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Abstract. We present an improved medium (250 m) spatial resolution land mask based on augmenting earlier results of Mikelsons 

et al. (2021) (https://doi.org/10.1016/j.rse.2021.112356) to reflect recent changes in global water surface coverage. This land mask 

update is critical for remote sensing of coastal oceans and inland waters as this is the first step to properly identify water pixels 10 
from land pixels for satellite data processing. We show that clear sky false color imagery derived for monthly and yearly time 

periods can be effectively used to identify changes to the surface water coverage. In addition, we also use Sentinel-2 satellite 

imagery to derive more accurate boundaries of new water bodies with complex geometries. We demonstrate improved coverage 

from satellite ocean color and inland water property retrievals with the improved land mask, including a range of new inland water 

bodies, as well as changes to the extent of the existing water bodies. We find that majority of inland water surface changes are 15 
directly linked to human activities and list the changes to water surface areas and approximate time periods for these water bodies. 

The improved land mask (Mikelsons and Wang, 2025) can also be used forin the remote sensing of landterrestrial, atmospheric, 

and cryospherecryospheric products. 

1. Introduction 

The global surface water coverage is continuously changing. It is difficult to capture all changes as they are occurring, as some 20 
changes are very gradual, but over time quite significant. Most existing land mask data sets are static, and that have been mostly 

adequate for the general and most of specialized applications. However, use of static data sets necessitates periodic review of the 

existing land mask data for any recent changes. Furthermore, periodic review and update of existing land/water mask data sets may 

reveal areas where most significant, rapid, and numerous changes are taking place, which in itself is a valuable information. In 

addition, continuous use of the existing data sets in wider science, research, and user communities may uncover any artifacts and 25 
imprecisions that may have been previously overlooked. 

One of the most significant and comprehensive efforts to map the global surface water was the landmark study by Pekel et al 

(2016), which used high resolution satellite imagery, and produced several metrics characterizing the Global Surface Water (GSW), 

such as seasonality, occurrence, maximum extent, change, and others. However, this GSW data set excluded polar areas, and also 

contained some occasional artifacts. An updated data set was released in 2021 (https://global-surface-30 
water.appspot.com/download),(https://global-surface-water.appspot.com/download) but did not mitigate some shortcomings. 

Nevertheless, the included metrics provide comprehensive statistical description of water surface temporal variability and ensure 

broad applicability for this data set. Another land mask data set derived from high resolution satellite measurements was created 

as part of an effort to map the global forest cover (GFC) (Hansen et al., 2013), yet that too excluded polar areas, and also included 

occasional artifacts.  35 

Many satellite sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) (Salomonson et al., 1989) on the 

Terra and Aqua, the Visible Infrared Imaging Radiometer Suite (VIIRS) (Goldberg et al., 2013) on the Suomi National Polar-

orbiting Partnership (SNPP), NOAA-20, and NOAA-21, and the Ocean and Land Colour Instrument (OLCI) (Donlon et al., 2012) 

on the Sentinel-3A (S3A) and Sentinel-3B (S3B), observe earth in medium spatial resolution (~0.2–1 km), and the associated 

environmental research applications require a land mask data set of a comparable spatial resolution. MODIS data were used to 40 
derive medium resolution land/water mask data (Carroll et al., 2009). The subsequent update significantly expanded locations 

classified as water to include occasionally and partly submerged areas (Carroll et al., 2017). The latest update (Carroll et al, 

2024)The latest update (Carroll et al., 2024) appears to continue this trend and splits the MODIS-derived land mask data set into 

yearly time series, but also introduces new artifacts. 

https://doi.org/10.1016/j.rse.2021.112356
https://global-surface-water.appspot.com/download
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In general, the distinction between land and water surface depends on applications. This is especially true for coastal oceans and 45 
inland waters, and for higher resolution data. Various types of surface water have been distinguished in numerous land cover 

classification studies (Sulla-Menashe et al., 2019; Brown et al., 2022, Zhang X. et al., 2023, 2025),(Brown et al., 2022; Sulla-

Menashe et al., 2019; Zhang et al., 2023; Zhang et al., 2025) or within dedicated studies targeting specific water surface type (Allen 

et al., 2018; Zhang A.T. et al, 2023),(Allen and Pavelsky, 2018; Zhang and Gu, 2023), and include the temporal dynamics (Pickens 

et al., 2018). Land mask is especially important for satellite ocean and inland water color measurements, where it narrows down 50 
the observations to potentially valid retrievals over the water surface, and provides information about potential land adjacency 

effects (Bulgarelli et al., 2017). Within this context, a binary land/water mask is required to determine if satellite retrievals should 

be attempted over the specific geographic location. To address this need, Mikelsons et al. (2021) developed a global, medium-

resolution (250 m) land mask specifically for ocean color and inland water property retrievals. They also presented a new 

methodology to combine multiple existing datasets to reduce artifacts and improve overall accuracy, including the high resolution 55 
GSW and GFC data, and MODIS-derived medium resolution land mask data, and matching the spatial resolution of the latter. We 

note that although the MODIS-derived land mask data are named as 250 m medium spatial resolution data (Carroll et al., 2017), 

the actual spatial resolution is closer to 230 m (7.5 arc seconds). We follow the same practice to use 250 m spatial resolution to 

describe our derived land mask data (actually in 230 m7.5 arc second angular resolution in longitude and latitude). 

