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IRD, UMR 8187, Wimereux, France 13 
5Mediterranean Institute of Oceanography, Aix-Marseille Université, Université de Toulon, CNRS, IRD, UMR 7294, 14 
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Abstract. Plankton and detritus are essential components of the Earth’s oceans influencing biogeochemical cycles 30 

and carbon sequestration. Climate change impacts their composition and marine ecosystems as a whole. To improve 31 

our understanding of these changes, standardized observation methods and integrated global datasets are needed to 32 

enhance the accuracy of ecological and climate models. Here, we present a global dataset for plankton and detritus 33 

obtained by two versions of the Underwater Vision Profiler 5 (UVP5). This release contains the images classified in 34 

33 homogenized categories, as well as the metadata associated with them, reaching 3,114 profiles and ca. 8 million 35 

objects acquired between 2008-2018 at global scale. The geographical distribution of the dataset is unbalanced, with 36 

the Equatorial region (30° S - 30° N) being the most represented, followed by the high latitudes in the northern 37 

hemisphere and lastly the high latitudes in the Southern Hemisphere. Detritus is the most abundant category in terms 38 

of concentration (90%) and biovolume (95%), although its classification in different morphotypes is still not well 39 

established. Copepoda was the most abundant taxa within the plankton, with Trichodesmium colonies being the second 40 

most abundant. The two versions of UVP5 (SD and HD) have different imagers, resulting in a different effective size 41 

range to analyse plankton and detritus from the images (HD objects >600 µm, SD objects >1 mm) and morphological 42 
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properties (grey levels, etc.) presenting similar patterns, although the ranges may differ. Therefore, recommendations 43 

are provided for the appropriate use of this data when conducting studies. A large number of images of plankton and 44 

detritus will be collected in the future by the UVP5, and the public availability of this dataset will help it being utilized 45 

as a training set for machine learning and being improved by the scientific community. This will reduce uncertainty 46 

by classifying previously unclassified objects and expand the classification categories, ultimately enhancing 47 

biodiversity quantification. The dataset that constitutes this first release is available at SEANOE. 48 

Key words: plankton, images, Underwater Vision Profiler, Global Ocean 49 

1 Introduction 50 

Plankton and particulate matter play a crucial role in natural biogeochemical cycles and provide essential 51 

ecosystem services, including carbon sequestration, nutrient cycling, and primary food source for various marine 52 

organisms (Turner, 2015; Boyd et al., 2019; Stemmann and Boss, 2012; Steinberg and Laundry, 2017). These 53 

components of the marine environment are significantly influenced by climate change, which alters ocean temperature, 54 

acidity, oxygenation, and circulation patterns (Doney et al., 2012; Constable et al., 2014). Such changes may, in turn, 55 

impact plankton composition by affecting their growth and survival (Hays et al., 2005; Dam and Baumann, 2017; 56 

Yebra et al., 2022), which will impact the production and composition of their solid waste, hereafter referred as 57 

detritus, with potential consequences for elemental biogeochemical cycles and deep-sea ecosystems (Du Pontavice et 58 

al., 2020). Zooplankton biomass and diversity, as well as bulk particulate matter, were identified as essential ocean, 59 

biodiversity, and climate variables by the Global Ocean Observing System (Chiba et al., 2018; Batten et al., 2019). 60 

The size range of plankton and detritus spans from pico- to macro-sizes, influencing the methods required 61 

for their observation. Different technologies, including microscopy, optical imaging, sediment traps, and remote 62 

sensing, are employed depending on the target size class (Karsenti et al., 2011; Davis et al., 2005; Stemmann et al., 63 

2008; Möller et al., 2012; Siegel et al., 2024). Many planktonic organisms and detritus are fragile and their abundances 64 

decrease with their size, making their collection and analysis challenging (Stemmann et al., 2008; Soviadan et al., 65 

2024; Atherden et al., 2024). Consequently, obtaining homogeneous global datasets remains difficult notably if 66 

different instruments that measure various properties are used (Moriarty and O'brien, 2013). Furthermore, plankton 67 

exhibits a patchy distribution in the ocean due to physical, chemical, and biological processes (Suthers et al., 2019). 68 

These constraints demand increased sampling efforts and the development of standardized methodologies to enhance 69 

comparability of global plankton and detritus observations. For plankton, quantitative imaging has been identified as 70 

the best means to do so (Lombard et al 2019). Addressing these challenges is critical for improving our understanding 71 

of oceanic carbon cycling and ecosystem responses to environmental change. 72 

According to specific objectives, biogeochemists focus on biomass as a measure of carbon content, while 73 

ecologists are primarily interested in community composition and biodiversity. Conventional sampling methods such 74 

as sediment traps, nets, pumps, and bottles further contribute to these differences, as they may not provide data that is 75 

directly comparable across disciplines. Modelers, on the other hand, require integrative datasets that bridge these gaps, 76 
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enabling accurate simulations of biogeochemical cycles, ecosystem dynamics, and carbon fluxes (Ratnarajah et al., 77 

2023). They are particularly interested in harmonized data formats, conversion factors between abundance and 78 

biomass, and standardized methodologies to improve the predictive power of ecological and climate models. 79 

Addressing these disparities is essential for advancing interdisciplinary research and improving our understanding of 80 

oceanic processes. 81 

Predicting the future state of plankton biodiversity and/or biomass with habitat or biogeochemical models is 82 

difficult and requires data obtained synoptically and regularly. Models could be partially fed by Continuous Plankton 83 

Recorder surveys (Batten et al., 2019) and satellite programs, such as the recently launched PACE (Gorman et al., 84 

2019), but in both cases data on plankton is limited to the surface layer. Deep collection by net tows followed by the 85 

identification with microscopes provides the classical taxonomic identification, but this sampling methodology 86 

destroys fragile organisms and requires dedicated ship time (Calbet, 2024; Soviadan et al., 2024; Giering et al., 2022). 87 

In addition, this classical classification is time-consuming and susceptible to human bias, which can hinder effective 88 

quality control (Goswami, 2004). Sensors mounted on conventional in situ platforms may provide better spatial 89 

resolution and have less impact on the observed target. In situ acoustics with broadband systems allow for broad 90 

taxonomic identification but are not adapted for detritus due to their poor scattering. In situ imaging methods are better 91 

suited to recognize plankton and detritus, but detect them in a smaller volume. Considering the advantages and 92 

limitations of each method, we can conclude that in situ imaging is particularly suited for observing plankton and 93 

detritus, using their shape to infer taxonomy or morphological attributes (Picheral et al., 2010; Stemmann et al., 2012; 94 

Lombard et al., 2019). However, there is a compromise between the observed volume and the resolution of the camera 95 

that defines a size range and taxonomic resolution for each type of sensor. Recent publications have suggested 96 

(Lombard et al., 2019, Kiko et al., 2023) and showcased (Drago et al. 2022, Clements et al. 2023, Laget et al. 2024) 97 

that cooperative observation of plankton with imaging systems can allow an upscaling of regional observations by 98 

independent observers to global scale. Thus, plans are now underway to measure these variables with imaging systems 99 

on large-scale observing programs, like the Bio-GO-SHIP (Clayton et al., 2022) or the BGC-Argo (Claustre et al., 100 

2020; Picheral et al., 2022) programs. 101 

The Underwater Vision Profiler camera system (UVP, version 5) is an optical imaging instrument that 102 

captures digital images of a defined volume of seawater, provisioned with LED lights. It was designed to automatically 103 

detect, size, and count biotic and abiotic particles in the marine environment as it profiles through the water column 104 

(Picheral et al., 2010). To date, the 25 units of the UVP5 have been used at 14,462 sites since 2008 providing 94.8 105 

millions of images and ~1,000 new profiles every year. The UVP5 optimal size range to identify and measure 106 

morphological traits is in the order of 600 µm to a few millimeters (Picheral et al., 2010; Drago et al., 2022). The 107 

number of taxa that can be recognized is over 200, whereas robust data is available for the 30 most abundant taxa 108 

