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Abstract. Accurate and scalable crop type maps are vital for supporting food security, as they provide critical information on 

the specific crops cultivated in a given area to inform agricultural decision-making and enhance crop productivity. The 10 

generation of these maps depends on high-quality crop type ground truth data, which are essential for developing remote 

sensing–based crop type classification models applicable across varying spatial and temporal contexts. Yet existing crop type 

ground truth datasets often focus on specific crop types of limited spatial and temporal ranges, constrained by the high cost 

and labor intensity of traditional field surveys. This limitation hinders their applicability to large-scale and multi-year 

applications, such as nationwide crop monitoring and long-term yield forecasting. Additionally, most existing crop type ground 15 

truth datasets contain only pixel-level labels without explicit field boundaries, impeding the extraction of field-level texture 

and structure information needed for accurate crop type mapping in heterogeneous agricultural landscapes. Collectively, these 

limitations hinder the development of scalable crop type mapping workflows and reduce the precision and reliability of 

resulting crop type maps for agricultural monitoring and decision support. In this study, we introduce CropSight-US, the first 

national scale, object-based crop type ground truth dataset for the contiguous United States (CONUS). This dataset spans the 20 

years 2013 to 2023 and includes over 100,000 crop type ground truth objects across 17 major crops and 294 Agricultural 

Statistics Districts, offering broad spatial and temporal coverage and high representativeness at field level. Each crop type 

ground truth object is accompanied by an uncertainty score that quantifies the confidence in its crop type identification, 

enabling users to filter or weight samples according to their specific reliability requirements. The crop type ground truthing 

framework of CropSight-US innovatively integrates crop labels derived from Google Street View imagery with field 25 

boundaries delineated from Sentinel-2 imagery to produce object-based crop type ground truth data. This scalable framework 

offers a valuable alternative to traditional field surveys by replacing in-person observations with virtual audits, significantly 

improving the efficiency, scalability, and cost-effectiveness of ground truth data collection. This framework achieves 97.2% 

overall accuracy in crop type identification and 98.0% F1 score in cropland field boundary delineation using the reference 

dataset. By delivering high-resolution, standardized, and reproducible reference data, CropSight-US establishes a new 30 
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benchmark for crop type ground truthing and supports more informed agricultural research, monitoring, and decision-making. 

CropSight-US is available at https://doi.org/10.5281/zenodo.15702415 (Zhou et al., 2025). 

1 Introduction 

Food security will face increasing pressure in the coming decades due to climate change, population growth, and limited 

resources. In response to these growing pressures, a variety of agricultural policies have been developed to promote more 35 

efficient crop management practices (e.g., crop rotation and intensification) and to boost crop productivity. Accurate crop type 

maps play a central role in guiding these policy decisions by providing detailed information on the specific crops cultivated in 

a given area. In recent years, advances in remote sensing, coupled with machine learning and deep learning techniques, have 

enabled the efficient generation of crop type maps (Weiss et al., 2020; Koukos et al., 2024). As essential training data for 

remote sensing-based classification models, crop type ground truth plays a critical role in crop type mapping by providing 40 

labeled examples of various crop species. These crop labels enable models to accurately classify crop types across large 

geographic regions by capturing the distinctive remote sensing signatures (e.g., spectral characteristics, phenological patterns, 

row or canopy structures, and harvesting timelines) associated with each crop type. Therefore, high-quality crop type ground 

truth datasets are essential for ensuring the accuracy of crop type maps and supporting a wide array of downstream agricultural 

applications (e.g., crop phenology monitoring, irrigation planning, and crop yield forecasting).  45 

Existing crop type ground truth datasets generally fall into two categories. The first category encompasses the crop type 

labels collected directly through field surveys. As the most traditional approach, field surveys provide highly accurate crop 

type information through in-person observation. However, these field-collected ground truth datasets are often sparse, 

geographically uneven, and infrequently updated due to the high costs and labor demands of field data collection (Liu et al., 

2012; Jolivot et al., 2021). In addition, field collection efforts typically capture only the dominant crop types within defined 50 

surveyed areas and time frames, often overlooking less prevalent crops or cultivation cycles that may be common in 

neighboring regions or fall outside the surveyed cultivation windows. These constraints limit the utility of such datasets in 

supporting the development of remote sensing–based crop classification models that generalize across different regions and 

growing seasons (Wang et al., 2022; Wu et al., 2022; McNairn and Jiao, 2024). The second category of crop type ground truth 

data is the crop type labels derived from existing crop type products, such as the Cropland Data Layer (CDL) for the United 55 

States (Boryan et al., 2011) and EUCROPMAP for European countries (d’Andrimont et al., 2021; Ghassemi et al., 2022; 

Ghassemi et al., 2024). With their wide spatial and temporal coverage, these crop type products supply proxy labels that stand 

in for costly field surveys and are increasingly used to train and validate crop classification models (Tran et al., 2022; Becker-

Reshef et al., 2023). This strategy enables the rapid generation of spatially extensive and temporally consistent ground truth 

data to support agricultural monitoring across diverse regions and growing seasons, which is advantageous in regions or periods 60 

with limited field observations. However, the accuracy and representativeness of these product-based “ground truth” data can 

vary considerably across crop types, regions, and years. Their quality depends on the reliability of the original field-based crop 

observations, the resolution and consistency of remote sensing inputs, and the robustness of the classification models used to 
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produce the maps (Chivasa et al., 2017; Nowakowski et al., 2021). In addition, their utility is limited by delayed release 

schedules. Since existing crop type maps are typically generated using year-round satellite observations to capture complete 65 

phenological cycles (Wu et al., 2023; Yang et al., 2023; Yang et al., 2024), the “ground truth” for a given year often becomes 

available in following years (e.g., CDL is often released in the subsequent year). This delay limits their applicability for near-

real-time crop mapping and subsequent time-sensitive applications such as in-season yield forecasting, pest and disease 

monitoring, or early warning systems that require more concurrent crop type information (Stehman and Foody, 2019; Wu et 

al., 2023; Liu et al., 2024). 70 

In the practice of crop type mapping, object-based crop type ground truth data (e.g., at field- or parcel-level) is typically 

created by associating crop labels with delineated field boundaries to support more accurate and robust crop type classification. 

Compared to pixel-based labels, object-based labels provide a more detailed and spatially coherent representation of 

agricultural fields. By enabling the characteristics of both within-field features (e.g., spectral, textural, and shape attributes) 

and between-field relationships (e.g., connectivity, contiguity, proximity, and directional patterns), object-based crop type 75 

labels enhance the spatial context available to classification models and improve crop type mapping performance (Ok et al., 

2012; Kussul et al., 2016; Li et al., 2016; Zhang et al., 2018). In addition, for large-scale crop mapping with remote sensing 

technique, aggregating pixel-level information within object-based boundaries could help mitigate cloud contamination by 

increasing the availability of valid observations at the field level. However, the generation of object-based crop type ground 

truth dataset remains challenging due to the lack of explicitly defined field boundaries in most available datasets. Field survey-80 

based datasets, typically collected through Global Positioning System-referenced observations, are generally coordinate-based 

and provide point-level crop type labels without associated field geometries (McNairn and Jiao, 2024). Crop product-based 

datasets, which are derived by sampling pixel-level crop type labels from existing crop type maps, similarly lack cropland field 

boundary delineations. Transforming either category into object-based ground truth requires extensive post-processing, such 

as aligning pixel-level labels with external field boundary datasets or aggregating classified pixels into polygons based on 85 

spatial and spectral similarity. Such post-processing efforts are resource-intensive and pose a major barrier to the scalable 

production of high-quality object-based crop type labeling datasets across diverse regions and time periods. 

In this paper, we introduce CropSight-US, the first national scale, object-based crop type ground truth dataset that provides 

representative and extensive crop type information across multiple years for the contiguous United States (CONUS). Covering 

17 major crop types from 2013 to 2023 across 294 Agricultural Statistics Districts (ASDs) in CONUS, CropSight-US is 90 

generated using our proposed crop type ground truthing framework, which integrates crop type labels identified from Google 

Street View (GSV) imagery with field boundary information derived from high-resolution Sentinel-2 imagery. This novel 

framework enables the efficient collection of high-quality, object-based crop type ground truth information at large spatial and 

temporal scales by replacing the in-person field observations required in traditional surveys with virtual audits. With its built-

in uncertainty quantification design, the collected CropSight-US dataset incorporates uncertainty information to support quality 95 

assessment and informed model development. Its object-based structure, which includes both crop type labels and delineated 

field boundaries, facilitates the training of crop type classification models that leverage field-level characteristics. As a major 

https://doi.org/10.5194/essd-2025-527
Preprint. Discussion started: 3 November 2025
c© Author(s) 2025. CC BY 4.0 License.



