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Abstract Mapping vegetation is required for monitoring the condition of forest resources. Satellite data provide 10 
information on land cover and change; however, forest structural attributes are difficult to model without additional 11 
measurements from ground plots or airborne laser scanning (ALS, also known as airborne light detection and 12 
ranging or lidar) instruments. Over large and inaccessible areas, such as Canada’s northern and predominantly 13 
unmanaged forests, ground plots are expensive, difficult to install, and unlikely to form a statistically valid 14 
probability sample. An alternative means to obtain information regarding forest structure in these situations is 15 
samples of ALS (hereafter lidar plots). Transect-based samples of ALS data can be used to provide structural 16 
information for the calibration and validation of spatially explicit predictive modelling for wide-area mapping of 17 
forest attributes. Here we describe and share data from the recent acquisition and processing of ALS transects across 18 
Canada’s northern forests. To date, approximately 43,000 km of ALS transects have been acquired in 2023 and 19 
2024, with additional coverage ongoing for 2025. Acquisition flight lines were designed to sample a range of 20 
northern forest conditions and to correspond with a concurrent ground plot sampling campaign. Airborne laser 21 
scanning data were processed into height-normalized point clouds and reprojected to a custom Lambert conformal 22 
conic projection to align with existing national satellite information products. More than 15 million 900 m2 lidar 23 
plots were generated from the 2023 transect dataset with point cloud metrics (i.e., area-based statistical summaries 24 
of the ALS point cloud) calculated for each 30 by 30 m cell. Presently, the 2023 lidar plots and their associated point 25 
cloud metrics are stored in openly available SQLite GeoPackages, with additional annual transect collections to be 26 
added when available. To accommodate a wide range of users and applications, both comprehensive and abridged 27 
versions of the metric databases, with 369 metrics and 40 metrics, respectively, are shared. The framework that led 28 
to the data shared here is portable to other areas with similar information needs. The data structure used was 29 
designed to enable updates with additional open access databases of ALS transects as data acquisition and 30 
processing are completed. This open-access dataset constitutes a vital resource for the scientific and operational 31 
forestry communities, offering detailed and scalable measures that bridge the gap between ground observations and 32 
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wall-to-wall satellite-based inventories. These data will support the development of enhanced wildfire fuels maps, 33 
forest inventories, and carbon products. 34 

1 Introduction 35 

Vegetation structure underpins a range of ecological, social, and economic forest values, including timber 36 
harvesting, carbon sequestration, biodiversity, water quality, and wildfire fuels (Haslem et al., 2011; Keith et al., 37 
2009; Tews et al., 2004). Medium resolution satellite remote sensing (i.e., pixels sided 10 – 100 m) has proven 38 
effective for the wall-to-wall mapping of land cover (Hermosilla et al., 2022; Vogelmann et al., 2001), monitoring 39 
disturbance and recovery (Hansen et al., 2014; White et al., 2017), and more recently modelling attributes such as 40 
species (Hermosilla et al., 2024). The characterization of vegetation structure, however, can be modeled using pixel-41 
based remotely sensed data (Coops et al., 2021), but not with the accuracies possible using light detection and 42 
ranging (lidar) technologies, particularly airborne laser scanning (ALS). While not an entirely fair comparison due to 43 
differences in data costs (to the end user), level of detail captured, and collection intensity, access to simultaneous 44 
measurements of the vertical distribution of vegetation and underlying terrain morphology (Lefsky et al., 2002), 45 
offers critical information on forest complexity and condition that cannot be captured through other modes of remote 46 
sensing.  47 

Investigations related to ALS and forest measurement have been ongoing since the 1980s (Aldred and Bonnor, 1985; 48 
Nelson, 2013), and by the early 2000s the technology was recognized as a robust tool for estimating inventory 49 
attributes related to vegetation structure (Næsset, 2004; Reutebuch et al., 2005; Wulder et al., 2008). Given the high 50 
cost and limited access to airborne lidar instruments in the early years, many initial investigations adopted 51 
probability sampling approaches to efficiently obtain representative data (Wulder et al., 2012b). In contrast, today 52 
many Canadian jurisdictions are actively collecting wall-to-wall ALS data to support the development of enhanced 53 
forest inventories; however, data acquisitions are typically focused on managed forests in the south, leaving remote, 54 
northern forests underrepresented (White et al., 2025). Stinson et al. (2019) define forest management status in 55 
Canada using ownership, protection status, and tenure as these three characteristics are “…related to forest 56 
management interests, governance and objectives in a generalized way across all Canadian jurisdictions (p. 103).” 57 
Definitions of managed forest are different for carbon accounting purposes wherein unmanaged forests are excluded 58 
from reporting requirements (Ogle et al., 2018). Although they are not actively managed, northern forests are critical 59 
to the aforementioned forest values. The federal government reports on all forests, both managed and unmanaged, as 60 
implemented through the National Forest Inventory program and communicated via the annual State of the Forests 61 
report (Natural Resources Canada, 2023). As Canada’s mean annual temperature has increased at more than twice 62 
the global rate (Bourdeau‐Goulet and Hassanzadeh, 2021), northern forests are particularly vulnerable to increased 63 
wildfire risk (Burton, 2023; Parisien et al., 2023), further underscoring the need to improve available information for 64 
these forests.   65 
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Although typically flown in a wall-to-wall configuration, ALS data may be collected as linear samples to extend 66 
structural information over remote areas where continuous coverage is impractical. Wulder et al. (2012b) described 67 
lidar sampling as a cost-effective alternative to wall-to-wall lidar acquisition for large-area forest monitoring. The 68 
authors demonstrated that statistically sound sampling and inference methods can enable robust characterizations of 69 
forest structure, and that integration of lidar samples with field and satellite data can enhance scalability and 70 
precision of estimates. For example, Andersen et al. (2011) presented a methodology for estimating forest biomass 71 
over a large area of interior Alaska. The authors used a combination of ground plots and sampled ALS transects to 72 
achieve reasonable precision, underscoring the cost-efficiency of integrating partial airborne lidar coverage. Also 73 
working in Alaska, Babcock et al. (2018) demonstrated that sparse lidar transects, when fused with field plots and 74 
Landsat tree cover in a Bayesian geostatistical framework, can yield wall-to-wall biomass maps with quantified 75 
uncertainty. Nelson et al. (2012) used an airborne profiling lidar to estimate forest biomass in Norway and found that 76 
the results were similar to those obtained through ground surveys. Building on this logic, Margolis et al. (2015) 77 
employed a three-phase sampling design combining ground plots, airborne profiling lidar, and ICESat-GLAS 78 
satellite lidar data to estimate biomass across the North American boreal forest.  79 

