
1 

 

Reconstruction of δ13CDIC in the Atlantic Ocean: A Probabilistic 

Machine Learning Approach for Filling Historical Data Gaps  

Hui Gao1,2, Zelun Wu1, Zhentao Sun1, Diana Cai3, Meibing Jin4, Wei-Jun Cai1* 

1School of Marine Science and Policy, University of Delaware, Newark, Delaware, USA. 
2College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, China. 5 
3Center for Computational Mathematics, Flatiron Institute, New York, New York, USA. 
4International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska, USA. 

 

Correspondence to: Wei-Jun Cai (wcai@udel.edu) 

Abstract. Stable carbon isotope composition of marine dissolved inorganic carbon (DIC), δ13CDIC, is a valuable tracer for 10 

oceanic carbon cycling. However, its observational coverage remains much sparser than that of DIC and other physical or 

biogeochemical variables, limiting its full potential. Here, we reconstruct δ13CDIC in the Atlantic Ocean using a probabilistic 

machine learning framework, Gaussian Process Regression (GPR). We compiled data from 51 historical cruises, including a 

high-resolution 2023 A16N section, and applied secondary quality control via crossover analysis, retaining 37 cruises for 

model training, validation, and testing. The trained GPR model achieved an average bias of −0.007 ± 0.082 ‰ and an overall 15 

uncertainty of 0.11 ‰, arising from measurement (0.07 ‰), mapping (0.08 ‰), and negligible input-variable (3.77 × 10−14 ‰) 

errors. Using the GLODAPv2.2023 Atlantic dataset as predictors, the reconstruction expanded the number of acceptable 

δ13CDIC samples by a factor of 7.65, from 8,941 to 68,435 across the Atlantic basins. The resulting dataset markedly improves 

the spatial resolution in longitude, latitude, and depth, and provides enhanced temporal continuity over the past four decades. 

Compared to the sparse original measurements, the reconstruction reduces spatial discontinuities and reveals finer vertical 20 

structures consistent with other high-resolution biogeochemical observations. This reconstructed δ13CDIC dataset provides new 

opportunities to resolve regional carbon cycle dynamics, validate Earth system models, refine estimates of oceanic carbon 

uptake, and extend climate reanalysis records. The data are publicly accessible at the data repository Zenodo under the 

following DOI: https://doi.org/10.5281/zenodo.16907402 (Gao et al., 2025). 
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1 Introduction 

The stable carbon isotope ratio, δ13C, has been widely applied as a tracer in marine carbon research, providing valuable insights 

into various processes within the oceanic carbon system. Specifically, the δ13C of dissolved inorganic carbon (DIC), denoted 

as δ13CDIC (expressed in per mil, ‰, relative to the VPDB standard), has proven instrumental in studies encompassing 

estimating rates of biological production in surface ocean mixed layer (Quay et al., 2003, 2009; Yang et al., 2019), quantifying 30 

anthropogenic carbon inputs and accumulations in ocean basins (Quay et al., 1992, 2003, 2007, 2017; Körtzinger et al., 2003; 

Olsen and Ninnemann, 2010; Racapé et al., 2013), and validating earth system models (Sonnerup and Quay, 2012; Schmittner 

et al., 2013; Liu et al., 2021; Claret et al., 2021), making it an indispensable parameter in understanding the complexities of 

the marine carbon cycle. 

Measurements of δ13CDIC in the ocean trace their roots to the mid-20th century, with significant advancements occurring in the 35 

1970s and 1980s due to the development of more precise mass spectrometry techniques. A pivotal moment in marine isotope 

research came with Kroopnick’s comprehensive analyses of δ13CDIC distribution in the Atlantic Ocean (Kroopnick, 1980) and 

globally (Kroopnick, 1985), which provided critical insights into isotopic patterns across the oceans. Over subsequent decades, 

research based on the collected observational δ13CDIC dataset continues to increase (Gruber et al., 1999; Quay et al., 2003; 

Quay et al. 2017; Schmittner et al., 2013). The creation of databases such as Global Ocean Data Analysis Project (GLODAP) 40 

further enhanced access to δ13CDIC data and other carbon-related parameters (Olsen et al., 2016). However, unlike other carbon 

datasets such as DIC and total alkalinity (TA), δ13CDIC lacks secondary quality control until Becker et al. (2016) introduced an 

internally consistent δ13CDIC dataset for the North Atlantic, marking a significant step in addressing biases and improving data 

reliability. But still, unlike other carbon datasets, δ13CDIC lacks necessary sufficiently high spatial resolution for it to be effective 

in ocean carbon cycle research and as a tracer for anthropogenic carbon accumulation in the ocean. 45 

Traditionally, δ13CDIC data have been collected by preserving and transporting seawater samples to shore-based laboratories 

for analysis using Isotope Ratio Mass Spectrometry (IRMS). Although IRMS approach is highly precise and accurate, it is 

labor-intensive and unsuitable for at-sea analysis, and unable to simultaneously also measure DIC concentrations. These 

limitations have significantly restricted the collection of δ13CDIC data, limiting the ability to capture spatiotemporal variabilities 

and long-term trends of δ13CDIC. For example, in the Atlantic Ocean, only 6,820 δ13CDIC measurements were collected across 50 

32 cruises over 40 years, averaging just 213 samples per cruise (Becker et al., 2016). Along the A16N transect, approximately 

500 δ13CDIC samples were collected during the 1993 and 2013 cruises and only 38 surface water samples were collected for 

δ13CDIC analysis during the 2003 cruise, compared to over 3,000 DIC samples analysed at sea per cruise. To overcome this 

severe bottleneck, the Cai Lab has developed a precise, rapid, and sea-going suitable δ13CDIC analytical method with a precision 

of better than ±0.05 ‰ based on the Cavity Ring-Down Spectroscopy (CRDS) stable carbon isotope analyzer, G2131-i (Su et 55 

al., 2019; Deng et al., 2022; Sun et al., 2024; Sun et al., 2025). This method has been extensively tested during several 
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observations and studies. During a long (58-day) ocean cruise along A16N in 2023, approximately 3,500 δ13CDIC samples were 

collected and ~3000 samples were analysed at sea, alongside with DIC observations. This progress has significantly surpassed 

historical datasets of about 500 samples per cruise in 1993 and 2013 (Sun et al. 2025).  

Despite extensive field data collection efforts, observations of δ13CDIC remain sparse compared to other inorganic carbon 60 

chemistry variables (e.g., DIC and TA). The distribution and variations of inorganic carbon chemistry within water masses are 

governed by local physical and biogeochemical processes, resulting in region-specific stoichiometric relationships among 

inorganic carbon variables. These relationships are typically nonlinear and exhibit spatial and temporal variability, making it 

challenging to determine general distribution patterns. Over the past few decades, advancements in machine learning 

techniques coupled with accumulated observational data have facilitated numerous studies that interpolate inorganic carbon 65 

chemistry variables, in particular the partial pressure of CO2 (pCO2) due to its relatively high spatial coverage, from satellite 

data and reanalysis products (e.g., Roobert et al., 2024; Wu et al., 2025). These methodological developments present a 

promising opportunity to investigate the potential for deriving δ13CDIC data from more abundantly measured variables. 

Given the limited and fragmented δ13CDIC dataset compared to other parameters such as DIC, and to fully utilize the δ13CDIC 

tracer approach for quantifying anthropogenic CO2 uptake by the ocean (Quay et al., 2017), the rate of ocean biological 70 

production (Esposito et al., 2019; Quay et al., 2009, 2020, 2023), and carbon cycling across the land-ocean interface (Alling 

et al., 2012; Kwon et al., 2021; Samanta et al., 2015), this study aims to reconstruct a high-resolution δ13CDIC dataset for the 

Atlantic Ocean using Gaussian Process Regression (GPR), a probabilistic machine-learning approach capable of capturing 

nonlinear relationships and spatial-temporal variability. This reconstruction integrates historical δ13CDIC observations in the 

Atlantic Ocean with new high-resolution data collected along the A16N transect in 2023 (Sun et al., 2025), and the product of 75 

GLODAPv2.2023 (Lauvset et al., 2024). The final product consists of two components with comprehensive uncertainty 

analysis: 1) a quality-controlled δ13CDIC observational dataset compiled from 51 cruises with a crossover analysis using 

standardized protocols, and 2) a machine learning-reconstructed δ13CDIC dataset derived from other inorganic carbon chemistry 

variables. The structure of this study is as follows: Sect. 2 describes the datasets used, the secondary quality control of δ13CDIC, 

and the methodology for reconstructing the δ13CDIC dataset. Sect. 3 evaluates the accuracy, performance, and applicability of 80 

the reconstructed δ13CDIC dataset in resolving its spatial and temporal distribution. Sect. 4 presents the conclusions. Sect. 5 

and 6 provide access the dataset, the codes used for its generation, and the figures presented in this study. 
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2 Data and Methods 

2.1 Data collection 

2.1.1 Historical δ13CDIC Data Collection  85 

In the Atlantic Ocean, δ13CDIC data from a total of 51 cruises (Fig. 1 and Table 1) were compiled from several international 

research initiatives, including GLODAP, Ocean Carbon and Acidification Data System (OCADS), CLIVAR and Carbon 

Hydrographic Data Office (CCHDO) and the internally consistent dataset of δ13CDIC in the North Atlantic Ocean (NAC13v1, 

Becker et al., 2016). From the original dataset published by Becker et al. (2016), we excluded four cruises: 35TH20060521, 

74JC20120601, 74DI20140606, and OMEX1NA, due to missing essential corresponding parameters, i.e., variables used for 90 

model training. The remaining cruises, including those from other sources and the 28 cruises retained from Becker et al. (2016), 

comprise a total of 51 cruises, covering 369 stations and 15,225 δ13CDIC samples. To ensure internal consistency, samples from 

depths greater than 2,000 m were selected for crossover analysis, as deep-water masses at these depths are minimally affected 

by anthropogenic carbon increases. This criterion resulted in 3,772 samples from 305 stations deeper than 2,000 m (highlighted 

as red points in Fig. 1a). The temporal and latitudinal distributions of the δ13CDIC data are illustrated in Fig. 1b and 1c, 95 

respectively. These datasets span from 1981 to 2023, with the most comprehensive annual δ13CDIC sampling occurring along 

the A16N in 2023 (Fig. 1b). Geographically, the majority of samples are concentrated in the North Atlantic, particularly 

between latitudes 25° N and 60° N (Fig. 1c). However, the sampling is spatially and temporally uneven, that is, data are sparse 

in certain years and latitudes, which underscores the need for an approach capable of generating robust predictions and 

uncertainty estimates in poorly sampled regions, such as the GPR method applied in this study. 100 
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Figure 1. Overview of the collected δ13CDIC data. (a) Map of all stations with δ13CDIC data in the Atlantic Ocean, with stations containing 

samples deeper than 2,000 m highlighted in red. (b) Temporal distribution of δ13CDIC data, organized by year of collection. (c) Total number 

of δ13CDIC samples aggregated by each degree of latitude. 