4 

 

global agricultural production region, CONUS serves as a critical reference area for agricultural research and remote sensing 

applications. Its diverse cropping systems, shaped by a wide range of climates, soils, and management practices, make it an 

ideal setting for systematically building representative ground truth dataset of a diversity of crop types. This rich variability 100 

allows CropSight-US to support the development of generalizable crop classification models capable of robust mapping across 

diverse agricultural landscapes and effective transfer to data-scarce regions (Hao et al., 2020; Nowakowski et al., 2021; Koukos 

et al., 2024; Mai et al., 2025). Together, these features position CropSight-US as a foundational resource for advancing scalable, 

transferable, and reliable crop type mapping in practical and operational agricultural applications (e.g., precision agriculture 

practice, compliance monitoring systems). 105 

The remainder of this paper is organized as follows: Sect. 2 introduces the study area and describes the CropSight-US data 

sources. Sect. 3 presents the four components of the crop type ground truthing framework used to develop the dataset, including 

(1) operational cropland field-view GSV metadata collection, (2) reference dataset (CropGSV-Ref) building, (3) crop type 

identification, (4) cropland field boundary delineation, along with the framework evaluation methods and production of the 

CropSight-US dataset. Sect. 4 evaluates the performance of the crop type ground truthing framework. Sect. 5 provides a 110 

comprehensive overview of the dataset, including its spatial and temporal coverage, crop type composition, and a Google Earth 

Engine (GEE)-enabled interface for user access. Sect. 6 concludes with a discussion of CropSight-US’ merits, current 

limitations, future directions for improvement, and potential avenues for extending the dataset and its ground truthing 

framework. 

2 Study Area and Data 115 

2.1 Study Area 

Our study focuses on the Contiguous United States (CONUS), a globally significant agricultural production region. With its 

wide range of agroecological zones, climate regimes, and cropping systems, CONUS serves as a valuable reference area for 

agricultural research and remote sensing applications. CONUS’ diverse environmental and agricultural management 

conditions have shaped the regional variation in dominant crops, such as corn and soybean prevalent in the Midwest, cotton 120 

and sorghum in the South, and a mix of specialty crops in parts of the West and Southeast (Figure 1). This broad spectrum of 

cultivation practices and environmental conditions makes CONUS an ideal testbed for building operational ground truth 

datasets at large spatial and temporal scales. Our study period spans from 2013 to 2023, based on the availability and quality 

of street view imagery used for crop type ground truth collection.  
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 125 

Figure 1: Major Crop Types in the Agricultural Statistics Districts (ASDs) of Contiguous United States (CONUS), 

visualized using the 2024 USDA Cropland Data Layer (CDL) product. 

2.2 Data 

The primary data source used for crop type ground truth collection in this study is Google Street View (GSV) imagery, accessed 

through the Google Maps platform (Anguelov et al., 2010). Since its launch in 2008, GSV has expanded its coverage 130 

extensively across CONUS, offering a rich archive of high-resolution, georeferenced 360-degree panoramic images. These 

images are captured by camera-equipped vehicles that travel along public roads. Each GSV panoramic image is accompanied 

by rich metadata attributes, including the Pano ID, heading, latitude, longitude, month, and year. The Pano ID serves as a 

unique identifier for each panorama, while the heading indicates the direction the camera-equipped vehicle is facing when 

capturing the image. The latitude, longitude, month, and year associated with each panorama provide geographic and temporal 135 

context, which we used to filter, sample, and acquire the representative GSV imagery for subsequent crop type ground truth 

collection. GSV metadata and imagery are both retrieved using Google Street View Static API 

(http://maps.googleapis.com/maps/api/streetview). 

To support crop type ground truth collection, we integrate multiple datasets to collect GSV imagery from agricultural 

regions, with unobstructed view of croplands, under different irrigation regimes, and during optimal growing periods. First, 140 

we use the 10-m WorldCover land cover product (Zanaga et al., 2022) to identify GSV images falling within areas labelled as 

“cropland” or “tree cover,” which are more likely to capture agricultural landscapes. Derived from Sentinel-1 and Sentinel-2 
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imagery, WorldCover offers consistent 10-m global land cover information suitable for large-scale filtering. Second, road 

network data from OpenStreetMap (Hakley & Weber, 2008) are used to exclude GSV collected along U.S. primary roads and 

at major intersections, reducing the likelihood of visual obstructions such as overpasses or interchanges in the corresponding 145 

GSV imagery. Third, to ensure that the collected crop type ground truth reflects both irrigated and rainfed systems, we 

incorporate the Landsat-based Irrigation Dataset (LANID) (Xie et al., 2021) to guide the collection of GSV imagery, enabling 

the collection of representative samples under different irrigation management strategies. Lastly, we use USDA’s Crop 

Progress Reports (CPRs) to guide the selection of GSV imagery collected during the region-specified crop growing seasons. 

CPRs offer weekly updates on crop development stages at the state level across the U.S., enabling us to define region-specific 150 

planting-to-harvest windows. Focusing on GSV imagery captured within these tailored windows helps exclude those images 

more likely to depict barren fields or off-season conditions, thereby streamlining the labeling process and improving the overall 

accuracy of crop type ground truth collection. 

We use cloud-free, visible bands (RGB) of Sentinel-2 imagery to extract field boundaries that correspond to the crop 

labels identified from GSV imagery. Sentinel-2’s 10-meter spatial resolution, combined with its frequent revisit times, enables 155 

the capture of field conditions that align with the timing of GSV collection, while also providing visually distinct boundary 

details to support accurate field delineation. When cloud cover, missing data, or seasonal mismatches limit the availability of 

suitable Sentinel-2 imagery, we supplement with high-resolution aerial photographs from the National Agriculture Imagery 

Program (NAIP) via Google Earth Engine. NAIP images, typically at 1 m resolution, are captured during the agricultural 

growing season across the U.S. and are selected based on acquisition dates closest to the corresponding GSV images. 160 

The Cropland Sequence Boundaries (CSB) dataset is used as a benchmark product for evaluating our crop type ground 

truthing framework due to its nationwide coverage and object-level crop type labels. CSB is generated from pixel-level 

Cropland Data Layer (CDL) data through a vectorization process that leverages multiple years of CDLs to delineate 

homogeneous field objects (Boryan et al., 2011; Abernethy et al., 2023; Hunt et al., 2024). With its object-based crop type 

information, CSB has been widely used in applications that track crop rotations and require stable field boundaries over time 165 

(Castle et al., 2025; Renwick et al., 2025; Sohl et al., 2025). 

3 Methods 

This section outlines the methodological workflow for generating CropSight-US, a nationwide object-based crop type ground 

truth dataset spanning 2013 to 2023. The workflow consists of three main components: the development of the crop type 

ground truthing framework, its evaluation, and the subsequent production of the CropSight-US dataset (Fig. 2). The crop type 170 

ground truthing framework contains four major components: (1) Operational Cropland Field-View GSV Metadata Collection 

(Sect. 3.1.1): This component collects the metadata information of all historical geotagged cropland field-view GSV images 

that are suitable for crop type ground truth retrieval at large scales in an operational fashion. (2) Object-based Reference 

Dataset Building (Sect. 3.1.2): This step constructs a high-quality object-based reference dataset (CropGSV-Ref) to support 

the development of crop type identification and cropland field boundary delineation models. To ensure the reference dataset 175 
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captures a wide range of farming conditions, samples are selected from collected cropland field-view GSV metadata across 

different regions, with stratification based on the extent of cropland/tree cover and irrigated land. The finalized CropGSV-Ref 

dataset contains cropland field-view GSV imagery with manually labeled crop types and corresponding Sentinel-2 imagery 

with annotated field boundaries. (3) Crop Type Identification (Sect. 3.1.3): An uncertainty-aware crop type classification 

model, CONUS-UncertainFusionNet, is developed to identify crop types from field-view GSV imagery using the labeled field-180 

view GSV imagery from CropGSV-Ref. The model combines Vision Transformer (ViT-B16) and ResNet-50 to capture both 

global patterns and local plant details in field-view GSV imagery, and incorporates a Bayesian design to generate crop type 

predictions along with uncertainty estimates; (4) Cropland Field Boundary Delineation (Sect. 3.1.4): Segment Anything Model 

(SAM) is adopted and fine-tuned using field boundary annotations from CropGSV-Ref and applied to extract cropland field 

boundaries from Sentinel-2 imagery corresponding to each cropland field-view GSV imagery. Leveraging SAM’s prompt-185 

based design, geotagged coordinates from each cropland field-view GSV imagery serve as spatial prompts to guide boundary 

delineation specific to each field-view location. The performance of the crop type ground truthing framework (Sect. 3.2) is 

evaluated from three perspectives, including the accuracy in crop type classification from cropland field-view GSV imagery, 

the effectiveness in delineating cropland field boundaries using Sentinel-2 imagery, and the reliability of the collected object-

based crop type information in comparison with that from the CSB benchmark product. Finally, the CropSight-US dataset 190 

(Sect. 3.3) is generated by applying the developed crop type ground truthing framework across CONUS. The resulting product 

provides object-based crop type information including crop type labels associated with classification uncertainty and delineated 

cropland field boundaries. 
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 195 

Figure 2: Methodological workflow for generating the object-based crop type ground truth dataset CropSight-US 

across CONUS. GSV images are from © Google Maps, and Sentinel-2 imagery thumbnails are from © European 

Union/ESA/Copernicus, processed via Google Earth Engine. 