Wulder et al. (2012a) proposed the concept of lidar plots, wherein lidar transect data, augmented by ground plot 80 
information, provide sample-based characterizations of forest structure. Lidar plot locations are established within 81 
sampled lidar transect swaths at a spatial resolution matching the typical size (area) of tall tree ground plots or the 82 
pixel size of medium spatial resolution remotely sensed data (e.g., pixels sized 400-900 m2). The ALS data are 83 
processed to generate a suite of summary statistics or metrics that characterize the point cloud within each lidar plot 84 
(e.g., mean height, maximum height, percentiles of height). Using an area-based approach (ABA) (Næsset, 2002; 85 
White et al., 2013), a sample of co-located ground plot measurements are then used with the point cloud metrics to 86 
generate predictions of certain inventory attributes of interest such as height, basal area, volume, or biomass, among 87 
others. These lidar plots, with associated metrics and attributes, may then be linked to other remotely sensed data 88 
(e.g., optical time series) via imputation, enabling the generation of spatially exhaustive and spatially explicit models 89 
of forest structure ultimately resulting in maps representing large areas (Coops et al., 2021; Wulder et al., 2012a) 90 

In a proof-of-concept study, Zald et al. (2016) demonstrated how lidar plots could be used as a surrogate for ground 91 
plots to map a suite of point cloud height (mean, standard deviation, coefficient of variation, 95th percentile) and 92 
cover metrics (percentage of first returns > 2 m, percentage of first returns > mean height), as well as select forest 93 
inventory attributes (i.e., Lorey’s tree height, basal area, gross stem volume, and total aboveground biomass) for a 94 
~38 million ha forest region in Saskatchewan, Canada for the year 2010 (corresponding to the year of ALS 95 
acquisition). Zald et al. (2016) availed upon 1,560 km of lidar transects and a set of 4,340 lidar plots to impute point 96 
cloud metrics directly, with the ABA forest attributes carried as ancillary variables in the plot-matching process. 97 
Expanding on this approach, Matasci et al. (2018a) employed >25,000 km of lidar transects and 80,687 lidar plots 98 
with Landsat surface reflectance composites to produce boreal-wide maps (~552 million ha) of the same point cloud 99 
metrics and forest structural attributes as Zald et al. (2016) for the year 2010. Matasci et al. (2018b) expanded this 100 
approach in both space and time, mapping forest structure annually for the entirety of Canada’s forested ecosystems 101 

https://doi.org/10.5194/essd-2025-520
Preprint. Discussion started: 6 October 2025
c© Author(s) 2025. CC BY 4.0 License.



4 

 

(~650 million ha) for each year from 1984 to 2016. Matasci et al. (2018b) availed upon seven different lidar 102 
acquisitions and associated lidar plots (n = 84,482) to achieve national, annual maps of forest structure, thereby 103 
enabling characterization of structural dynamics in both disturbed and undisturbed forests over the three decade 104 
period considered. Matasci et al. (2018b)  also used a completely independent set of lidar plots, derived from 105 
separate lidar acquisitions to validate the imputed attributes, both spatially and temporally. Collectively, these 106 
studies demonstrate the utility of ALS sampling and lidar plots in generating spatially and temporally rich forest 107 
structural information at landscape to continental scales. 108 

