dataset for further 

analysis. 

2.1.4 Heat flux data products 

In this study, we evaluate the 𝑇𝑎, 𝑄𝑎, 𝑆𝐻𝐹 , and 𝐿𝐻𝐹  estimates from the DeepFlux dataset 

developed in this study against five widely recognized flux and reanalysis products—OHF-CDR, ERA5, 145 

NCEP, IFREMER v4.1, and OAFlux—which are extensively used in oceanic and climate research as 

reference datasets. Table 1 summarizes the characteristics of different heat fluxes products. These 

products serve as authoritative benchmarks for assessing the consistency and performance of DeepFlux. 

A brief description of each dataset is provided below. 

Table 1: Table of characteristics of different heat flux products 150 

Input Data Algorithm 
Heat Fluxes 

Product 

Spatial 

resolution 

Temporal 

resolution 
Period of availability Source 

Satellite 

GDCM + MPFNet 

COARE 3.6 
DeepFlux 1°× 1° Daily 2002.01.01-Present IOCAS 

MLP 

COARE 3.0 
OHF CDR 0.25°× 0.25° 3-hourly 

1988.01.01-

2021.08.31 
NOAA 

Reanalysis 
ECMWF Scheme ERA5 0.25°× 0.25° Hourly 1940.01.01-Present ECMWF 

NCEP Scheme NCEP T62 Gaussian 6-hourly 1948.01.01-Present NOAA 

Blended 

Regression 

COARE 3.0 

IFREMER 

v4.1 
0.25°× 0.25° Daily 

1992.01.01-

2018.12.31 
IFREMER 

Least Squares 

COARE 3.0 
OAFlux 1° × 1° Daily 

1981.01.01-

2022.12.31 
WHOI 

The OHF-CDR dataset is a long-term climate data record of global ocean heat fluxes and associated 

atmospheric parameters. It integrates passive microwave satellites (SSM/I, SSM/IS, AMSR), infrared 

sensors (AIRS, IASI), and reanalysis data (ERA5, MERRA-2), covering over 30 years since 1987, with 
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a spatial resolution of 0.25°× 0.25°and a temporal resolution of 3 hours. OHF-CDR estimates ocean-

atmosphere heat fluxes using the COARE 3.0 algorithm. To compensate for the low sensitivity of 155 

microwave sensors near the surface, AIRS infrared data are introduced. Temperature is directly retrieved 

via radiative transfer equations from AIRS and fused with SSM/IS microwave data through a weighted 

nonlinear mapping between brightness temperature and atmospheric temperature. Deep learning is 

combined with physical modeling to derive initial TPW and specific humidity vertical profiles using 

SSM/IS and AIRS data along with SST and SSW. These initial fields are refined via a 1D variational 160 

assimilation constrained by radiative transfer, resulting in a gridded 0.25 ° product. This dataset provides 

reliable humidity fields for studies on ocean-atmosphere energy exchanges (Clayson and Brown, 2016; 

Roberts et al., 2010). 

ERA5, developed by the ECMWF, is one of the core global high-resolution atmospheric reanalysis 

products. It provides hourly global ocean-atmosphere variable data with a spatial resolution of 0.25°, 165 

covering the period from 1950 to the present with continuous updates. ERA5 integrates multi-source 

observations—including satellite remote sensing, surface weather stations, and ocean buoys—through a 

four-dimensional variational assimilation system (4D-Var), enabling accurate and temporally continuous 

representations of ocean-atmosphere variables. It serves as an authoritative data source for related 

research (Hersbach et al., 2023; Hersbach et al., 2020). 170 

The NCEP reanalysis datasets were developed jointly by the NCEP and the NCAR. They include 

two generations: NCEP/NCAR Reanalysis 1 (from 1948 to present) and NCEP-DOE Reanalysis 2 (from 

1979 to present). These datasets provide global ocean-atmosphere parameters with a temporal resolution 

of 6 hours and a spatial resolution of approximately 2.5°. NCEP reanalysis uses 3D-Var assimilation to 

integrate multi-source observations from ships, buoys, and satellite remote sensing. It is based on the 175 

Global Spectral Model (GSM) to dynamically simulate fields such as SSW, temperature, and humidity 

(Kalnay et al., 2018). 

IFREMER v4.1, developed by the French Research Institute for Exploitation of the Sea (IFREMER) 

in collaboration with the European Space Agency (ESA) and climate research institutions, is one of the 

leading satellite-based ocean-atmosphere flux products. It calculates air-sea fluxes using the COARE 4.0 180 

algorithm and provides global flux data with a daily temporal resolution and 0.25 ° spatial resolution. 
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Covering the full span of multiple satellite missions, the dataset extends from 1993 to the present (Fairall 

et al., 2003). 