3.1 Crop Type Ground Truthing Framework 

3.1.1 Operational Cropland Field-View GSV Metadata Collection 200 

The operational collection method is designed to systematically extract cropland field-view metadata from the extensive GSV 

database to enable large-scale crop type labeling. Firstly, raw GSV metadata across CONUS are collected by dividing the 

region into 10-km grid cells and querying available GSV metadata within each grid cell. This grid-based batch processing 

approach streamlines the acquisition of large volumes of raw GSV metadata and facilitates efficient data management. Each 

raw GSV metadata record includes the geographic coordinates, month-year of imagery capture, and heading information for 205 

the vehicle which collects the GSV imagery. Secondly, to ensure that the collected GSV metadata accurately correspond to 

cropland field-view GSV imagery suitable for crop type identification, a series of spatial and temporal filters are applied. For 

spatial filtering, raw GSV metadata located along U.S. primary roads or near road junctions are removed based on road network 

information from OpenStreetMap, as such locations often include roadway medians, signage, or traffic infrastructure that 

obstruct clear views of adjacent fields. In addition, since each raw GSV metadata is collected on the roads and linked to a 210 

panoramic image capturing views on both sides of the road, the image coordinates are offset by 50 meters in both roadside 

directions to approximate the actual cropland field-view locations (Liu et al., 2024). These offset coordinates are then filtered 
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using the WorldCover land cover map to ensure that the corresponding GSV imagery depicts agricultural landscapes (i.e., 

cropland field-view GSV imagery). Specifically, a 100-meter-radius buffer is applied around each location, and those lacking 

cropland or tree cover pixels within the buffer are excluded from the dataset. For temporal filtering, crop-specific crop progress 215 

calendars from the USDA are referenced to define regional crop growth windows at the state level, and only raw GSV metadata 

captured within these crop-specific growing seasons are retained, ensuring that their corresponding GSV imagery are 

temporally aligned with periods when vegetation is present and crop type is visually distinguishable with its unique features 

and cultivation patterns. The final cropland field-view GSV metadata contain in-field location coordinates, acquisition month 

and year, and the heading direction of each cropland field-view GSV imagery ready to be retrieved. Sect. 5.1 summarizes the 220 

overall spatial and temporal distribution of the collected cropland field-view metadata. 

3.1.2 Object-based Reference Dataset Building 

To support the development of the crop type ground truthing framework, we manually construct a high-quality reference 

dataset CropGSV-Ref with object-based crop type information. This reference dataset consists of geotagged cropland field-

view GSV imagery paired with crop type labels (i.e., the GSV component), along with corresponding Sentinel-2 imagery 225 

linked to annotated cropland field boundary polygons (i.e., the field boundary component).  

First, we select a subset of cropland field-view GSV metadata using a stratified, spatially adaptive sampling strategy to 

ensure broad geographic coverage and capture agricultural diversity. The core idea of this strategy is to determine the sample 

size for each ASD by accounting for two key factors: the extent of cultivated land and the distribution of irrigation practices. 

The sampling density is increased in regions with intensive agricultural activities to ensure sufficient representation, while the 230 

sampling strategy also captures variability in land management practices across the CONUS. We begin by setting a total sample 

size of 150,000 images to balance broad spatial coverage with computational feasibility. This total is proportionally distributed 

across ASDs based on their share of cultivated land, estimated using the fraction of cropland pixels in the WorldCover land 

cover product. The result is a target number of samples for each ASD, ensuring that regions with more extensive agricultural 

activities are more heavily represented. To further reflect differences in management practices, we stratify each ASD’s sample 235 

target into irrigated and rainfed components. The relative allocation between these components is derived from the LANID 

dataset, using the estimated proportion of irrigated and rainfed cropland within each ASD. Following stratification, we 

implement a fishnet-based adaptive grid sampling method to ensure spatial diversity and reduce sample clustering within both 

irrigated and rainfed categories. Clustering is particularly likely in areas with dense road networks or uneven GSV coverage, 

where cropland field-view GSV metadata tend to be concentrated. To enable this stratified sampling, we first assign irrigation 240 

status to each cropland field-view GSV metadata by analyzing LANID values within a 50-meter semi-circular buffer oriented 

along the GSV heading. This allows us to associate each cropland field-view GSV metadata with the dominant irrigation 

condition of the field it represents and classify it into either the irrigated or rainfed stratum. Sampling is then conducted 

independently for irrigated and rainfed strata. A uniform 10-km grid is first overlaid on each ASD, and the grid cell size is 

iteratively adjusted until the number of cells containing at least one valid cropland field-view GSV metadata aligns with the 245 
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stratified sample target for the irrigated or rainfed stratum. From each qualifying grid cell, one cropland field-view GSV 

metadata is randomly selected. By explicitly linking sample allocation to cropland extent, irrigation distribution, and spatial 

coverage, this strategy yields a robust, well-distributed, and management-aware set of cropland field-view GSV metadata. 

These sampled cropland field-view GSV metadata are then used to retrieve cropland field-view GSV imagery via the Google 

Street View API to build the CropGSV-Ref dataset. 250 

After retrieving the sampled cropland field-view GSV imagery, we construct the GSV component of the CropGSV-Ref 

dataset through a systematic manual labeling process. Crop type annotations are conducted with guidance from a plant biologist 

and supported by external resources such as iNaturalist. The resulting dataset includes 17 dominant crop type classes (Fig. 3), 

including soybean, corn, sorghum, alfalfa, cotton, peanut, sunflower, almond, grape, orange, pistachio, walnut, potato, 

sugarbeet, (small-grain) cereal, canola, sugarcane, along with an “others” category depicting non-agricultural scenes, rare crops 255 

or those lacking identifiable crop features. Given the visual similarity of small-grain cereals in field-view imagery, we group 

rice, wheat, and other cereals (e.g., millet, rye, triticale) into a single category to reduce labeling ambiguity (Huang et al., 2022; 

Peña-Barragán et al., 2011). For each crop type, we label up to 2,500 high-quality GSV images. Images are excluded from the 

dataset if they show poor lighting, motion blur, or occlusion features. This labeling protocol ensures that the crop type 

annotations used in model training and evaluation are both visually interpretable and agronomically meaningful across diverse 260 

U.S. cropping systems. 

 

Figure 3: Examples of the GSV component of the CropGSV-Ref reference dataset showcasing the cropland field-view 

GSV images of 17 crop types (GSV images are from © Google Maps). 
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To build the field boundary component of CropGSV-Ref, we collect corresponding satellite imagery for each GSV image 265 

labeled with a crop type. For each labeled GSV, we first select the highest-quality, least-cloudy Sentinel-2 scene closest in 

time to the GSV capture date to ensure temporal alignment and clear vegetation signals. We then extract the corresponding 

512 × 512 pixel image tile centered on the GSV’s in-field location coordinate. When Sentinel-2 imagery is unavailable or 

compromised by cloud cover or seasonal mismatch, we supplement with NAIP aerial imagery, selecting acquisitions closest 

in date to maintain phenological consistency. To reduce manual effort in field boundary delineation, we apply the base SAM 270 

model using the coordinates of the cropland field-view imagery as point prompts to generate initial boundary predictions. 

These preliminary outputs are manually refined to ensure spatial accuracy and consistency. During manual boundary 

delineation, we focus on productive boundaries, which are the divisions between different crop types that may exist within a 

single field. This approach ensures that delineation reflects crop-specific management practices rather than relying solely on 

visible physical separations. In cases of unclear boundaries due to mixed cropping or low contrast, multi-temporal imagery 275 

from the growing season is used to verify field extents.  

Each annotated sample in the CropGSV-Ref dataset includes a geotagged cropland field-view GSV image, an assigned 

crop type label, the corresponding acquisition date (year and month), a linked Sentinel-2 satellite image, and a digitized 

cropland field boundary polygon. With extensive spatial coverage and accurate semantic labeling, the reference dataset 

supports robust development and assessment of the object-based crop type ground truthing framework throughout CONUS. 280 

CropGSV-Ref is partitioned into three splits: training (60%), validation (20%), and testing (20%). The training and validation 

splits are used to develop the two key components of the framework: CONUS-UncertainFusionNet for crop type classification 

(Sect. 3.1.3) and the fine-tuned SAM model for cropland field boundary delineation (Sect. 3.1.4). The testing split is used to 

evaluate the overall performance of the framework in collecting object-based crop type ground truth information (Sect. 3.2). 

3.1.3 Crop Type Identification 285 

To retrieve the crop type labels from cropland field-view imagery, we develop CONUS-UncertainFusionNet, an uncertainty-

aware crop type classification model tailored for the CONUS region. This model extends the original UncertainFusionNet crop 

type identification model by incorporating a broader range of crop types from CropGSV-Ref and extending its applicability 

from regional to nation-wide scale (Liu et al., 2024). UncertainFusionNet was selected for its ability to fuse multi-scale visual 

features, combining fine-grained textures and global spatial patterns while explicitly modeling prediction uncertainty. Unlike 290 

standard deterministic classifiers, it provides not only accurate predictions but also confidence estimates, which are crucial in 

heterogeneous agricultural landscapes where mixed cropping, visual ambiguity, or suboptimal imagery may challenge 

conventional models. Its Bayesian formulation enables uncertainty quantification at the image level, improving interpretability, 

guiding downstream decision-making, and supporting the construction of more reliable datasets across diverse agricultural 

environments.  295 
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Figure 4: Architecture of CONUS-UncertainFusionNet, featuring dual-branch feature fusion (ResNet-50 and ViT-

B16) and a Bayesian classifier for crop type prediction with uncertainty estimation (entropy and variance). GSV 

images are from © Google Maps. 