1.1 Motivation 109 

Canada’s boreal forests and the communities therein are increasingly exposed to wildfire risks (Parisien et al., 2020), 110 
yet many northern and remote regions lack detailed vegetation inventories essential for fire behavior modeling 111 
(Crowley et al., 2023; Parisien et al., 2020; Stinson et al., 2019). In these areas outside of the managed forest zone, 112 
accurate information on forest structure and fuel properties is limited, constraining the capacity to assess risk or plan 113 
mitigation strategies (Crowley et al., 2023). Further, the ongoing development of the next generation Canadian 114 
Forest Fire Danger Rating System (CFFDRS-2025) will incorporate new data sources and requires that a new suite 115 
of vegetation and soil attributes be modelled (Canadian Forest Service Fire Danger Group, 2021). Addressing this 116 
data gap requires spatially explicit maps of key forest structural attributes such as canopy bulk density and canopy 117 
base height which may be estimated using ALS (Andersen et al., 2005; Martin-Ducup et al., 2025; Moran et al., 118 
2020; Riaño et al., 2004), but cannot be reliably derived from satellite imagery alone (Mutlu et al., 2008; Riaño et 119 
al., 2003) and which are equally difficult to estimate in the field (Keane et al., 2005).  120 

To support this need, the Government of Canada via the Canadian Forest Service launched the Northern Forest 121 
Mapping program (NorthForM). Between 2023 and 2025, this initiative is acquiring ALS transects and coincident 122 
ground plot data (Boucher et al., 2023), with the goal of modeling fuel-related forest structure attributes for wall-to-123 
wall mapping using satellite imagery (Coops et al., 2021). These methods build upon earlier work by the National 124 
Terrestrial Ecosystem Monitoring System (NTEMS), which was developed to monitor Canada’s forested ecosystems 125 
on an annual basis using consistent, nationally available datasets (White et al., 2014; Wulder et al., 2024). The 126 
NTEMS relies primarily on medium spatial resolution satellite data (initially solely Landsat, now augmented with 127 
Sentinel 2) time series, integrated with ALS transects and ground plots, to generate national information products 128 
characterizing disturbance, land cover, and forest structure (Hermosilla et al., 2016). The first national lidar transect 129 
dataset was collected in 2010 to support NTEMS product development (Hopkinson et al., 2011; Wulder et al., 130 
2012a), and subsequent work has shown that combining these data sources enables spatially comprehensive 131 
estimates of both forest structure and derived attributes (Matasci et al., 2018a, b; Zald et al., 2016) 132 

1.2 Objectives 133 

Herein, we describe the acquisition and processing of ALS transect data for Canada’s northern forests, and the 134 
subsequent generation of 30 m lidar plots and ABA point cloud metrics. These data are being shared in an open 135 
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repository to support the development of models needed for generating wall-to-wall predictions of attributes relevant 136 
for characterizing forest structure and informing forest fuels mapping.  137 

2 Data and methods 138 

2.1 Canada’s northern forests 139 

Canada's unmanaged northern forests represent some of the largest natural treed ecosystems on Earth. Spanning 140 
northern Quebec, Ontario, Manitoba, Saskatchewan, Alberta, and significant portions of the Yukon and Northwest 141 
Territories, they are largely free of large-scale industrial land uses such as forestry. Unlike managed forests to the 142 
south, these ecosystems are shaped primarily by natural disturbances such as wildfires and insect outbreaks, 143 
although the anthropogenic footprint is expanding in some areas (Wells et al., 2020). Tree species are cold-tolerant, 144 
primarily within the genera Abies, Larix, Picea, and Pinus, but also include Populus and Betula. Northern forests 145 
and treed areas are part of a larger mosaic which includes lakes, rivers, and wetlands, treeless  alpine areas, maritime 146 
heathlands, and occasional grasslands (Brandt, 2009).  147 

2.2 Airborne laser scanning data acquisitions 148 

Planning for the 2023-2025 lidar acquisition considered previous experience with national ALS transects 149 
(Hopkinson et al., 2011), as well as recommendations from the national airborne lidar acquisition guidelines 150 
(Natural Resources Canada & Public Safety Canada, 2022). Acquisition specifications are summarized in Table 1. 151 
Because of the remoteness of the area of interest (Figure 1) and the impracticality of setting up base stations, precise 152 
point positioning (PPP) services were employed to correct global navigation satellite system (GNSS) data. The 153 
target window for data acquisition was between 15 June and 15 September of each year, and linear mode lidar 154 
systems were required. The ALS data were collected by private sector vendors who were awarded contracts through 155 
the Government of Canada’s competitive procurement process (Table 2). Each vendor used their own aircraft, 156 
sensors, and systems to collect data according to the specifications outlined in Table 1.  157 

  158 
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 Table 1. Summary of ALS acquisition specifications for the 2023-2025 acquisition program. 159 

Requirement Acquisition 2023–2025 

Aggregate nominal pulse density (ANDP) 12 pulses/m2 

Aggregate nominal pulse spacing (ANPS) 0.29 m 

Footprint diameter 0.30 m 

Scan angle +/-20 degrees on either side of nadir 

(40 degrees total field of view) 

Horizontal datum NAD 83 CSRS epoch 2010 

Height reference Vertical datum: CGVD 2013 

Geoid model: CGG2013a 

Map projection Universal Transverse Mercator (UTM) 

Pulse returns Multiple 

Classification 1 – Processed but unclassified 

2 – Ground 

3 – Low vegetation 

4 – Medium vegetation 

5 – High vegetation 

7 – Low points (noise) 

9 – Water 

18 – High noise 

Intensity Value Normalized 16-bit values, according to the method 

described in the ASPRS LAS 1.4 R15 specification. 