The OAFlux air-sea flux dataset, developed by the Woods Hole Oceanographic Institution (WHOI), 

spans from 1958 to the present, with a spatial resolution of 1° and both daily and monthly temporal 185 

resolutions. OAFlux integrates multi-source data, including satellite observations, reanalysis products, 

and in situ measurements. Sea surface temperature is derived from blended satellite products such as 

AVHRR (infrared) and AMSR-E (microwave) data, while atmospheric temperature and humidity are 

primarily based on ERA-Interim and MERRA-2 reanalyses, corrected using satellite-retrieved specific 

humidity from SSM/I and AMSR-E. Surface turbulent heat fluxes are estimated using the COARE 3.0 190 

algorithm, incorporating SSW data from satellite scatterometers (QuikSCAT, ASCAT). The uncertainties 

in latent and sensible heat fluxes are constrained within ±10 W/m² and ±5 W/m², respectively, 

making OAFlux a reliable dataset for long-term climate studies and air-sea interaction analysis (Chou et 

al., 2003; Yu, 2008). 

2.2 Data processing 195 

2.2.1 Overall flow of data processing 

Our data processing workflow is a comprehensive pipeline designed to first create complete input 

fields and then apply a novel two-stage inversion and correction scheme to produce the final heat flux 

dataset. The initial inputs for our model are remote sensing data from SSM/I—specifically SSW, CLW, 

WV, and RR—which are combined with the OISST dataset. Given the distinct diurnal variations 200 

associated with the satellite's northbound and southbound orbits, all SSM/I data are divided into 

ascending and descending orbit datasets for separate processing. Since the raw SSM/I data contain 

significant gaps due to orbital mechanics, we first apply the GDCM (Wang et al., 2025) model to perform 

data completion, resulting in two complete sets of spatiotemporally continuous remote sensing 

observations. 205 

Once the input data fields are complete, the retrieval process commences using the MPFNet 

architecture (Wang et al., 2025). The first step is the primary retrieval of 𝑇𝑎 and 𝑄𝑎. To address the 
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sample imbalance inherent in the matched satellite-in situ dataset, the MPFNet model is first pretrained 

on ERA5 data, then fine-tuned using a training set constructed from matched remote sensing and in situ 

observations. This process yields initial global 𝑇𝑎  and 𝑄𝑎  fields, from which preliminary LHF and 210 

SHF are calculated using the bulk aerodynamic formulas (Equations 1 and 2). 

However, a critical challenge emerged from the input data itself. Our analysis revealed significant 

errors in the SSM/I SSW data when compared against in situ observations (as shown in Figure S3). To 

mitigate the impact of this and other input uncertainties on the final fluxes, we implemented a second-

stage correction model. This model, also based on the MPFNet architecture, is specifically designed to 215 

correct for systematic biases. It takes the initially retrieved LHF and SHF, along with all their constituent 

variables (𝑇𝑎 , 𝑄𝑎 , SST, 𝑄𝑠 , and SSW), as inputs. By training on the discrepancies between these 

preliminary fluxes and in-situ-derived fluxes, the model learns to correct for biases, particularly those 

originating from SSW inaccuracies. The final, bias-corrected LHF and SHF from this second stage 

constitute our DeepFlux dataset. This entire multi-step data processing workflow is illustrated in Figure 220 

1. 

 

Figure 1: Data Processing Flowchart. The left panel illustrates the data completion stage, where SSM/I 

variables are gap-filled using GDCM to generate continuous inputs. The middle panel represents the stage 

of applying MPFNet to retrieve 𝑇𝑎  and 𝑄𝑎. The right panel shows the heat flux calculation and correction 225 
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stage, where the final DeepFlux dataset is produced. 

2.2.2 Data processing in the data-completion phase 

In this study, the GDCM model is trained using complete ERA5 data, and the spatial resolution of 

the data was 1º1º(60ºS~60ºN, 0º~360º). To simulate the missing patterns in SSM/I, a binary mask is 

created with the same spatial distribution, values of 1 indicating valid data and 0 indicating missing data. 230 

This binary mask is multiplied by the ERA5 data to generate simulated remote sensing data with missing 

values. A sliding window approach is then applied to format the data for GDCM input, using a 7-day 

window with a stride of 1 day. The complete ERA5 data from the 7th day serves as the ground truth, 

forming the training dataset for the GDCM model. 

In the first step, ERA5 data served as both the input and output for the pre-training phase, which 235 

adjusted the randomly initialized MPFNet to produce the pre-trained MPFNet. One thousand random 

points were sampled daily (at 00:00) from the ERA5-provided 𝑇𝑎 and 𝑄𝑎 as label data to pre-train the 

inversion model (MPFNet), covering the period from January 1, 1992, to December 31, 2020 (excluding 

2018), with a total of 13,149,000 records. In the second step, data from SSM/I F10–F16 satellites 

matched with buoy observations are used to fine-tune the MPFNet model, with 5% of the data (excluding 240 

2018) randomly selected as the validation set for each model. Due to the earlier observation periods of 

F10 and F11, fewer matched records with buoy data are available, leading to overfitting during training. 

To address this issue, we combine F15 and F17 data—which do not overlap in time with F10 and F11—

with the earlier records to mitigate overfitting during fine-tuning. In the final step, the calibration model’s 

training set includes observed data from 1992 to 2020, excluding 2018, with 1,459,414 matched records. 245 

Data from 2018 are used as the test set, with 21,613 matched records. The detailed split of the training 

and test sets is shown in Table 2. 