(Drago et al., 2022; Panaïotis et al., 2023). Semi-supervised classification (automatic prediction followed by human 109 

validation) of plankton images (Irisson et al., 2022) was performed at regional scales, because of the time required to 110 

analyse all profiles and the lack of dedicated work flow to deal with millions of images. Recently the development of 111 

the collaborative platform Ecopart (https://ecopart.obs-vlfr.fr/) for UVP metadata and data curation, and EcoTaxa 112 
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(https://ecotaxa.obs-vlfr.fr/) for supervised image classification facilitated data treatment for the users. The data, 113 

initially recorded to address regional questions, can then be aggregated in global datasets to investigate global 114 

distributions of counts, size and vertical flux of all detected objects (Kiko et al., 2022; Clements et al., 2022; Clements 115 

et al., 2023). Furthermore, these platforms allow global studies on macrozooplankton biomass (Drago et al., 2022), 116 

and community composition (Panaïotis et al., 2023), as well as on the community proportions  of Rhizaria (Biard et 117 

al., 2016), their impact on carbon flux attenuation, and silicification (Laget et al., 2024). To date, these studies provided 118 

the following data products: global plankton biomass, counts and group specific carbon demand data. In addition, to 119 

facilitate data access for modelers, all UVP5 particle size profiles, which were analysed without image recognition, 120 

were released at a 1 degree spatial resolution (Kiko et al., 2022). A more recent database obtained by combining 121 

images from Imaging Flow CytoBot, Zooscan and UVP5 to provide data products on plankton and detritus biomass 122 

binned in 1 degree resolution was also released (Dugenne et al., 2024). An attempt was made to classify detritus 123 

images based on their morphology (Trudnowska et al., 2022) but given their high number and the lack of consistent 124 

shapes, their classification at global scale is still challenging. 125 

Here, we present the global dataset comprising approximately 8 millions validated images of plankton and 126 

detritus, rigorously verified by expert taxonomists, associated with relevant metadata and their morphological 127 

measurements, that was not released in earlier studies. The dataset is of interest for marine ecologists interested in 128 

plankton biogeography and biogeochemical modeling and for computer scientists developing Artificial Intelligence 129 

methods to classify images. While the current plankton classification has been homogenized for 33 categories, there 130 

remains potential for further improvement to increase the list of taxa consistent at a global scale. Classification of 131 

detritus was not performed, as existing methodologies developed at regional scale must be improved for a global 132 

approach. By providing the raw images for plankton and detritus, we hope to foster the development of new algorithms 133 

to sort and analyze them. The manuscript is organized as follows: details about the UVP5, the inter-calibration and 134 

quality control procedures, as well as the dataset structure are provided in the Material and Methods section. Maps of 135 

dataset distribution, summarizing statistics regarding taxa composition, size spectrum, description of global detritus 136 

and plankton distribution in the Results section. Finally, recommendations for dataset use and potential future 137 

expansions of it are provided in the Discussion section. 138 

2 Material and methods 139 

2.1 Sampling sites  140 

Data from the Underwater Vision Profiler 5 (UVP5), an in-situ imaging system designed to detect, measure, 141 

and quantify the distribution of zooplanktonic organisms and marine particles (Picheral et al., 2010), were used. The 142 

UVP5 dataset (Figure 2) was compiled from observations across all oceans over a 10-year period (2008–2018) through 143 

a collaboration of international partners. It includes 3,114 profiles from 62 EcoTaxa projects conducted during 144 

research cruises by different institutions (Table A1), each aimed at addressing specific local or basin-scale research 145 

questions. 146 

https://doi.org/10.5194/essd-2025-522
Preprint. Discussion started: 29 August 2025
c© Author(s) 2025. CC BY 4.0 License.



 5 

2.2 Image acquisition with UVP5  147 

2.2.1 UVP5 description 148 

The UVP5 was commercialized in 2010 and produced until 2021. The standard definition (SD) version with 149 

a 1.3 Megapixel greyscale camera was produced between 2008 and 2016 (serial numbers 000 to 011) and the high-150 

definition (HD) version with a 4 Megapixel greyscale camera was produced between 2016 and 2021 (serial numbers 151 

200 to 223). In the standard definition setting, the UVP5 images a volume of about 1 L at a frequency of 5 to 20 Hz 152 

and can be deployed down to 6000 m depth. The UVP5 is mostly integrated in the CTD-Rosette and therefore its 153 

results (particle and plankton counts) can be related to environmental data obtained with other sensors. All particles 154 

larger than appr. 100 μm Equivalent Spherical Diameter (ESD) are sized and counted but their images are not stored 155 

because the low number of pixels precludes any recognition of the particles. Recognized objects   larger than 30 pixels 156 

(UVP5SD) or 80 pixels (UVP5HD) are automatically cropped and the resulting vignettes stored and further analyzed. 157 

2.2.2 Image analysis by zooprocess 158 

 Vignettes contain plankton organisms, detritus and artefacts larger than approximately 1 mm ESD for 159 

UVP5SD and 600 μm for UVP5HD. Pixel size-to-millimeter conversions for UVP5SD and UVP5HD are derived 160 

from objects of 30 and 80 pixels, respectively. For simplicity, we converted the surface area in pixels to its Equivalent 161 

Spherical Diameter. In addition, the released dataset contains 42 morphological features characterizing each object. 162 

Metadata collection (geographic location, date, etc.) and processing of all 8.46 million images was carried out using 163 

the ZooProcess software. The processing included the segmentation of the object from the obtained raw vignette and 164 

the measurement of 42 morphological features associated with each object (area, major and minor axis, grey level 165 

etc.; Picheral and Mériguet, 2025; Table A2). For user convenience, the images were inverted to show dark objects 166 

on a white background and a scale bar was added to each vignette. Images and metadata were imported into EcoTaxa 167 

(Picheral et al., 2017), an application which allows a taxonomic classification of images via supervised learning 168 

algorithms, followed by manual validation (Irisson et al., 2022). 169 

The two versions of the UVP5 have been inter-calibrated based on the size spectrum of all particles measured 170 

concurrently in natural conditions (Kiko et al., 2022). Therefore, size is a conservative property between the 171 

instruments and plankton community composition can be inter-compared. While all parameters, except for shape-172 

based ones, differ between the SD and HD versions due to the distinct dynamics of their imagers, other morphological 173 

properties, such as opacity, brightness, etc., may not be conservative, requiring caution in their joint analysis. For the 174 

HD version, measurements are taken from images with a dark field, which are then converted to a light field 175 

comparable to those in the SD version. Additionally, only images from a continuous descent of the instrument were 176 

retained.  177 
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2.2.3 Semi-automatic image identification 178 

Using EcoTaxa (https://ecotaxa.obs-vlfr.fr/), we applied semi-automated recognition in two steps following 179 

the third strategy path defined in Figure 2 by Irisson et al. (2022). First, features obtained using Zooprocess software 180 

or features re-calculated by a convolutional neural network (CNN) are considered to automatically predict object 181 

identities using a Random Forest algorithm. Therefore, various image learning sets were used independently on a 182 

project-by-project basis by different users. In this way, plankton organisms can be successfully classified into a few 183 

broad categories from the overdominant category of detritus with reasonable success. In a second step, manual 184 

validation and further sorting ensured correct classification of all plankton categories and detritus. In general the 185 

sorting was performed by various users and institutions. To reduce the risk of wrong identification, a shared UVP5 186 

taxonomic guide was used by all annotators to homogenize image sorting (EcoTaxaGuide application). In addition, 187 

annotations were rigorously quality checked by the authors. The classification of all images was strictly based on the 188 

morphological features of the objects in most cases. However, few annotators have used contextual information 189 

provided by other means (e.g., bottle or net collection, depth, GPS) to classify objects with inadequate morphological 190 

attributes into taxa. 191 

2.3 Dataset 192 

The UVP5 image dataset comprises vertical profiles validated to more than 99%, with only near-completely 193 

validated profiles retained for subsequent analysis. Currently, the different annotators of the 62 EcoTaxa projects 194 

chosen have sorted the image datasets in more than 250 categories from species level to phyla or by adding 195 

morphological attributes and life stages. Such detailed classification is not possible over the whole dataset with high 196 

accuracy because recognition and sorting of organisms can be a source of bias depending on the levels of perception 197 

and experience of the people who perform them. Several cognitive biases exist, such as boredom, fatigue or a 198 

classification biased towards the most used groups (Culverhouse, 2007; Culverhouse et al., 2014). Currently 71 199 

different annotators have classified the images, potentially introducing substantial classification variability and errors 200 