Data Format LAS 1.4 R-15, Point data record format 6, 

compressed in LAZ 

Swath width 500 m (2023) or 800 m (2024 and 2025) 

 160 

 161 

 162 
Figure 1. Airborne laser scanning (ALS) transects flown in 2023 (~20,000km) and 2024 (~23,000 km). The Northern 163 
Forest Mapping (NorthForM) acquisitions are limited to northern ecozones to improve mapping in unmanaged forests. 164 

 165 
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Table 2. Airborne lidar vendors for acquisition years 2023 and 2024. Each lidar plot (described in section 2.4) is linked to 166 
acquisition information in a relational database.  167 

Acquisition year Vendor Lidar sensor 

2023 Aeroquest Mapcon Riegl VQ-1560II-S 

Eagle Mapping Riegl VQ-780II-S & Riegl VQ-1560II-S 

2024 

 

Aeroquest Mapcon Riegl VQ-1560II-S 

Eagle Mapping Riegl VQ-780II-S & Riegl VQ-1560II-S 

McElhanney Leica TerrainMapper-2 

 168 

Canada’s National Forest Inventory (NFI) employs a systematic sampling strategy based upon 2 km x 2 km photo 169 
plots established on a 20 x 20 km grid, with the intent to sample 1% of Canada’s landmass. The 20 x 20 km sample 170 
grid is in turn nested within a 4 x 4 km system (Gillis et al., 2005). Candidate NorthForM ground plot locations were 171 
selected using a stratified sampling strategy employing sampling units that combined ecozone (Figure 1), and 172 
satellite-derived percent conifer and canopy closure obtained from the Spatialized Canadian National Forest 173 
Inventory (Guindon et al., 2024). Ground plot locations were then selected using the NFI’s 4 x 4 km sampling 174 
framework. Together, the NFI photo plot and NorthForM ground plot networks were used to guide ALS transect 175 
design, with plot centres used as targets between which lidar data were acquired.  Additional ALS transects were 176 
established in an effort to obtain a balanced sample across northern forest-dominated ecozones where access was 177 
possible (Figure 1).   178 

2.3 Data processing  179 

2.3.1 Point cloud processing 180 

Following their delivery by the ALS vendors, subsequent processing of the point cloud data was performed using 181 
LAStools (rapildlasso Gmbh). Footprint polygons were first created for each point cloud tile; the footprints followed 182 
the exterior edges of ALS returns and captured large internal voids. Classified lidar point clouds were then 183 
normalized to obtain heights above ground. Returns with scan angles exceeding 20 degrees or classified as high 184 
noise (class 18) were dropped from the point clouds (Table 1). The point clouds were then reprojected from their 185 
universal transverse Mercator (UTM) projections (Table 1) to a common national Lambert conformal conic 186 
projection employed by the NTEMS program (Table 3). The normalized and reprojected point clouds were then used 187 
to calculate point cloud metrics.   188 
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Table 3. Projection information for National Terrestrial Ecosystem Monitoring System (NTEMS) spatial data: a custom 189 
Lambert conformal conic projection with two standard parallels using the NAD83 horizontal datum. Lidar plots were 190 
generated using this projection.  191 

Projection information Projected coordinate system Lambert_Conformal_Conic_2SP 

Projection Lambert conformal conic 

Authority Custom 

Linear unit Metre (1.0) 

False easting 0 

False northing 0 

Central meridian -95.0 degrees 

Standard parallel 1 49.0 degrees 

Standard parallel 2 77.0 degrees 

Latitude of origin 49.0 degrees 

Geographic coordinate 

system information 

Geographic coordinate system NAD 1983 

WKID 4269 

Authority EPSG 

Angular unit Degree (0.0174532925199433) 

Prime meridian Greenwich (0.0) 

Horizontal datum North American 1983 

Spheroid GRS 1980 

Semimajor axis 6378137.0 

Semiminor axis 6356752.314140356 

Inverse flattening 298.257222101 

 192 

2.3.2 Lidar plots and point cloud metrics 193 

Lidar plots and the databases in which they are stored were created using Python and ESRI’s ArcPy package. Lidar 194 
plots were generated as point feature classes falling within the lidar transect swaths. Using the point cloud footprints, 195 
lidar plots were located away from the edges of swaths and large interior voids to avoid areas of missing data.  The 196 
lidar plot centre coordinates aligned with the pixel centres of 30 m spatial resolution NTEMS raster products, which 197 
use the NTEMS Lambert conformal conic projection (Table 3). Plots that fell within the NTEMS  land cover 198 
product’s water class (Hermosilla et al., 2022) were removed. For each lidar plot, an individual 30 m x 30 point 199 
cloud was then clipped from which area-based metrics would be calculated in subsequent steps.   200 