Table 2: Table of training/test set data details 

Model Dataset Period of availability Number of 

training sets 

Number of 

valid/test sets 

1. Pre-training ERA5 1992.01.01-2020.12.31 13,149,000 - 
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2. Fine-tuning 

F10 1992.01.01-1997.11.14 56,423 2969 

F11 1991.12.09-2000.05.16 117,989 6209 

F13 1995.05.09-2009.11.04 574,529 30238 

F14 1997.05.14-2008.08.08 454,596 23926 

F15 1999.12.24-2006.08.31 288,510 15184 

F16 2003.11.01-2020.12.31 1,118,648 58876 

F17 2006.12.20-2020.12.31 984,940 51838 

3. Calibration 

Model 

DeepFlux 1992.01.01-2020.12.31 1,459,414 21613 

 

2.2.3 Calculation of heat flux 250 

𝐿𝐻𝐹 and 𝑆𝐻𝐹 are calculated using the bulk aerodynamic formula,originally proposed by Fairall 

et al. (Fairall et al., 2003). This formula is one of the core methods for estimating air-sea fluxes and has 

been systematically implemented in the COARE model. The basic formulation is as follows: 

𝑆𝐻𝐹 = 𝜌𝑐𝑝𝑐ℎ𝑈(𝑇𝑠 − 𝑇𝑎) (1) 

𝐿𝐻𝐹 = 𝜌𝐿𝑒𝑐𝑒𝑈(𝑄𝑠 − 𝑄𝑎) (2) 255 

Here, 𝜌  denotes air density, 𝑐𝑝  is the specific heat capacity of air, 𝑐ℎ  is the turbulent heat 

exchange coefficient, 𝑈 represents SSW, 𝐿𝑒 is the latent heat of evaporation, and 𝑐𝑒 is the turbulent 

moisture exchange coefficient. 

2.2.4 Matchup Data 

Matchup data, which pair satellite retrievals with coincident in situ measurements, are essential for 260 

calibrating retrieval algorithms and evaluating data quality. As shown in Table 1 in the second step, Fine-

tuning, it is necessary to match SSM/I satellite data with in situ observations in order to retrieve 𝑇𝑎 and 

𝑄𝑎. In this study, we use variables retrieved from the SSM/I satellite, including SSW, CLW, WV, and RR. 

All satellite data are divided into ascending and descending passes, corresponding to the satellite's 
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northbound and southbound orbits, respectively. We utilize data from DMSP satellites F10 to F17, which 265 

have overlapping operational periods. This temporal overlap allows for observations from multiple 

satellites at the same time, as shown in Table 2, thereby increasing data redundancy. For periods with 

duplicate satellite data, we select the record with the lowest RMSE compared to in situ measurements as 

the final entry. In cases where in situ data are not available for comparison, the data from the newest 

satellite are retained. This ensures each satellite observation corresponds to one ground-truth 270 

measurement. Additionally, 220 days of missing observations are filled using interpolated ERA5 

reanalysis data at a 1 ° spatial resolution (Table S1). The final satellite dataset spans 28 years, as detailed 

in Table 1 of the final step in the Calibration Model. The specific time coverage for each satellite is 

detailed in Table 3. 

Table 3: Table of satellite data time ranges 275 

Device Selection Start date End date 

F10＋11 1992.01.01 1995.05.08 

F10＋11+13 1995.05.09 1997.05.13 

F10＋11+13+14 1997.05.14 1997.11.13 

F11+13+14 1997.11.14 1999.12.23 

F11+13+14+15 1999.12.24 2000.05.15 

F13+14+15 2000.05.16 2003.10.31 

F13+14+15+16 2003.11.01 2006.08.30 

F13+14+16 2006.08.31 2006.12.19 

F13+14+16+17 2006.12.20 2008.08.07 

F13+16+17 2008.08.08 2009.11.03 

F16+17 2009.11.04 2020.12.31 
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3 DeepFlux Products 

The DeepFlux is generated based on the Flux Model, which first applies the GDCM to fill 

observational gaps, and then uses the MPFNet to retrieve air–sea heat flux variables. In this study, we 

used the GDCM data completion model developed by Wang et al. (Wang et al., 2025) and the MPFNet 280 

model developed by Wang et al. (Wang et al., 2025) to retrieve ocean surface heat fluxes. The GDCM 

model integrates the strengths of Convolutional Long Short-Term Memory (ConvLSTM) networks and 

attention mechanisms to complete missing data by leveraging spatiotemporal information. ConvLSTM 

captures spatiotemporal features of the data, while the attention mechanism (Vaswani et al., 2017) enables 

the model to dynamically focus on key information by assigning weights to emphasize important features 285 

and suppress redundant ones, making it especially effective for handling temporal dependency tasks. 