(Table A3). 201 

In the present dataset, to reduce these errors and ensure classification homogeneity, the images were 202 

thereafter grouped into only 33 broader taxonomic groups for living organisms by combining all vignettes within the 203 

children categories (Table 1), while in EcoTaxa the original categories are maintained. The broad taxonomy list was 204 

established following recent published works using UVP5 data (Drago et al., 2022; Panaïotis et al., 2023; Laget et al., 205 

2024) to ensure a minimum of 50 images per category and ecological patterns at regional or global scales for specific 206 

groups or community composition. For example, rhizarians were well studied at local (Biard and Ohman, 2020) and 207 

global scales (Biard et al., 2016; Laget et al., 2024) while polychetes were mostly studied in the tropical Atlantic 208 

(Christiansen, 2016). Community composition analyses have been conducted at local scales by Forest et al. (2012) 209 

and Barth et al. (2020), and at a global scale by Panaïotis et al. (2022). Global biomass was estimated in Drago et al. 210 

(2022). Inter-comparison with net data at global scale (Soviadan et al., 2024) allowed to set confidence in the 211 

abundance assessments of many of these groups. 212 
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Images of unidentifiable objects exhibiting probable biological characteristics (e.g., symmetry, appendages, 213 

or tentacles) were classified into the “plankton-like” category. Thus, the term -like in this dataset refers to all objects 214 

that have a structured morphology (appendages, symmetry) that make them resemble an organism but that can’t be 215 

classified as such. This labeling includes issues due to bad focus, low image resolution, incomplete organism capture, 216 

or the unknown nature of the organisms to the annotator that hinder the accurate taxonomic identification. For 217 

example, copepoda-like contains all vignettes of copepods for which the antenna are not visible while the body shape 218 

resembles typical prosome and urosome. If many identical objects were common but not evenly distributed and not 219 

yet classified, new temporary categories were created and labeled temporary (‘tmpXXX’). When contextual 220 

information to identify them was used, “contextual” was added to their names. All images of non-living organisms, 221 

including poor-quality images (blurred, low grey level, bubbles, artificial nature, badly segmented images) or particles 222 

(aggregates, fibers, pellets) were sorted into several categories without consistency criteria across the consortium. 223 

Low-quality images (mostly objects not completely in focus) were set in a category named “artefact” that includes 224 

bad focus particles, plankton and real artefact, while particles were grouped into a single detritus category. 225 

To ensure data consistency across projects, a subset of the dataset was reviewed to verify the accuracy of 226 

taxonomic sorting within each group. A total of 200 images were extracted from each category, or all available images 227 

if fewer than 200 were present. For detritus, 10 % of the total images were selected and independently reviewed after 228 

the final dataset was assembled. The error or uncertainty rate was under 8 % for taxa classification. Among the detritus, 229 

less than 0.1 % were plankton organisms. The resulting global dataset consisted of 7.05 million detritus images and 230 

734 thousands plankton images from 3,114 profiles. 231 

Due to the large number of plots required to display the results for all categories, results are shown for a 232 

subset of the original categories. From the 33 initial categories derived from taxonomy (Table 1), five taxonomic 233 

groups were formed for further analysis based on feeding strategies and/or their ecology. These groups can be highly 234 

useful as input for biogeochemical or community ecology models. The groups include Crustacea (Copepoda and 235 

Malacostraca), gelatinous filter-feeders (Appendicularia, Salpida), gelatinous carnivores (Chaetognatha, 236 

Narcomedusae, Siphonophorae, Ctenophora), Rhizaria (Collodaria, colonial Collodaria, other Rhizaria, Foraminifera, 237 

Phaeodaria, Acantharea), and Trichodesmium. From these groups, biovolumes were calculated along with 238 

concentrations at different depth layers and for the analysis of the average grey level.  239 

2.3.1 Data output format 240 

We provide four tables with numerical data (in .tsv format), as well as all images (with .jpg extension) while 241 

their full description is available in the information documents (UVP5_dataset_organization.txt) during the download.  242 

Briefly, ‘objects.tsv’ is the data table which contains each object information. The three first columns refer to the 243 

unique object ID given by Ecotaxa, original object classification in Ecotaxa and object classification according to 244 

Table 1. The following 42 columns contain all the object features obtained from the image (see Table A2). The 245 

‘samples.tsv’ file is the table with the metadata corresponding to all the coordinates (latitude, longitude, date and time) 246 

and acquisition details (pixel size and UVP model). The ‘samples_volume.tsv’ is a table that contains the volume of 247 
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water in which the object was extracted and that is used to calculate concentrations (middle depth bin and volume 248 

imaged). Finally, ‘properties_per_bin.tsv’ is a table with concentrations, biovolume, average size (ESD) of the 33 249 

consistent categories per depth bin and per sample. The native size bin of the dataset is 5 m, but to reduce the size of 250 

the file and avoid too many zeros, we provide 25 m depth bins in the surface ocean (up to 200 m), 50 m depth bins 251 

(up to 500 m), 100 m bins (up to 1000 m) to 250 m below 1000 m. We provide the code in R to recalculate the table 252 

with a depth bin of 5 m. The two files ‘ODV_biovolumes.txt’ and ‘ODV_concentrations.txt’’ contains the same 253 

information as ‘properties_per_bin.tsv’ but in the ODV format.  254 

Table 1: List of categories that are quantitatively consistent in this work and names of children categories not homogeneous 255 

among the projects. Categories also defined by their morphotypes or life stages are in bold. The number of images in each 256 

category is given in parenthesis. The published dataset contains both the broad and the children categories. When available 257 

publications using the dataset at regional scales are listed. Exponent numbers denote the association with an image example 258 

in Figure 1. 259 

Broad categories selected 

in this work (number of 

vignettes) 

If more than 50 vignettes, children categories (number of vignettes) 

proposed by data owners but not yet homogenized 

Reference 

Acantharia (12,616)1   

Actinopterygii (482)2   

Annelida (3,261)3 Alciopidae (74), Phyllodocidae (53), Tomopteridae (237), 

Acrocirridae (218), Flota (185), Poeobius (358)  

Christiansen et 

al., 2022; Barth 

and Stone, 

2022 

Appendicularia (9,354)4 body (540), house (836) Forest et al., 

2012 

Bacillariophyta-

contextual 

(44,637)5 

All objects classified as such using contextual data   

Chaetognatha (6,793)6 tail<Chaetognatha (64), head<Chaetognatha (62)  Forest et al., 

2012; Barth 

and Stone, 

2022 

other Collodaria (7,644)7 Solitaryblack (5,905), solitaryglobule (1,738) Biard and 

Ohman, 2020 

colonial Collodaria 

(2,329)8 

  Biard and 

Ohman, 2020 

Copepoda (173,909)9 like<Copepoda (72,284), Eucalanidae (782), like<Temoridae (280), 

ovigerous (117), ovigerous_side (3,484), ovigerous_top-bottom 

(287), Pseudocalanus (99), Harpacticoida (65) 

Forest et al., 

2012; Vilgrain 

et al., 2021; 

Barth and 

Stone, 2022 

Ctenophora (2,743)10 Beroida (238), Cestidae (66), Lobata (111), tentacle<Ctenophora 

(65) 

Forest et al., 

2012 

Doliolida (1,304)11   

Eumalacostraca 

(11,160)12 

Amphipoda (434), Pleuroncodes (258), Euphausiace (531), 

Munnopsis (70) 

Forest et al., 

2012; Barth 

and Stone, 

2022 

Foraminifera (3,014)13   

Gasteropoda (1,500)14 Gymnosomata (87), Limacinidae (1015), Creseidae (120), other 

Thecosomata (198)  
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Narcomedusae (2,938)15 Solmundella bitentaculata (1,791), Solmaris (203)  

Nostocales (1,369)16 Aphanizomenon (689), Dolichospermum (179), Nodularia (501)  