Since then, many changes to global surface waters have taken place, many new water bodies have appeared or expanded, while 60 
others have shrunk or entirely disappeared. Occasionally, such changes can be noticed in the daily satellite imagery from polar 

orbiting wide swath sensors, such as MODIS, VIIRS, and OLCI. Nevertheless, distinguishing land from water surface in daily 

satellite imagery is complicated due to presence of clouds (King et al., 2013), cloud shadows (Jiang and Wang, 2013), sun glint 

(Wang and Bailey, 2001), and occasionally heavy aerosol presence. However, changes to the water surface typically occur at more 

gradual seasonal or yearly time scales. Thus, representative clear sky imagery over longer time scales may be more helpful in 65 
surface type determination. In particular, our earlier work (Mikelsons and Wang, 2021) introduced one relatively simple approach 

to derive clear sky imagery form the daily multi-sensor imagery time series. This imagery, derived over an appropriate time period, 

eliminates the frequently changing atmospheric conditions, while retaining representative surface appearance.  

In this work, we show that this clear sky imagery can be used to identify the areas of change in global water surface, and in many 

cases to derive regional updates to the existing land mask. Thus, we use the previously derived land mask data set (Mikelsons and 70 
Wang, 2021)Thus, we use the previously derived land mask data set (Mikelsons et al., 2021) and update it to incorporate the water 

surface changes in the recent years. In this effort, we focus on new water bodies, or qualitatively significant changes, to update and 

improve the existing land mask data set. While there are also more continuous and gradual changes taking place in dynamic 

ecosystems (such as meandering river paths, slow changes due to shifting coastlines, etc.), those have not been the main focus of 

this study. Although the main target use of the improved land mask data set remains the medium resolution satellite ocean color 75 
and inland water property retrievals, we anticipate that, as before, the updated land mask data set will have wider range of 

applications. The spatial resolution of the improved land mask data set is the same as that of the earlier data set at 7.5 arc second 

equal angle sampling for both longitudinal and latitudinal directions, resulting in a global data set of 86400  172800 samples. 

This work is structured as follows: in Section 2, we review the methodology, including use of false color imagery to derive updated 

land mask. In Section 3, we detail the changes and updates implemented in the new land/water mask and show improvements in 80 
the corresponding satellite ocean color and inland water property retrievals. Following Datathe data availability statement in 

Section 4, we discuss the results and summarize the conclusions in Section 5. 

2. Methodology 

One of the most common satellite derived imagery types is the true color imagery, derived using the spectral bands in the red, 

green, and blue (RGB) parts of the visible spectrum. Satellite-measured top of the atmosphere (TOA) reflectances at each spectral 85 
band are corrected for Rayleigh scattering effects in the atmosphere (Wang, 2016), reducing the associated haze, and improving 

the contrast. In addition to the true color imagery, a range of other spectral band combinations are used to highlight various surface 

and atmospheric features. These are commonly referred to as false color imagery. One frequently used type of false color imageries 

is obtained by replacing the green band (typically centered around 550 nm) used for the green color channel in the imagery with 

the near-infrared (NIR) band (typically centered at around 865 nm).) (Qi et al., 2020). This type of false color imagery is often 90 
used to distinguish surface water from land and vegetation coverage due to nearly complete water absorption at the NIR band. It 

is also used to identify floating algae effectively (Qi et al., 2020). In this work, we refer to it as simply “the false color imagery”. 
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Regardless of the choice for spectral bands used in imaging, the daily satellite imagery is frequently affected by clouds and dense 

aerosols, preventing accurate survey of water surface extent. Furthermore, not all satellite imagery sensors can provide complete 

daily coverage. In any case, it is not practical to examine all daily satellite imagery for changes in water surface, unless automated 95 
algorithms are used. In this work, we use the clear sky imagery derived from daily multi-sensor imagery over longer time periods 

to track changes to the land and water surface. The clear sky imagery can be derived for both true and false color band combinations. 

For the type of false color imagery discussed here, the derived clear sky imagery favors the overall darker water areas over lighter 

land (Mikelsons and Wang, 2021). Thus, clear sky false color imagery is a proxy to maximum water extent over different time 

periods. We found that clear sky true and false color imageries, which are derived over monthly and yearly time periods, are 100 
especially useful for tracking seasonal and interannual changes in water surface extent. In many frequently overcast areas, at least 

one month of daily imagery (sometimes more) is needed to derive clear-sky imagery. At the same time, monthly imagery can 

capture most seasonal changes. In comparison, yearly imagery is much easier to use, as it provides overview of the largest water 

extent throughout the year, but does not capture seasonal variability. The yearly imagery also can be somewhat biased towards the 

months with less frequent cloud coverage.  105 

In this study, we use a combination of yearly and monthly clear sky false color imageries from the recent years (2020–2025) and 

compare it with the existing land/water mask to identify the areas with significant changes in water coverage. For comparison, the 

earlier version of the land mask data set (Mikelsons et al., 2021) was derived using a number of data sources based on data from 

periods of 2000–2002 (Carroll et al., 2009), 2000–2015 (Carroll et al., 2017), 2000–2012 (Hansen et al., 2013), and 1984–2016 