 105 

Table 1. Information about Cruises that contains δ13CDIC, and adjustment for each cruise. 

Cruse 

No. 
Expocode Cruise Name Dates C13 PIs 

Adjustments 

from Becker et 

al. (2016) 

Additional 

Adjustments 

 

1 06AQ20101128 

A12 

SR04 

ANT XXVII/2 

2010-11-

28/2011-

02-05 

R. Key, A. 

McNichol, S. 

Heuven 

/ 0 

2 
06MT19941012 

 

WOCE A02 

06MT30_2 

CARINA 

1994-10-

12/1994-

11-12 

A. Körtzinger, H. 

Erlenkeuser 
−0.07 0 
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3 
06MT19970515 

 

WOCE AR12  

AR24 

06MT39_2 

1997-05-

15/1997-

06-07 

A. Körtzinger, H. 

Erlenkeuser 
0 0 

4 
06MT19970611 

 

A02 

06MT39_3 

1997-06-

11/1997-

07-03 

A. Körtzinger, H. 

Erlenkeuser 
0 0 

5 
06MT19970707 

 

WOCE 

AR05 

AR07 

AR07W 

06MT39_4 

1997-07-

07/1997-

08-07 

A. Körtzinger, H. 

Erlenkeuser 
0 0.05 

6 
06MT19970815 

 

WOCE 

AR07E 

06MT39_5 

1997-08-

14/1997-

09-09 

A. Körtzinger, H. 

Erlenkeuser 
0 0.05 

7 
06MT19990610 

 

06MT199906 

06MT452 

06MT45_2 

1999-06-

10/1999-

07-09 

A. Körtzinger, H. 

Erlenkeuser 
−0.20 0 

8 
06MT19990711 

 

AR07 

AR07W 

06MT45_3 

1999-07-

10/1999-

08-11 

A. Körtzinger, H. 

Erlenkeuser 
−0.20 0 

9 06MT20010507 

A02 

CARINA  

SFB 460; 

2001-05-

07/2001-

05-31 

A. Körtzinger, H. 

Erlenkeuser 
−0.30 0 

10 
06MT20030723 

 

CARINA 

SFB 460; 

2003-07-

24/2003-

08-26 

A. Körtzinger, H. 

Erlenkeuser 
−0.15 0 

11 06MT20040311 

CARINA TTO 

A2 

TTO_NAS_2004 

2004-03-

11/2004-

04-13 

D. W. R. 

Wallace, H. 

Erlenkeuser 

0.10 0.03 

12 06MT20110405 

M84_3 

06ME20110405 

MT84_3  

Mediterranean Sea 

2011-04-

05/2011-

04-28 

T. Tanhua, G. 

Schnaller 
/ NC 

13 18DL20150710 ArcticNet1502 

2015-07-

10 / 2015-

08-20 

A. Mucci / NC 

14 29GD20120910 
(EUROFLEETS) Iberia-

Forams 

2012-09-

10/2012-

09-15 

A.Voelker / NC 

15 

316N19810401, 

316N19810416, 

316N19810516, 

316N19810619, 

316N19810721, 

316N19810821, 

316N19810923 

TTO-NAS 

1981-04-

01 / 1981-

10-19 

C. D. Keeling, P. 

Guenther 
0 0 

16 316N19970717 
WOCE A20 

 

1997-07-

17/1997-

08-10 

R. Key −0.05 0 

17 316N19970815 
WOCE A22 

 

1997-08-

15/1997-

09-03 

R. Key NC 0.05 
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18 316N20030922 
A20_2003 

 

2003-09-

22/2003-

10-20 

R. Key, P. Quay NC NC 

19 316N20031023 
A22_2003 

 

2003-10-

23/2003-

11-13 

R. Key, P. Quay NC NC 

20 33AT20120419 A20_2012 

2012-04-

19/2012-

05-15 

R.Key, 

A.Mcnichol; 
/ 0 

21 33AT20120324 A22_2012 

2012-03-

24/2012-

04-17 

R.Key, 

A.McNichol 
/ 0 

22 33LG20060321 
A21_2006 

LMG200603 

2006-03-

21/2006-

04-04 

T.Guilderson, 

P.Quay 
/ NC 

23 33LG20090916 
A21_2009 

LMG200909 

2009-09-

16/2009-

10-09 

T.Guilderson, 

P.Quay 
/ NC 

24 33MW19910711 

A16S 

SATL-91 

OACES91 

1991-07-

11/1991-

08-05 

P. Quay, R. Key 0 0.04 

25 
33MW19930704 

 

A16N  

AR21 

OACES93 

NATL-93 

1993-07-

04/1993-

08-30 

P. Quay, R. Key C C 

26 
33RO19980123 

 

A05  

AR01 

 

1998-01-

23/1998-

02-24 

R. Key, P. Quay NC 0.03 

27 33RO20030604 A16N_2003 

2003-06-

04/2003-

08-11 

A. McNichol / NC 

28 33RO20050111 
A16S  

A23 

2005-01-

11/2005-

02-24 

A. McNichol / −0.10 

29 33RO20100308 A13.5 

2010-03-

08/2010-

04-18 

R. Key, A. 

McNichol 
/ 0 

30 33RO20110926 A10 

2011-09-

26/2011-

10-31 

A. Foreman, A. 

Coppola 
/ NC 

31 33RO20130803 A16N_2013 

2013-08-

03/2013-

10-03 

A. McNichol / 0 

32 33RO20131223 
A16S  

A23 

2013-12-

23/2014-

02-04 

A. McNichol, R. 

Key 
/ 0 

33 33RO20200321 A12 A13.5 

2020-03-

21/2020-

04-17 

W-J. Cai / 0.07 

34 33RO20230306 A16N_2023, Leg 1 

2023-03-

06/2023-

04-07 

W-J. Cai / 0 

https://doi.org/10.5194/essd-2025-517
Preprint. Discussion started: 1 September 2025
c© Author(s) 2025. CC BY 4.0 License.



8 

 

35 33RO20230413 A16N_2023, Leg 2 

2023-04-

13/2023-

05-09 

W-J. Cai / 0 

36 35A320031214 BIOZAIRE_III 

2003-12-

14/2004-

01-07 

A. Vangriesheim / NC 

37 35TH20020611 
Ovide02 

A25 

2002-06-

10/2002-

07-12 

H. Mercier 0.25 0 

38 49NZ20031106 A10 

2003-11-

06/2003-

12-05 

Y. Kumamoto / NC 

39 58GS20030922 GO-SHIP A75N 

2003-09-

22 / 2003-

10-13 

A. Olsen NC 0 

40 58GS20130717 CLIVAR_75N_2013 

2013-07-

17 / 2013-

07-30 

A. Olsen / 0 

41 58GS20150410 
A01 

AR07E_2015 

2015-04-

10/2015-

04-26 

A. Olsen & U. 

Ninnemann 
/ 0.18 

42 58JH19920712 
CARINA 

WOCE AR18b 

1992-07-

12 / 1992-

07-28 

R. Nydal NC 0 

43 58JH19940723 
CARINA 

WOCE AR18d 

1994-07-

23 / 1994-

08-16 

R. Nydal NC 0 

44 64TR19900417 
CARINA  

A16N 

1990-04-

17 / 1990-

05-31 

S. Wijma poor −0.76 

45 740H20081226 
A12 

A21 

2008-12-

26/2009-

01-30 

W. Jenkins / 0 

46 740H20180228 

A9.5  

A10  

A09 

2018-02-

28/2018-

04-10 

H. Graven / NC 

47 74DI20120731 
EEL_2012_D379 

JR271_D379_2012 

2012-07-

31 /2012-

08-17 

A. M. Griffiths,  

M. P. 

Humphreys,  

E. P. Achterberg 

0 0 

48 74JC20100319 
A21 

A23 

2010-03-

19/2010-

04-24 

W.Jenkins / 0 

49 74JC20181103 SR01B 

2018-11-

03/2018-

11-22 

R.Key, A. 

McNichol 
/ NC 

50 325020210316 A20_2021 

2021-03-

16/2021-

04-16 

R. Sonnerup,  

R. Hansman 
/ 0 

51 325020210420 A22_2021 

2021-04-

20/2021-

05-16 

R. Sonnerup,  

R. Hansman 
/ 0 
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Note: NC denotes cruises that were not considered for the adjustment due to the absence of statistically significant crossovers. 

The core cruise, identified as the reference, is marked with a "C."  