Ostracoda (8,427)17  Barth and 

Stone, 2022 

Phaeodaria (65,030)18 Castanellidae (2,405), Circoporidae (271), Tuscaroridae (85), 

Aulacanthidae (236), Aulacantha (18,572), Aulographis (827), 

Coelodendrum (283), Coelographis (2,474), leg<Coelodendridae 

(1,513), Medusettidae (459), Aulosphaeridae (31,616), Aulatractus 

(217), colonial<Aulosphaeridae (906), like<colonial (1,381), 

Cannosphaeridae (1,416), colonial<Cannosphaeridae (84) 

Biard and 

Ohman, 2020 

Pyrosoma (334)19   

Salpida (592)20   

Siphonophorae (2,557)21 part<Siphonophorae (380), tentacle<Siphonophorae (1,381)  

Trachymedusae (462)22 Halicreatidae (184), Aglantha digitale (100)  

Trichodesmium 

(88,676)23 

Puff (41,936), Tuff (46,740) Guidi et al., 

2012; Sandel et 

al., 2015 

Trichodesmium-

contextual (98,956)24 

all objects were classified as such by using contextual data, 95% are 

from the same cruise 

Dupouy et al., 

2018 

other Cnidaria (1,994)25 Ceriantharia (74)  

other Crustacea (4,569)26 larvae<Crustacea (58), tail<Crustacea (122)  

other Hydrozoa (8,659)27 Leptothecata (96)  

other Mollusca (3,833)28 veliger (3,092)   

other Rhizaria (9,911)29 contains plankton resembling to Rhizaria   

tentacle of Cnidaria 

(8,008)30 

   

plankton-like (74,241)31 contains all structured objects most probably living organisms, which 

are in multiple categories to check (35,083), possibly plankton 

(18,289), to resort (15,535), other living (5,868) and to rename 

(2,942) 

 

detritus (7,055,138)32 contains particles such as aggregates, filaments, mucus net which are 

not yet sorted 

Trudnowska et 

al., 2021 

Artefact (49,636)33 bubble (8,332), turbid (9,507)  
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 260 

Figure 1: Examples of images for each category (Table 1) present in the dataset. 261 

3 Results 262 

3.1 Data coverage in time and space 263 

The dataset presented here reveals a heterogeneous global distribution. The map in Figure 2 illustrates the 264 

profiles collected using two different versions of the UVP5 (SD and HD) during deployments across the global ocean 265 

between 2008 and 2018. While sampling efforts cover the global ocean, UVP5 deployments predominantly occurred 266 

in the northern hemisphere (66.3% of profiles), especially in tropical and temperate latitudes where seasonal variations 267 

are well observed. In contrast, the southern hemisphere has fewer observations (33.7% of profiles), resulting in a less 268 
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comprehensive dataset. The equatorial region (30º S-30º N) represents the highest proportion of UVP5 profiles 269 

(47.25%). The vertical profiles distribution reveals a predominant concentration of measurements in the upper 1000 270 

m of the water column, representing 40.6% and 46.8% for the SD and HD models respectively, with a peak occurring 271 

within the upper 500 m. This indicates that most deployments targeted shallower depths. The SD version of the UVP5 272 

demonstrates the most extensive coverage, with profiles spanning the entire latitudinal range. Meanwhile, the HD 273 

version UVP5 profiles are more prevalent in the Northern Hemisphere. Importantly, the two versions were rarely co-274 

located in space and time, preventing meaningful inter-comparison of zooplankton community composition. These 275 

patterns provide valuable insights into the sampling strategies and data representation of UVP5 profiles across the 276 

global ocean. They also highlight the seasonal variability observed primarily in the northern hemisphere and the under-277 

sampling of the southern hemisphere and the deep sea. 278 

 279 

Figure 2: a) Global sampling effort for the two versions of UVP5 (SD and HD, blue and orange, respectively) between 2008-280 
2018 in different oceans. b) Indicates the latitudinal distribution of UVP5 profiles and c) shows the maximum vertical extent 281 
of the profiles. 282 

3.2 Detritus and plankton composition in the whole dataset 283 

Figure 3 presents the relative abundance of dataset categories, with the six most prevalent in decreasing 284 

order being: detritus, Copepoda, Trichodesmium-contextual, Trichodesmium, plankton-like, and Phaeodaria. Detritus 285 

is the most abundant category by far (90.5% of total images), indicating a substantial presence of non-living particulate 286 

organic material. Copepoda dominates the zooplankton and represents a significant fraction of the dataset (2.2%), 287 

followed by Trichodesmium (1.3%) and the Trichodesmium-contextual (1.1%) categories. The category plankton-like 288 

reflecting some level of taxonomic uncertainty in the dataset, is the fourth category in terms of images within the 289 

dataset (1%). The artefact category, including bubbles and artefact, occupied the sixth position (0.9%). This category 290 

is followed by Phaeodaria (0.8%) and Bacillariophyta-contextual (0.6%). Each of the remaining groups represent less 291 

than 0.16% of the total number of objects.  292 
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 293 

Figure 3: Barplot with total number of objects in logarithmic scale available in the dataset per category (detritus and 294 
plankton) for the 33 consistent categories. The categories are ordered by descending count, with specific categories 295 
("detritus" and "artefact") highlighted in distinct colors. Note that the artefact category represented here contains all 296 
vignettes including turbid, bubbles, badfocus (see section 2.3.1). 297 

3.3 Global distribution of plankton and detritus   298 

The spatial patterns of plankton and detritus concentrations in the global ocean vary significantly with depth 299 

and location. Figure 4 depicts the global distribution of abundances in three depth layers. Across all depth layers, 300 

plankton and detritus abundances are increased (up to 5 plankton/m3 and 60 detritus/m3 in the 0-100 m depth layer 301 

and up 2 plankton/m3 and 20 detritus/m3 in the 500-1000 m depth layer) in eastern boundary current systems 302 

(especially in the Californian and Senegal upwelling systems) or in coastal seas. Minimum values (up to 2 plankton/m3 303 

and 20 detritus/m3 in the 0-100 m depth layer and up 1 plankton/m3 and 1 detritus/m3 in the 500-1000 m depth layer) 304 

are usually found in the center of large ocean gyres (notably in the South Pacific and the Indian Ocean).305 
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 306 

Figure 4: Map of the global detritus and plankton concentration (log particles/organism m-3) in three layers (0-307 

100, 100-500 and 500-1000 m).  308 

3.4 Average size distribution of SD and HD versions 309 

The distribution of detritus, the most abundant category, follows a dome-like pattern (criteria from Drago et 310 

al., 2022), with UVP5 showing a lower detection threshold for particles below 1 mm for UVP5 SD and 600 µm for 311 

UVP5 HD. In contrast, taxonomic categories exhibit a much flatter normalized biomass/biovolume size spectra 312 

(NBSS) distribution compared to detritus. Detritus dominates the smaller size range  while the contribution of plankton 313 

increases relative to detritus in the larger size range.  Except for Rhizaria, smaller planktonic organisms were more 314 

abundant in the upper 100 m in the UVP5hd dataset. This analysis emphasizes the differing detection limits of the two 315 

camera versions in the small size range for both plankton and detritus (Figure 5). Consequently, we recommend a 316 

standardized size cutoff of 1.02 mm for ecological studies focusing on abundance and biomass integrating both data 317 

sets, while studies utilizing solely UVP5 HD should employ a 600 µm size threshold.318 
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 319 

Figure 5: Average size distribution of detritus and plankton categories obtained by the SD and HD version of the UVP5 in 320 
three depth layers. Red dashed line indicates the threshold value (1.02 mm) below which UVP5 detection of organisms is 321 
difficult to quantify properly. Crustacea (Copepoda and Malacostraca), gelatinous filter-feeders (Appendicularia, Salpida), 322 
gelatinous carnivores (Chaetognatha, Narcomedusae, Siphonophorae, Ctenophora), Rhizaria (Collodaria, colonial 323 
Collodaria, other Rhizaria, Foraminifera, Phaeodaria, Acantharea), and Trichodesmium. 324 