(Pekel et al., 2016). Therefore, most of them were somewhat outdated even at the time when the old land mask data set was derived. 110 
The last dataset (Pekel et al., 2016) has since been updated to include changes up till 2021 (https://global-surface-

water.appspot.com/download). We then use the monthly clear sky false color imagery to estimate the seasonal changes for each 

new area found. These imagery comparisons and evaluation were conducted using the interactive features of the Ocean Color 

Viewer (OCView) (Mikelsons and Wang, 2018), allowing to quickly switch between the land mask and true/false color imagery, 

and zoom to a specific region to inspect differences at a finer detail. We note that OCView provides access to yearly and monthly 115 
global clear sky true and false color imagery from the beginning of the VIIRS-SNPP mission in 2012. The firstearly years of this 

clear sky imagery archive isare derived solely from VIIRS-SNPP daily imagery. For more recent years, other available VIIRS and 

OLCI daily global imageries are also used to improve the accuracy of the clear sky true color imagery. 

Similarly, from 2023 onwards, the clear sky false color imagery is derived from two VIIRS sensor daily global imageries on the 

SNPP and NOAA-21 satellites, including VIIRS imagery band data (Mikelsons and Wang, 2021), at the same medium spatial 120 
resolution. As such, it can be used to derive updated land/water mask in places where coastline is relatively simple and land/water 

contrast is high. In such cases, standard image segmentation procedures implemented in commonly available image editing 

software (e.g., ImageMagick, imagemagick.org) can be used to help delineate the new land and water boundaries with sufficient 

accuracy. However, many new water bodies have quite complicated coastlines. In these cases, we opted for higher spatial resolution 

imagery from the MultiSpectral Instrument (MSI) on the Sentinel-2A/B/C (Drusch et al., 2012). Following analysis of the medium 125 
resolution clear sky imagery, we chose a representative Sentinel-2 MSI daily imagery scene clear of clouds and first derived the 

corresponding high resolution land mask over the region of interest using the Sentinel-2 derived true and false color imageries.  

In particular, the Sentinel-2 true color imagery was derived using MSI bands 4 (665 nm), 3 (560 nm), and 2 (490 nm), for red, 

green, and blue channels, respectively. In false color imagery, the MSI green band was replaced by the NIR band 8 (842 nm). The 

spatial resolution for all Sentinel-2 MSI band used for imagery is 10 m (Drusch et al., 2012). Selected scenes of high resolution 130 
Sentinel-2 true and false color imageries were passed through image segmentation procedure to produce a high resolution regional 

land mask for each area of interest. These high resolution regional land mask samples were then aggregated into the medium 

resolution land mask based on the same criteria as described in the earlier work (Mikelsons et al., 2021). Specifically, we imposed 

the requirement that more than 90% of high resolution (10 m) imagery pixels corresponding to the medium resolution (250 m) 

land mask pixel have to be identified as water in order to have the corresponding medium resolution pixel to be marked as water. 135 
We note that due to this aggregation process, the accuracy of the high resolution land mask is not crucial, since each medium 

resolution pixel covers more than 500 high resolution Sentinel-2 MSI derived imagery pixels. Instead, it is more important to select 

a representative high resolution imagery scene out of temporal time series for deriving the medium resolution data. 

3. Results 

We employed the Ocean Color Viewer (OCView) web page (Mikelsons and Wang, 2018) 140 
(https://www.star.nesdis.noaa.gov/socd/mecb/color/) to survey global yearly and monthly clear sky true and false color imageries 

for the most recent years (2022–2024), and compare it to the existing land mask. We note that the core functionality of OCView 

is described in (Mikelsons and Wang, 2018), while the process of deriving the clear sky imagery from daily imagery time series is 

https://global-surface-water.appspot.com/download
https://global-surface-water.appspot.com/download
https://www.star.nesdis.noaa.gov/socd/mecb/color/
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detailed in (Mikelsons and Wang, 2021). In particular, the false color imagery is normally highly correlated to the land mask, thus 

any changes in water surface can be easily identified by comparing these two images. Nearly all of the identified water surface 145 
changes are located in either coastal or inland areas and can be roughly divided into three types: a) changes to endorheic lakes, b) 

newly created inland water reservoirs due to human constructed river dams, and c) changes to coastal areas due to land reclamation 

or other types of developmental activities. In the following subsections, we detail each type of these changes. As a proof of utility 

to the improved and expanded satellite ocean/water color retrievals with the updated land mask, we also include results for 

chlorophyll-a (Chl-a) concentration (Hu et al., 2012; Wang and Son, 2016), and the light diffuse attenuation coefficient at 490 nm 150 
Kd(490) (Wang et al., 2009). 