Lidar point cloud metrics were calculated for each 30 m x 30 m lidar plot using the R packages lidR (Roussel et al., 201 
2020; Roussel and Auty, 2023) and lidRmetrics (Tompalski, 2024). As the final products are intended to inform a 202 
variety of applications, including forest inventory, regeneration assessment, and wildfire fuels, the metrics were 203 
generated in four groups using: (1) all returns above 0 m, (2) first returns above 0 m, (3) all returns above 2 m, and 204 
(4) first returns above 2 m. Two height thresholds were used so that models could be created that either consider all 205 
vegetation from the ground surface upwards (i.e., ≥ 0 m), or with a focus on overstory structure (> 2 m). Metrics 206 
were calculated using only first returns as they have been shown to be more consistent than metrics based on all 207 
returns (Bater et al., 2011); however,  metrics considering all returns provide a more comprehensive characterization 208 
of vertical forest structure and may be preferred for applications that consider more than just the upper canopy 209 
(Singh et al., 2016). Each group included the same set of metrics, but values varied based on the combination of 210 
height threshold (0 m or 2 m) and return type (all returns or first returns only). In total, 369 point cloud metrics were 211 
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generated; Table 4 categorizes these metrics by type (for a full list of metrics included in the database, see 212 
Supplement A).  213 

Table 4. Types of point cloud metrics calculated from non-ground returns from ALS transects. In total, 369 metrics were 214 
generated. Metrics were calculated for four groups of returns using: (1) all returns above 0 m, (2) first returns above 0 m, 215 
(3) all returns above 2 m, and (4) first returns above 2 m. For a full list of metrics see Supplement A, and for detailed 216 
descriptions see Tompalski (2024).  217 

Metric types Description Example metrics 

Simple descriptive 

statistics 

Basic statistical measures (e.g., mean, variance, skewness) 

summarizing point cloud height distribution (Bouvier et al., 2015; 

Lefsky et al., 2005; Nilsson, 1996). 

zmean 

zsd_above2  

Number of points by 

return number 

Counts of ALS returns classified by return order. n_return_1 

n_return_4_above2 

Number and 

proportion of returns 

by echo type 

The count and relative frequency of returns categorized as single, 

first, intermediate, or last echoes. 

n_last 

n_intermediate_above2 

Height percentiles Specific quantiles (e.g., 10th, 50th, 90th percentile) of the point 

cloud height distribution. 

zq5 

zq50_above2_first 

Proportion of returns 

above threshold height 

The fraction of returns exceeding a predefined height, used to 

characterize canopy cover (Solberg et al., 2006). 

pzabove2 

pzabovemean_first  

Vertical structure  Metrics describing the distribution and variation of ALS returns 

along the vertical axis (van Ewijk et al., 2011; Shannon, 1948). 

ziqr 

VCI_above2_first  

Cumulative point 

density  

The cumulative proportion of returns found in nine equal height 

intervals (Woods et al., 2008). 

Zpcum1 

zpcum5_above2_first  

L-moments metrics Statistical measures capturing the shape of the height distribution, 

providing robust alternatives to conventional descriptive statistics 

(Frazer et al., 2011). 

Lcoefvar 

L1_above2 

Metrics based on leaf 

area density 

Estimates of foliage distribution and density (Hopkinson et al., 

2013; Magnussen and Boudewyn, 1998) . 

lad_mean 

lad_min_above2 

Interval metrics Metrics derived from predefined height intervals, summarizing 

point density at different canopy levels.  

pz_1_2 

pz_8_9_first 

 

Rumple A measure of canopy surface roughness or complexity based on the 

ratio of 3D to 2D surface area (Kane et al., 2010). 

rumple 

rumple_above2_first  

Metrics based on 

kernel density 

estimation 

Metrics derived from smoothed height distributions (McGaughey, 

2024). 

kde_peak3_elev 

kde_peak2_diff_above2_first  

 218 
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2.4 Lidar plots database 219 

Lidar plots and associated point cloud metrics are distributed as SQLite GeoPackages1, which are an open and non-220 
proprietary format. Each acquisition year (i.e., 2023, 2024, and 2025) will be stored in a separate database. Each 221 
GeoPackage contains a point feature class storing lidar plots on the NTEMS 30 m grid, a feature class delineating 222 
point cloud footprints, as well as a series of data tables storing point cloud metrics, province or territory, UTM zone, 223 
ecozone, and information related to individual acquisitions (Figure 2). Given the large number of metrics in the full 224 
database (Supplement A), for each year an abridged version of the GeoPackage is also being shared that contains a 225 
subset of commonly used metrics for forest inventory (Supplement B).  226 

  227 

 
1 https://www.geopackage.org/ 
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 228 

Figure 2. Entity relationship diagram describing the structure of the lidar plots file geodatabase. In total, the plot metrics 229 
table includes 369 point cloud metrics for each lidar plot, with an abridged version of the database available including a 230 
subset of 40 metrics.   231 
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3 Results 232 

3.1 ALS transects acquisitions 233 

A total of ~20,000 km and ~23,000 km of lidar transect data were acquired in 2023 and 2024, respectively (Figure 234 
1). The 2023 acquisition focused on collecting data over forest-dominated ecozones that are currently lacking lidar 235 
coverage (White et al., 2025). The 2023 ALS acquisitions were significantly impacted by smoke caused by 236 
unprecedented wildfire activity in Canada (Jain et al., 2024), and as a result, 5,000 km of planned acquisitions were 237 
postponed for capture in 2024. The 2024 transects focused on acquiring data over NorthForM ground plots (Boucher 238 
et al., 2023), with ~650 plots captured. Table 5 summarizes sampling intensity within NTEMS treed land cover 239 
classes (Hermosilla et al., 2022) by ecozone (Figure 1). 240 