3.5 Plankton to detritus ratio as a function of size 325 

For both UVPs, the proportion of plankton images on all images (detritus and plankton) increases with size 326 

from 0.01 at 500µm to about 0.8 for objects larger than 3 mm in ESD. The two instruments display a similar pattern 327 

with a plateau in this ratio starting at about 3 mm. In general, the ratio does not vary with depth and remains at 0.8 for 328 

objects larger than 3mm. 329 
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 330 

Figure 6: Abundance ratio of plankton (without plankton-like) over all images as a function of size for the two different 331 
UVP5 versions. Red dashed line indicates the threshold value (1.02 mm) below which a robust detection of organisms is 332 
limited. 333 

 3.6 Vertical profiles of detritus and plankton concentrations 334 

When objects are analyzed across different vertical layers (Figure 7), detritus exhibits increased 335 

concentrations, primarily within the uppermost 100 m of the water column. The biovolume distribution mirrors the 336 

concentration pattern, with detritus exhibiting substantially higher values—several orders of magnitude greater—337 

compared to living plankton organisms. Trichodesmium (not including Trichodesmium-contextual) was the most 338 

abundant group in terms of concentration within the upper 100 meters, with its presence decreasing with depth. 339 

However, in terms of biovolume, due to their smaller size (Figure 4), it represented a relatively small proportion 340 

compared to other groups analyzed. Crustacea, on the other hand, were present in similar proportions in both 341 

concentration and biovolume, showing a high abundance in the surface layer and a decline with depth. In the case of 342 

gelatinous plankton, both with a filter-feeding (Appendicularia, Salpida) and carnivores strategies (Chaetognatha, 343 

Narcomedusae, Siphonophorae, Ctenophora), their concentrations were very low in all analyzed depths, while their 344 

biovolume became significantly important, particularly in the upper 100 m of the water column. Both parameters 345 

showed a decrease with depth for these groups, similar to the patterns observed for the aforementioned groups. 346 

Rhizaria, in turn, showed peak concentrations in the upper 100 m, which gradually decreased to 1000 m. Their 347 

biovolume values exhibited patterns similar to those observed for concentration.348 
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 349 

Figure 7: Global vertical profiles of concentration and biovolume for detritus and the five plankton functional groups.part: 350 
particles of detritus; org: organisms from different taxa categories. Crustacea (Copepoda and Malacostraca), gelatinous 351 
filter-feeders (Appendicularia, Salpida), gelatinous carnivores (Chaetognatha, Narcomedusae, Siphonophorae, 352 
Ctenophora), Rhizaria (Collodaria, colonial Collodaria, other Rhizaria, Foraminifera, Phaeodaria, Acantharea), and 353 
Trichodesmium. 354 

3.7 Morphological properties 355 

The key morphological properties for detritus and the five taxonomic groups presented similar patterns 356 

between the two UVP5 versions (SD and HD). In some cases, the range differed between versions for the groups 357 

depending on the property examined (Figure 8). Gelatinous groups were the biggest categories in terms of area 358 

measured, while they presented the lowest circularity, compared to the remaining groups. Crustacea was the darkest 359 

group, whilst gelatinous were the lightest ones. 360 
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 361 

Figure 8: Box plots of key exemplary morphological properties (area, circularity, mean grey level, skew) for detritus and 362 
the five taxonomic groups (Crustacea, gelatinous carnivore, gelatinous filter feeders, Rhizaria and Trichodesmium) for the 363 
two UVP5 versions (HD and SD). Crustacea (Copepoda and Malacostraca), gelatinous filter-feeders (Appendicularia, 364 
Salpida), gelatinous carnivores (Chaetognatha, Narcomedusae, Siphonophorae, Ctenophora), Rhizaria (Collodaria, 365 
colonial Collodaria, other Rhizaria, Foraminifera, Phaeodaria, Acantharea), and Trichodesmium.366 
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4 Discussion 367 

The availability and accessibility of both the images and their associated metadata present new challenges, 368 

encouraging the scientific community to leverage and refine them for future research. With this objective in mind, 369 

the dataset presented here serves as a starting point for further exploration of the current database (10,000 profiles 370 

not fully validated) and future data incorporated in EcoTaxa (approximately 500 profiles annually on average over 371 

the last three years for UVP5 versions only), covering both plankton and detritus. In this context, we discuss the 372 

strengths and limitations of the dataset, as well as its potential applications and future directions for the UVP 373 

database. 374 

4.1 Consideration related to spatial coverage and instruments performances  375 

The dataset covers all major ocean basins, though the southern hemisphere and the deep sea remains largely 376 

undersampled. The list of profiles included are primarily confined to the mid- to high-latitudes of the northern 377 

hemisphere (Figure 2). Some specific regions are well sampled as they belong to monitoring or time-series programs 378 

developed during the last decades, such as the California Current, the Western Mediterranean, and the Equatorial 379 

region, through initiatives like the CCELTER program (e.g., Biard and Ohman, 2020), ongoing observational efforts 380 

of MOOSE (e.g., Llopis Monferrer et al., 2022), and long-term studies in the Equatorial region (e.g., Kiko et al. 381 

2017, Fernández-Carrera et al., 2023). The even distribution across ocean basins is mostly the result of the Tara 382 

Ocean Expeditions (2009-2013). Altogether, this dataset represents global coverage over a decade, with 383 

homogeneous and intercomparable methodologies across UVP5 versions. Despite this extensive coverage, there are 384 

some potential issues regarding data quality. For instance, the small volume sampled by UVP5s can lead to 385 

challenges in detecting rare groups, and the quality of the images may affect the accuracy of object identification. 386 

Additionally, "zeros” might not always reflect the actual absence of objects or natural patchiness of plankton and 387 

particles, but rather a result of low volume sampled or detection limits of the instrument. 388 

At larger size ranges, as organisms become rare, statistical analysis may be challenging and required to 389 

aggregate counts across thick ocean layers. At the surface, abundant taxa may permit 10 m binning intervals (Dupouy 390 

et al., 2018; Biard and Ohman., 2020), though 20 m bins are typically more appropriate (Picheral et al., 2010). For 391 

rare taxonomic groups, aggregation across several hundred meters may be necessary to achieve statistically 392 

meaningful analyses (Hauss et al., 2016; Panaïotis et al., 2023). In this study, we employed a depth-layered approach 393 

to mitigate variability in rare taxonomic groups, aggregating data into five progressively wider depth layers (0-100, 394 

100-500, 500-1000, 1000-2000 and 2000-4000 m). While previous publications have chosen 0-200 m and 200-500 395 

m (Drago et al., 2022) or a dynamic one, for the first layer, set as the deepest value among the mixed layer depth and 396 

the euphotic depth (median 88 m, Panaïotis et al., 2023). Such a choice depends on the scientific question. 397 

The two versions of the UVP5 are inter-calibrated based on the size spectrum of all objects obtained from 398 

repeated joint profiles at the same location (Picheral et al., 2010; Kiko et al., 2022). A peak in the size spectrum at 399 
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the lower size range generally reflects the minimum size of efficient detection by in situ imaging, while high 400 

variability in the large size range due to the poor ability to detect rare large objects results in constant (e.g., flatter) 401 

distribution (Stemmann and Boss, 2012). In between these two size ends, a steep decrease is generally observed 402 

which translates to a quasi-linear decrease on a log scale. The detritus size spectra (Figure 5) clearly show that the 403 

HD version, presenting a smaller pixel size, has a better detection than the SD version for detritus smaller than 1 404 

mm, but that above a threshold size of 1 mm both versions are efficient up to a few mm as the slopes get flatter. 405 

4.2 Considerations related to classification 406 

Variations in taxonomic classification depth among annotators necessitated the merging of certain groups, 407 

resulting in a final list of 33 taxa with a lower common denominator (Table 1). To validate classification accuracy, 408 

a random subset of images (200 from each taxon and 10,000 for detritus) was independently reviewed by a single 409 

operator. Error rates were consistently below 10% across all groups, with most groups exhibiting error rates under 410 