3.1. Changes to endorheic lakes 

In most cases, the endorheic basins have relatively simple boundaries due to water filling in relatively flat plains. In these cases, 

we find that deriving the land mask from medium resolution false color imagery is appropriate. While the spatial boundaries may 

not be as complex, the temporal changes can be quite frequent, often following a seasonal cycle, but also stretching over multi-155 
year time scales. Due to ever changing nature of these water bodies, care is needed to select a representative sample for deriving 

the land mask. 

As an example of expanded size of endorheic lakes, we show the Toshka Lakes in Egypt (Abd Ellah, 2021) (Fig. 1). These lakes 

are result of management in Nile’s waters during recent flood events, and have significantly expanded in surface area over the 

recent years. Since these lakes have no regular inflow and outflow, they are expected to shrink unless increased precipitation in 160 
the Nile River upstream watersheds continues in the following years. 

On the opposite side with shrinking size, also largely due to human activities, is the Aral Sea (Fig. S1 in Supplement), which has 

fragmented into several smaller lakes. The vanishing surface area, including causes and consequences for ecosystem and human 

have been subject to many studies (Shi and Wang, 2015; Wang et al., 2020). Here, we merely record the most up to date relatively 

stable extent of remnants of the lake as seen in clear sky false color imagery for years 2024–2025. This represents a substantial 165 
decrease of the surface area, even compared to already diminished extent shown in the old land mask. 

Other cases of endorheic lakes with changes in size and extent incorporated in the updated land mask are included in the 

supplementary material Section S1. All changes are summarized in Table 1. The “old” and “updated” areas listed in Table 1 refer 

to the areas derived from the land mask data in the earlier work (Mikelsons et al., 2021) and the current/updated version, 

respectively. Both of these represent estimated areas for medium (250 m) resolution satellite sensor based ocean/water color 170 
retrievals and may differ from the actual area obtained using the high resolution measurements. Most of the endorheic lakes in East 

Africa (primarily in Ethiopia and Tanzania) have seen increase of surface area due to increased rainfall in recent years (Byrne et 

al., 2024). Likewise, Lake Hulun in China has seen an expansion in recent years (Gao et al., 2024). Lastly, Lake Colhué Huapi in 

Argentina has disappeared for all but few weeks in the months of April and May, and has been removed in the updated water mask 

map.  175 

In the context of the inland water property retrievals, it should be noted that many of the endorheic lakes tend to be very shallow 

and can have a high bottom reflectance. Furthermore, many are hypersaline (e.g., Aral Sea), and may have severely altered pH 

levels (e.g., Lake Natron), potentially complicating the efforts to retrieve water properties. 

 

 180 
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Figure 1:. The extent of Toshka Lakes, Egypt, in the old land mask (a) and the updated land mask (b), along with the corresponding 

daily Chl-a retrievals [(c) and (d)] from VIIRS-NOAA-21 on March 25, 2025, and the true color imagery (e). The multi-sensor yearly 

clear sky false color imagery (f) obtained from VIIRS SNPP and NOAA-21 daily false color imageries over 2024 shows nearly identical 

water surface coverage as the daily true color imagery (e). 185 

Table 1: List of changes to endorheic lake basins in the updated land mask. 

Name and Country Coordinates Old Area (km2) Updated Area (km2) Figure 

Aral Sea, Uzbekistan/Kazakhstan ≈~ 45°N, 60°E 8643 5010 Fig. S1 

Toshka Lakes, Egypt 23.1°N, 30.9°E 71 2734 Fig. 1 

Lake Abbe, Ethiopia/Djibouti 11.15°N, 41.75°E 150 414 Fig. S2 

Lake Abijatta, Ethiopia 7.6°N, 38.6°E 62 160 Fig. S3 

Lake Eyasi, Tanzania 3.6°S, 35.1°E 71 860 Fig. S4 

Lake Manyara, Tanzania 3.6°S, 35.8°E 94 575 Fig. S4 

Lake Natron, Tanzania 2.4°S, 36.0°E 429 828 — 

Lake Sulunga, Tanzania 6.1°S, 35.2°E 144 854 Fig. S5 

Hulun Lake, China 49.0°N, 117.5°E 1990 2153 Fig. S6 

Lake Colhué Huapi, Argentina 45.5°S, 68.7°W 253 0 — 
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Figure 2:. The changes in the extent of the Roseires Dam and GERD reservoirs from the old and updated land masks for (a) the old land 190 
mask with Roseires Dam reservoir in top left part, (b) the updated land mask with expanded Roseires Dam reservoir in top left and more 

recent GERD in the lower right, (c) VIIRS-NOAA-21-derived Kd(490) using the old land mask, and (d) the same Kd(490) image using the 

new land mask. Panel (e) is the corresponding VIIRS-NOAA-21 true color imagery and panel (f) is the multi-sensor yearly clear sky false 

color imagery derived from VIIRS-SNPP and VIIRS-NOAA-21 daily false color imageries overin 2024, showing nearly identical water 