CONUS-UncertainFusionNet comprises two primary components: (1) a feature fusion module, and (2) a Bayesian 300 

classification module (Figure 4). The feature fusion module is designed to extract rich visual representations from field-view 

GSV imagery by integrating two complementary backbones, namely ResNet-50 and ViT-B16. ResNet-50 (He et al., 2015), a 

convolutional neural network with residual connections, is employed to extract hierarchical visual features, e.g., texture, edge 

patterns, and spatial structures at the field level, which are important cues for distinguishing crop types (Wang et al., 2019). In 

parallel, ViT-B16 (Dosovitskiy et al., 2021) can capture global spatial relationships by encoding the image as a sequence of 305 

linearly embedded non-overlapping patches. The outputs from these two backbone networks are concatenated to form a unified 

feature representation to integrate both fine-grained visual cues and broader spatial context, enabling more comprehensive 

characterization of the input imagery, which are critical for accurate crop type classification in heterogeneous agricultural 

landscapes. This fused representation is then passed to the Bayesian classification module, which consists of two fully 

https://doi.org/10.5194/essd-2025-527
Preprint. Discussion started: 3 November 2025
c© Author(s) 2025. CC BY 4.0 License.



13 

 

connected layers, each followed by dropout. Rather than producing a single deterministic output, the module estimates a 310 

predictive distribution over crop type classes by aggregating output probabilities, 𝑝(𝑦∗|𝑥∗, 𝑋, 𝑌) , across the posterior 

distribution of model parameters (Eq. 1). Specifically, each forward pass through the network yields class-wise probabilities 

via a softmax activation (Bridle, 1990), which transforms the model’s raw outputs into a normalized probability distribution 

over crop type classes, and multiple stochastic passes (enabled by dropout) are used to approximate the posterior predictive 

distribution. 315 

𝑝(𝑦∗|𝑥∗, 𝑋, 𝑌) = 𝑝((𝑦1
∗, 𝑦2

∗, … , 𝑦𝑐
∗)|𝑥∗, 𝑋, 𝑌) = ∫ 𝑝((𝑦1

∗, 𝑦2
∗, … , 𝑦𝑐

∗)|𝑥∗, 𝜃) 𝑝(𝜃|𝑋, 𝑌)𝑑𝜃            (1) 

where 𝑥∗ denotes an input image, and 𝑦∗ denotes the corresponding output of the neural network model constructed with the 

training data 𝑋 and 𝑌 (label). 𝑦∗ is a vector comprising elements 𝑦1
∗, 𝑦2

∗, … , 𝑦𝑐
∗, with 𝑦𝑐

∗ in this vector denoting the probability 

of class c, obtained through the softmax function. 𝜃 represents the set of weight parameters of the trained neural network 

model.  320 

To estimate the predictive distribution, Monte Carlo (MC) dropout (Gal and Ghahramani, 2016) is employed to 

approximate Bayesian inference by performing multiple stochastic forward passes. Each pass samples a different set of active 

neurons due to dropout, effectively simulating a different model instance. This process yields a set of class probability vectors 

(via the softmax function), which are then aggregated to approximate the predictive distribution over crop type classes (Eq. 2). 

𝑝(𝑦∗|𝑥∗, 𝑋, 𝑌) ≈
1

𝑇
 ∑ 𝑝(𝑦∗|𝑥∗, 𝜃𝑡)𝑇

𝑡=1          (2) 325 

where 𝑇 is the number of stochastic forward pass predictions, and 𝜃𝑡 denotes sampled model weights. 

Based on this predictive distribution, we quantify uncertainty in crop type identification using two statistical measures: 

entropy and variance (Abdar et al., 2021; Gour and Jain, 2022; Arco et al., 2023; Liu et al., 2024). Entropy 𝐻 quantifies the 

degree of disorder or ambiguity in the class probability vector, with higher entropy indicating more unpredictability in the 

model’s outputs. Variance 𝜎2captures the variability of predicted probabilities across the 𝑇 predictions, providing a measure 330 

of the model's output stability. To filter out predictions with high uncertainty, CONUS-UncertainFusionNet applies thresholds 

to both entropy and variance (Abdar et al., 2021; Gour and Jain, 2022; Arco et al., 2023). These thresholds are determined by 

analyzing the intersection points of uncertainty metrics’ density distributions for both correctly and wrongly identified 

predictions across all classes during CONUS-UncertainFusionNet training process (Fig. 4). This approach ensures an optimal 

tradeoff between classification accuracy and the number of field-view images retained for ground truth collection. The filtering 335 

rule is expressed with an indicator function 𝑟𝑥∗ (Eq. 3).   

𝑟𝑥∗ = 1𝑥∗(𝐻, 𝜎2) = {
1, 𝑖𝑓 𝐻 < 𝐻𝑡ℎ𝑟 , 𝜎2 < 𝜎2

𝑡ℎ𝑟

0,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             
                                           (3) 

where an output of 1 signifies that a prediction has relatively high confidence and should be retained. An output of 0 indicates 

that a prediction has relatively high uncertainty and should be removed.  
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 340 

Figure 5: Distributions of uncertainty scores for correctly (blue) and incorrectly (orange) classified samples produced 

by the CONUS-UncertainFusionNet model. The uncertainty threshold is determined at the intersection point of the 

two density curves, representing the optimal separation between high- and low-confidence predictions. 

To enhance uncertainty-awareness of CONUS-UncertainFusionNet, we adopt a composite loss function (Eq. 4) combining 

cross-entropy with predictive entropy. This loss guides the training process by encouraging confident predictions for well-345 

classified samples while maintaining uncertainty for ambiguous cases, ultimately improving the separability of uncertainty 

distributions between correct and incorrect classifications. 

𝐿𝑜𝑠𝑠 =
1

𝑁
∑ (− ∑ 𝑡𝑖𝑐𝑙𝑜𝑔(y𝑖𝑐

∗ )𝐶
𝑐=1 + (− ∑ y𝑖𝑐

∗ 𝑙𝑜𝑔(y𝑖𝑐
∗ ))𝐶

𝑐=1 )𝑁
𝑖=1         (4) 

where 𝑡𝑖𝑐 is 1 when 𝑐 is the index of correct class for the 𝑖th cropland field-view GSV image, otherwise it is 0. y𝑖𝑐
∗  denotes the 

model’s predicted probability that the 𝑖th field-view image belongs to class 𝑐. N is the total number of all field-view images, 350 

and 𝐶 is the number of classes. 

CONUS-UncertainFusionNet is trained on the training split of GSV component of CropSight-Ref dataset, covering diverse 

crop types across CONUS (Error! Reference source not found.). Both ResNet-50 and ViT-B16 within the feature fusion m

odule are initialized with ImageNet pre-trained weights to leverage transferable visual representations. Model hyperparameters, 

including network architecture, learning rate, and number of training epochs, are selected by optimizing performance on the 355 

validation split, to ensure robustness and generalizability. Specifically, the network is optimized using stochastic gradient 

descent (SGD) with a learning rate of 0.001, momentum of 0.9, batch size of 18, and trained for 150 epochs with early stopping 

based on validation loss (Gupta et al., 2021; Gour and Jain, 2022; Liu et al., 2024). Finally, the thresholds for high-confidence 

https://doi.org/10.5194/essd-2025-527
Preprint. Discussion started: 3 November 2025
c© Author(s) 2025. CC BY 4.0 License.



15 

 

predictions (entropy < 0.032187, variance < 0.000128) are determined using the validation split of the GSV component in 

CropGSV-Ref. 360 

3.1.4 Cropland Field Boundary Delineation 

In parallel, to obtain object-based crop type ground truth, the Segment Anything Model (SAM) is fine-tuned to delineate 

cropland field boundaries corresponding to the crop type labels extracted from the cropland field-view GSV imagery. SAM is 

chosen for its flexibility and strong performance and generalization capabilities across diverse segmentation tasks, making it 

a promising foundation for adapting to satellite imagery (Osco et al., 2023). SAM consists of three main components (Figure 365 

6): an image encoder that extracts high-dimensional visual features, a prompt encoder that embeds user-provided inputs (in 

our case, using the coordinate of each cropland field-view GSV as the point prompt), and a mask decoder that generates 

segmentation masks via two-way cross-attention (Kirillov et al., 2023). While SAM performs well on natural images, its 

effectiveness on satellite imagery is limited due to weaker spectral contrast at field boundaries and increased scene complexity 

(Osco et al., 2023; Ferreira et al., 2025; Sumesh et al., 2025). To address this limitation, we fine-tune SAM’s mask decoder 370 

using the training split of the field boundary component of CropGSV-Ref, while keeping the image and prompt encoders 

frozen. This approach has been demonstrated as a computationally efficient adaptation strategy that improves SAM’s 

performance on cropland field boundary segmentation with minimal resource (Liu et al., 2024; Pu et al., 2025). 