2.1.2 δ13CDIC Data Collection Along A16N in 2023 

The A16N cruise in 2023 achieved extensive collection and high-resolution analysis of δ13CDIC and DIC datasets over two legs 110 

using onboard analytical techniques. Samples were collected from CTD rosette bottles into 250 mL borosilicate glass bottles 

following PICES best practices, preserved with HgCl2, and sealed to prevent biological activity. Analytical measurements 

were conducted onboard using two coupled systems comprising a CO₂ extraction device (AS-D1 δ13CDIC Analyzer) and a 

CRDS (Picarro G2131-i), which simultaneously measured DIC concentrations and δ13CDIC values with high precision. Quality 

control measures included frequent calibration using CRMs and homemade standards verified by IRMS, ensuring high data 115 

reliability with deviations mostly within ±0.03 ‰ for δ13CDIC (Sun et al., 2025). This cruise collected approximately 3,500 

δ13CDIC samples along the A16N transect, far exceeding historical datasets of ~500 samples per cruise, with synchronized DIC 

and δ13CDIC sampling providing robust datasets for analyzing carbon system dynamics.  

2.2 Standardized Protocols for Crossover analysis 

Secondary quality control (QC) of δ13CDIC data through crossover analysis ensures consistency across multi-cruise datasets 120 

(Becker et al., 2016; Tanhua et al., 2010; Lauvset & Tanhua, 2015). The analysis involves compiling data from overlapping 

regions, identifying crossover points within 222 km, and comparing δ13CDIC profiles in deep waters (> 2,000 m) where 

variability is minimal. Profiles are interpolated to standard depths, and mean offsets are calculated. Systematic biases are 

identified using least squares minimization, and adjustments are proposed to align datasets without erasing real temporal or 

spatial trends. Adjustments are validated against known regional patterns and applied only if they meet accuracy criteria. All 125 

steps and corrections are documented to ensure transparency, resulting in reliable δ13CDIC datasets for carbon cycle analysis. 

Building on the NAC13v1 dataset provided by Becker et al. (2016), we propose additional adjustment recommendations for 

these cruises (Table 1). Given that cruise 64TR19900417 crossovers with cruise 33MW19930704, 06MT20040311, 

33RO20130803, 33RO20230413, showing a very high mean offset and standard deviation −0.76 ± 0.23 ‰, and its δ13CDIC 

data is marked as NaN (missing values) in the NAC13v1 dataset, it is excluded from our analysis. After applying additional 130 

adjustments, the δ13CDIC data for the remaining 37 cruises, excluding the 13 cruises without crossover stations (Table 1) and 

cruise 64TR19900417, exhibit high internal consistency. The internal accuracy of the adjusted δ13CDIC is determined to be 

−4.15×10-5 ‰ based on the calculation from Tanhua et al. (2010) and Becker et al. (2016). Finally, a total of 11,950 samples 

are used to train and test the model (Fig. 2). These samples were selected based on the quality flags of the relevant variables, 

where only data marked with quality flag values of 2 (acceptable measurement) or 6 (median of replicate measurements) were 135 

included, ensuring that the dataset is reliable and suitable for model development. 
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2.3 Model design 

Predicting δ13CDIC in the ocean requires a method that can handle complex, nonlinear relationships and provide reliable 

uncertainty estimates for scientific interpretation. GPR (Seeger, 2004; Rasmussen & Williams, 2006) is particularly well suited 

to this task. As a non-parametric, probabilistic model, GPR not only produces point predictions but also quantifies uncertainty 140 

through credible intervals around the estimates. The versatility of GPR arises from its kernel function, which allows prior 

knowledge about the expected smoothness or variability of the δ13CDIC-environment relationship to be incorporated into the 

model, making GPR a powerful tool for robust predictions in oceanographic applications.  

We employed GPR with a Matern 5/2 kernel as the primary method for all subsequent δ13CDIC reconstructions. The Matern 

class of kernels control function smoothness through its smoothness parameter. Specifically, the 5/2 kernel yields functions 145 

that are smooth yet not overly restrictive, offering a balanced representation that aligns well with the expected variability of 

many data sets. Compared with the widely used squared exponential kernel, which assumes infinitely differentiable, and often 

unrealistically smooth functions, the Matern 5/2 kernel allows for more plausible modeling of natural variability.  

To evaluate this approach’s performance, we compared the Matern 5/2 GPR with a suite of alternative regression models, 

including GPR with other kernels, as well as additional baselines such as neural networks, support vector regression, and 150 

decision trees. The dataset was randomly split into a training set (80%) and a validation set (20%), with model training and 

hyperparameter tuning performed using 10-fold cross-validation within the training set to mitigate overfitting. An independent 

test set was reserved for final performance evaluation. Predictive performance was assessed using the Root Mean Squared 

Error (RMSE) and the coefficient of determination (R²), computed separately for the validation and test sets. Among all tested 

models, including GPR with the squared exponential and other kernels (Table 2), GPR with the Matern 5/2 kernel achieved 155 

the best predictive performance (lowest RMSE and highest R²) on the validation set as well as the independent test set, while 

also providing meaningful uncertainty estimates. 

Table 2. Selection of machine-learning models based on Root Mean Squared Error (RMSE), and the coefficient of determination 

(R2). 

Model Name RMSE  

(Validation) 

R2  

(Validation) 

RMSE  

(Test) 

R2  

(Test) 

Matern 5/2 Gaussian Process Regression   0.084 0.92 0.078 0.95 

Rational Quadratic Gaussian Process Regression  0.084 0.92 0.081 0.95 

Exponential Gaussian Process Regression  0.084 0.92 0.079 0.95 

Squared Exponential Gaussian Process Regression  0.085 0.91 0.082 0.95 

Wide Neural Network 0.089 0.90 0.136 0.86 

Ensemble Bagged Trees 0.090 0.90 0.114 0.90 

Medium Gaussian SVM 0.093 0.90 0.071 0.96 

SVM Kernel 0.095 0.89 0.141 0.85 

Medium Neural Network 0.094 0.89 0.091 0.94 
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Least Squares Regression Kernel 0.099 0.88 0.106 0.92 

Bilayered Neural Network 0.104 0.87 0.093 0.94 

Fine Gaussian SVM 0.105 0.87 0.258 0.50 

Narrow Neural Network 0.106 0.86 0.097 0.93 

Medium Tree 0.106 0.86 0.142 0.85 

Fine Tree 0.108 0.86 0.144 0.84 

Trilayered Neural Network 0.097 0.88 0.086 0.94 

Coarse Tree 0.117 0.83 0.122 0.89 

Ensemble Boosted Trees 0.119 0.83 0.163 0.80 

Coarse Gaussian SVM 0.123 0.82 0.113 0.90 

Stepwise Linear Regression 0.109 0.86 0.095 0.93 

Interactions Linear Regression 0.109 0.85 0.099 0.93 

Quadratic SVM 0.109 0.86 0.082 0.95 

Efficient Linear Least Squares 0.154 0.71 0.179 0.76 

Efficient Linear SVM 0.157 0.70 0.203 0.69 

Linear SVM 0.156 0.70 0.201 0.70 

Robust Linear Regression 0.157 0.70 0.208 0.68 

Cubic SVM 0.094 0.89 0.078 0.95 

Neural Network with the Levenberg-Marquardt algorithm 0.100 0.88 0.082 0.94 

Neural Network with the Bayesian regularization algorithm 0.089 0.90 0.084 0.94 

Neural Network with the scaled conjugate gradient algorithm 0.122 0.81 0.118 0.90 

The process of developing and reconstructing the δ13CDIC data product is outlined in Fig. 2. Data collection and preprocessing 160 

were conducted following the procedures detailed in Sect. 2.1 and Sect. 2.2. To ensure data reliability, we excluded 13 cruises 

lacking deep-water crossover stations, and a biased cruise (64TR19900417), as their uncertainties could not be objectively 

quantified. Collectively, these excluded cruises accounted for less than 3 % of total δ13CDIC measurements.  

The remaining 37 cruises were used for model development, validation and test. Two of them (33RO20050111 and 

33MW19930704), from the South and North Atlantic respectively, were randomly selected to form an independent test set 165 

(X1). The other 35 cruises formed dataset X2, which was further randomly split into a training set (80 %) and a validation set 

(20 %). The validation set was used to fine-tune hyperparameters and assess model performance, ensuring generalizability and 

helping identify overfitting (Wu et al., 2025). The model was trained using paired input variables: longitude, latitude, depth, 

temperature (T), salinity (S), apparent oxygen utilization (AOU), nitrate (N), silicate (Si), DIC, and atmospheric CO₂ (xCO2), 

along with corresponding δ13CDIC values as the target variable (eq. (1)). 170 

𝛿13𝐶𝐷𝐼𝐶 = 𝑓(𝑙𝑜𝑛, 𝑙𝑎𝑡, 𝑑𝑒𝑝𝑡ℎ, 𝑇, 𝑆, 𝐴𝑂𝑈, 𝑁, 𝑆𝑖, 𝐷𝐼𝐶, 𝑥𝐶𝑂2)                            (1) 

These input variables were selected to comprehensively capture the key physical, biological, and geochemical drivers 

influencing δ13CDIC. Specifically, longitude, latitude, and depth represent the spatial location of each observation, which is 

essential for resolving regional and vertical patterns. T and S reflect thermohaline forcing, i.e., the physical processes such as 

mixing, stratification, and water mass formation that impact carbon cycling. AOU, nitrate, and silicate are indicators of 175 
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biological forcing, as they are influenced by biological productivity, remineralization, and nutrient utilization. DIC is directly 

related to δ13CDIC, since δ13CDIC reflects the stable carbon isotopic composition of the DIC pool; thus, variations in DIC are 

closely tied to changes in δ13CDIC. However, AOU, nutrients, and DIC also reflect partially physics as they are being mixed by 

ocean circulation. Finally, xCO2 represents external perturbations from air-sea CO2 exchange, which can alter both the 

concentration and isotopic composition of DIC. 180 

The independent test set (X1), excluded entirely from training and validation, provides a final evaluation of model 

performance. Its role in assessing predictive skill across spatial data gaps ensures robust generalization. Finally, the trained 