Figure S1 illustrates the overall architecture of the GDCM model. The GDCM framework consists of 

four main components: a spatiotemporal feature extraction block, a spatiotemporal motion extraction 

block, a multi-source spatiotemporal attention selection block, and an ASPP module. Detailed 

descriptions of each component are provided in the Supplementary Materials. 290 

The GDCM-completed SSM/I data, combined with OISST, are used as inputs to the MPFNet model 

to retrieve 𝑇𝑎 and 𝑄𝑎. MPFNet is a satellite-to-surface parameter retrieval model based on an encoder-

decoder architecture, as shown in Figure S2. The model consists of five main components: the input 

module integrates five satellite observation variables—SSW, CLW, WV, RR (all completed by the GDCM 

model), SST (OISST)—and their corresponding latitude and longitude information; the matrix encoding 295 

module extracts spatial distribution patterns of satellite remote sensing images using FNO and analyzes 

environmental features at multiple scales through downsampling; the point encoding module employs 

ResNet to capture spatiotemporal variation patterns from historical observations at target locations; the 

feature fusion module combines global spatial features and local point features through residual 

connections; and the output module generates the predicted values of atmospheric temperature and 300 

humidity. By using a parallel encoding architecture and a multi-scale feature fusion strategy, MPFNet 
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effectively addresses the limitations of traditional methods in modeling global-local features, improving 

the accuracy of 𝑇𝑎  and 𝑄𝑎  retrieval. Detailed descriptions of each module are provided in the 

Supplementary Materials. 

4 Results validation and discussion 305 

In this section, we conduct a comprehensive evaluation of the SSM/I-derived heat flux dataset 

against buoy measurements and show that it is closer to the buoy observations than other mainstream 

heat flux products. The in situ and satellite matchup dataset from the test set, consisting of 21,613 records 

from 2018, was used to evaluate the performance of our DeepFlux and other products. 

4.1 Comparison of statistical indicators for different heat flux products 310 

In this section, we compare the performance of the SSM/I heat flux dataset with similar datasets 

from NCEP, ERA5, CDR, IFREMER, and OAFlux. Unlike existing heat flux products such as OAFlux, 

IFREMER, and ERA5, which are primarily reanalysis- or synthesis-based and often subject to spatial or 

temporal discontinuities, DeepFlux provides the first satellite-based, globally seamless, daily ocean 

surface heat flux dataset derived directly from SSM/I observations using advanced AI-driven models. 315 

This design ensures improved temporal resolution, observational fidelity, and consistency across the 

1992–2020 record, making DeepFlux a valuable complement to reanalysis and blended 

datasets.Correlation Coefficient (CC) and RMSE are used as evaluation metrics to assess the quality of 

each product comprehensively. In the SSM/I dataset, 𝑇𝑎  and 𝑄𝑎  are divided into ascending and 

descending orbit datasets, which are trained and evaluated separately. 320 

Figure 2 presents Taylor diagrams and scatter plots comparing various heat flux products with in 

situ observations, while Table 4 summarizes their performance in terms of RMSE and CC. Among all 

datasets evaluated, the SSM/I heat flux product shows the highest accuracy and consistency with in situ 

data, achieving the lowest RMSE and highest CC for 𝑇𝑎, 𝑄𝑎, 𝑆𝐻𝐹, and 𝐿𝐻𝐹. Specifically, for 𝑇𝑎, the 

SSM/I RMSE is 0.53 °C compared to ERA5’s 1.03 °C, representing a 48.54% improvement in accuracy. 325 

For 𝑄𝑎, the SSM/I RMSE is 0.70 g/kg versus 1.25 g/kg for NCEP, a 44% gain. For 𝑆𝐻𝐹 and 𝐿𝐻𝐹, 

SSM/I achieves RMSEs of 5.53 W/m² and 25.28 W/m², respectively, compared to NCEP’s 13.15 W/m² 
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and 54.67 W/m², improving accuracy by 57.95% and 53.76% (Table 4). These results further highlight 

the reliability and high quality of the SSM/I heat flux dataset. 
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Figure 2: Taylor Diagrams comparing different products with in situ measurements (black pentagon) for (a-

d) 𝑻𝒂, 𝑸𝒂, SHF, and LHF are plotted using polar coordinate axes, where the radial axis represents the STD 

and the angular axis represents the CC. Green contours indicate the RMSE. Panels (e–x) present scatterplots 

comparing retrieved values from different products - (e-h) NCEP, (i-l) ERA5, (m-n) OHF-CDR, (q-t) 

IFREMER, (u-x) OAFlux, DeepFlux against in situ measurements for 𝑻𝒂  (first column), 𝑸𝒂  (second335 

column), 𝑺𝑯𝑭  (third column), and 𝑳𝑯𝑭  (fourth column). The black line in scatterplots denotes the 

reference line with a slope of 1, indicating perfect agreement between the retrieved and observed values. The 

red line represents the symmetrical linear fit, indicating two standard deviations of the differences between 

the predicted and observed values, encompassing approximately 95% of the data points. 