 

Figure 6: Structure of the SAM with cropland field-view GSV location coordinate as the point prompt for cropland 375 

field boundary delineation from Sentinel-2 imagery (© European Union/ESA/Copernicus, processed via Google Earth 

Engine). 

Fine-tuning of SAM is conducted using a novel loss function (Eq. 7) that integrates the confidence score loss and the Dice 

score loss (Milletari et al., 2016). The confidence score loss calculates the mean squared error between SAM’s estimated 
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Intersection over Union (IoU) and the actual IoU (Eq. 5), to quantify mask overlap accuracy. The Dice score loss measures the 380 

degree of overlap between predicted and ground truth cropland field boundary masks by computing the average difference 

between 1 and the Dice score (Eq. 6) for all cropland boundary masks. Combining these two losses allows the model to 

simultaneously improve segmentation accuracy and its ability to estimate prediction reliability, an approach supported by 

recent studies that highlight the benefits of multi-loss strategies for balancing competing objectives in deep learning 

segmentation tasks (Terven et al., 2025). IoU is the ratio of the area of overlap between the predicted and ground truth masks 385 

to the area covered by the union of both masks. We determine the hyperparameters using the validation split of the field 

boundary component of CropGSV-Ref, optimizing with the Adam using a learning rate of 5𝑒−7 and a weight decay of 0.01. 

Fine-tuning is conducted with a batch size of 1 for up to 50 epochs, with early stopping based on the performance on the 

validation split to prevent overfitting.  

𝐼𝑜𝑈 =  
| 𝑃 ∩ 𝐺 |

| 𝑃 ∪ 𝐺 |
                          (5) 390 

𝐷𝑖𝑐𝑒 𝑆𝑐𝑜𝑟𝑒 =
2 × | 𝑃 ∩ 𝐺 |

| 𝑃 | + | 𝐺 |
                 (6)                          

𝐿𝑜𝑠𝑠 =
1

𝑁
∑ (𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐼𝑜𝑈𝑖 − 𝐼𝑜𝑈𝑖)2𝑁

𝑖=1 +
1

𝑁
∑ (1 − 𝐷𝑖𝑐𝑒𝑖)𝑁

𝑖=1        (7) 

where 𝑃 is the predicted cropland field boundary mask, 𝐺 is the annotated ground truth cropland field boundary mask from 

the field boundary component of CropGSV-Ref, |𝑃 ∩ 𝐺| is the area of intersection between the predicted and ground truth 

masks, |𝑃 ∪ 𝐺| is the area of their union, and N represents the number of ground truth cropland field boundaries. 395 

3.2 Evaluation of the Crop Type Ground Truthing Framework 

To assess the reliability of the crop type ground truthing framework, we evaluate its performance using the testing split of 

CropGSV-Ref in comparison with benchmark models and products from three perspectives: (1) the accuracy of crop type 

identification from cropland field-view GSV imagery is assessed using the GSV component of CropGSV-Ref; (2) the 

effectiveness of cropland field boundary delineation from Sentinel-2 imagery is assessed using the field boundary component 400 

of CropGSV-Ref; (3) the extracted object-based crop type information is evaluated using the CropGSV-Ref as object-based 

crop type ground truth.  

To assess the efficacy of CONUS-UncertainFusionNet in identifying crop types from cropland field-view imagery, we 

compare it against three benchmark models: ResNet-50, ViT-B16, and CONUS-FusionNet. ResNet-50 and ViT-B16 serve as 

strong single-backbone baselines representing advanced convolution-based and transformer-based feature extraction modeling 405 

approaches, respectively. To ensure a fair comparison, both ResNet-50 and ViT-B16 are initialized with ImageNet pre-trained 

parameters and fine-tuned on the training and validation splits of the GSV component of CropGSV-Ref. CONUS-FusionNet 

shares the same dual-backbone architecture as CONUS-UncertainFusionNet but excludes uncertainty modeling, relying solely 

on cross-entropy loss and deterministic predictions without MC dropout. We evaluate all models using standard classification 
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accuracy metrics: precision, recall, F1-score, and overall accuracy on the testing split of the GSV component of CropGSV-410 

Ref. Precision (Eq. 8) is the ratio of true positives (TP) to the sum of TP and false positives (FP), reflecting the model’s ability 

to avoid false crop-type assignments. Recall (Eq. 9) is the ratio of TP to the sum of TP and false negatives (FN), indicating 

how well the model captures all relevant instances of each crop type. The F1-score (Eq. 10), the harmonic mean of precision 

and recall, balances these two aspects. We compute these metrics per crop type and report both individual and average crop 

type metric values. Overall accuracy (Eq. 11) measures the proportion of all correct predictions, providing a general assessment 415 

of model performance across all crop types. Together, these metrics offer a robust assessment of the models’ ability in 

classifying crop types from cropland field-view GSV imagery. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
           (8) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
             (9) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
            (10) 420 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
          (11) 

To evaluate the fine-tuned SAM model’s ability to delineate cropland boundaries from Sentinel-2 images, we compare its 

performance in field boundary delineation against the base SAM model and the field boundary polygons from the CSB dataset. 

We evaluate the field boundaries extracted with the base SAM, CSB, and fine-tuned SAM models using the testing split of the 

field boundary component of CropGSV-Ref. Performance is assessed at the object level using precision (Eq. 8), recall (Eq. 9), 425 

and F1 score (Eq. 10), based on the spatial overlap between predicted and ground truth cropland boundaries. An IoU threshold 

of 0.50 is used to determine whether a predicted object is correctly identified (Eq. 5) (Stewart et al., 2019; Braga et al., 2020; 

Li et al., 2021; Jong et al., 2022; Mei et al., 2022; Gan et al., 2023). Specifically, predictions with IoU > 0.5 are considered 

true positives (TP); predictions with 0 < IoU ≤ 0.5 are classified as false positives (FP) due to partial but incorrect overlap; and 

predictions with IoU = 0 are treated as false negatives (FN), indicating complete detection failure. 430 

To assess the reliability of our crop type ground truthing framework, we evaluate the object-based crop type information 

it produces in comparison with those from the CSB dataset using the testing split of the CropGSV-Ref. Performance is 

measured using overall accuracy across all crop types. A crop type object is considered correctly matched only when both the 

crop type label is accurate (the predicted crop type, 𝐶𝑟𝑜𝑝𝑇𝑦𝑝𝑒𝑝𝑟𝑒𝑑 , corresponds to the ground truth crop type, 𝐶𝑟𝑜𝑝𝑇𝑦𝑝𝑒𝑡𝑟𝑢𝑒), 

and the cropland field boundary delineation meets the IoU threshold of 0.5 (Eq. 12). To quantify object-level performance, we 435 

calculate the percentage of matched objects (labeled as 1 for a correct match and 0 otherwise) for both crop type ground 

truthing framework and the CSB dataset, with respect to the testing split of the CropGSV-Ref. 

Object-level Match= {
1, 𝑖𝑓 𝐶𝑟𝑜𝑝𝑇𝑦𝑝𝑒𝑝𝑟𝑒𝑑 = 𝐶𝑟𝑜𝑝𝑇𝑦𝑝𝑒𝑡𝑟𝑢𝑒  and IoU > 0.5

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                        
     (12) 
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3.3 Production of CropSight-US Dataset 

To generate the CropSight-US dataset, we apply the developed crop type ground truthing framework across the entire CONUS. 440 

To ensure that the resulting dataset provides broad spatial coverage and captures the diversity of agricultural conditions 

nationwide, we implement an automated dataset production pipeline to process all available cropland field-view GSV metadata 

from 2013 to 2023. Since GSV panoramic imagery is typically captured at short spatial intervals (approximately every 10 

meters), multiple metadata records may correspond to the same agricultural field. To reduce redundancy and prevent repeated 

ground truthing of the same field, we first spatially link each cropland field-view GSV metadata to cropland field boundaries 445 

defined in the CSB dataset. Then, within each CSB-identified field, one cropland field-view GSV metadata is randomly 

selected to serve as its representative, ensuring spatial uniqueness. Next, to guide the sampling process across crop types, we 

quantify their spatial distribution by counting the number of retained cropland field-view GSV metadata associated with CSB-

identified fields labeled with that crop type. This provides a proxy for evaluating crop street view imagery availability and 

geographic spread across ASDs. We compute the average amount of metadata per ASD per crop type to establish a baseline 450 

for balanced representation, which takes into account crop GSV availability, cultivated extent, and irrigation practices for each 

ASD. For each crop type and year, all metadata are retained in ASDs with fewer samples than the ASD-average amount of 

metadata. In ASDs exceeding the average, we retain the baseline number plus a proportionally sampled subset of additional 

metadata, based on the total number of CSB-linked records for that crop type within the ASD. Finally, to ensure representation 

of irrigation practices, we stratify the retained samples within each ASD by irrigation status. Specifically, we calculate the 455 

proportion of irrigated and non-irrigated fields and set the selection targets for each ASD accordingly, preserving the relative 

distribution of irrigation types within each crop-ASD combination. The crop-wise cultivated area and irrigation information 

inform ASD-level sampling targets for each crop type in the final application dataset. Based on these targets, we apply the 

spatially adapted sampling strategy (Sect. 3.1.2) to select specific cropland field-view GSV to be retrieved and processed, with 

crop type label identified by CONUS-UncertainFusionNet with uncertainty information, and cropland field boundary 460 

delineated by our fine-tuned SAM. Through this approach, the CropSight-US dataset achieves broad and evenly distributed 

spatial coverage while maintaining scalability and crop-type balance for nationwide agricultural monitoring. 