GPR model is applied to the full set of hydrographic parameters from the GLODAPv2.2023 Atlantic dataset 

(https://glodap.info/index.php/merged-and-adjusted-data-product-v2-2023/) to reconstruct a basin-wide δ13CDIC distribution 

across the Atlantic Ocean. 185 

 

Figure 2. A flowchart illustrating the machine-learning regression model for reconstructing the δ13CDIC product. The blue boxes 

represent the input, and the yellow box represents output datasets, while the green boxes depict the model training, validation, and 

independent testing processes. The orange box indicates the final trained model used for prediction. 
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2.4 Evaluation of model  190 

The accuracy of the model outputs was evaluated using various statistical metrics, including the R2, RMSE, mean absolute 

error (MAE), and mean bias error (MBE). These metrics were calculated for the training, validation, and independent test 

phases, as defined below: 

𝑅2 = 1 −
∑ (𝑦𝑜𝑏𝑠,𝑖−𝑦𝑒𝑠𝑡,𝑖)2𝑁

𝑖=1

∑ (𝑦𝑜𝑏𝑠,𝑖−𝑦𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅)2𝑁
𝑖=1

                        (2) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑜𝑏𝑠,𝑖 − 𝑦𝑒𝑠𝑡,𝑖)

2𝑁
𝑖=1                       (3) 195 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑜𝑏𝑠,𝑖 − 𝑦𝑒𝑠𝑡,𝑖|

𝑁
𝑖=1                       (4) 

𝑀𝐵𝐸 =
1

𝑁
∑ (𝑦𝑜𝑏𝑠,𝑖 − 𝑦𝑒𝑠𝑡,𝑖)

𝑁
𝑖=1                     (5) 

Here, i represents the i-th sample, 𝑦𝑜𝑏𝑠,𝑖 refers to the observed δ13CDIC, 𝑦𝑜𝑏𝑠̅̅ ̅̅ ̅ is the mean of the observed δ13CDIC values, 𝑦𝑒𝑠𝑡,𝑖 

denotes the predicted δ13CDIC values from the final model, and N is the total number of matched samples. 

2.5 Uncertainty of the reconstructed δ13CDIC 200 

The uncertainty of the reconstructed δ¹³CDIC was accumulated from three sources of uncertainties: the direct δ13CDIC 

measurement uncertainty from observations (uobs), the uncertainty accumulated from the input variables (uinputs), and the 

uncertainty induced by the mapping function (umap). 

The observational uncertainty uobs inherent in δ13CDIC measurements varies by analytical method. For samples, when it is 

analyzed using IRMS, reported uncertainties range from ±0.12 ‰ (Gruber et al., 1999) to ±0.03 ‰ (Quay et al., 2003). For 205 

CRDS analysis, uncertainties are reported as ±0.07 ‰ for cruise 33RO20200321 (Gao et al., 2024) and ±0.03 ‰ for cruises 

33RO20230306 and 33RO20230413 (Sun et al., 2025). Taking a conservative approach, we adopted an average uobs value of 

0.07 ‰. 

The input variable uncertainty (uinputs) accounts for uncertainties in temperature, salinity, nitrate, silicate, DIC, alkalinity, and 

xCO2. Monte Carlo simulation is performed 1000 times to quantify uinputs. Following Carter et al. (2024) and Wu et al. (2025), 210 

the perturbation of 0.002, 0.002, 2, 0.4, 0.4, 2 and 0.2 are randomly perturbs to temperature, salinity, AOU, nitrate, silicate, 

DIC, and xCO2. We then recalculated δ13CDIC using these perturbed inputs and quantified the resulting changes. The uncertainty 

contribution from each variable was determined as the standard deviation of the differences between the original reconstructed 
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δ13CDIC and the noise-perturbed values. The final uinputs was calculated as the square root of the quadratic sum of these individual 

uncertainties.  215 

𝑢𝑖𝑛𝑝𝑢𝑡𝑠
2  =  𝑢𝑇

2  +  𝑢𝑆
2  +  𝑢𝐴𝑂𝑈

2 +  𝑢𝑁
2  +  𝑢𝑆𝑖

2 +  𝑢𝐷𝐼𝐶
2 + 𝑢𝑥𝐶𝑂2

2                                 (6) 

The uncertainty associated with the mapping function, umap, is introduced within the GPR model. GPR uncertainty is quantified 

as the posterior predictive standard deviation (i.e., the square root of the posterior predictive variance), with a mean value of 

0.08 ‰ across the prediction set. Wu et al. (2025) suggested that umap may alternatively be estimated as the RMSE between 

reconstructed and observed δ13CDIC on the training dataset. In our analysis this RMSE closely matches the GPR-derived 220 

predictive standard deviation. For consistency and comparability with previous RMSE-based studies, we therefore adopt the 

RMSE-based definition of umap in this work, while noting that the GPR posterior predictive standard deviation constitutes a 

conceptually direct and quantitatively similar alternative measure of reconstruction uncertainty. 

Assuming independence between these uncertainty sources, the total uncertainty of our estimated δ13CDIC product, 𝑢𝛿13𝐶𝐷𝐼𝐶
, 

was determined using the error propagation (Hughes and Hase, 2010; Taylor, 1997): 225 

𝑢
𝛿13𝐶𝐷𝐼𝐶=√𝑢𝑜𝑏𝑠

2 +𝑢𝑖𝑛𝑝𝑢𝑡𝑠
2 +𝑢𝑚𝑎𝑝

2 
                                                  (7) 

3 Results and Discussion 

3.1 Evaluation of the GPR model performance 

The trained GPR model exhibited robust performance and high accuracy in representing δ¹³CDIC characteristics across the 

Atlantic Ocean (Fig. 3). During the training phase, leveraging a 10-fold cross-validation approach, the model achieved an R² 230 

of 0.92, an RMSE of 0.083 ‰, an MAE of 0.056 ‰, and an MBE of −0.0003 ‰ (Fig. 3a). Notably, performance metrics 

during the validation phase (Fig. 3b) were comparable to those in the training phase, demonstrating the model’s strong 

generalization ability, i.e., its capacity to accurately predict data not used for training, and confirming its resistance to 

overfitting. To further assess the model’s generalizability and robustness, an independent test was conducted using δ13CDIC 

data from cruises 33MW19930704 and 33RO20050111, ensuring that all samples were entirely independent from the training 235 

and validation datasets. In this testing phase, the model maintained high accuracy (R² = 0.95, RMSE = 0.082 ‰, MAE = 0.056 

‰, MBE = 0.007 ‰, Fig. 3c), with most samples clustered closely around the 1:1 line. These results indicate that the model 

can reliably predict δ13CDIC across diverse, unobserved spatial and temporal scales. Collectively, these findings demonstrate 

that the GPR-based δ13CDIC reconstruction method is highly generalizable and robust, enabling it to accurately capture the 

characteristics in δ13CDIC and provide reliable predictions across the Atlantic Ocean. 240 
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Figure 3. Regression model evaluation for δ13CDIC reconstruction: Density scatter plots comparing model-estimated (δ13Cest) versus in-

situ observed (δ13Cobs) δ13CDIC values during (a) training (80 % samples from 35 cruises, with 10-fold cross-validation), (b) validation (20 % 

samples from 35 cruises), and (c) independent testing (samples from cruises 33RO20050111 and 33MW19930704). Statistical metrics 

include coefficient of determination (R²), root-mean-square error (RMSE), mean absolute error (MAE), mean bias error (MBE), and sample 245 
size (N). Color indicates normalized local data point density within 2D bins. Shaded bands represent predictive uncertainty, with the darker 

gray band showing one standard deviation (±1σ) and the lighter gray band showing the 95 % credible interval (CrI). 

3.2 Evaluation of the spatial distribution of δ13CDIC 

The distribution of δ13CDIC from independent test cruises 33MW19930704 and 33RO20050111 is used to evaluate the 

product’s capability to capture the spatial patterns of δ13CDIC and to quantify the bias (Fig. 4). Both cruises are part of the 250 

repeated observation section A16, specifically A16N (1993) and A16S (2005), which traverses the entire Atlantic Ocean from 

the sub-Arctic to the Southern Ocean (Fig. 4a). This section has been frequently used in existing research and textbooks to 

represent Atlantic-scale distributions of carbonate chemistry and other characteristics (i.e., Wanninkhof et al., 2010; Eide et 

al., 2017; Millero 2013), thus it is selected for evaluating the product’s regional applicability.  

The spatial patterns of model-estimated (δ13Cest) along cruises 33MW19930704 and 33RO20050111 effectively captured the 255 

distributional characteristics of the in-situ observed (δ13Cobs) (Fig. 4b vs. 4c). The reconstructed δ13CDIC product exhibited a 

very low section-mean bias of −0.007 ‰ with a standard deviation of 0.082 ‰ (Fig. 4d), highlighting the product’s reliability 

in estimating the spatial distribution of δ13CDIC. Spatially, the discrepancies are very small in most regions of the section, but 

relatively lager in subpolar regions (around 50° S or 50° N) and vertically in the upper 500 m and below 3000 m (Fig. 4d).  
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 260 

Figure 4. (a) Station locations of independent test cruises 33MW19930704 and 33RO20050111; Depth profile of (b) model-estimated 

(δ13Cest) and (c) in-situ observed (δ13Cobs) δ13CDIC along cruises 33MW19930704 and 33RO20050111, and (d) spatial distribution of 

mean bias error (MBE) between δ13Cest and δ13Cobs for the two cruises. Positive MBE values (red) denote product overestimation, while 

negative values (blue) indicate underestimation relative to observation. The overall mean difference is −0.007 ± 0.082 ‰. 

3.3 Evaluation of the product’s uncertainty 265 

The uncertainty of the reconstructed δ13CDIC product was estimated by propagating uncertainties from three primary sources: 

measurement (uobs), input variables (uinputs) and mapping (umap). Detailed calculations are described in Sect. 2.5 of the Methods. 

