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 GDCM Data Completion Model 

 

Figure S1. Architecture of the GDCM model. The model adopts an encoder-decoder structure and consists 
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of spatiotemporal feature extraction blocks, spatiotemporal motion extraction blocks, spatiotemporal 

multi-source feature attention selection blocks, and an ASPP block. 15 

The GDCM model adopts a dual-path encoding and multi-scale decoding architecture, which is 

suitable for the task of fine-grained reconstruction of spatio-temporal data. Features of different 

dimensions are processed separately in the encoding stage: the spatio-temporal state branch extracts 

data regularities layer by layer using ConvLSTM as well as downsampling; the dynamic behaviour 

branch captures motion features using a 3D convolution kernel and a step-size compression strategy. 20 

The outputs of the two branches enter the spatio-temporal multi-source feature attention selection block, 

and the features are filtered using the attention weight matrix. 

The decoder architecture of the model firstly introduces the ASPP module, which extracts the 

contextual information through the convolutional kernels with different expansion rates in parallel; 

secondly, it adopts the residual attention mechanism, which calibrates the weights of the channels 25 

through the gating unit during the feature splicing process; and finally, it combines the cross-layer jump 

connection to ensure that the network still retains the details of the original data in the process of the 

global feature integration. The design of the GDCM model is capable of capturing the wide range of 

spatial-temporal The GDCM model is designed to capture a wide range of temporal and spatial 

correlation patterns, capturing the subtle changes in key areas of the data, which significantly improves 30 

the accuracy of data complementation and the model generalisation ability in different complex 

environments. The following is a detailed description of each module of the GDCM model: 

Spatiotemporal feature extraction blocks 

In the spatio-temporal feature extraction module, the model uses a multi-level convolutional loop 

architecture to parse the input information. The innovation of this module lies in the fusion of 35 

traditional sequence modelling with spatial convolution, by replacing the fully-connected weights in 

the long and short-term memory network with a two-dimensional convolution kernel to form a 

ConvLSTM unit that can capture spatial features. The gating mechanism is implemented using a spatial 

convolution to replace the linear transformation, where the forgetting gate is implemented through a 2

×2 convolution kernel that calculates the local spatial correlation between the current input and the 40 

historical state, and selects important features using a spatial weight matrix. The data input is gradually 

spatially dimensioned to form a multi-resolution feature pyramid, with each level corresponding to an 
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independent ConvLSTM processing unit that incrementally extracts data features. 

Spatiotemporal motion extraction blocks 

The spatio-temporal action extraction module focuses on extracting the motion evolution features 45 

of the data, firstly by calculating the data differences between adjacent time steps to capture the more 

active regions of data changes, in this process, part of the spatio-temporal receptive field is constructed 

using cascaded 3×3×3 convolution kernels to capture the local features of the short-term actions; the 

other part of the feature reorganisation is carried out through 1×1×1 convolution to form the global 

motion basis vectors. After linear superposition of the two parts of the output, progressive resolution 50 

compression is used to halve the feature map size layer by layer by stepwise convolution, and 

convolution units are set up at each downsampling level. The outputs form multi-level features, with 

the shallow network being responsible for capturing the fast transform signals, and the deeper network 

extracting the motion variations. The model ultimately outputs spatio-temporal action features at two 

different scales after normalisation. 55 

Spatio-temporal multi-source feature attention selection blocks 

The spatio-temporal multi-source feature attention selection module realizes the optimal selection 

of model features through weight allocation. The processing flow is divided into three steps: firstly, the 

input features are compressed in the channel dimension, and the two-dimensional spatial information of 

each feature channel is aggregated into single-value representations, which reduces the amount of data 60 

while retaining the core features of the data. Subsequently, a weight generation network is established. 