surface coverage as the daily true color imagery (e). 195 

3.2. New river dam impounded water reservoirs 

Another major source of changes to water surface are human built dams and river filled reservoirs of water as part of hydropower 

and water management projects. These actions severely alter existing ecosystems and also create new habitats. Satellites provide 

essential measurements for understanding of changing environmental conditions, such as algae blooms in relatively static waters, 

sediment dynamics, etc. One of the largest recent hydro power projects is the Grand Ethiopian Renaissance Dam (GERD) (Wheeler 200 
et al., 2016; Wheeler et al., 2020) (see Fig. 2), which was absent in the old land mask. Nearby downstream Roseires dam reservoir, 

located across the border in Sudan, has also expanded, as compared to the extent in the old land mask, though its size still varies 

with seasons. 
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We found that most of the recently created large river dams and corresponding water reservoirs are in Africa and Asia. All new 

river dam water reservoirs included in the updated water mask data set is listed in Table 2 (for Africa and South America) and 205 
Table 3 (Asia and East Europe). The river dams are listed by their names, approximate geographic coordinates, the river on which 

the dam is built on and which supplies water to the reservoir, and the estimated new area, as well as estimated time of the current 

surface extent area was reached (based on monthly clear sky false color imagery). We note again that the area estimate is based on 

suitability for medium resolution satellite inland water property retrievals, and thus will differ from the actual area measurements 

based on high spatial resolution imagery. In fact, in most cases the estimated surface areas for medium resolution satellite inland 210 
water property retrievals are smaller, sometimes significantly so. This is especially true for river dam water reservoirs, as these 

new water bodies tend to have a complex, irregular shapes, which cannot be exactly represented in medium spatial resolution. 

Coarsening high resolution data to medium resolution requires discarding many pixels with partial water coverage due to land 

contamination effects, which can severely degrade satellite water property retrievals.  

We also estimate the old surface area derived from the old water mask data set. However, for most of the cases of newly created 215 
water bodies, the surface area in the old mask data is either zero, or very small (<10%), as compared to the updated one. Only two 

of the water reservoirs listed in Table 2 are older and recently expanded to larger surface area. The Roseires Dam reservoir in 

Sudan has seen recent expansion (though with substantial seasonal variability) from 226 km2 in the old land mask to 332 km2 in 

the updated land mask, representing almost 50% increase. The reservoir created by Mtera Dam in Tanzania, though over 40 years 

since completed, also has expanded in the recent years and this change is reflected in the updated water mask as an increase of 220 
surface area from 254 km2 to 577 km2. We also found two recent river dam reservoirs in South America, both on Teles Pires River 

in Brazil (also listed in Table 2). We did not find significant changes to water surface extent of any type in the Central and North 

America.  

Globally, the largest number of new river dam water reservoirs were found in Asia, listed in Table 3. As one of examples for 

relatively recent water bodies with a fairly complex shape, we highlight reservoir impounded by the Lower Se San Dam 2 in 225 
Cambodia in Fig. 3 (Sithirith, 2021). Here, and in similar cases, we used representative high resolution Sentinel-2 MSI imagery to 

derive the medium resolution land mask. Nevertheless, all of the new water bodies were first identified in the medium resolution 

clear sky false color imagery. 

Again, as seen in the results for Africa, for most of the new river reservoir based water bodies, the area in the old water mask is 

relatively small (<10%), as compared to the area estimated from the updated land mask data set. The only significant exception is 230 
the reservoir bounded by Sriram Sagar Dam in India, which was completed in 1977. While this reservoir has existed for decades, 

we estimate that it has increased in size from 91 km2 in the old land mask to 176 km2 in the updated data set. Table 3 also lists the 

only river fed water body of decreased size – the collapse of reservoir on Dnipro river as a result of destruction of Kakhovka Dam 

in Ukraine (Vyshnevskyi and Shevchuk, 2024), which had the water surface area of 2017 km2 in the old water mask and now is 

reduced to just 69 km2 in the updated one. 235 

Table 2. List of new and changed river dam reservoirs in Africa and South America. 

Name and Country Coordinates 
Estimated New 

Area (km2) 
River 

Recent 

changes 
Figure 

Grand Ethiopian Renaissance Dam, Ethiopia 11.21°N, 35.09°E 1298 Blue Nile 2024-12 Fig. 2 

Roseires Dam, Sudan 11.80°N, 34.39°E 332 Blue Nile 2024-11 Fig. 2 

Genale Dawa III Power Station, Ethiopia 5.61°N, 39.69°E 76 Ganale Doria 2019-12 Fig. S7 

Mtera Dam, Tanzania 7.14°S, 35.98°E 577 Great Ruaha 2024-03 Fig. S5 

Julius Nyerere HPS, Tanzania 7.80°S, 37.83°E 681 Rufiji 2024-03 Fig. S8 

Calueque Dam, Angola 17.27°S, 14.55°E 78 Cunene 2024-01 Fig. S9 

Laúca Dam, Angola 9.74°S, 15.13°E 168 Cuanza 2018-05 
Fig. 

S10 

Lom Pangar Dam, Cameroon 5.38°N, 13.5°E 182 Lom 2016-11 
Fig. 