To ensure a conservative estimate, we adopted a uniform uobs of 0.07 ‰ for all data points. umap was derived from the RMSE 

between δ13Cest and δ13Cobs in the training set following previous literature (Wu et al., 2025; Roobaert et al., 2024; Sharp et al., 

2022), yielding a value of 0.08 ‰. uinputs was quantified via Monte Carlo simulation, considering contributions from seven 270 

environmental variables: T, S, AOU, N, Si, DIC, xCO2. Notably, uncertainties from input variables had a negligible impact, 

with uinputs estimated at 3.77 × 10−14 ‰. Overall, the reconstructed δ13CDIC product exhibits an average uncertainty of 0.11 ‰ 

for the entire North Atlantic Ocean. This uncertainty is considered reasonable given the conservative estimation approach, 

highlighting the product’s reliability for δ13CDIC characterization.  
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3.4 Reconstruction of δ13CDIC 275 

Here, the trained GPR model is applied to GLODAPv2.2023 hydrographic data for δ13CDIC reconstruction in the Atlantic 

Ocean. The GLODAPv2.2023 Atlantic dataset comprises 500,137 samples, of which 8,941 contain acceptable δ13CDIC 

observations (quality flags = 2 or 6). A total of 124,643 δ13CDIC values can be reconstructed based on the availability of all 

required predictor variables (salinity, AOU, Nitrate, Silicate, and DIC). Among these, 68,435 reconstructions are considered 

high quality, as all six input variables have acceptable quality flags, which is approximately 7.65 times larger than the number 280 

of δ13CDIC observations. The remaining 56,208 reconstructions are based on input variables with unknown or lower quality and 

are thus assigned a quality flag of 3 (questionable). All 124,643 reconstructions are provided in the Supplementary Dataset, of 

which the questionable δ13CDIC samples are provided for transparency but are not recommended for routine use without further 

quality assessment. The following analyses and figures are restricted to the 68,435 acceptable samples to ensure the robustness 

of the results unless otherwise noted.  285 

The observed and reconstructed datasets share an intersection of 5,997 samples that have both acceptable δ13CDIC observations 

and acceptable input variables for reconstruction. These overlapping samples are used for direct model evaluation (Fig. 5a). 

The comparison between observed and reconstructed δ13CDIC values yields a high correlation coefficient (R2 = 0.89), with 

RMSE = 0.094 ‰, MAE = 0.067 ‰, and MBE = −0.009 ‰. The mean difference between reconstruction and observation is 

−0.009 ± 0.097 ‰. To compare the statistical characteristics of observed and reconstructed δ13CDIC values, we calculated 290 

Gaussian kernel density estimations (KDEs) (Fig.  5b). KDEs is a non-parametric method for approximating probability 

density functions by summing kernel functions (here Gaussian) centered at each data point (Silverman, 1986), producing a 

continuous estimate that is less sensitive to arbitrary bin edges. For this analysis, KDEs were evaluated on a uniform grid 

spanning the full δ13CDIC range, with a bandwidth of 0.1 ‰ chosen to balance smoothing and resolution. No additional jittering 

was applied as the data contain sufficient variability to avoid overlapping artifacts. The observed (N = 8,941, range from −0.37 295 

to 2.37 ‰) and reconstructed (N = 68,435, range from −0.11 to 2.36 ‰) δ13CDIC show similar Gaussian KDE curves, exhibiting 

unimodal distributions, with a primary peak around 1 ‰. Notably, the reconstructed distribution exhibits higher probability 

density than the observations for δ13CDIC values between approximately 0.8 ‰ and 1.1 ‰. This difference arises not only from 

the larger sample numbers but also from the reconstructed distribution being more concentrated, as reflected by a sharper peak 

and reduced variance. These characteristics likely result from model smoothing and from the much larger, more spatially 300 

continuous reconstructed dataset, which together reduce sampling noise. Consequently, the reconstructed values display a 

slightly sharper central peak and narrower tails than the observations, indicating a tendency of the model to smooth extreme 

values. The KDE curves decline rapidly to near zero at the extremes, below approximately 0 ‰ and above approximately 2 ‰, 

indicating very few δ13CDIC values in those ranges. Overall, the KDE analysis, based on a systematic bandwidth selection and 
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grid evaluation, confirms that the GPR model captures the central tendency and overall shape of the observed δ13CDIC 305 

distribution while producing a somewhat more concentrated estimate. 

 

Figure 5. Comparison of observed and reconstructed δ13CDIC values derived from the GLODAPv2.2023 dataset. (a) Density scatter 

plot of observed versus reconstructed δ13CDIC values, using only the intersection of data points with acceptable quality available in both 

observed and reconstructed datasets (N = 5997). (b) Gaussian kernel density estimations (KDEs) for a comprehensive evaluation of observed 310 
and reconstructed δ13CDIC values. In panel b, the blue curve represents all acceptable δ13CDIC observations (N=8941), while the red curve 

indicates all acceptable reconstructed δ13CDIC values (N=68,435), generated by GPR model trained on the GLODAPv2.2023 dataset. The 

KDEs reveal the overall distribution shape, highlight differences in peak height and spread, and provide a smooth, continuous representation 

of probability density.  

The GLODAPv2.2023 Atlantic Ocean dataset includes approximately 20,583 stations in total (Fig. 6a). Among these, only 315 

about 732 stations have δ13CDIC observations (blue points in Fig. 6b), reflecting the limited spatial and temporal extent of direct 

observations due to the high cost and complexity of δ13C sampling and analysis. Using the proposed GPR model, δ13CDIC 

values have been reconstructed at roughly 4,182 stations (red points in Fig. 6b). This reconstructed dataset significantly 

expands both temporal and spatial coverage of δ13CDIC in the Atlantic Ocean, enabling more detailed and extensive 

biogeochemical analyses across the Atlantic. 320 
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Figure 6. Station maps for the GLODAPv2.2023 Atlantic Ocean dataset. (a) Locations of all stations included in the dataset. (b) 

Stations with observed (blue dots) and reconstructed (red dots) δ13CDIC. 

To evaluate the spatial and temporal coverage expansion of the reconstructed δ13CDIC dataset, the data distributions are 

compared along longitude, latitude, year, and depth (Fig.  7). Along longitude (Fig.  7a), the number of reconstructed δ13CDIC 325 

increased several times compared to the observed, and also extended into west of 70° W and east of 0° E where there are 

almost no direct δ13CDIC observations. The latitudinal distribution (Fig.  7b) shows notable improvements in both hemispheres. 

The reconstructed dataset greatly enhanced the temporal coverage (Fig. 7c). There is little to no reconstructed data before 1980, 

between 1984 and 1987, and in 1995. The number of reconstructed data increases significantly after the late-1980s, reaching 

a peak in 2003, (Fig 7c). Vertically, the data number of reconstructed δ13CDIC increased substantially throughout the water 330 

column, although numbers of both reconstructed and observed δ13CDIC data show exponential decrease from surface to deep 

water (Fig.  7d).  

https://doi.org/10.5194/essd-2025-517
Preprint. Discussion started: 1 September 2025
c© Author(s) 2025. CC BY 4.0 License.



20 

 

 

Figure 7. Comparison of the spatial, temporal, and vertical distributions of observed and reconstructed δ13CDIC data in the Atlantic 

Ocean. The number of δ13CDIC samples is shown by (a) longitude (per 5° bin), (b) latitude (per 5° bin), (c) year (from 1972 to 2021), and 335 

(d) depth (per 200 m interval). Red bars represent reconstructed δ13CDIC, and blue bars indicate observed δ13CDIC.  

Overall, the reconstructed δ13CDIC dataset consistently demonstrated good accuracy, high correlation coefficient, low RMSE, 

MAE, and minimal bias across diverse environmental conditions. Spatially, the reconstruction significantly expands coverage 

across longitude, latitude, and depth, particularly in undersampled regions such as the South Atlantic and deeper ocean. 

Temporally, it enhances data availability, filling many before 1990 and after 2015, despite some limitations tied to input 340 

variable availability.  
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3.5 Potential Implications 

The improved spatial, temporal, and vertical coverage of the reconstructed δ13CDIC dataset potentially contributes to the 

biogeochemical research and to a deeper understanding of carbon cycling processes in the Atlantic Ocean. Two specific 

applications are given as examples here: (1) examining the spatial patterns and decadal variability of surface δ13CDIC (≤ 10 m), 345 

and (2) evaluating its ability to resolve vertical profiles, thereby providing insights into subsurface carbon dynamics.  

To facilitate a more comprehensive understanding of the spatial and temporal dynamics of surface δ13CDIC in the Atlantic, Fig. 

8 illustrates how the reconstruction improves the spatial representativeness and temporal continuity of surface δ13CDIC. The 

expanded spatial coverage shown in Fig. 8a increases the representativeness of latitudinal sample bins, reducing the influence 

of sparsely sampled outliers on bin means (Fig. 8b). For instance, observational data in the 5° S – 10° S band during the 2000s 350 

show an anomalously low mean that is likely driven by a few isolated observations. In contrast, the reconstructed dataset, by 

supplying a larger and spatially coherent sample set, yields a mean that is more consistent with adjacent latitude bands. This 

effect should be understood as a reduction of sampling-driven discontinuities and noise rather than as an artificial suppression 

of genuine signals. Both observed and reconstructed data indicate a basin-scale decline in surface δ13CDIC from the 1980s to 

the 2010s, most pronounced in tropical and subtropical regions (approximately 35° S – 35° N), consistent with the expected 355 

Suess effect from increasing fossil-fuel CO2 (Keeling, 1979). Mid- to high-latitude regions display more complex, regionally 

heterogeneous variability, likely reflecting circulation, water-mass formation and subduction processes. In contrast, the mid- 

to high-latitude regions exhibit more complex variability, likely reflecting the influence of regional circulation, water mass 

formation, and subduction processes that modulate isotopic signals on multi-decadal timescales.  