Table 4: Evaluation Metrics of Seven Datasets Across Four Heat Flux Variables. 340 

Evaluation 

index 

Dataset 𝑇𝑎 𝑄𝑎 𝑆𝐻𝐹 𝐿𝐻𝐹 

RMSE NCEP 0.9 1.25 13.15 54.67 

ERA5 1.03 1.22 10.16 38.72 

CDR 0.84 1.09 10.03 38.98 

IFREMER 0.93 0.94 10.16 32.44 

OAFlux 0.58 0.99 6.13 31.04 

DeepFlux-Ascending 0.53 0.71 

5.53 25.28 

DeepFlux-Descending 0.53 0.7 

CC NCEP 0.97 0.91 0.76 0.68 

ERA5 0.97 0.95 0.75 0.78 

CDR 0.97 0.93 0.52 0.65 

IFREMER 0.98 0.96 0.86 0.81 

OAFlux 0.99 0.94 0.88 0.80 

DeepFlux-Ascending 0.99 0.97 

0.88 0.87 

DeepFlux-Descending 0.99 0.97 

4.2 Comparison of monthly average time series of independent validation datasets 

To facilitate regional analysis and evaluation, we selected monthly averaged data from three 
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independent buoy stations—NTAS (51W, 15N), Stratus (85W, 22S), and WHOTS (158W, 

22.7N)—as additional datasets to assess the accuracy of different heat flux products under varying 345 

environmental conditions. Observations from these buoys were treated as ground truth in model training. 

The time spans covered are 2002–2020, 2001–2020, and 2005–2020, respectively, as shown in Figure 

3. 
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Figure 3. (a) Spatial distribution of 71 NDBC, 136 GTMBA, and 593,392 ICOADS stations matched with 350 

SSM/I during 1992-2020, comprising 2,601,187 pairs of satellite and in situ matchup records. The WHOI’s 

buoy WHOTS (in yellow), Stratus (in magenta), and NTAS (in cyan) are independent validation datasets. (b1-

4) Comparative daily time series and RMSE at WHOTS Station (158°W, 22.7°N) for six retrieval models 

across 𝑻𝒂, 𝑸𝒂, 𝑺𝑯𝑭 and 𝑳𝑯𝑭. (c1-4) Same as (b1-4) but for the Stratus Station (85°W, 22°S). (d1-4) Same 
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as (b1-4) but for the NTAS Station (51°W, 15°N). 355 

The three selected independent buoy stations are located in the central Pacific, southeastern Pacific, 

and Atlantic Ocean, respectively. Oveall, in terms of long-term trends, the SSM/I-based heat flux dataset 

demonstrates strong consistency with in situ observations across all stations, while the NCEP product 

shows varying degrees of bias depending on location. Specifically, at the WHOTS Station in the tropical 

Pacific, where the monthly mean 𝑇𝑎 exceeds 21°C, the SSM/I dataset achieves the lowest RMSE for 360 

𝑇𝑎(0.40°C and 0.41°C). Its RMSEs for monthly mean 𝑆𝐻𝐹 and 𝐿𝐻𝐹 are 3.93 W/m² and 15.2 W/m², 

respectively, while the other five mainstream datasets show 𝑆𝐻𝐹 and 𝐿𝐻𝐹 RMSEs above 7 W/m² and 

19 W/m². The SSM/I ascending-track 𝑄𝑎 data has the lowest RMSE at 0.61 g/kg, and the descending-

track RMSE is slightly lower than ERA5 at 0.69 g/kg. At the Stratus Station in the southeastern Pacific, 

SSM/I achieves the lowest monthly mean RMSEs across all variables, with 𝑄𝑎  ascending and 365 

descending RMSEs slightly higher than IFREMER at 0.71 g/kg and 0.65 g/kg, respectively. At the NTAS 

Station in the Atlantic, where conditions are warm and humid with monthly mean 𝑇𝑎 above 24°C and 

𝑄𝑎 above 14 g/kg, the SSM/I dataset consistently yields the lowest RMSEs, outperforming the other five 

datasets with significantly improved accuracy and clear advantages. 

4.3 Global Performance of Different Heat Flux Datasets 370 

In this section, we evaluate the global performance of various heat flux products, comparing their 

differences and similarities in spatial distribution, temporal variability, and long-term trends. These 

comparisons provide a systematic overview of the consistency and discrepancies among different 

datasets and offer a basis for assessing the performance of the DeepFlux dataset relative to buoy 

observations. Figure 4 presents global spatial distribution of the annual mean 𝑇𝑎, 𝑄𝑎, 𝑆𝐻𝐹 and 𝐿𝐻𝐹 375 

for different products in 2018. 
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Figure 4. The global spatial distribution of the annual mean 𝑻𝒂, 𝑸𝒂, 𝑺𝑯𝑭 and 𝑳𝑯𝑭 for different products 

in 2018. Panels are arranged by variables in columns (𝑻𝒂, 𝑸𝒂, SHF and LHF from left to right) and datasets 

in rows, including (a-d) NCEP, (e-h) ERA5, (i-l) OHF-CDR, (m-n) IFREMER, (q-t) OAFlux, (u-z) DeepFlux 380 

ascending orbit, and DeepFlux descending orbit. 