S11 

Kashimbila Dam, Nigeria 6.87°N, 9.76°E 36 Katsina Ala 2017-11 
Fig. 

S12 

Zungeru Dam, Nigeria 9.90°N, 6.30°E 334 Kaduna 2021-12 
Fig. 

S13 

Unnamed Dam, Burkina Faso 13.36°N, 2.05°W 19 White Volta 2017-10 
Fig. 

S14 

Samendéni Dam, Burkina Faso 11.38°N, 4.58°W 86 Black Volta 2018-10 
Fig. 

S15 
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Souapiti Dam, Guinea 10.42°N, 13.25°W 91 Konkouré 2021-12 
Fig. 

S16 

Colíder Dam, Brazil 10.98°S, 55.77°W 116 Teles Pires 2018-04 
Fig. 

S17 

Sinop Dam, Brazil 11. 27°S, 55.45°W 142 Teles Pires 2019-05 
Fig. 

S17 
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Figure 3:. The land mask changes in lower Mekong River basin in Cambodia for (a) the old land mask showing Mekong River and its 240 
tributaries in the northern part of Cambodia, (b) updated land mask with the reservoir created by Lower Se San Dam 2 (right side), and 

VIIRS-NOAA-21-derived daily Kd(490) with (c) the old and (d) the updated land mask, respectively. Panel (e) shows the corresponding 

VIIRS-NOAA-21 false color imagery and panel (f) shows the detailed view of the impounded basin in the daily false color imagery 

derived from Sentinel-2A MSI scene, captured on 9 January 2025.  

Table 3: List of new and changed river dam reservoirs in Asia and East Europe. 245 

Name and Country Coordinates 
Estimated new 

area (km2) 
River 

Recent 

changes 
Figure 

Nizhne-Bureyskaya Dam, Russia 49.79°N, 129.98°E 123 Bureya 2019-05 Fig. S18 

Baihetan Dam, China 27.22°N, 102.90°E 135 Jinsha 2021-09 Fig. S19 

Wendegen Reservoir, China 46.9°N, 121.94°E 75 Chuoer 2024-08 Fig. S20 

Geshan Dam, China 47.36°N, 127.49°E 27 Nuomin 2022-09 Fig. S21 

Pubugou Dam, China 29.21°N, 102.83°E 58 Dadu 
<before 

2012 
Fig. S22 

Chushuidian Dam, China 32.25°N, 113.96°E 24 Huaihe 2020-09 Fig. S23 

Ban Pook Dam, Laos 16.36°N, 106.24°E 21 — 2019-10 Fig. S24 
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Nam Theun 1 HPP, Laos 18.36°N, 104.15°E 34 Nam Kading 2022-10 Fig. S25 