For each selected cropland field-view GSV metadata, we retrieve the corresponding field-view GSV image, and the least 

cloudy Sentinel-2 image in or closest to the month of GSV acquisition. We predict the crop type label from the field-view 

GSV image with associated uncertainty metrics using the CONUS-UncertainFusionNet model and delineate the cropland field 465 

boundary from the Sentinel-2 or NAIP (as substitute when high quality, least-cloud Sentinel-2 imagery is not available) 

imagery using the fine-tuned SAM model. Each entry in the generated CropSight-US ground truth dataset includes the 

predicted crop type, the associated confidence metrics (entropy, variance, and confidence level), the delineated cropland field 

boundary, and the year and month when the original GSV image is captured. Section 5.2 summarizes the spatial distribution, 

temporal coverage, and crop-type composition of the CropSight-US dataset. 470 
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4 Results: Ground Truthing Framework 

4.1 Crop Type Identification 

CONUS-UncertainFusionNet outperforms all other benchmark models on the test split of the GSV component of the 

CropGSV-Ref (Table 1), with a precision of 97.24%, recall of 97.17%, F1-score of 97.18%, and overall accuracy of 97.22%. 

Compared to its backbone architectures, ResNet-50 and ViT-B16, it achieves approximately 4% higher scores across all 475 

evaluation metrics. This improvement demonstrates a more robust characterization of the structured and heterogeneous visual 

patterns in cropland field-view GSV imagery, by combining ResNet’s strength in capturing fine-grained local features with 

ViT’s capacity for modeling long-range spatial relationships. Compared to CONUS-FusionNet, CONUS-UncertainFusionNet 

shows an approximate 2% improvement across all evaluation metrics, highlighting the benefits of incorporating uncertainty 

estimation in the crop type classification pipeline. By explicitly modeling prediction uncertainty, it more effectively handles 480 

challenging scenarios common in GSV imagery, such as occlusions, indistinct field boundaries, poor image quality, and 

visually similar crop types, ultimately improving classification robustness under real-world conditions. 

Table 1: Performance evaluation of CONUS-UncertainFusionNet and benchmark models (i.e., ResNet-50, ViT-B16, 

CONUS-FusionNet) based on the test split of the GSV component of the CropGSV-Ref dataset. 

Model Precision Recall F1-Score Overall Accuracy 

ResNet-50 93.41% 92.86% 93.05% 93.29% 

ViT-B16 93.35% 92.93% 93.07% 93.35% 

CONUS-FusionNet 95.73% 95.70% 95.67% 95.67% 

CONUS-UncertainFusionNet 97.24% 97.17% 97.18% 97.22% 

 485 

As shown in the class-wise evaluation (Figure 7), CONUS-UncertainFusionNet consistently outperforms all benchmark 

models in crop type classification across nearly all categories. It achieves precision, recall, and F1-scores above 0.95 for most 

crop types, demonstrating strong robustness and generalizability under diverse agricultural conditions. All models perform 

well on crops such as corn, soybean, cereal, grape, and sorghum, likely due to their distinct visual characteristics and consistent 

field patterns, which facilitate reliable identification. ViT-B16 and ResNet-50, however, show significant drops in performance 490 

for relatively less represented crops like canola, potato, and sunflower, with F1-scores falling below 0.88. This decline is likely 

due to overlapping visual features and subtle spectral or textural differences, which complicate classification. CONUS-

UncertainFusionNet maintains high accuracy on these challenging classes, frequently achieving F1-scores above 0.95. Its 

robustness is attributed to the integration of uncertainty-aware design, which enables the model to flag and discard low-

confidence predictions, reducing misclassifications in ambiguous scenarios. CONUS-FusionNet, while generally effective, 495 

shows slightly lower accuracy on visually confounding crop types due to the absence of uncertainty modeling. These results 

underscore the superior labeling ability of CONUS-UncertainFusionNet across both common and difficult-to-classify crop 

types, demonstrating its reliability and robustness in operational crop identification tasks. 
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Figure 7: Class-wise performance evaluation of CONUS-UncertainFusionNet and benchmark models (ResNet-50, ViT-500 

B16, and CONUS-FusionNet) in classifying 17 crop types and one “others” class across the CONUS region. Evaluation 

metrics include F1-score, precision, and recall, calculated using the test split of the GSV component from the CropGSV-

Ref reference dataset. 

4.2 Cropland Field Boundary Delineation 

As shown in Table 2, the fine-tuned SAM significantly outperforms both the base SAM and the CSB benchmark in cropland 505 

field boundary delineation, achieving the highest precision (0.9601), mean IoU (0.9452), and F1 score (0.9801). Among the 

three methods, the base SAM yields the lowest performance, with a precision of 0.6564 and an F1 score of 0.7926. This lower 

performance is largely due to the base SAM’s original design for general-purpose segmentation of natural images, which is 

not tailored to distinguish subtle differences between adjacent agricultural parcels in satellite imagery. The CSB benchmark 

shows slightly better performance than the base SAM, with the F1 score of 0.8375, but still falls short of the fine-tuned SAM. 510 

The superior performance of the fine-tuned SAM can be attributed to the domain-specific fine-tuning and task-adapted prompt 

design. Fine-tuning enables the model to better capture the structural and texture characteristics unique to agricultural 
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landscapes, while the use of strategically placed point prompts near probable field boundaries guides the model’s attention to 

critical spatial discontinuities (e.g., linear edges and subtle textural contrasts) that are frequently overlooked by models trained 

on general-purpose datasets.  515 

Table 2: Performance of fine-tuned SAM and benchmark models / products in cropland field boundary delineation. 

The evaluation excludes the “Others” class (500 samples in the test split of CropGSV-Ref), as this category includes 

non-agricultural landscapes such as forests or built-up areas in the GSV component of CropGSV-Ref, which are not 

always associated with distinct cropland boundaries. 

Model/Product TP FP FN Mean IoU Precision Recall F1 Score 

SAM 5580 2920 0 65.29% 65.64% 100% 79.26% 

CSB 6125 2375 0 73.34% 72.05% 100% 83.75% 

Fine-Tuned SAM 8169 331 0 94.52% 96.01% 100% 98.01% 

 520 

Visual comparison reveals distinct differences in cropland field boundary delineation quality among the boundaries from 

CSB and those generated by the base and fine-tuned SAM models (Figure 8). The fine-tuned SAM produces cohesive and 

complete field boundaries that closely align with ground truth annotations. In contrast, the base SAM frequently generates 

incomplete or imprecise boundaries when applied directly to satellite imagery without fine-tuning. This limitation stems from 

its original design for natural image segmentation, which leads to over-segmentation in agricultural imagery by misinterpreting 525 

subtle field edges or texture variations as distinct object boundaries. The boundaries retrieved from the CSB product are more 

variable. In some cases, they are smaller than the actual field extent, while in others, they appear overly generalized. This 

variability likely arises from the CSB’s boundary generation strategy, which relies on multi-year CDL composites and rule-

based vectorization techniques. Such an approach can introduce spatial mismatches with current field configurations due to 

temporal averaging and generalized assumptions about field boundaries. In summary, both accuracy metrics and visual 530 

comparisons consistently demonstrate that the fine-tuned SAM more effectively captures cropland field boundaries 

corresponding to the cultivated crops identified from the cropland field-view GSV images, outperforming both the base SAM 

and the CSB benchmark.  
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Figure 8: Examples of annotated crop field boundaries and boundary delineation outputs overlaid on Sentinel-2 535 

satellite imagery (© European Union/ESA/Copernicus, processed via Google Earth Engine). The visualizations 

include reference ground truth delineations (from the field boundary component of CropGSV-Ref) alongside 

boundary delineation results from the base SAM, Crop Sequence Boundary (CSB) benchmark and the fine-tuned 

Segment Anything Model (SAM), illustrating typical segmentation performance across diverse field conditions. 