The global 𝑇𝑎  distributions from all datasets exhibit high consistency, sharing similar spatial 

patterns with maxima concentrated along the equator, averaging between 25C and 30C, and 

decreasing toward the poles. High 𝑄𝑎 values are mainly found over tropical oceans, particularly in the 

western Pacific warm pool and Indian Ocean, with averages ranging from 15 to 25 g/kg. In contrast, 𝑄𝑎 385 

is lowest at high latitudes, approaching 0–5 g/kg. Positive 𝑆𝐻𝐹 indicates heat transfer from ocean to 

atmosphere, while negative values reflect the opposite. 𝑆𝐻𝐹 displays a clear zonal structure, with higher 

values over the North Atlantic and North Pacific, and lower values in equatorial and tropical regions. The 

IFREMER dataset shows an overestimation tendency in the mid-to-high latitudes of the Southern 

Hemisphere. Positive 𝐿𝐻𝐹 denotes latent heat release from ocean to atmosphere, with maxima observed 390 

in the central Pacific, northwestern Pacific, and western Atlantic, where offshore winds transport cold, 

dry continental air over warm currents like the Kuroshio and Gulf Stream (Chou et al., 1997), driving 

strong air-sea heat exchange. The NCEP dataset tends to overestimate 𝐿𝐻𝐹, while the 𝐿𝐻𝐹 retrieved 

by MPFNet aligns more. 
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Figure 5 presents the temporal evolution of monthly mean values from different heat flux datasets. 395 

For 𝑇𝑎 , OAFlux, NCEP, ERA5, and IFREMER all show an underestimation trend, with IFREMER 

exhibiting the lowest monthly 𝑇𝑎, generally below 17.5 °C. For 𝑄𝑎, NCEP shows a clear overestimation, 

while ERA5 consistently underestimates, with monthly means remaining below 11.4 g/kg. 𝑆𝐻𝐹 and 

𝐿𝐻𝐹  are strongly correlated with 𝑇𝑎  and 𝑄𝑎 ; thus, OAFlux, NCEP, ERA5, and IFREMER tend to 

overestimate both 𝑆𝐻𝐹 and 𝐿𝐻𝐹. In contrast, the DeepFlux dataset shows lower monthly means, with 400 

𝑆𝐻𝐹 ranging from 4–9 W/m² and LHF from 80–90 W/m². Notably, between 2000 and 2006, the OHF-

CDR dataset displays significant discrepancies, consistently reporting the lowest monthly 𝑆𝐻𝐹  and 

𝐿𝐻𝐹.  
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Figure 5. The temporal evolution of the monthly average of global (a) 𝑻𝒂, (b) 𝑸𝒂, (c) 𝑺𝑯𝑭 and (d) 𝑳𝑯𝑭 for 405 

different products from 1992 to 2020. 

5 DeepFlux Reveals Trends and Drivers of SHF and LHF 

To investigate the global trends in 𝑆𝐻𝐹 and 𝐿𝐻𝐹 and their underlying causes, trend analyses were 

conducted on 𝑆𝐻𝐹, 𝐿𝐻𝐹, and their related variables (i.e., sea-air temperature difference and sea-air 

humidity difference). Trend calculations were based on the annual average values for all years from 1992 410 

to 2020. Figure 6 shows the linear trends of global 𝑆𝐻𝐹, 𝐿𝐻𝐹, sea-air temperature difference, and sea-
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air humidity difference, where positive and negative values indicate increasing and decreasing trends, 

respectively. The overall trend of 𝑆𝐻𝐹 in global oceans is relatively weak (Figure 6a), with most regions 

showing trends close to zero. Significant positive trends are primarily concentrated in western boundary 

current regions such as the Kuroshio Current, Gulf Stream, and Brazil Current, where the ocean’s release 415 

of sensible heat to the atmosphere has slightly increased, with an average maximum of 8 W/m² . 

Compared to 𝑆𝐻𝐹, 𝐿𝐻𝐹 exhibits a more pronounced global positive trend (Figure 6,b), with significant 

positive trends observed in western boundary current regions such as the central-eastern North Pacific, 

Kuroshio Current, Gulf Stream, East Australian Current, Brazil Current, and Agulhas Current. In these 

ocean regions, evaporation has significantly increased, leading to a notable rise in latent heat released to 420 

the atmosphere. 𝐿𝐻𝐹 has increased significantly, with the maximum positive trend reaching 16 W/m², 

showing a stronger trend than 𝑆𝐻𝐹. The global sea-air temperature difference between the ascending 

and descending tracks exhibits high consistency (Figure 6,c,d), showing very similar spatial structures 

and magnitudes. The sea-air temperature difference in most global ocean areas exhibits a positive trend, 

indicating that the relative surface air temperature of the ocean is rising faster than the atmospheric 425 

temperature on a global scale. The trend in the global sea-air temperature difference shares a similar 

spatial structure with 𝑆𝐻𝐹 , with their spatial distributions largely aligning. The sea-air humidity 

difference is a key variable linking the trends of 𝐿𝐻𝐹 and 𝑆𝑆𝑇. The global sea-air humidity difference 

in both ascending and descending orbits exhibits high consistency (Figure 6,e,f), with most regions 

showing a positive trend. This indicates that the humidity at the global ocean surface is increasing faster 430 

than atmospheric humidity. The global sea-air humidity difference trend is highly consistent with the 

𝐿𝐻𝐹 trend. On the other hand, the global sea-air temperature difference and sea-air humidity difference 

trends exhibit similar spatial structures. 
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Figure 6. Linear trends (per decade) of global (a) SHF, W/m², (b) LHF, W/m², 𝑇𝑠−𝑇𝑎(°C) for (c) ascending 435 

and (d) descending orbits, 𝑄𝑠−𝑄𝑎(g/kg) for (e) ascending and (f) descending orbits, calculated from annual 

mean fields for 1992–2020. Positive values indicate increasing trends. 