To facilitate a clear and intuitive assessment of decadal distributions of observed and reconstructed surface δ13CDIC, we employ 360 

KDEs. KDEs presented in Fig. 8c are computed using all acceptable observed and reconstructed surface δ13CDIC samples within 

each decade and are intended to reveal the overall distributional characteristics and their evolution across decades and 

complement the latitude-binned means shown in Fig. 8b. In general, both observed and reconstructed KDEs confirm the 

decadal downward shifts of δ13CDIC from the 1980s to the 2010s, reinforcing the notion of a basin-wide isotopic response to 

anthropogenic carbon inputs. And the observed and reconstructed KDEs within each decade fall within comparable value 365 

ranges and exhibit similar peak positions, underscoring the consistency between the two datasets. Notable discrepancies arise 

in specific decades. For instance, in the 1980s the reconstructed KDE shows a dominant peak near 2 ‰ and a secondary peak 

near 1.7 ‰. The latter closely corresponds to the single, broader maximum in the observational KDE. This discrepancy is 

likely attributable to the sparse observational coverage during this decade (Fig. 8a), which limits the representativeness of the 

latitudinal distribution. In the 2000s, the reconstructed KDE exhibits slightly greater density at the lower end of the common 370 

range (~0.5–2.0‰) than the observational KDE, producing a modest negative shift in central tendency while maintaining a 

comparable overall span. This shift is primarily attributable to a disproportionate increase in reconstructed data between 50° 
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N and 65° N, which modifies the density structure of the distribution. These examples highlight that the reconstruction not 

only reproduces the principal features of the observational distributions but also mitigates the limitations imposed by sparse 

or uneven sampling. The reconstructed KDEs are generally smoother and more spatially coherent than the raw observational 375 

KDEs, which reduces sampling-induced noise and preserves large-scale signals. As a result, the reconstruction provides a more 

representative depiction of δ13CDIC variability across latitude and time, improving the statistical robustness and interpretability 

of the inferred distributional changes. 

 

Figure 8. Surface distribution of observed and reconstructed δ13CDIC in the Atlantic Ocean across four decades. (a) Number of 380 

observed and reconstructed δ13CDIC samples within each 5° latitude band for the 1980s, 1990s, 2000s, and 2010s. For each latitude band, 
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stacked bars represent decadal sample counts. Solid (opaque) bars indicate observations, and semi-transparent bars with black outlines 

indicate corresponding reconstructions. (b) Surface δ13CDIC distributions (depth ≤ 10 m) along latitude for the 1980s, 1990s, 2000s, and 

2010s. Colored scatter points indicate individual δ13CDIC values from observations (circles) and reconstructions (dots), while the black 

markers with corresponding face color and error bars represent the mean ± standard deviation of δ13CDIC within each 5° latitude bin, triangles 385 

for observed data and diamonds for reconstructed values. (c) Gaussian kernel density estimates (KDE) of surface δ13CDIC for each decade 

(1980s–2010s), using dashed lines for observations and solid lines for reconstructions. These KDEs reveal the decadal evolution and overall 

distributional characteristics of δ¹³CDIC in both datasets. 

Besides horizontal distributions, the reconstructed δ¹³CDIC dataset also provides valuable insights into vertical variability. The 

depth profiles along the North Atlantic A16N section in 1993, 2003, 2013, and 2023 (Fig. 9) show that the reconstruction 390 

substantially improves vertical resolution and continuity, especially for years with sparse measurements. For instance, the 

δ¹³CDIC samples were increased from 526 to 2,199 in 1993, 38 to 1,500 in 2003, and 498 to 2,504 in 2013, respectively, 

enhancing data coverage across depths and latitudes, facilitating the detection of temporal trends associated with ocean carbon 

uptake and redistribution (Fig. 9). Specifically, the 2023 reconstruction was generated using the observational predictors 

collected along A16N in 2023 (available from CCHDO). For 2023 with a high-density observational dataset, the reconstructed 395 

data closely align with the observed data (Fig.  9d vs. 9h).  

 

Figure 9. Enhancement of spatial resolution for δ13CDIC through GPR model reconstruction along North Atlantic section A16N. Top 

panels (a–d) presents in-situ observed δ13CDIC from cruises in (a) 1993 (n = 526), (b) 2003 (surface-only, n = 38), (c) 2013 (n = 498), and (d) 

2023 (n = 3,460). Bottom panels (e–h) shows corresponding reconstructed δ13CDIC with systematic filling of spatial gaps: (e) the number of 400 
reconstructed δ13CDIC for cruise A16N in 1993 is 1,500; (f) full-depth reconstruction for cruise A16N in 2003 (n = 2,199); (g) 2013 

reconstruction (n = 2,504), highlighting improved coverage compared to limited observations (n = 498); (h) the reconstruction of cruise 

A16N in 2023 validated against high-density observations. Reconstruction effectively resolves historical sampling sparsity, yielding 

consistent spatial resolution comparable to contemporary DIC measurements. 
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The enhanced vertical profiles provided by the reconstructed δ13CDIC dataset also enable more refined investigations into the 405 

physical and biological controls governing carbon isotope variability in the ocean interior. Joint interpretation of δ13CDIC with 

nutrients such as phosphate allows for the identification of water mass structures and biological removal and addition, shedding 

light on processes such as organic carbon export, remineralization, and the coupling between biological productivity and ocean 

circulation (e.g., Gruber et al., 1999; Eide et al., 2017). These capabilities improve the isolation of the vertical imprint of the 

Suess effect and facilitate the reconstruction of preindustrial δ13CDIC, both of which are critical for assessing anthropogenic 410 

perturbations to the marine carbon cycle (Olsen et al., 2010). δ13CDIC also can be used to estimate biological carbon export and 

net community production (NCP) (Quay et al., 2009; Yang et al., 2019). Accurate NCP estimation from δ13CDIC requires 

knowledge of both the physical supply of DIC and δ13CDIC, typically represented by the subsurface to surface δ13CDIC gradient. 

Sparse historical δ13CDIC data can bias this estimate, whereas the reconstructed dataset provides a continuous field that reduces 

gaps and noise, enabling more reliable NCP calculations. Importantly, the observation-constrained reconstructed δ13CDIC fields 415 

fill longstanding gaps in global datasets, providing a robust basis for the validation of Earth system models (e.g., Schmittner 

et al., 2013; Sonnerup & Quay, 2012; Claret et al., 2021). The improved coverage helps reconcile discrepancies between 

modeled and observed δ13CDIC distributions, particularly in data-sparse regions such as the deep ocean and the Southern 

Hemisphere. In particular, at the boundary of two water masses, the high resolution δ13CDIC distribution helps to validate high-

resolution global physical and biogeochemical model predictions and more effectively study carbon cycle at such boundary 420 

zones. 

Overall, the reconstruction effectively addresses key limitations of the observational δ13CDIC record, particularly data sparsity 

and sampling bias, providing a more continuous and spatially balanced dataset. This enables clearer identification of large-

scale latitudinal gradients, decadal trends, and regional anomalies, offering a robust foundation for interpreting long-term 

carbon cycle dynamics.  425 

3.6 Challenges and Limitations 

Despite enhancing spatial resolution, reconstructing grid δ13CDIC with low uncertainty remains challenging compared to other 

carbonate system variables (e.g., DIC, pCO2, TA), primarily due to limited historical observation coverage. While the dataset 

achieves an overall mean bias of −0.007 ‰, notable regional discrepancies persist, particularly in subpolar regions, where 

biases of some samples exceed 0.15 ‰. These anomalies may be attributed to nonlinear interactions between δ13CDIC and 430 

biogeochemical processes, such as upwelling-induced isotope fractionation and biological carbon pump effects (Gruber et al., 

1999). Additionally, although input variables (T, S, AOU, N, Si, DIC, xCO2) were validated to have negligible impacts on 

reconstruction uncertainty (3.77 × 10−14 ‰), the exclusion of potential covariates, such as chlorophyll-a, wind speed, or nutrient 

gradients, may limit constraint precision. 
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The reconstruction approach is also subject to inherent limitations, such as spatial interpolation assumptions, uncertainty 435 

propagation, and temporal variability constraints. The GPR model assumes stationarity of δ13CDIC spatial covariance, a 

simplification that may fail in regions with abrupt bathymetric changes (e.g., the Mid-Atlantic Ridge). Such nonstationarity 

may introduce systematic errors in reconstructed δ13CDIC gradients, particularly across topographic features that influence 

ocean circulation and carbon transport. Cumulative uncertainties from measurement (0.07 ‰), mapping (0.08 ‰), and input 

variables (3.77 × 10−14 ‰) yield an overall uncertainty of 0.11 ‰, which may obscure small-scale δ13CDIC signals. This 440 

limitation restricts the dataset’s utility for resolving fine-scale temporal trends or localized isotopic anomalies. Furthermore, 

the temporal sparsity of historical predictor observations restricts the resolution of interannual δ13CDIC variability. The 

application of reconstructed data to estimate the Suess effect using extended Multilinear Regression (eMLR) methods in 

repeated hydrographic transects requires careful consideration due to inherent uncertainties. The decadal-scale Suess effect, 

approximately 0.2 ‰, is often comparable to parts of discrepancy between reconstructed and observed δ13CDIC values. 445 

Consequently, rigorous assessment of these uncertainties is critical to ensure the reliability of decadal-scale isotopic trend 

estimates derived from eMLR analyses. 