  241 
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Table 5. Sampling intensity within treed land cover classes by ecozone for 2023. “Land cover pixel area (ha)” represents 242 
the area classified as a given land cover within the ecozone (Figure 1). “Land cover pixel area (%)“ is the percent 243 
coverage of a given land cover type in an ecozone. “Lidar plot area (ha)” represents the area of lidar plots within the 244 
ecozone that falls within a given land cover type. “Sampling intensity (%)” is calculated as lidar plot area divided by pixel 245 
area and multiplied by 100.  246 

Ecozone Land cover 

class 

Land cover pixel 

area (ha) 

Land cover pixel 

area (%) 

Lidar plot area 

(ha) 

Sampling 

intensity (%) 

Boreal 

Cordillera 

Wetland-

treed 

656,907 1.5 2,609 0.3972 

Coniferous 21,292,772 47.9 79,718 0.3744 

Broadleaf 1,286,953 2.9 2,915 0.2265 

Mixedwood 729,463 1.6 1,113 0.1526 

Boreal Plains Wetland-

treed 

5,732,402 8.0 7,930 0.1383 

Coniferous 17,817,472 25.0 15,142 0.0850 

Broadleaf 13,063,662 18.3 5,860 0.0449 

Mixedwood 2,104,651 2.9 2,437 0.1158 

Boreal Shield 

East 

Wetland-

treed 

1,787,152 1.4 4,888 0.2735 

Coniferous 42,287,435 34.2 99,850 0.2361 

Broadleaf 8,328,982 6.7 2,115 0.0254 

Mixedwood 23,206,039 18.8 23,272 0.1003 

Boreal Shield 

West 

Wetland-

treed 

3,803,299 4.6 35,432 0.9316 

Coniferous 24,556,792 30.0 209,945 0.8549 

Broadleaf 2,946,598 3.6 8,100 0.2749 

Mixedwood 18,467,937 22.5 90,821 0.4918 

Hudson Plains Wetland-

treed 

13,322,381 30.6 27,665 0.2077 

Coniferous 2,970,087 6.8 10,084 0.3395 

Broadleaf 112,246 0.3 396 0.3526 

Mixedwood 1,107,734 2.5 5,939 0.5362 

Taiga Plains Wetland-

treed 

2,291,152 3.7 30,805 1.3445 

Coniferous 24,969,142 40.3 163,272 0.6539 

Broadleaf 2,721,976 4.4 28,823 1.0589 

Mixedwood 886,926 1.4 5,993 0.6757 

Taiga Shield 

East 

Wetland-

treed 

210,365 0.3 1 0.0005 

Coniferous 28,408,741 36.0 6,259 0.0220 

Broadleaf 192,614 0.2 1 0.0005 

Mixedwood 493,404 0.6 6 0.0012 

Taiga Shield 

West 

Wetland-

treed 

361,229 0.6 237 0.0656 

Coniferous 17,872,110 29.9 45,534 0.2548 

Broadleaf 865,552 1.4 1,441 0.1664 

Mixedwood 741,346 1.2 853 0.1151 

 247 
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3.1.2 Quality assurance results 248 

Overall, the ALS acquisition specifications (Table 1) were met and often exceeded. A rare exception, however, were 249 
periodic changes in footprint sizes, swath widths, and point densities in areas with complex topography. These 250 
deviations are not unexpected and occur mostly in the mountainous areas of western Canada above the tree line, and 251 
impact less than one percent of the transect data.  252 

The ALS vendors corrected GNSS data using PPP and all reported sub-metre horizontal and vertical accuracies. 253 
Areas where transects overlap tended to have vertical differences in their digital terrain models (DTM) of several 254 
decimetres. Point cloud classifications were validated by randomly selecting 20 x 20 m areas which were then 255 
clipped to perform three-dimensional checks. Point clouds were also rasterized based on return class (Table 1) and 256 
hillshades were generated from the DTMs. Raster surfaces were then visually inspected to ensure specifications 257 
were met (e.g., water was properly classified, DTMs were representative of the bare-Earth surface). Similarly, return 258 
counts and scan angles were rasterized to ensure transects fell within the specifications for point densities and swath 259 
widths (Table 1).  260 

3.2 Lidar plots databases 261 

For the 2023 ALS transects, 15,353,866 lidar plots were generated within the lidar swaths. The full database 262 
including 369 point cloud metrics is 60.2 GB in size, and the abridged version of the database containing a subset of 263 
40 metrics is 7.2 GB. Both versions are shared as SQLite GeoPackages.  264 