To further investigate the primary drivers of global ocean heat flux trends, it is necessary to 

separately examine the decadal trends in 𝑆𝑆𝑇 , 𝑄𝑠 , and model-reconstructed 𝑇𝑎  and 𝑄𝑎 . Figure 7 

shows the decadal linear trends in global 𝑆𝑆𝑇, 𝑄𝑠, 𝑇𝑎, and 𝑄𝑎, where positive and negative values 440 

indicate increasing and decreasing trends, respectively. Most global ocean regions exhibit a clear positive 

trend in 𝑆𝑆𝑇 (Figure 7a), with significant warming concentrated in the North Pacific, Indian Ocean, and 

western boundary current regions, reaching a maximum increase of 0.8°C. In some areas, such as off 

the coast of Peru and parts of the South Pacific, 𝑆𝑆𝑇 trends are near zero or even negative, indicating 

localized cooling. Global 𝑄𝑠  exhibits a similar upward trend (Figure 7,b), with significant positive 445 

trends in the North Pacific, Indian Ocean, and western boundary current regions. The Clausius–

Clapeyron relationship indicates that higher temperatures result in greater 𝑄𝑠. The spatial distribution of 

𝑄𝑠 trends in these regions aligns closely with temperature trends, consistent with the Clausius-Clapeyron 

relationship. The spatial distribution structure of the global average atmospheric temperature trend is 

similar to that of 𝑆𝑆𝑇 (Figure 7c,d), showing an overall upward trend, though the increase is smaller 450 
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than that of 𝑆𝑆𝑇. The increase is notably reduced in the subtropical and equatorial eastern Pacific regions. 

The global average atmospheric humidity shows an overall positive trend (Figure 7e,f), though the 

increase is far smaller than that of 𝑄𝑎. In the equatorial central and eastern Pacific regions, the positive 

trend of 𝑄𝑎 weakens, and even shows a slight negative trend in some local areas, with significant spatial 

variability. 455 

Compared with traditional reanalysis and blended products such as ERA5, IFREMER, and OAFlux, 

DeepFlux provides the first long-term, daily, satellite-derived global heat flux record (1992–2020) with 

seamless coverage, which significantly improves the representation of fine-scale features and long-term 

changes in key dynamic regions. In western boundary current regions (e.g., Kuroshio, Gulf Stream, Brazil 

Current), DeepFlux resolves stronger local gradients and more coherent positive trends of SHF and LHF, 460 

revealing intensified ocean–atmosphere exchanges that are often underestimated in coarse-resolution 

reanalyses. In tropical regions, DeepFlux highlights spatially heterogeneous changes in sea – air 

humidity difference and latent heat flux, offering new insight into the coupling between SST warming 

patterns and atmospheric moisture transport. The improved temporal continuity and observational 

grounding of DeepFlux add substantial value to long-term trend analyses, helping to reduce uncertainties 465 

introduced by model-based products and enhancing our understanding of regional climate variability and 

air–sea interaction processes over nearly three decades. Overall, the global average 𝑆𝑆𝑇 increase has 

led to a significant increase in 𝑄𝑠, consistent with the Clausius-Clapeyron relationship. This is consistent 

with previous research findings, which indicate that changes in 𝑆𝑆𝑇 are closely related to changes in 

the sea-air humidity difference. The increase in 𝑇𝑎 is found to be smaller than that of SST, leading to a 470 

larger sea-air temperature difference. Similarly, the increase in 𝑄𝑎 is smaller than that of 𝑄𝑠, resulting 

in an expanded sea-air humidity difference. This expansion in the humidity difference, particularly in 

western boundary current regions such as the Kuroshio Current, the Gulf Stream, and the Brazil Current, 

becoming the primary factor driving the intensification of the 𝐿𝐻𝐹 (Chen and Wang, 2024; Leyba et al., 

2019). Similarly, the trend of 𝑆𝑆𝑇increase is greater than that of 𝑇𝑎 increase, leading to an increase in 475 

the sea-air temperature difference. The 𝑆𝐻𝐹  is directly proportional to the sea-air temperature 

difference; the larger the sea-air temperature difference, the larger the 𝑆𝐻𝐹 , thereby driving the 

strengthening of the 𝑆𝐻𝐹 across global oceans. On the other hand, the rise in 𝑆𝑆𝑇 in western boundary 
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current regions such as the Kuroshio Current, the Gulf Stream, and the Brazil Current may trigger 

stronger turbulent mixing, allowing more heat to be transferred from the ocean to the atmosphere, thereby 480 

enhancing the 𝑆𝐻𝐹 (Leyba et al., 2019; Tang et al., 2024; Yu and Weller, 2007). 