To address these challenges and limitations, future improvements will aim at enhancing the mechanistic understanding of 

relationships between δ13CDIC and environment factors by developing subregional partitioning strategies and variable selection 

frameworks that optimize model fidelity, integrating process-based insights to identify optimal predictor variables and refine 450 

regionalization schemes for biogeochemical heterogeneity. Additionally, high-resolution wind speed data may be incorporated 

to resolve air-sea gas exchange effects, coupled with uncertainty mitigation techniques, while emerging high-resolution 

observations from autonomous platforms may be leveraged to refine spatial resolution to fixed grids. Furthermore, multi-phase 

reconstruction frameworks have the potential to extend δ13CDIC records across pre- and post-satellite eras using proxy variables 

for historical biological productivity, improving temporal consistency and Suess effect estimation via eMLR methods by 455 

reducing uncertainties in decadal-scale trend analyses. 

4 Conclusion 

This study reconstructs Atlantic Ocean δ13CDIC using a GPR model trained on 37 secondary quality-controlled cruises selected 

from 51 compiled historical datasets, including a high-resolution 2023 A16N section. GPR was chosen for its ability to capture 

nonlinear relationships, outperforming other machine-learning models in preliminary tests (lowest RMSE and highest R2). The 460 

trained GPR model achieved an average bias of −0.007 ± 0.082 ‰ and an overall uncertainty of 0.11 ‰, with error 

contributions from measurement (0.07 ‰), mapping (0.08 ‰) and input-variable (3.77 × 10−14 ‰).  
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Applying GLODAPv2.2023 Atlantic dataset as predictors, the reconstruction expanded the acceptable δ13CDIC samples from 

8,941 to 68,435, representing a substantial 7.65-fold increase compared to the original dataset. This extensive dataset 

significantly improves spatial coverage in longitude, latitude, and depth and enhances temporal continuity of δ13CDIC 465 

observations over the past four decades.  

Multiple evidences attest to reliability and superiority of the reconstructed dataset. Statistical diagnostics demonstrate strong 

model skill in both cross-validation and independent testing stages, as well as reconstruction stage. The reconstruction 

preserves decadal variability at the sea surface δ13CDIC and in depth-profiles and agrees with high-density contemporary 

observations such as the 2023 A16N section. Distributional metrics, exemplified by smoothed and stable KDEs, suggest that 470 

the reconstruction mitigates sampling noise while retaining meaningful spatiotemporal signals.  

The broad spatial coherence and high coverage of the reconstructed δ13CDIC enable systematic analysis of large-scale gradients, 

detection of regional anomalies, and investigation of tracer relationships with nutrients such as phosphate, supporting a wide 

range of carbon cycle studies. It also provides a valuable baseline for evaluation of Earth system models, for improving 

estimates of preindustrial and anthropogenic δ13CDIC, and for extending isotopic records used in climate reanalysis. 475 

Despite these advances, some challenges and limitations remain. Regional biases persist, likely reflecting nonlinear 

biogeochemical interactions and the GPR assumption of spatial covariance stationarity, which may break down over complex 

bathymetry. Small‑scale features can be obscured by cumulative uncertainty propagation and temporal inconsistencies persist 

in certain derived quantities. Future efforts will be needed on assimilating higher‑resolution observations to enhancing the 

mechanistic understanding of relationships between δ13CDIC and environment factors, developing tailored subregional 480 

modelling frameworks and exploiting advanced machine‑learning techniques to capture nonstationary spatial features. These 

efforts will refine spatial and temporal fidelity, reduce uncertainties and gain deeper mechanistic insight into ocean carbon 

cycle dynamics. 

5 Data availability 

The qualified-controlled and reconstructed δ13CDIC in the Atlantic Ocean are available as two NetCDF/Excel files at 485 

https://doi.org/10.5281/zenodo.16907402 

6 Code availability 

The MATLAB code used to process the data and create the figures included in this paper is provided at 

https://github.com/huigao109/ReC13_ML 

https://doi.org/10.5194/essd-2025-517
Preprint. Discussion started: 1 September 2025
c© Author(s) 2025. CC BY 4.0 License.



27 

 

Author contribution 490 

Hui Gao: Conceptualization, data curation, formal analysis, methodology, software, visualization, writing – original draft 

preparation, writing – review & editing. Zelun Wu: Validation, methodology, writing – review & editing. Zhentao Sun: 

Validation, writing – review & editing. Diana Cai: Validation, methodology, writing – review & editing. Meibing Jin: 

Conceptualization, supervision, validation, writing – review & editing. Wei-Jun Cai: Conceptualization, funding acquisition, 

methodology, validation, writing – review & editing, project administration, supervision. 495 

Competing interests 

The authors declare that they have no conflict of interest. 

Acknowledgments 500 

The authors gratefully acknowledge all researchers, principal investigators, captains, and crew members who contributed their 

time at sea and in the laboratory to collect, analyze, and curate the datasets used in this study. We thank the providers and 

maintainers of the GLODAP, OCADS, and CCHDO databases, as well as the creators of the internally consistent δ¹³CDIC 

dataset for the North Atlantic Ocean (NAC13v1; Becker et al., 2016), for making their data openly available. The authors used 

ChatGPT for grammar and language polishing; all scientific content, interpretations, and conclusions are the sole responsibility 505 

of the authors. 

Financial support 

This research is supported by the US National Science Foundation awards (OCE-2123768 & OCE-25A00158) to W-J.C. 

References 

Alling, V., Porcelli, D., Mörth, C.-M., Anderson, L. G., Sanchez-Garcia, L., Gustafsson, Ö., Andersson, P. S., and Humborg, 510 

C.: Degradation of terrestrial organic carbon, primary production and out-gassing of CO2 in the Laptev and East Siberian Seas 

https://doi.org/10.5194/essd-2025-517
Preprint. Discussion started: 1 September 2025
c© Author(s) 2025. CC BY 4.0 License.



28 

 

as inferred from δ13C values of DIC, Geochimica et Cosmochimica Acta, 95, 143–159, 

https://doi.org/10.1016/j.gca.2012.07.028, 2012. 

Becker, M., Andersen, N., Erlenkeuser, H., Humphreys, M. P., Tanhua, T., and Körtzinger, A.: An internally consistent dataset 

of δ13C-DIC in the North Atlantic Ocean – NAC13v1, Earth System Science Data 8: 559-570, https://doi.org/10.5194/essd-515 

8-559-2016, 2016. 

Carter, B. R., Sharp, J. D., Dickson, A. G., Álvarez, M., Fong, M. B., García‐Ibáñez, M. I., Woosley, R. J., Takeshita, Y., 

Barbero, L., Byrne, R. H., Cai, W., Chierici, M., Clegg, S. L., Easley, R. A., Fassbender, A. J., Fleger, K. L., Li, X., Mart ín‐

Mayor, M., Schockman, K. M., and Wang, Z. A.: Uncertainty sources for measurable ocean carbonate chemistry variables, 

Limnology & Oceanography, 69, 1–21, https://doi.org/10.1002/lno.12477, 2024. 520 

Claret, M., Sonnerup, R. E., and Quay, P. D.: A Next Generation Ocean Carbon Isotope Model for Climate Studies I: Steady 

State Controls on Ocean 13 C, Global Biogeochemical Cycles, 35, e2020GB006757, https://doi.org/10.1029/2020GB006757, 

2021. 

Deng, X., Li, Q., Su, J., Liu, C.-Y., Atekwana, E., and Cai, W.-J.: Performance evaluations and applications of a δ13C-DIC 

analyzer in seawater and estuarine waters, Science of The Total Environment, 833, 155013, 525 

https://doi.org/10.1016/j.scitotenv.2022.155013, 2022. 

Eide, M., Olsen, A., Ninnemann, U. S., and Johannessen, T.: A global ocean climatology of preindustrial and modern ocean δ 

13 C, Global Biogeochemical Cycles, 31, 515–534, https://doi.org/10.1002/2016GB005473, 2017. 

Esposito, M., Achterberg, E. P., Bach, L. T., Connelly, D. P., Riebesell, U., and Taucher, J.: Application of Stable Carbon 

Isotopes in a Subtropical North Atlantic MesocosmStudy: A New Approach to Assess CO2 Effects on the Marine Carbon 530 

Cycle, Front. Mar. Sci., 6, 616, https://doi.org/10.3389/fmars.2019.00616, 2019. 

Gao, H., Jin, M., Zhao, H., Hussain, N., and Cai, W.: Using DIC‐δ13 C Pair to Constrain Anthropogenic Carbon Increase in 

the Southeastern Atlantic Ocean Over the Most Recent Decade (2010–2020), JGR Oceans, 129, e2024JC021586, 

https://doi.org/10.1029/2024JC021586, 2024. 

Gao, H., Wu, Z., Sun, Z., Cai, D., Jin, M., & Cai, W.-J.: Reconstruction of δ¹³CDIC in the Atlantic Ocean [Data set]. Zenodo. 535 

https://doi.org/10.5281/zenodo.16907402, 2025. 

https://doi.org/10.5194/essd-2025-517
Preprint. Discussion started: 1 September 2025
c© Author(s) 2025. CC BY 4.0 License.



29 

 

Gruber, N., Keeling, C. D., Bacastow, R. B., Guenther, P. R., Lueker, T. J., Wahlen, M., Meijer, H. A. J., Mook, W. G., and 

Stocker, T. F.: Spatiotemporal patterns of carbon-13 in the global surface oceans and the oceanic suess effect, Global 

Biogeochem. Cycles, 13, 307–335, https://doi.org/10.1029/1999GB900019, 1999. 

Hughes, I. and Hase, T. P. A.: Measurements and their uncertainties: a practical guide to modern error analysis, New York : 540 

Oxford University Press, Oxford, 136 pp., 2010. 

Keeling, C. D.: The Suess effect: 13Carbon-14Carbon interrelations, Environment International, 2, 229–300, 

https://doi.org/10.1016/0160-4120(79)90005-9, 1979. 