The network adopts the symmetric structure of the fully connected layer to analyse the compressed 

features and output the importance coefficients of each channel. These coefficients are normalised and 

multiplied channel by channel with the original features as a dynamic adjustment parameter to realise 

the reinforcement of the key information. The final output features focus on the spatio-temporal 65 

patterns that have the highest degree of contribution to the data reconstruction, which significantly 

improves the discriminative value of the feature expression while guaranteeing the computational 

efficiency. significantly improve the discriminative nature of feature expression. 
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ASPP block 

The ASPP module adopts the adaptive spacing convolution strategy to enhance the ability of the 70 

model to extract features. Its core achieves multi-level feature capture by adjusting the sampling 

spacing of the convolution kernel, with small spacing convolution being able to focus on the local 

details of the texture information, and large spacing convolution covering a wider range of contextual 

correlations. The module is set up with four parallel convolution branches, which extract cross-scale 

features from the data by adopting different spacing parameters. The output of each branch is spliced 75 

and coupled with cross-scale features by single-point convolution. This design extends the network's 

understanding of spatial structure while keeping the number of parameters constant. It is suitable for 

the task of dealing with the needs of nested multi-scale physical processes in meteorological data. 

GDCM model training strategy 

In the GDCM training phase, the training input data include samples extracted from the reanalysed 80 

dataset, binary matrices of missing data distributions corresponding to the remotely sensed data, and 

randomly generated strip data. We randomly select these three types of data for each training, choose 

the same batch size for each type, and then perform element-level multiplication operations to generate 

the final training samples. These samples are then fed into the model for training. 

To enable the model to fully learn the spatio-temporal relationship of the input data, a progressive 85 

learning strategy is designed for the GDCM model. In the early stage of training (epoch=0), the input 

of the model is the complete reanalysed data for 7 consecutive days. As the training proceeds, the 

missing regions are introduced gradually, to make the proportion of the null values in the data increase 

gradually, and finally reach a match with the missing situation of the real satellite data. Throughout the 

process, the rate of increasing missing regions was set to 0.002% per epoch. This strategy allows the 90 

model to adapt to the complete data while gradually learning to deal with the missing data situation, 

thus improving its robustness, stability and generalisation ability, and making it more applicable to real 

data missing situations. 
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MPFNet inversion model 

 95 

Figure S2. MPFNet model architecture. The red-colored components indicate the first-stage model used to 

retrieve Tₐ and Qₐ. The blue-colored components represent the second-stage model, which uses the 

first-stage outputs along with other variables (A-𝑇𝑎/A-𝑄𝑎, D-𝑇𝑎/D-𝑄𝑎, A-SSW, D-SSW, 𝑇𝑠/𝑄𝑠 , LON, and 

LAT) to compute the final SHF and LHF. 

To enhance the retrieval accuracy of air-sea heat fluxes, we design a two-stage model architecture, 100 

where each stage targets a specific physical quantity. As illustrated in Fig. S2, the first-stage model 

(highlighted in red) is dedicated to retrieving Tₐ and Qₐ by integrating spatial and point-specific satellite 

information. The second-stage model (highlighted in blue) takes the outputs from the first stage—along 

with additional variables such as 𝑇𝑎, 𝑄𝑎, SSW, 𝑇𝑠, 𝑄𝑠, LON, and LAT—as inputs to compute the 

SHF and LHF based on bulk aerodynamic formulas. 105 

The Input Block 

The input data for the MPFNet model are derived from SSM/I observations filled and processed 

by the GDCM and contain five important air-sea variables: SSW, CLW, WV, RR, and SST. These data 

are reconstructed into 16 × 16 grid cells, where the grid centre at position (8, 8) coordinates is used 

as a geographic anchor for the point inputs. To enhance the model's ability to extract spatial features, 110 

the input feature set is extended with two physical dimension channels: the radial image resolution 

feature (f) characterises the geometrical properties of the observations, and the vertical image scale 

feature (g) describes the degree of discretisation of the atmospheric column structure. The stacked 

processing is constructed to form a 7 × 16 × 16 (9×16×16 in the second stage) array and fed into 
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the Matrix2Point and Point2Point modules for feature extraction. 115 

The Matrix2Point Block 

The feature extraction core uses four downsampling Fourier neural operators (DFNO), and the 

input data are arranged in a 7×16×16 (9×16×16 in the second stage) gridded structure. The DFNO 

module consists of a frequency domain operation unit working in concert with a downsampling unit. 