 

Figure 7. Linear trends (per decade) of global (a) 𝑇𝑠 (°C), (b) 𝑄𝑠  (g/kg), 𝑇𝑎  (°C) for (c) ascending and (d) 

descending orbits, 𝑄𝑎(g/kg) for (e) ascending and (f) descending orbits, calculated from annual mean fields 

for 1992–2020. Positive values indicate increasing trends. 485 

6 Code and data availability 

The global open-ocean heat flux dataset and deep-learning models developed in this study are 

publicly released, as summarized below: 

1) Daily global heat flux datasets 

We provide a complete global daily gridded dataset of surface air temperature (𝑇𝑎), specific 490 

humidity (𝑄𝑎), sensible heat flux (SHF), and latent heat flux (LHF) for the period 1992–2020. The 

dataset was generated by integrating SSM/I-derived variables (surface wind speed, cloud liquid 

water, water vapor, and rain rate) with OISST data, followed by reconstruction using the GDCM 

model and inversion with the MPFNet framework. The products have full global coverage at 1° × 

1° spatial resolution. Validation against in situ observations shows RMSEs of 0.53 °C for 𝑇𝑎, 0.70 495 
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g/kg for 𝑄𝑎, 5.53 W/m² for SHF, and 25.28 W/m² for LHF. 

2) Deep learning model 

The Flux Model consists of the GDCM and MPFNet models. The trained versions of the GDCM 

and MPFNet models are shared. These can be directly applied to other satellite inputs or adapted for 

further fine-tuning. The GDCM model leverages spatiotemporal convolution and attention to 500 

complete missing data, while MPFNet fuses Fourier Neural Operators and ResNet modules to 

retrieve 𝑇𝑎 and 𝑄𝑎 from multi-source inputs. 

    All datasets and codes are openly accessible without restrictions. They can be accessed at repository 

under http://dx.doi.org/10.12157/IOCAS.20250823.001 (Wang et al., 2025), with data available in 

NetCDF format. The repository also includes model scripts written in Python for data reconstruction and 505 

inversion, along with detailed documentation to facilitate reproduction and extension of this work. If you 

want to download without registering you can visit https://zenodo.org/records/17160579. 

 

7 Conclusion 

In this study, we developed DeepFlux the first global, seamless, daily ocean surface heat flux dataset 510 

derived solely from SSM/I passive microwave observations, spanning 1992–2020 with 1° × 1° resolution. 

Using a two-step deep learning approach, we first employed the GDCM to reconstruct missing satellite 

observations and then applied the MPFNet to retrieve 𝑇𝑎, 𝑄𝑎, 𝑆𝐻𝐹 , and 𝐿𝐻𝐹 from SSM/I-derived 

SSW, CLW, WV, and RR. The separation of 𝑇𝑎 and 𝑄𝑎 into ascending and descending track channels 

provides additional diurnal variability information often absent in traditional datasets. 515 

The heat flux dataset developed in this study demonstrates significantly improved spatial 

completeness and accuracy compared to mainstream products such as NCEP, ERA5, OHF-CDR, 

IFREMER, and OAFlux, the test set, consisting of 21,613 records from 2018, shows excellent 

performance with RMSEs of 0.53 °C for 𝑇𝑎, 0.70 g/kg for 𝑄𝑎, and 5.53 W/m² and 25.28 W/m² for 𝑆𝐻𝐹 

and 𝐿𝐻𝐹, respectively. It exhibits higher stability and reduced systematic bias, especially in tropical and 520 

mid-latitude regions. Independent validation using monthly data from the NTAS, Stratus, and WHOTS 

buoys further confirms its robustness across diverse oceanic environments. With a continuous 28-year 

temporal coverage, the dataset extends the duration and completeness of global ocean heat flux records. 

Its high accuracy supports improved parameterization in climate models and provides a reliable data 
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source for studying air-sea interactions and their role in driving atmospheric and oceanic circulation. 525 

Importantly, DeepFlux fills key observational gaps in the tropics, western boundary currents, and 

other dynamically active regions (e.g., Kuroshio, Gulf Stream, Brazil Current), where existing products 

often exhibit large retrieval errors or coarse spatial/temporal coverage. The dataset’s seamless daily 

continuity over nearly three decades offers a unique resource for long-term climate analyses, enabling a 

clearer assessment of multi-decadal trends in air–sea fluxes and their physical drivers. Our results show 530 

that DeepFlux captures the spatial structure and intensification of 𝑆𝐻𝐹 and 𝐿𝐻𝐹 trends with higher 

fidelity than existing datasets, particularly highlighting the role of sea–air humidity and temperature 

differences in driving flux variability in high-energy regions.Reliance on SSM/I passive microwave data 

may introduce errors under severe weather conditions, such as interference from thick cloud cover. The 

retrieval accuracy of 𝑆𝐻𝐹 and 𝐿𝐻𝐹 is influenced by the quality of SSW input, and some SSM/I wind 535 

products contain considerable errors, necessitating additional correction steps. These limitations 

highlight future improvement directions: integrating data from additional satellite sensors such as AMSR, 

SSM/I, and WindSat to enhance spatial coverage and reduce uncertainties from single-sensor reliance; 

and incorporating high-resolution reanalysis or in situ observations to further refine the retrieval of 𝑇𝑎 

and 𝑄𝑎, thereby improving the accuracy of 𝑆𝐻𝐹 and 𝐿𝐻𝐹 estimates. 540 
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