3.3 Point cloud metrics  265 

Point cloud metrics were processed in four groups using: (1) all returns above 0 m, (2) first returns above 0 m, (3) all 266 
returns above 2 m, and (4) first returns above 2 m. Figure 3 shows an example of the four processing groups from 267 
same lidar plot. The number of returns range from 19,281 (first returns > 2m) to 57,984 (all returns > 0m), while the 268 
height percentiles change by varying degrees between each group. The lower height percentiles are most sensitive to 269 
changes in height threshold, with the first return P5 changing from 0.06 m (0 m threshold) to 5.71m (2 m threshold), 270 
while P95 changes from 29.91 m (0 m threshold)  to 30.55 m (2 m threshold).   271 
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 272 

Figure 3. Comparison of vertical distributions of returns from four different processing groups for the same plot: all 273 
returns above 0 m, all returns above 2 m, first returns above 0 m, and first returns above 2 m. P95 = 95th height 274 
percentile, P75 = 75th height percentile, and so on. The plot is located along the Prophet River in northern British 275 
Columbia (58o 17’ 19” N, 122o 52’ 30” W). 276 

 277 

Fundamentally, lidar characterizes vegetation height, vertical structure, and cover (Li et al., 2008). Figure 4 shows 278 
examples of lidar plots with point cloud metrics related to these attributes along a reach of the Liard River in 279 
Northern British Columbia. Figure 5 provides summaries of height, cover and structure by ecozone for all 2023 lidar 280 
plots.  281 

  282 
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 283 
Figure 4. Examples of lidar plot metrics, including: canopy height based on the 95th height percentile of first returns 284 
greater than 2 m; canopy cover based on the proportion of first returns greater than 2 m; and canopy complexity based 285 
on the coefficient of variation of first returns heights greater than 2m. The image in the top panel extends beyond the lidar 286 
swath for added landscape context.  The terrain model hillshade was derived from ALS returns with scan angles in excess 287 
of 20 degrees, while lidar plots are limited to returns with scan angles less than or equal to 20 degrees (Table 1). Data are 288 
located along the Liard River in northern British Columbia (59o 53’ 22” N, 128o 19’ 3” W). 289 
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 290 

Figure 5: Summary of vegetation metrics by ecozone (Figure 1) for the 2023 acquisition (total n = 15,353,866 lidar plots). 291 
For the box and whisker plots, the box represents the interquartile range with the centre line showing the median, while 292 
the whiskers represent the 5th and 95th percentiles.   293 

https://doi.org/10.5194/essd-2025-520
Preprint. Discussion started: 6 October 2025
c© Author(s) 2025. CC BY 4.0 License.



18 

 

3.3.1 Comparison of lidar plots with NTEMS satellite information products 294 

The NTEMS project provides a number of satellite-derived products characterizing forest-dominated ecozones, 295 
including land cover (Hermosilla et al., 2022), dominant tree species (Hermosilla et al., 2024), and recent wildfire 296 
disturbance history (Hermosilla et al., 2016). Figure 6 provides examples of point clouds clipped to lidar plots in 297 
three different treed land cover types. The broadleaf and coniferous plots are located in productive riparian stands, 298 
while the wetland-treed plot is located in a nearby treed bog or fen.  299 

 300 

Figure 6. Examples of point clouds within lidar plots for three different treed land cover types. The plots are located along 301 
the Prophet River in northern British Columbia (58o 17’ 19” N, 122o 52’ 30” W). 302 

 303 

Figure 7 provides distributions of 2023 lidar plots for land cover and year of recent wildfire disturbance (1985 - 304 
2022). The dominant land cover type (Hermosilla et al., 2022) excluding water within the plots (n = 15,353,866) was 305 
coniferous (46%), followed by wetland (17%), shrubs (11%), mixedwood (9%), wetland-treed (8%), broadleaf (4%), 306 
exposed/barren land (3%), herbs (1%), bryoids (0.3%), rock/rubble (0.04%), and snow/ice (0.001%). Of the lidar 307 
plots from all land cover types excluding water (n = 15,353,866), 19% were disturbed by wildfire (Hermosilla et al., 308 
2016) between 1985  and 2022 (Figure 7). 309 

 310 

 311 
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 312 

Figure 7. Comparison between lidar plots and multidecadal NTEMS satellite information products. 313 

  314 
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4 Discussion 315 

The ALS transects, lidar plots, and point cloud metrices presented here represent a comprehensive and coordinated 316 
effort to sample forest structure in Canada’s unmanaged northern forests. By collecting high-density ALS data 317 
across ecologically diverse regions that lack structural information, this dataset fills a critical gap in the national 318 
forest monitoring landscape. The design and implementation of the acquisitions can address both scientific and 319 
operational needs, with particular relevance to wildfire fuel mapping, forest inventory, carbon accounting, and 320 
ecosystem monitoring. 321 

Open datasets allow fire researchers and other specialists unfamiliar with ALS point cloud processing to access these 322 
data in an analysis-ready and easy-to-use format. We chose to package the data SQLite GeoPacakages, using vector 323 
feature classes to store spatial data. The aim is that the data should be readily accessible and easy to use for those 324 
familiar with geographic information systems or scientific programming language such as Python, R or Julia.  While 325 
ALS derivatives are typically distributed using raster formats (e.g. Assmann et al., 2022), the layout of the transects 326 
(Figure 1) would result in raster surfaces consisting largely of “no data” values. Should a user desire, the point 327 
feature classes can be easily rasterized for inclusion in an analysis workflow requiring gridded surfaces. For users 328 
interested in leveraging NTEMS datasets, the lidar plots will integrate seamlessly as all data share a common grid, 329 
projection (Table 3), and origin coordinates.  330 