4.3 Evaluation of Crop Type Ground Truthing Framework and Benchmark CSB Product 540 

As shown in Fig. 9, the object-based crop type information produced by the crop type ground truthing framework consistently 

demonstrates superior performance compared to that from the CSB benchmark, across all three evaluation metrics: F1-score 

for crop type identification, F1-score for cropland field boundary delineation, and object-level accuracy. The framework 

achieves crop type label F1-scores exceeding 0.95 for the majority of crop types, with improvements over CSB up to 11%. In 

terms of boundary delineation, the framework also exhibits a notable advantage, with F1-score gains ranging from 5%-18%. 545 

These differences reflect the fundamentally distinct crop information retrieval strategies underlying the two systems. The crop 

type ground truthing framework leverages cropland field-view GSV imagery in combination with satellite observations to 
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generate object-level crop type information, whereas the benchmark CSB product relies on pixel-based classifications derived 

from multi-year CDL composites, which are then converted into field boundaries through rule-based vectorization to produce 

the object-based crop type information (Boryan et al., 2011; Abernethy et al., 2023; Hunt et al., 2024). The most substantial 550 

differences are observed in object-level accuracy, which integrates both semantic correctness of crop type labels and geometric 

precision of field boundaries. The crop type ground truthing framework consistently achieves object-level accuracy around 

0.95, indicating that approximately 95% of the delineated objects simultaneously meet both labeling and boundary delineation 

accuracy criteria. Compared to CSB, the object-level accuracy of the crop type ground truthing framework is improved by 15% 

to 25% across crop types. These improvements are particularly pronounced for cereal, corn, and sunflower, where CSB exhibits 555 

relatively low performance in both crop classification and boundary delineation. Overall, the CSB benchmark exhibits large 

variability in performance across crop types, whereas the crop type ground truthing framework maintains consistently high 

accuracy. The object-based crop type information generated by our framework more reliably captures both the correct crop 

type and the corresponding field geometry, in contrast to the CSB benchmark, which often introduces errors in one or both 

aspects (Fig. 10). This consistency indicates robustness of our framework across diverse cropping systems and underscores 560 

the framework’s suitability for reliable object-based crop type ground truthing.  
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Figure 9: Object-level comparison between object-based crop type information retrieved using the crop type ground 

truthing framework and Crop Sequence Boundary (CSB) benchmark, including the F1-score for crop type 

identification, the F1-score for cropland field boundary delineation, and object-based accuracy. 565 
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Figure 10: Examples across the 17 crop types showcasing roadside field-view GSV imagery, corresponding Sentinel-2 

satellite imagery, object-based crop type ground truth, and object-based crop type information generated by Crop 

Sequence Boundary (CSB) and our ground-truthing framework developed to produce the CropSight-US dataset. 

GSV images are from © Google Maps, and Sentinel-2 imagery thumbnails are from © European 570 

Union/ESA/Copernicus, processed via Google Earth Engine. 
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5 CropSight-US: Object-based Crop Type Ground Truth Dataset 

5.1 Operational Cropland Field-view GSV Metadata Collection 

We compile all cropland field-view GSV metadata across CONUS using our proposed operational field-view GSV metadata 575 

collection method. From billions of GSV records available between 2013 and 2023, this process identifies approximately 1.9 

million records, which serve as candidates for constructing the CropSight-US dataset. As shown in Figure 11(a), the spatial 

distribution of collected cropland field-view GSV metadata varies widely across the CONUS, with high concentrations across 

diverse agricultural regions such as the California Central Valley, Pacific Northwest, the northern Corn Belt, and the Southeast. 

The number of available cropland field-view GSV metadata varies substantially across ASDs, ranging from several hundred 580 

thousand in some regions to only a few hundred or fewer in others. This variation is likely due to the differences in cropland 

coverage and the update frequency of GSV across regions. Figure 11 (b) presents the temporal distribution of the collected 

cropland field-view GSV metadata. The cropland field-view GSV metadata spans from 2013 to 2023, with the majority 

captured between March and September in alignment with key growth stages of dominant crops in the U.S. Midwest. A 

substantial increase in cropland field-view GSV metadata availability has been observed in more recent years. 585 

 

https://doi.org/10.5194/essd-2025-527
Preprint. Discussion started: 3 November 2025
c© Author(s) 2025. CC BY 4.0 License.



27 

 

 

Figure 11: Spatiotemporal availability of cropland field-view GSV metadata across CONUS. (a) shows the spatial 

distribution per Agricultural Statistics District (ASD) (© USDA). (b) presents the temporal distribution by month from 

2013 to 2023. 590 
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5.2 CropSight-US 

From the millions of cropland field-view GSV metadata collected, we generate CropSight-US object-based crop type ground 

truth dataset, consisting of 124,419 records. These object-based crop type ground truth polygons (crop type ground truth objects) 

span a wide geographic range across ASDs (Figure 12) and cover the period from 2013 to 2023 (Table 4). The dataset exhibits 

considerable variation across both crop types and years. Corn is by far the most prominent crop, with 54,069 ground truth 595 

objects, and maintains consistent presence throughout the dataset’s time span. Other major crops such as soybean (24,628), 

cereal (10,210), and alfalfa (8,203) also contribute substantially to the dataset. A noticeable drop in collected ground truth is 

observed in 2017 and 2020. The decline in 2020 is likely due to reduced data collection by pandemic-related restrictions, while 

the drop in 2017 may be attributed to changes in data collection and release delays, or camera hardware updates (Pina, 2024). 

In recent years, soybean and almond show upward trends in sample counts, indicating either expanded spatial coverage or 600 

evolving sampling priorities for those regions with such crops in the GSV acquisition process. Several less widely cultivated 

crops, such as canola, sunflower, pistachio, and sugarbeet, remain sparsely represented throughout the entire period. Overall, 

the dataset captures both extensive temporal and spatial variation while also reflecting class imbalance across crop types and 

years. These characteristics should be considered carefully in downstream modeling and analysis to ensure robust and 

generalizable outcomes. 605 

 

Figure 12: Overview and example zoom-in visualizations of the CropSight-US object-based crop type ground truth 

dataset over the Agricultural Statistics Districts (ASD) © USDA and satellite base map © Google Earth Engine. 
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Table 3: Crop type ground truth counts by year for CropSight-US. 

 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 Total 

alfalfa 1361 1135 2189 874 79 695 414 0 194 147 935 8023 

almond 798 26 381 390 26 111 572 71 1389 923 1182 5869 

canola 19 29 0 0 0 15 12 0 174 53 27 329 

cereal 3042 1908 936 751 0 1037 363 0 937 363 873 10210 

corn 12636 5144 5951 3546 433 5612 4808 0 6676 5126 4137 54069 

cotton 940 228 135 0 12 592 372 0 279 308 1709 4575 

grape 816 107 703 434 55 149 623 76 576 461 510 4510 

orange 701 5 225 117 33 100 307 54 193 317 46 2098 

peanut 341 60 28 42 1 66 150 0 51 293 405 1437 

pistachio 152 0 17 14 1 8 12 18 64 122 39 447 

potato 9 291 20 7 0 34 190 0 341 61 107 1060 

sorghum 127 49 229 212 8 60 353 0 475 105 513 2131 

soybean 5136 2450 2516 1472 91 2119 2516 0 3074 1961 3293 24628 

sugarbeet 40 21 63 18 0 98 128 1 366 69 29 833 

sugarcane 512 8 134 95 24 147 346 0 423 518 183 2390 

sunflower 23 11 14 4 1 8 12 1 109 34 16 233 

walnut 305 69 148 95 12 38 273 18 181 215 223 1577 

 610 

The monthly distribution of object-based crop type ground truth polygons in the CropSight-US dataset reveals distinct 

seasonal trends across the 17 dominant crop types in CONUS (Fig. 13). Most row crops (e.g., corn, soybean) reach peak sample 

availability between June and September, aligning with the core growing season and periods of optimal visibility in street-

view imagery. In contrast, crops with more regionally concentrated cultivation, such as almond, orange, grape, and sugarcane 

peak earlier in the year, typically from February to May, reflecting regional differences in crop phenology and seasonal GSV 615 

availability. This temporal coverage across multiple months supports applications requiring seasonally aligned ground truth 

data for training and validating in-season crop classification models.  
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Figure 13: Monthly availability of object-based CropSight-US ground truth by crop type across CONUS. 

Figure 14 provides a comprehensive overview of the spatial, categorical, and temporal distribution of high confidence  620 

crop type ground truth objects in the CropSight-US dataset, revealing key patterns in model-based confidence across ASDs 

(a), crop types (b), years (c), and months (d). Spatially, high-confidence ground truth objects are concentrated in major 

production areas such as the Corn Belt and California’s Central Valley, where consistent cropping systems and field patterns 

likely simplify classification and improve label reliability. This spatial concentration improves the dataset’s utility for model 

training and validation in key agricultural zones. Categorically, crops with geographically limited distributions, such as grape, 625 

orange, almond, sugarcane, and peanuts, tend to exhibit higher proportions of high-confidence ground truths. This likely 

reflects more uniform environmental conditions and consistent crop characteristics within their localized growing regions. 

Meanwhile, crops that are more widely distributed across different regions, such as alfalfa, corn, soybean, cotton, sorghum, 

and cereal, show a lower share of high-confidence ground truths. This is probably due to greater variability in cultivar types, 

management practices, and regional conditions, which lead to more diverse field appearances and increase classification 630 

challenges. Temporally, the CropSight-US dataset maintains extensive coverage of crop type labels from 2013 to 2023, with 

high-confidence predictions comprising around 30-50% of total labels in most years or across months, which supports reliable 

year-to-year comparisons, long-term trend analysis, and the training of temporally aware models using quality-assured data. 
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In 2013, the dataset contains the highest number of ground truths, with over 25,000 records. Except for 2017 and 2020, which 

have limited data, all other years contribute around or more than 10,000 ground truth samples each. In terms of monthly 635 

distribution, the data is highly concentrated during the peak growing season (July to September), with over 80,000 ground 

truths collected during this period. Collectively, the confidence metrics support the filtering or weighting of training samples, 

enable targeted model improvement, and guide additional data collection efforts to strengthen classification performance 

across underrepresented or uncertain regions and crop types. 