2.5%. An additional source of error in the case of detritus is that many annotators had moved un-focused particles 411 

into the category artefact. This category includes various sources and types of images that may result from factors 412 

such as a poorly tied rope, which was recorded during the image capture, as well as seals or cables. On the other 413 

hand, it may also consist of effects like bubbles caused by the descent through the water column and the air intrusion, 414 

as well as artifacts resulting from image blurriness where no actual object or non-recognizable object is present (real 415 

artifact). When analyzing the artefact category which contains some subjectivity, considering for example that bad-416 

focused could be very transparent objects, we found that it consists of 85% of real detritus shaped objects, 5% of 417 

plankton and 10% of artefact. Sorting them in the EcoTaxa database system would be too time-consuming, so users 418 

must decide whether to include or exclude them during the analysis. Here, we merged them with detritus as they 419 

would become a minority (less than few percents). However, it is important to note that objects classified as artefacts 420 

(not shown in Figure 7) represent less than 1% of the total dataset when the concentration is calculated, but contribute 421 

to more than 200% when volume is considered. Their impact is high mostly on large objects because many artefacts 422 

are observed in very turbid water where particles are badly segmented. This highlights the significance of their 423 

removal. 424 

Plankton-like 425 

We have gathered in plankton-like all objects that are most probably plankton. Inside this category, ~60% 426 

of the objects in the possibly plankton group may be Rhizaria, but the image definition impairs their recognition. It 427 

is important to keep this category apart from the detritus category because they represent a significant fraction of the 428 

total plankton count and probably living biomass. Although a significant portion indicates uncertain classification, 429 

it is also in this category that most new findings can be performed. 430 

Plankton contextual 431 

 The term -contextual in this dataset refers to objects that were classified as a taxonomic category but do 432 

not have the morphology of the taxa. Scientists on oceanographic surveys who had other contextual information 433 
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have created the category Trichodesmium-contextual and Bacillariophyta-contextual for objects that aren't formally 434 

identified as Trichodesmium puff and tuff or as diatom chains. In this context, the classification is supported by 435 

many other optical observations (for example see Dupouy et al., 2018 for Trichodesmium). Due to the risk of mis-436 

interpreting ecological results or impairing the quality of the learning set, it is better to distinguish them from objects 437 

whose images are typical of plankton organisms. In the case of the two categories, Trichodesmium and 438 

Trichodesmium-contextual, they contain nearly the same number of objects, so including both would double the 439 

amount of data for this group. On the other hand, Bacillariophyta-contextual represents the sole category for this 440 

genus within the dataset, where its inclusion or not could lead to its complete exclusion. 441 

4.3 Scientific relevance 442 

Overall, this dataset provides a unique and comprehensive tool for the scientific community, enabling 443 

researchers to examine the intricate relationships between plankton, detritus, and ecosystem function. The detailed 444 

classification of plankton and detritus provides a valuable resource for understanding ecological dynamics at global 445 

(Drago et al., 2022; Panaïotis et al., 2023; Laget et al., 2024) and local scales (see references in Table 1) within 446 

marine systems as already shown in several studies. By analyzing the abundance, diversity, and distribution of 447 

planktonic organisms, researchers can gain insights into food web structures, energy flow, and the interactions 448 

between different trophic levels (e.g., D’Alelio et al., 2016; Perhirin et al., 2025). The data allows ecologists the 449 

monitoring of plankton communities, which are essential indicators of environmental health and can reflect changes 450 

in water quality, nutrient levels, and ecosystem productivity (Muller-Karger et al., 2018). The dataset is equally 451 

valuable in biogeochemical studies, so researchers can better predict how changes in plankton community 452 

composition and detritus abundance influence nutrient cycling and the overall functioning of marine ecosystems. 453 

The complex relationships between these components provide critical insights into primary productivity, nutrient 454 

fluxes, and the potential impacts of environmental stressors such as climate change and ocean acidification. 455 

Additionally, biogeochemical models that integrate this dataset can help refine predictions of carbon sequestration 456 

in the ocean, an essential process for regulating atmospheric CO2 levels and mitigating global warming. As plankton 457 

and detritus play pivotal roles in the ocean’s carbon pump, understanding their dynamics is crucial for assessing the 458 

resilience of marine ecosystems and their ability to mitigate or exacerbate climate change effects (e.g., Le Quéré et 459 

al., 2016; Rohr et al., 2023). Through these integrated models, the dataset offers a robust framework for exploring 460 

the complex feedback mechanisms between marine biological communities and biogeochemical processes, 461 

advancing our ability to predict future changes in marine ecosystems under varying environmental scenarios. 462 

4.4 Moving forward: future development 463 

The published dataset (3,114 profiles, 7,000,000 images) is publicly available, while only validated images 464 

are visible from the remaining profiles in EcoTaxa (6,000 profiles, 83,000,000 images), although not yet publicly 465 

accessible to be downloaded and/or re-processed. Therefore, future users should contact the data owners through the 466 

Ecopart and EcoTaxa platforms to request access to the complete datasets. 467 
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Despite the efforts of the data owners, many images in the EcoTaxa database for UVP5 were not recognized 468 

in any taxonomic group, so were categorized under a plankton-like category. The challenge of further sorting 469 

plankton-like organisms is significant due to its great abundance, but it also provides an opportunity to increase the 470 

biodiversity within the dataset and refine the taxonomy. 471 

Future classification should focus its efforts on sorting the detritus category, as a recent study highlights 472 

that sinking speed estimated for various particle categories varies with particle morphology (Trudnowska et al., 2022; 473 

Soviadan et al., 2025) or that mesoscale activities mix them them vertically according to their morphology (Accardo 474 

et al., 2025). In addition, they represent a very high proportion in abundance and probably of organic biomass 475 

compared to the plankton. Additionally, the specific classification of detritus particles, such as fecal pellets and their 476 

associated zooplankton communities, will enhance our understanding of their dynamics, improve the accuracy of 477 

carbon flux calculations, and refine their representation in biogeochemical models (Perhirin et al., 2025). Therefore, 478 

classifying particles based on their traits could provide valuable new insights into their origin and role in the carbon 479 

cycle through the gravitational pump (Boyd et al., 2019). When it comes to zooplankton, recent studies revealed that 480 

analyzing their traits, such as body size, morphology, and metabolic rates, which significantly influence their 481 

ecological roles and interactions within marine ecosystems, provides a framework for linking organismal 482 

characteristics to ecosystem functions, offering deeper insights into zooplankton behavior, community structure, and 483 

their contributions to biogeochemical cycles (Titocci et al., 2025). 484 

Transfer learning has shown promising potential in leveraging existing datasets to enhance training for 485 

improved recognition tasks. By utilizing the present dataset as a model training for machine learning and artificial 486 

intelligence (AI) techniques can be employed to better classify and extract relevant features (Lumini and Nanni, 487 

2019; Irisson et al., 2022). Specifically, AI could play a key role in sorting and categorizing the 7,000,000 detritus 488 

images in the dataset, enhancing the processing of the remaining 5,598 UVP5 profiles and their corresponding 70 489 

million images. Furthermore, integrating new profiles, such as the anticipated 500 annually for UVP5 and 5,000 490 

annually for the new version of the UVP (UVP6lp and hd; Picheral et al., 2022), into the observation system will 491 

enhance the robustness of the database, ensuring its adaptability and scalability for future data handling and feature 492 

extraction. This observation effort is supported by GOOS (Dexter and Summerhayes, 2010) and already in operation 493 

in large-scale observing programs, like the Bio-GO-SHIP (Clayton et al., 2022) or possibly by the BGC-Argo 494 

(Claustre et al., 2020) program. Having better embedded classifiers is particularly important for BGC Argo for which 495 

the floats and the cameras are not recovered. Given the versatility of the new UVP6, which can be attached or 496 

associated with different platforms, it has allowed for widespread distribution and, consequently, a significant 497 

deployment of profiles (~23 thousands on EcoTaxa), reaching 87 millions of images in the last 4 years since its 498 

commercialization in 2020. These advancements will ultimately contribute to more efficient data analysis and 499 

support the continuous improvement of environmental monitoring systems. 500 

Data availability 501 

The dataset is available on SEANOE at https://doi.org/10.17882/107583 (Nocera et al., 2025).  502 
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Appendix A 529 

Table A1. List of all projects included in the present study (N = 62), with their corresponding project identification (pprojid), 530 
title (ptitle), data owner and license registered on EcoTaxa (https://ecotaxa.obs-vlfr.fr/). 531 
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pprojid ptitle data_owner projid title license 