Nam Ngiap 1 Dam, Laos 18.65°N, 103.52°E 34 Nam Ngiap 2020-01 Fig. S26 

Nam Khong 1 Dam, Laos 14.55°N, 106.74°E 14 Nam Khong 2021-11 Fig. S27 

Nam Khong 2 Dam, Laos 14.50°N, 106.86°E 2 Nam Khong 2022-11 Fig. S27 

Nam Khong 3 Dam, Laos 14.57°N, 106.92°E 12 Nam Khong 2022-11 Fig. S27 

Xe Namnoy Dam, Laos 15.03°N, 106.6°E 17 Xe Namnoy 2020-11 Fig. S27 

Lower Se San 2 Dam, Cambodia 13.55°N, 106.26°E 177 Tonlé San 2018-10 Fig. 3 

Prakaet Dam, Thailand 13.09°N, 101.82°E 5 Prakaet 2018-11 Fig. S28 

Hang Maeo Dam, Thailand 13.07°N, 101.97°E 9 Hang Maeo 2023-11 Fig. S28 

Jatigede Dam, Indonesia 6.86°S, 108.10°E 28 Manuk 2016-06 Fig. S29 

Myittha Dam, Myanmar 21.99°N, 94.04°E 14 Myittha 2016-10 Fig. S30 

Hiramandalam Dam, India 18.67°N, 83.93°E 8 Minor stream 2018-11 Fig. S31 

Kundaliya Dam, India 23.92°N, 76.31°E 23 Kali Sindh 2018-09 Fig. S32 

Mohanpura Dam, India 23.96°N, 76.78°E 35 Newaj 2018-09 Fig. S32 

Lower Indra Dam, India 20.39°N, 82.67°E 21 Indra 2018-09 Fig. S33 

Machagora Dam, India 22.12°N, 79.16°E 22 Pench 2016-10 Fig. S34 

Mallana Sagar Dam, India 17.96°N, 78.74°E 25 Minor stream 2021-12 Fig. S35 

Mid Manair Dam, India 18.39°N, 78.96°E 46 Manair 2019-11 Fig. S35 

Sriram Sagar Dam, India 18.96°N, 78.34°E 176 Godavari 
<before 

2012 
Fig. S36 

Moragahakanda Dam, Sri Lanka 7.70°N, 80.77°E 18 Amban Ganga 2018-01 Fig. S37 

Kalu Ganga Dam, Sri Lanka 7.56°N, 80.83°E 5 Kalu Ganga 2020-01 Fig. S37 

Yan Oya Dam, Sri Lanka 8.74°N, 80.88°E 34 Yan Oya 2019-02 Fig. S38 

Ilısu Dam, Turkey 37.53°N, 41.85°E 72 Tigris 2020-05 Fig. S39 

Alpaslan-2 Dam, Turkey 39.04°N, 41.52°E 43 Murat 2021-05 Fig. S40 

Kakhovka Dam, Ukraine 46.78°N, 33.37°E 69 Dnipro 2023-07 Fig. S41 

3.3. Changes to coastal regions  

Another type of human induced changes to global surface waters is due to land reclamation, and changes to land and water surface 

cover in coastal regions. Such changes are typically very gradual and can be readily identified in the daily satellite daily imagery, 

or clear sky imagery derived over a longer time period. Figure 4 shows such changes near the coastline of United Arab Emirates 

(UAE), with the updated land mask (Fig. 4b) closely resembling the true and false color imagery (Fig. 4c and 4d, respectively). 250 
The updated land mask (Fig. 4b) adds offshore Crescent Island and newly reclaimed lands near UAE coastline (Subraelu et al., 

2022), absent in the old land mask (Fig. 4a). Other recorded areas of land reclamation projects include establishment of new polders 

in Markermeer, Netherlands, and a port expansion in Singapore. However, the largest total area of changes between the old and 

updated land masks were seen in Egypt, partly due to expansion of the Suez Canal, but mostly due to changes in the nearby Nile 

wetlands, also related to human activities. This includes both areas previously as water in the old land mask and identified as land 255 
in the updated one, and vice versa. 
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Figure 4:. Changes between the old and updated land masks due to land reclamation projects near UAE coastline of (a) old land mask 

before changes, (b) the updated land mask showing the Crescent Island (top center right) and large scale land reclamation near coast, 

(c) VIIRS-SNPP true color imagery on May 13, 2025, and (d) monthly clear sky imagery derived from daily VIIRS-SNPP and VIIRS-260 
NOAA-21 false color imageries in May 2025. 

Table 4. List of changes to coastal areas 

Name and Country Coordinates 
Estimated area of 

changes (km2) 
Type of changes Figure 

Port Said and Suez Canal, Egypt 7.13°S, 35.98°E 453 
Artificial lake and 

waterway development 
Fig. S44 

Marker Wadden, Netherlands 52.59°N, 5.38°E 8 Land reclamation Fig. S43 

Trintelzand, Netherlands 52.65°N, 5.38°E 6 Land reclamation Fig. S43 

Strandeiland, Netherlands 52.36°N, 5.02°E 7 Land reclamation Fig. S43 

Tuas, Singapore 1.23°N, 103.63°E 22 Land reclamation Fig. S42 

Crescent Island, UAE 25.31°N, 54.65°E 1 Land reclamation Fig. 4 

UAE coastline 24.75°N, 54.56°E 52 Land reclamation Fig. 4 

 

3.4. Fixing artifacts in the earlier land mask 

Lastly, we have fixed a couple of artifacts found in the earlier version of the water mask data set. One of these was found in the 265 
Arctic near East Greenland. Since not all data sources in our earlier study covered the polar regions, fewer data sources were used, 

and the results were more prone to errors. In particular, two of the MODIS-derived data sources MOD44Wv5 land mask (Carroll 

et al., 2009) and MOD44Wv6 land mask (Carroll et al., 2017) had an outsized weight, and that caused their artifacts to propagate 

into the derived water mask data. In this updated version, we have corrected this artifact by using the OpenStreetMap 

(www.openstreetmap.org)(https://openstreetmap.org) data, which we also find as consistent with recent yearly clear sky true and 270 
false color imageries. 

 

https://openstreetmap.org/
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Figure 5:. Area of East Greenland showing artifacts in MOD44Wv5 (a) and MOD44Wv6 (b) land masks used as sources infor producing  

the old land mask (c) and propagating artifacts to it. In contrast, OSM data (d) are much more consistent with the yearly multi-sensor 275 
clear sky true color imagery (f) obtained from the daily VIIRS and OLCI sensor imagery in 2024, and were used as data source to 

produce the updated land mask (e) over this area. 

 

We also fixed another artifact and improved the land mask data set to include recent changes in the Amazon River Delta region. 