 640 

Figure 14: Overview of high confidence (confidence being 1) crop type labels in CropSight-US aggregated by (a) ASD 

(© USDA), (b) Crop Type, (c) Year and (d) Month across CONUS. 

An interactive web-based viewer, hosted on Google Earth Engine (GEE), provides public access to the CropSight-US 

ground truth dataset and supports visualization of both national-scale crop distributions and field-level observations from 2013 

to 2023 (Fig. 15). Each object in the dataset includes the crop type, observation month and year, geographic coordinates, 645 

classification uncertainty, and cropland field boundary. The interface allows filtering by year and crop type for user’s 

convenience and further analysis. This tool enhances the dataset’s usability for remote sensing research, agricultural 

monitoring, and geospatial modeling workflows. 
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 650 

Figure 15: CropSight-US viewer within the Google Earth Engine application interface. (A) Overview of the complete 

ground truth dataset for each Agricultural Statistics Districts (ASD) © USDA. (B) An example of zoomed-in view of a 

sugarcane field with the nearest-year NAIP imagery (© USDA Farm Production and Conservation Business Center) 

overlay, accessed via © Google Earth Engine. The viewer application is available at https://ee-

azzhou249.projects.earthengine.app/view/cropsight-us. 655 

6 Discussion and Conclusion 

We introduce CropSight-US, the first national scale, object-based crop type ground truth dataset across the CONUS. Generated 

through a novel deep learning framework that integrates GSV and Sentinel-2 imagery, the dataset provides high-quality crop 

type labels precisely aligned with field boundaries. This dataset fills a critical gap by supplying large-scale, reliable reference 
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data to support agricultural remote sensing model training and benchmark operational crop type mapping at the national scale. 660 

The underlying crop type ground truth framework also offers a scalable, timely, and resource-efficient alternative to traditional 

field surveys and visual interpretations, facilitating broader adoption in both research and operational agricultural application 

settings. 

To support accurate, scalable, and transferable crop type mapping, CropSight-US provides several key advantages that 

enhance its effectiveness across diverse agricultural conditions. First, CropSight-US provides extensive spatial and temporal 665 

coverage of 17 major crop types of varying agricultural landscapes in the United States. This large-scale and high-quality 

dataset offers a strong foundation for training models capable of accurately mapping a broad range of dominant crops (Jolivot 

et al., 2021; Van Tricht et al., 2023; Ye et al., 2024). Its broad representativeness across cropping systems, climate zones, and 

management practices also makes it well suited for few-shot and zero-shot transfer learning applications (Polak et al., 2024; 

Zhang and Wang, 2024; Wu et al., 2025). This wide exposure to diverse cropping patterns and environmental conditions 670 

supports the development of models with richer prior knowledge, enabling more effective adaptation to regions with limited 

or no available ground truth data (Hao et al., 2020; Nowakowski et al., 2021). Second, CropSight-US provides high-quality, 

object-based crop type ground truth data, with crop type labels precisely aligned to field boundaries that closely reflect actual 

cropland parcels (98% F1 score). Compared to other object-based crop type datasets such as the CSB, which derive boundaries 

by vectorizing pixel-based crop type classification maps, CropSight-US offers more accurate and geometrically consistent 675 

delineations. This improvement results from the use of an advanced prompt-based segmentation method (i.e., SAM), which 

enables precise boundary delineation for each cropland parcel corresponding to crop type locations identified through cropland 

field-view GSV imagery. These detailed and accurately delineated field-level annotations are well-suited for training crop type 

classification models that incorporate field-level characteristics. They also provide high-quality inputs for tasks such as 

semantic segmentation and object detection, which rely on precise parcel geometry (d’Andrimont et al., 2018; Zheng et al., 680 

2023; Rufin et al., 2024). Third, CropSight-US includes uncertainty information for each crop type label, derived from the 

CONUS-UncertainFusionNet model. These uncertainties quantify prediction confidence, enabling users to assess label 

reliability and tailor data usage to specific application needs (Rocchini et al., 2013; Weiss et al., 2020; Khan et al., 2024; Wang 

et al., 2025). For instance, users may prioritize high-confidence samples for model training or filter out labels based on 

uncertainty metrics to reduce potential errors in downstream mapping. This additional layer of information strengthens both 685 

the robustness and interpretability of large-scale agricultural mapping workflows. Fourth, the ground truthing framework of 

CropSight-US can acquire within-season crop type ground truth objects. With our devised framework, CropSight-US can be 

rapidly updated during the growing season whenever new GSV imagery becomes available in the Google Maps database. This 

enables in-season crop type mapping, supporting timely agricultural monitoring and informed decision-making (Defourny et 

al., 2018; Gao et al., 2023; Yang et al., 2024). Together, these features position CropSight-US as a valuable resource for a 690 

wide range of downstream tasks, including transfer learning for crop type classification in new regions, semantic segmentation 

for precise field boundary delineation, and object detection for identifying and labeling individual agricultural parcels in high-

resolution imagery. Its large spatial and temporal extent, object-level precision, and associated geospatial metadata also make 
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it well-suited for training geo-aware foundation models that learn across spatial, temporal, and semantic dimensions for 

scalable agricultural monitoring (Xie et al., 2023; Li et al., 2024; Mai et al., 2024; Zhou and Ryo, 2025). 695 

While the CropSight-US dataset offers robust, object-based crop type ground truth labels, two key limitations remain that 

could impact its effectiveness for large-scale crop type monitoring. First, CropSight-US has limited coverage in regions where 

GSV imagery is sparse, especially in remote or rural farming areas. This imbalance may lead to geographic bias in the collected 

crop type ground truth dataset and limit the ability of models trained on it to generalize across diverse agricultural regions not 

yet covered. To improve spatial coverage, future updates to CropSight-US could incorporate imagery from open-source 700 

platforms (e.g., KartaView, Mapillary) or other commercial platforms (e.g., Baidu TotalView), to support crop type ground 

truthing beyond the current cropland field-view GSV coverage. Second, CropSight-US currently groups crop species within 

certain families, such as small grains (e.g., wheat, rye, and triticale, into a single category, which may limit its usefulness for 

applications requiring species-level differentiation. This grouping is due to the difficulty of distinguishing these crops using 

street view imagery, as they often share highly similar field-level appearances. To address this limitation, future evolution of 705 

the crop type ground truthing framework could incorporate phenological dynamics derived from temporal satellite imagery to 

complement street view observations (Diao, 2020; Diao et al., 2021; Yan and Ryu, 2021; Boyd et al., 2022; d’Andrimont et 

al., 2022; Wang and Gong, 2022). This integration may improve the ability to differentiate crop species and cultivars within 

the same family by leveraging temporal growth patterns that are not discernible from static, ground-level imagery alone. 

The CropSight-US dataset also presents numerous opportunities for further expansion, supported by its adaptable and 710 

transferable crop type ground truthing framework. This framework has strong potential to collect crop type ground truth 

information beyond the CONUS region, wherever street-level imagery is available globally (Wu et al., 2021; Laguarta Soler 

et al., 2024). By leveraging additional open-source or commercial street view imagery sources, the framework could be scaled 

to support global crop type mapping and contribute to more comprehensive food security assessments worldwide. Additionally, 

integrating imagery from autonomous vehicles into the crop type ground truthing framework could significantly enhance the 715 

timeliness and scalability of ground truth data collection. As these vehicles become more prevalent, they may provide a 

continuous stream of high-resolution, geotagged field-view imagery, enabling real-time acquisition of crop type ground truth. 

This advancement would support more responsive, cost-effective ground truth generation and strengthen the foundation for 

downstream agricultural monitoring and food security assessments (Gao and Zhang, 2021; Yang et al., 2023; Liu et al., 2024; 

Yang et al., 2024).  720 

In conclusion, the CropSight-US dataset marks a significant step forward in crop type mapping by providing accurate, 

object-based crop type ground truth data of 17 major crop types across the CONUS from 2013 to 2023. By identifying crop 

types from visual cues in GSV imagery and delineating corresponding field boundaries using Sentinel-2 data, CropSight-US 

demonstrates substantial improvements in spatial and temporal coverage, label quality, and object-level accuracy. These 

enhancements enable scalable and in-season crop type mapping, offering detailed spatial context critical for diverse agricultural 725 

applications including crop phenology monitoring (Gao and Zhang, 2021; Liu et al., 2023), irrigation planning (Karthikeya et 

al., 2020; Paolini et al., 2022), and yield forecasting (Karthikeya et al., 2020; Zhang and Diao, 2023). The robust and 
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transferable crop type ground-truthing framework behind CropSight-US shows strong potential for large-scale expansion 

through integration with additional street view imagery sources and autonomous vehicle imagery. Together, the CropSight-

US dataset and framework offer a powerful foundation for advancing precision agriculture, supporting food security, and 730 

generating actionable insights at a global scale. 
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