1 uvp5_sn003_jerico_2017 

lars.stemmann@obs-

vlfr.fr 578 UVP5 JERICO 2017  

2 uvp5_sn000_boum2008 

lars.stemmann@obs-

vlfr.fr 122 UVP5 BOUM 2008  

3 uvp5_sn000_ccelter_2012 

tristan.biard@univ-

littoral.fr 45 

UVP5 CCELTER (Iter2008 

ccelter_2012 ccelter_2014) CC BY-NC 4.0 

4 uvp5_sn000_lohafex2009 

lars.stemmann@obs-

vlfr.fr 109 UVP5 LOHAFEX 2009 CC0 1.0 

5 uvp5_sn000_lter2008 

tristan.biard@univ-

littoral.fr 45 

UVP5 CCELTER (Iter2008 

ccelter_2012 ccelter_2014) CC BY-NC 4.0 

6 uvp5_sn000_tara2009 

lars.stemmann@obs-

vlfr.fr 579 

UVP5 Tara Oceans (tara2009, 

tara2010, tara2011, tara2012, 

tara2013) CC BY 4.0 

7 uvp5_sn000_tara2010 

lars.stemmann@obs-

vlfr.fr 579 

UVP5 Tara Oceans (tara2009, 

tara2010, tara2011, tara2012, 

tara2013) CC BY 4.0 

9 uvp5_sn000_tara2012 

lars.stemmann@obs-

vlfr.fr 579 

UVP5 Tara Oceans (tara2009, 

tara2010, tara2011, tara2012, 

tara2013) CC BY 4.0 

10 

uvp5_sn002_moose_dyf_2

013 

lars.stemmann@obs-

vlfr.fr 35 

UVP5 Dyfamed 2013 2014 2015 

2016 2017 2018  

11 

uvp5_sn002_moose_dyf_2

014 

lars.stemmann@obs-

vlfr.fr 35 

UVP5 Dyfamed 2013 2014 2015 

2016 2017 2018  

12 

uvp5_sn002_moose_dyf_2

015 

lars.stemmann@obs-

vlfr.fr 35 

UVP5 Dyfamed 2013 2014 2015 

2016 2017 2018  

13 

uvp5_sn002_moose_dyf_2

016 lguidi@obs-vlfr.fr 35 

UVP5 Dyfamed 2013 2014 2015 

2016 2017 2018  

14 

uvp5_sn002_moose_dyf_2

017 coppola@obs-vlfr.fr 35 

UVP5 Dyfamed 2013 2014 2015 

2016 2017 2018  

15 

uvp5_sn002_moose_ge_20

13 

lars.stemmann@obs-

vlfr.fr 30 

UVP5 MooseGE 2012 2013 2014 

2015 2016 CC BY-NC 4.0 

16 uvp5_sn000_malina2009 

lars.stemmann@obs-

vlfr.fr 28 UVP5 MALINA 2009 CC BY 4.0 

17 

uvp5_sn002_moose_ge_20

14 

lars.stemmann@obs-

vlfr.fr 30 

UVP5 MooseGE 2012 2013 2014 

2015 2016 CC BY-NC 4.0 

20 uvp5_sn000_operex2008 

lars.stemmann@obs-

vlfr.fr 110 UVP5 OPEREX 2008 CC BY 4.0 

21 

uvp5_sn001_2012_moose_

ge stemmann@obs-vlfr.fr 30 

UVP5 MooseGE 2012 2013 2014 

2015 2016 CC BY-NC 4.0 

22 uvp5_sn001_2012_msm22 rkiko@geomar.de 593 UVP5 Geomar 2012 msm22  

23 uvp5_sn001_2012_msm23 rkiko@geomar.de 584 UVP5 Geomar 2012 msm23  

31 

uvp5_sn002_moose_ge_20

15_filtered 

lars.stemmann@obs-

vlfr.fr 30 

UVP5 MooseGE 2012 2013 2014 

2015 2016 CC BY-NC 4.0 

32 

uvp5_sn002_somba_ge_20

14 

lars.stemmann@obs-

vlfr.fr 36 UVP5 SOMBA 2014 CC BY 4.0 
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41 

uvp5_sn003_cassiopee_20

15 

lars.stemmann@obs-

vlfr.fr 38 UVP5 CASSIOPEE 2015 CC BY 4.0 

42 uvp5_sn003_ccelter_2014 

tristan.biard@univ-

littoral.fr 45 

UVP5 CCELTER (Iter2008 

ccelter_2012 ccelter_2014) CC BY-NC 4.0 

43 uvp5_sn003_ccelter_2016 

tristan.biard@univ-

littoral.fr 156 UVP5 CCELTER 2016 CC BY-NC 4.0 

44 

uvp5_sn003_dewex_spring

_2013 

lars.stemmann@obs-

vlfr.fr 4 UVP5 DEWEX 2013 (spring) CC BY 4.0 

46 uvp5_sn003_outpace_2015 lguidi@obs-vlfr.fr 37 UVP5 OUTPACE 2015 CC BY 4.0 

47 uvp5_sn003_sargasso_a lombard@obs-vlfr.fr 22 

UVP5 Sargasso 2014 (sargasso_a 

sargasso_b) CC BY 4.0 

48 uvp5_sn003_sargasso_b lombard@obs-vlfr.fr 22 

UVP5 Sargasso 2014 (sargasso_a 

sargasso_b) CC BY 4.0 

49 uvp5_sn003_tara2013 

lars.stemmann@obs-

vlfr.fr 579 

UVP5 Tara Oceans (tara2009, 

tara2010, tara2011, tara2012, 

tara2013) CC BY 4.0 

51 uvp5_sn003zp_tara2012 

lars.stemmann@obs-

vlfr.fr 579 

UVP5 Tara Oceans (tara2009, 

tara2010, tara2011, tara2012, 

tara2013) CC BY 4.0 

53 

uvp5_sn005_dewex_2013_

winter 

lars.stemmann@obs-

vlfr.fr 3 UVP5 DEWEX 2013 (winter) CC BY 4.0 

54 

uvp5_sn005_dy032_2015_

filtered 

francois.carlotti@mio.o

supytheas.fr 40 UVP5 DY032 205 CC BY 4.0 

55 

uvp5_sn005_moose_ge_20

13 

lars.stemmann@obs-

vlfr.fr 30 

UVP5 MooseGE 2012 2013 2014 

2015 2016 CC BY-NC 4.0 

56 uvp5_sn008_an1304 
marcel.babin@takuvik.
ulaval.ca 41 

UVP5 AN Arctique (an1304 an1405 
an1407) part A to validate  

57 uvp5_sn008_an1405 

marcel.babin@takuvik.

ulaval.ca 41 

UVP5 AN Arctique (an1304 an1405 

an1407) part A to validate  

58 uvp5_sn008_an1406 

marcel.babin@takuvik.

ulaval.ca 618 UVP5 AN 1406 CC BY-NC 4.0 

59 uvp5_sn008_an1407 

marcel.babin@takuvik.

ulaval.ca 41 

UVP5 AN Arctique (an1304 an1405 

an1407) part A to validate  

60 

uvp5_sn008_green_2015_i

cecamp 

marcel.babin@takuvik.

ulaval.ca 42 

UVP5 GREEN EDGE Ice Camp 

2015 CC BY-NC 4.0 

61 

uvp5_sn008_green_2016_i

cecamp 

marcel.babin@takuvik.

ulaval.ca 315 

UVP5 GREEN EDGE Ice Camp 

2016 CC BY-NC 4.0 

62 uvp5_sn008_subice_2014 stemmann@obs-vlfr.fr 107 UVP5 Subice 2014  

64 uvp5_sn009_2015_p16n 

amcdonnell@alaska.ed

u 43 uvp5_sn009_2015_p16n CC BY 4.0 

65 

uvp5_sn009_2015_p16n_g

oa 

amcdonnell@alaska.ed

u 43 uvp5_sn009_2015_p16n CC BY 4.0 

68 uvp5_sn010_2014_m105 rkiko@geomar.de 602 UVP5 Geomar 2014 m105  

69 uvp5_sn010_2014_m106 rkiko@geomar.de 595 UVP5 Geomar 2014 m106  
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532 