The frequency domain operation unit contains three key steps: firstly, mapping the spatial data to the 120 

frequency dimension through fast frequency domain transformation, feature screening and linear 

transformation in the low frequency region, and finally Finally, the inverse transformation is restored to 

the spatial dimension, and this process can effectively extract a wide range of spatial correlation 

patterns. After the frequency domain operation, the module accesses a three-layer convolutional 

network to strengthen the local features, and each layer uses a 3×3 convolutional kernel with 125 

normalisation and activation function to gradually extract information. Feature dimensionality 

reduction uses a pooling layer with a step size of 2 to compress the feature map size so that the model 

focuses on the key spatial patterns. Through the DFNO module, the original input data is gradually 

transformed into feature representations with high information density. 

The Point2Point Block 130 

The Point2Point module is used to process 7-dimensional (9-dimensional in the second stage) 

feature data at a single point, where the input features are transformed into a base transformation using 

a fully connected layer and ReLU activation functions, and the features are mined by two Residual 

Network (ResNet) modules. The core of ResNet is the ‘jump-junction’ design - instead of learning the 

target output directly, the network learns the difference between the current output and the input (i.e., 135 

the residual). This structure makes deep network training more stable and avoids the problem of 

vanishing gradients. By superimposing multiple residual blocks, the model can flexibly capture 

complex patterns in the data, and is particularly good at dealing with highly non-linear sea-air 

relationships such as those found in satellite remote sensing data. This design significantly improves 

the accuracy of the model's estimation of parameters such as ocean temperature and humidity, allowing 140 

it to remain robust in complex scenarios. 
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The Fused Feature Block 

The fusion feature module achieves efficient prediction by merging the information of two 

features, firstly splicing the spatial grid features (from Matrix2Point) with the point features (from 

Point2Point) to form a fused feature containing both global and local details, which is assigned to two 145 

independent branches: one branch specialises in predicting temperature (SHF in the second stage) and 

the other in predicting humidity (LHF in the second stage), and each branch consists of two segments 

The core structure consists of two segments - the front segment uses a neural network module with 

jump connections (ResNet) to extract deep regularities. The back segment maps the features to specific 

values through a fully connected layer. The sharing of fused features between the two branches enables 150 

the model to automatically learn the physical correlation between temperature and humidity (SHF and 

LHF in the second stage). This synergistic mechanism significantly improves the overall accuracy of 

parameter inversion. 

The Output Block 

The proposed model architecture is applied in two stages. In the first stage, the model integrates 155 

spatial and point-specific information to retrieve global Tₐ and Qₐ. In the second stage, these 

retrievals—along with other relevant variables including (a) A-𝑇𝑎/A-𝑄𝑎 (b) D-𝑇𝑎/D-𝑄𝑎 (c) A-SSW (d) 

D-SSW (e) 𝑇𝑠/𝑄𝑠 (f) A-SHF/A-LHF (g) D-SHF/D-LHF (h) LON (i) LAT —are re-input into the 

model to correct for compounded uncertainties. These corrections are significant for SSW inputs, 

where significant discrepancies are observed in SSM/I retrievals compared to in situ measurements, as 160 

demonstrated in Fig. S3d-g. Based on the corrected inputs, the model then computes globally 

high-accuracy SHF and 𝐿𝐻𝐹 using the bulk aerodynamic formulas. 
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Figure S3. Scatter plots comparing (a-b) SST and (c-g) SSW products with in situ measurements. Panels (a) 

OAFlux SST versus observations and (b) OISST versus observations. SSW comparisons include (c) OAFlux 

SSW, and (d-g) SSM/I F16-17 retrievals from both ascending and descending orbits versus in situ SSW. 

Black lines indicate 1:1 relationships, with CC, bias, and RMSE annotated for each comparison. The red 

line represents the symmetrical linear fit, indicating two standard deviations of the differences between the 170 

predicted and observed values, encompassing approximately 95% of the data points.  

 

 