A key advantage of this dataset lies in its flexibility. The inclusion of point cloud metrics from the four combinations 331 
of return types and height thresholds (all returns and first returns, > 0 m and > 2 m) supports diverse modeling 332 
approaches, including forest inventory, regeneration assessment, and canopy fuel characterization (Table 4, Figure 3, 333 
Supplement A, Supplement B). For those focused on developing forest inventories, point cloud metrics based on 334 
returns above 2 m, which remove the effects of shrubs and small trees, may be the most appropriate. For users 335 
interested in forest regeneration or fuels attributes such as canopy base height, retaining lower returns may be 336 
beneficial (Arumäe and Lang, 2018; Naesset, 2011; Stefanidou et al., 2020). The decision to use first returns or all 337 
returns may be guided by examining performance diagnostics from predictive models (Arumäe and Lang, 2018; 338 
Bater et al., 2011). 339 

The value of lidar plots lies in their role as a scalable intermediary between field measurements and satellite-based 340 
inventories, effectively increasing the sample size of required model inputs. When integrated with ground plots and 341 
satellite data, lidar plots can enable the generation of wall-to-wall maps of forest attributes such as height, volume, 342 
and biomass. This approach has been demonstrated nationally using earlier ALS transects (Matasci et al., 2018a, b) 343 
and the expansion of this sampling framework substantially increases coverage across previously unsampled areas.  344 

Despite these strengths, several aspects warrant consideration. In particular, the ALS acquisitions are restricted to 345 
northern forests. Given the focused sampling to these northern forests, conditions present in the south will not be 346 
captured, as exemplified by the distributions of land cover classes within lidar plots (Figure 7) differing markedly 347 
from the national summaries reported by Hermosilla et al. (2022). These differences point to limitations of the 348 
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transects for developing national predictive models of forest structure, with a need to obtain additional samples to 349 
represent managed forests via partnerships with provincial agencies or other accessible sources of ALS data (White 350 
et al., 2025). Sampled transects also inhabit an unfamiliar form and scale for most users of ALS data. Within the 351 
transects can be found detailed characterizations of both vegetation structure and terrain morphology (Figure 4, 352 
Figure 6). The data can also be analyzed at regional scales (Figure 5) to contribute to population estimates of 353 
attributes such as volume or biomass (Andersen et al., 2011; Margolis et al., 2015). However, transect data alone are 354 
not spatially exhaustive, precluding independent wall-to-wall mapping and requiring the incorporation of satellite or 355 
other ancillary data and modelling methods such as imputation (Coops et al., 2021).  356 

One of the objectives of the NorthForM program is the collection of coincident ALS and ground plat data. As the 357 
program progresses, GNSS locations from ground plots will be used to clip ALS point clouds to their extents. The 358 
same suite of 369 metrics described above (Table 4, Supplement A) will then be generated for the ground plots. In 359 
combination, the forest inventory measurements made in situ within ground plots, ground plot point cloud metrics, 360 
and the lidar plot point cloud metrics will be powerful datasets for the spatially explicit predictive modelling of 361 
forest structure (Matasci et al., 2018a, b; Zald et al., 2016).  362 

Herein we focus largely on point cloud metrics derived from ALS data acquired in 2023; however, data collected in 363 
2024 and 2025 will be made available and will follow the same processing stream and use the same basic database 364 
schema described above. The addition of terrain metrics (e.g. height, slope, solar radiation) is underway and will be 365 
included as an additional table in future releases.  366 

5 Data availability 367 

The 2023 lidar plots and point cloud metrics described here are available at 368 
https://doi.org/10.5281/zenodo.16782860 on Zenodo (Bater et al., 2025).  369 

The 2023 data and collections from subsequent acquisition years collected under the same monitoring framework 370 
will be released as independent datasets and will share a common structure and repository. They will be made 371 
available through Canada’s National Forest Information System at: https://opendata.nfis.org/mapserver/nfis-372 
change_eng.html 373 

6 Conclusion 374 

The lidar plots and point cloud metrics described here form part of an open-data initiative to enhance structural 375 
information on Canada’s northern forests. By sampling remote and underrepresented forest-dominated ecozones, 376 
this dataset supports key applications in forest inventory, wildfire risk assessment, and ecosystem monitoring. These 377 
data offer a scalable foundation for integrating field and satellite observations to inform national mapping and 378 
monitoring efforts, helping address long-standing data gaps in Canada's forest information landscape. In 379 
combination with similar lidar plots representing conditions in southern Canada, these data form a key input towards 380 
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updating and improving the structural data layers (e.g., biomass, canopy height and cover) delivered via the National 381 
Terrestrial Ecosystem Monitoring System.  The inclusion of a wide range of metrics provides flexibility for diverse 382 
predictive modeling needs, while the database structure ensures usability by researchers and practitioners who may 383 
not be well-versed in remote sensing.  384 
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