70 uvp5_sn010_2014_m107 rkiko@geomar.de 559 UVP5 Geomar 2014 m107  

71 uvp5_sn010_2014_m108 rkiko@geomar.de 586 UVP5 Geomar 2014 m108  

72 uvp5_sn010_2014_ps88b rkiko@geomar.de 558 UVP5 Geomar 2014 ps88b  

73 uvp5_sn010_2015_m116 rkiko@geomar.de 589 UVP5 Geomar 2015 m116  

76 uvp5_sn010_2015_m121 rkiko@geomar.de 560 UVP5 Geomar 2015 m121  

81 

uvp5_sn201_2016_naames

_02 

lee.karp-

boss@maine.edu 146 UVP5hd NAAMES02 CC BY-NC 4.0 

83 uvp5_sn201_ccelter_2017 

tristan.biard@univ-

littoral.fr 627 UVP5hd CCELTER 2017 CC BY-NC 4.0 

86 

uvp5_sn203_greenedge_20

16 

lars.stemmann@obs-

vlfr.fr 149 UVP5hd GreenEdge 2016 CC BY-NC 4.0 

87 

uvp5_sn203_greenedge_20

16_1b 

lars.stemmann@obs-

vlfr.fr 149 UVP5hd GreenEdge 2016 CC BY-NC 4.0 

92 

uvp5_sn201_2017_naames

_03 

lee.karp-

boss@maine.edu 637 UVP5hd NAAMES03 CC BY-NC 4.0 

95 uvp5_sn010_2017_m135 rkiko@geomar.de 548 UVP5 Geomar 2017 m135  

99 uvp5_sn000_tara2011 

lars.stemmann@obs-

vlfr.fr 579 

UVP5 Tara Oceans (tara2009, 

tara2010, tara2011, tara2012, 

tara2013) CC BY 4.0 

105 

uvp5_sn008_ips_amundse

n_2018 

marcel.babin@takuvik.

ulaval.ca 1165 UVP5 IPS Amundsen 2018 CC BY 4.0 

109 uvp5_sn010_2014_eddy rkiko@geomar.de 881 UVP5 Geomar 2014 eddy  

166 

uvp5_sn002_moose_dyf_2

018 coppola@obs-vlfr.fr 35 

UVP5 Dyfamed 2013 2014 2015 

2016 2017 2018  

231 

uvp5_sn202_msm060_filte

red 

andreas.rogge@awi.de, 

anya.waite@dal.ca 351 UVP5hd msm060 (2017) Copyright 

236 

uvp5_sn201_2018_naames

_04_filtered 

lee.karp-

boss@maine.edu 1252 UVP5hd Naames 04 CC BY-NC 4.0 
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Table A2. Morphological features computed for the object (not the background). Areas and/or length units are expressed 533 
in pixels. 534 

Feature Description 

objid unique object identifier in EcoTaxa (integer number) 

area surface area of the object (integer number) 

mean average grey value within the object; sum of the grey values of all pixels in the 

object divided by the number of pixels 

stddev standard deviation of the grey value used to generate the mean grey value 

mode modal grey value within the object 

min minimum grey value within the object (0 = black) 

max maximum grey value within the object (255 = white) 

perim the length of the outside boundary of the object 

width width of the smallest rectangle enclosing the object 

height height of the smallest rectangle enclosing the object 

major primary axis of the best fitting ellipse for the object 

minor secondary axis of the best fitting ellipse for the object 

angle angle between the primary axis and a line parallel to the x-axis of the image 

circ circularity = (4 * Pi * Area) / Perim2) ; a value of 1 indicates a perfect circle, a 

value approaching 0 indicates an increasingly elongated polygon 

feret maximum feret diameter, i.e., the longest distance between any two points along 

the object boundary 

intden integrated density, corresponding to the sum of the grey values of the pixels within 

the object (i.e. = Area*Mean) 

median median grey value within the object 

skew skewness of the histogram of grey level values 

kurt kurtosis of the histogram of grey level values 

%area percentage of object’s surface area that is comprised of holes, defined as the 

background grey level 

area_exc surface area of the holes in the object, in square pixels (=Area*(1-(%area/100)) 

fractal fractal dimension of object boundary (Berube and Jebrak, 1999) 

skelarea surface area of skeleton in pixels. In a binary image, skeleton is obtained by 

repeatedly removing pixels from the edges of objects until they are reduced to the 

width of a single pixel 

slope slope of the grey level normalized cumulative histogram 

histcum 1, 2, 3 grey level value at the first, second and third quartile of the normalized cumulative 

histogram of grey levels 

nb1, nb2, nb3 number of remaining objects in the image after thresholding on level histcum1, 2 

and 3 

symetrieh bilateral horizontal symmetry index 

symetriev bilateral vertical symmetry index 

symetriehc symmetry of the largest remaining object in relation to the horizontal axis after 

thresholding at the grey level histcum1 value 

symetrievc symmetry of the largest remaining object in relation to the vertical axis after 

thresholding at the grey level histcum1 value 

convperim the perimeter of the smallest polygon within which all points in the object fit 

convarea the area of the smallest polygon within which all points in the object fit 

fcons measure of contrast based in the texture feature descriptor (Amadasun and King, 

1989) 

thickr thickness ratio: relation between the maximum thickness of an object and the 

average thickness of the object excluding the maximum 
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elongation major/minor 

range grey max - grey min 

meanpos (mean-max)/(mean-min) 

cv 100*(stddev/mean) 

sr 100*(stddev/(max-min)) 

perimareaexc perim/(sqrt(area_exc)) 

feretareaexc feret/(sqrt(area_exc)) 

perimferet perim/feret 

perimmajor perim/major 

circex (4*PI*area_exc)/(pow(perim,2)) 

kurt_mean mean kurtosis of the histogram of grey level values 

skew_mean mean Skewness of the histogram of grey level values 

convperim_perim perimeter of the smallest polygon within which all points in the object fit 

convarea_area area of the smallest polygon within which all points in the object fit 

symetrieh_area symetrieh/area 

symetriev_area symetriev/area 

nb1, nb2, nb3_area nb1, nb2, nb3/area 

nb1, nb2, nb3_range nb1, nb2, nb3/range 

median_mean median/grey mean 

median_mean_range (median-grey mean)/range 

skeleton_area skelarea/area 
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Table A3. List of annotators involved in the classification of objects within the current UVP5 dataset.  536 

Annotator name Annotator name (cont.) Annotator name (cont.) 

Alikacem Yasmine Gawinski Christine Panchal Aakash 

Andersson Bjoern Gremion Gwenaelle Panaïotis Thelma 

Anhaus Philipp Guérin Sébastien Pelletier Noemie 

Arboit Genevieve Hasnain Sarah Perhirin Margaux 

Aubry Cyril Hauss Helena Perron Christophe 

Bansept Marc-Antoine Hintringer Moritz Picheral Marc 

Benoît-Gagné Maxime Irisson Jean-Olivier Pretty Jess 

Berline Léo Jalabert Laetitia Prondzinsky Alannah Paulina 

Berrenger Hugo Karp Boss Lee Reimer Jody 

Biard Tristan Kiko Rainer Renaut Sophie 

Blanc Benjamin Lafond Augustin Rogge Andreas 

Blunck Frauke Leguen Guillaume Singh Akanksha 

Bourdin Guillaume Lekanoff Rachel Singh Arvind 

Caray-Counil Louis Leroux Riwan Spahic Susanne 

Chawarski Julek Levesque-Desrosiers Felix Stemmann Lars 

Christiansen Svenja Li Juan Suwaki Caroline 

Courchet Lucas Lombard Fabien Toullec Jordan 

Cram Jacob Lopes Rubens Trudnowska Emilia 

Denoso Ferez Katty Maps Frédéric Vilgrain Laure 

Donggyun Kim Marec Claudie Wauthy Maxime 

Drago Laetitia Mcdonnell Andrew M. P.  
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Dullaert Emma Migotto Alvaro  

Elineau Amanda Motreuil Solène  

Faustmann Jannik Nagata Renato  

Fowler Victoria Oliveira Bruna  
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