Here, deriving accurate land mask data set is challenging due to a number of factors. Frequently cloudy skies limit the number of 280 
satellite observations in the region, and relatively high tidal amplitudes cause rapid diurnal changes in large tidal regionsareas. In 

addition, high sediment loads in waters elevate the reflectance in the NIR part of spectrum and make it more difficult to distinguish 

the sediment rich waters from the adjacent wetlands in the false color imagery. These factors were the likely causes of the artifacts 

in the sources used to derive the old land mask data set. The Global Forest Cover (GFC) data set, in particular, misclassified large 

areas of shallow sediment rich waters north of the Amazon River Delta as land, and GSF data were also somewhat affected. The 285 
artifacts from these sources propagated to the old land mask data set (Fig. S45a) and have been removed in the new land mask data 

(Fig. S45b). Furthermore, we also identified many natural changes to water surface extent in the Amazon River Delta region, 

including changes to river paths and shifting coastlines, and incorporated them in the new land mask data set. Since we could not 

find a single recent cloud free Sentinel-2 MSI scene, we opted to use a number of (around 50) recent (2024–2025) Sentinel-2 MSI 

scenes over this region to derive clear sky true and false color imageries in high spatial resolution. This false color imagery was 290 
then used to derive an updated medium resolution land mask using the same methodology as described above. The resultant land 

mask roughly represents the extent of land at a medium tidal water height. 

4. Data availability 

Both the earlier and the updated land/water mask data are publicly available (Mikelsons and Wang, 2025, doi: 

10.17632/9r93m9s7cw.2).https://doi.org/10.17632/9r93m9s7cw.2). Interactive visualization of the updated land mask data is also 295 

https://doi.org/10.17632/9r93m9s7cw.2
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available on the OCView web sitewebsite (https://www.star.nesdis.noaa.gov/socd/mecb/color/ocview/ocview.html), along with 

the monthly global clear sky true and false color imagery used in this study. 

5. Discussion and conclusions 

We have derived an updated global medium (250 m) resolution land mask, incorporating the changes to the global water surface 

over the past decade. In particular, we have also shown that clear sky imagery derived from multi-sensor daily imagery time series 300 
can be a valuable resource to evaluate the accuracy of the existing land mask data sets, and to identify recent changes in the global 

water surface.  

We find that most common water surface changes are due to human activities, such as newly constructed river dams, or land 

reclamation projects in coastal regions. Changes to the endorheic lakes found in arid regions also can be due to human water use, 

but in most cases, these are driven by inter annual changes to the upstream rainfall amounts.  305 

While the target application for this updated land mask data set is medium resolution satellite water color measurements, we expect 

it to be useful in other types of remote sensing applications. In fact, we argue that new water bodies often display the most rapid 

environmental changes, and are of particular interest to the research community, including remote sensing of land, 

atmosphereterrestrial, atmospheric, and cryospherecryospheric properties. We also note that for satellite sensors with long mission 

lifespans (currently VIIRS-SNPP, MODIS-Aqua, and at some point, OLCI-Sentinel-3A OLCI), different land mask data sets are 310 
required to represent different time periods of mission.  

While this study presents a static binary global land mask data set, it is clear that in the regions where water coverage follows a 

clear seasonal cycle, satellite ocean/water color retrievals would benefit from a seasonally resolved land mask data set. However, 

this will require much more efforts with detailed validations. Likewise, inclusion of water fractional coverage data in land mask 

data set may also be beneficial for many applications, such as more accurate evaluation of coastal adjacency effects in future 315 
satellite water color retrieval algorithms. 

Overall, periodic updates to the global land mask data are essential to maintain accuracy. However, In fact, we can gauge the 

temporal frequency of changes to global water surface by looking at the estimated time of the most recent changes (as well as 

quantitative variations to the water surface area) listed in Tables 2 and 3. From these data, we suggest that, at a global scale, about 

3–5 year update cycle may be adequate for medium resolution land mask data sets used in satellite ocean/water color studies. 320 
Local, regional, and high spatial resolution land mask data sets likely require more frequent updates. Ultimately, the update 

frequency is also affected by practical considerations, such as available research time and resources.  

In documenting the latest significant regional changes to the global land mask data set, we also acknowledge that incremental 

updates such as those detailed in this work, are also study may be time consuming, and can be morepotentially prone to some form 

of human biasbiases. In contrast, automated methods have been widely used for mapping global water and land cover extents and 325 
require less human involvement. We surmise that the process of extracting the land mask from the clear sky imagery employed in 

this work may also be automated, using an existing or a custom-tailored approach. Nevertheless, as seen in this and our earlier 

work, automated approaches can also lead to artifacts, and in such cases the clear sky imagery remains a valuable tool for evaluation 

of existing land mask data sets. Thus, careful validation is always necessary, especially for global studies covering a wide range 

of land surface types and water optical properties. In fact, having surveyed and evaluated a number of data sources derived by a 330 
variety of mostly automated approaches, we would like to stress the importance of data validation by a human expert. In this task, 

we found that interactive visualization platforms (such as OCView) are immensely useful, including the capability to inspect 

imagery at different spatial resolutions, and to quickly switch and compare different data sources and products, all while 

maintaining the geographical context. Use of automated methods is likely the only viable option for work with and deriving of 

global high spatial resolution land mask data sets due to large data volumes, and the use of interactive multi resolution imagery in 335 
validation can be especially useful here. The Sentinel-2 MSI satellite series is seen as one of the leading high resolution 

environmental data sources with good spatial and spectral resolutions, and data are publicly available. Use of commercially sourced 

satellite data imagery may help to increase the observation frequency but may be cost prohibitive for global applications. 
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