Körtzinger, A., Quay, P. D., and Sonnerup, R. E.: Relationship between anthropogenic CO 2 and the 13 C Suess effect in the 

North Atlantic Ocean, Global Biogeochemical Cycles, 17, https://doi.org/10.1029/2001GB001427, 2003. 545 

Kroopnick, P.: Isotopic fractionations during oxygen consumption and carbonate dissolution within the North Atlantic Deep 

Water, Earth and Planetary Science Letters, 49, 485–498, https://doi.org/10.1016/0012-821X(80)90089-8, 1980. 

Kwon, E. Y., DeVries, T., Galbraith, E. D., Hwang, J., Kim, G., and Timmermann, A.: Stable Carbon Isotopes Suggest Large 

Terrestrial Carbon Inputs to the Global Ocean, Global Biogeochemical Cycles, 35, e2020GB006684, 

https://doi.org/10.1029/2020GB006684, 2021. 550 

Lauvset, S. K. and Tanhua, T.: A toolbox for secondary quality control on ocean chemistry and hydrographic data, Limnol. 

Oceanogr. Methods, 13, 601–608, https://doi.org/10.1002/lom3.10050, 2015. 

Lauvset, S. K., Lange, N., Tanhua, T., Bittig, H. C., Olsen, A., Kozyr, A., Álvarez, M., Azetsu-Scott, K., Brown, P. J., Carter, 

B. R., Cotrim Da Cunha, L., Hoppema, M., Humphreys, M. P., Ishii, M., Jeansson, E., Murata, A., Müller, J. D., Pérez, F. F., 

Schirnick, C., Steinfeldt, R., Suzuki, T., Ulfsbo, A., Velo, A., Woosley, R. J., and Key, R. M.: The annual update 555 

GLODAPv2.2023: the global interior ocean biogeochemical data product, Earth Syst. Sci. Data, 16, 2047–2072, 

https://doi.org/10.5194/essd-16-2047-2024, 2024. 

Liu, B., Six, K. D., and Ilyina, T.: Incorporating the stable carbon isotope13 C in the ocean biogeochemical component of the 

Max Planck Institute Earth System Model, Biogeosciences, 18, 4389–4429, https://doi.org/10.5194/bg-18-4389-2021, 2021. 

Millero, F. J.: Chemical oceanography, Vol. 30. CRC press, 2005. 560 

https://doi.org/10.5194/essd-2025-517
Preprint. Discussion started: 1 September 2025
c© Author(s) 2025. CC BY 4.0 License.



30 

 

Olsen, A., Key, R. M., Van Heuven, S., Lauvset, S. K., Velo, A., Lin, X., Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., 

Jutterström, S., Steinfeldt, R., Jeansson, E., Ishii, M., Pérez, F. F., and Suzuki, T.: The Global Ocean Data Analysis Project 

version 2 (GLODAPv2) – an internallyconsistent data product for the world ocean, Earth Syst. Sci. Data, 8, 297–323, 

https://doi.org/10.5194/essd-8-297-2016, 2016. 

Olsen, A. and Ninnemann, U.: Large δ 13 C Gradients in the Preindustrial North Atlantic Revealed, Science, 330, 658–659, 565 

https://doi.org/10.1126/science.1193769, 2010. 

Quay, P. D., Tilbrook, B., and Wong, C. S.: Oceanic Uptake of Fossil Fuel CO2 : Carbon-13 Evidence, Science, 256, 74–79, 

https://doi.org/10.1126/science.256.5053.74, 1992. 

Quay, P., Sonnerup, R., Westby, T., Stutsman, J., and McNichol, A.: Changes in the 13 C/ 12 C of dissolved inorganic carbon 

in the ocean as a tracer of anthropogenic CO 2 uptake, Global Biogeochemical Cycles, 17, 570 

https://doi.org/10.1029/2001GB001817, 2003. 

Quay, P., Sonnerup, R., Stutsman, J., Maurer, J., Körtzinger, A., Padin, X. A., and Robinson, C.: Anthropogenic CO 2 

accumulation rates in the North Atlantic Ocean from changes in the 13 C/ 12 C of dissolved inorganic carbon, Global 

Biogeochemical Cycles, 21, 2006GB002761, https://doi.org/10.1029/2006GB002761, 2007. 

Quay, P. D., Stutsman, J., Feely, R. A., and Juranek, L. W.: Net community production rates across the subtropical and 575 

equatorial Pacific Ocean estimated from air‐sea δ 13 C disequilibrium, Global Biogeochemical Cycles, 23, 2008GB003193, 

https://doi.org/10.1029/2008GB003193, 2009. 

Quay, P., Sonnerup, R., Munro, D., and Sweeney, C.: Anthropogenic CO2 accumulation and uptake rates in the Pacific Ocean 

based on changes in the 13 C/ 12 C of dissolved inorganic carbon, Global Biogeochem. Cycles, 31, 59–80, 

https://doi.org/10.1002/2016GB005460, 2017. 580 

Quay, P., Emerson, S., and Palevsky, H.: Regional Pattern of the Ocean’s Biological Pump Based on Geochemical 

Observations, Geophysical Research Letters, 47, e2020GL088098, https://doi.org/10.1029/2020GL088098, 2020. 

Quay, P.: Organic Matter Export Rates and the Pathways of Nutrient Supply in the Ocean, Global Biogeochemical Cycles, 37, 

e2023GB007855, https://doi.org/10.1029/2023GB007855, 2023. 

https://doi.org/10.5194/essd-2025-517
Preprint. Discussion started: 1 September 2025
c© Author(s) 2025. CC BY 4.0 License.



31 

 

Racapé, V., Pierre, C., Metzl, N., Lo Monaco, C., Reverdin, G., Olsen, A., Morin, P., Vázquez-Rodríguez, M., Ríos, A. F., 585 

and Pérez, F. F.: Anthropogenic carbon changes in the Irminger Basin (1981–2006): Coupling δ13CDIC and DIC observations, 

Journal of Marine Systems, 126, 24–32, https://doi.org/10.1016/j.jmarsys.2012.12.005, 2013. 

Rasmussen, C. E. and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press. Cambridge, Massachusetts, 

2006.  

Roobaert, A., Regnier, P., Landschützer, P., and Laruelle, G. G.: A novel sea surface pCO2 -product for the global coastal 590 

ocean resolving trends over 1982–2020, Earth Syst. Sci. Data, 16, 421–441, https://doi.org/10.5194/essd-16-421-2024, 2024. 

Samanta, S., Dalai, T. K., Pattanaik, J. K., Rai, S. K., and Mazumdar, A.: Dissolved inorganic carbon (DIC) and its δ13C in 

the Ganga (Hooghly) River estuary, India: Evidence of DIC generation via organic carbon degradation and carbonate 

dissolution, Geochimica et Cosmochimica Acta, 165, 226–248, https://doi.org/10.1016/j.gca.2015.05.040, 2015. 

Schmittner, A., Gruber, N., Mix, A. C., Key, R. M., Tagliabue, A., and Westberry, T. K.: Biology and air–sea gas exchange 595 

controls on the distribution of carbon isotope ratios (δ13C) in the ocean, Biogeosciences, 10, 5793–5816, 

https://doi.org/10.5194/bg-10-5793-2013, 2013. 

Seeger M. Gaussian processes for machine learning. International journal of neural systems, 14(02): 69-106. 

https://doi.org/10.1142/S0129065704001899, 2004. 

Sharp, J. D., Fassbender, A. J., Carter, B. R., Lavin, P. D., and Sutton, A. J.: A monthly surface pCO2 product for the California 600 

Current Large Marine Ecosystem, Earth Syst. Sci. Data, 14, 2081–2108, https://doi.org/10.5194/essd-14-2081-2022, 2022. 

Silverman, B.W.: Density Estimation for Statistics and Data Analysis, Monographs on Statistics and Applied Probability, 

Chapman and Hall, London, UK, 1986. 

Sonnerup, R. E. and Quay, P. D.: 13 C constraints on ocean carbon cycle models: 13 C IN OCEAN MODELS, Global 

Biogeochem. Cycles, 26, n/a-n/a, https://doi.org/10.1029/2010GB003980, 2012. 605 

Su, J., Cai, W.-J., Hussain, N., Brodeur, J., Chen, B., and Huang, K.: Simultaneous determination of dissolved inorganic carbon 

(DIC) concentration and stable isotope (δ13C-DIC) by Cavity Ring-Down Spectroscopy: Application to study carbonate 

dynamics in the Chesapeake Bay, Marine Chemistry, 215, 103689, https://doi.org/10.1016/j.marchem.2019.103689, 2019. 

https://doi.org/10.5194/essd-2025-517
Preprint. Discussion started: 1 September 2025
c© Author(s) 2025. CC BY 4.0 License.



32 

 

Sun, Z., Li, X., Ouyang, Z., Featherstone, C., Atekwana, E. A., Hussain, N., and Cai, W.: Simultaneous onboard analysis of 

seawater dissolved inorganic carbon (DIC) concentration and stable isotope ratio (δ13 C‐DIC), Limnology & Ocean Methods, 610 

22, 862–875, https://doi.org/10.1002/lom3.10642, 2024. 

Sun, Z., Gao, H., Dong, B., Hussain, N., Atekwana, E. A., and Cai, W.: High‐resolution dataset of stable carbon isotope of 

dissolved inorganic carbon (δ13C‐DIC) from the North Atlantic Ocean, Limnol Oceanogr Letters, lol2.70038, 

https://doi.org/10.1002/lol2.70038, 2025. 

Tanhua, T., van Heuven, S., Key, R. M., Velo, A., Olsen, A., and Schirnick, C.: Quality control procedures and methods of 615 

the CARINA database, Earth Syst. Sci. Data 2: 35-49, https://doi.org/10.5194/essd-2-35-2010, 2010. 

Taylor, J. R.: An introduction to error analysis: the study of uncertainties in physical measurements, 2nd ed., University Science 

Books, Sausalito, Calif, 327 pp., 1997. 

Wanninkhof, R., Doney, S. C., Bullister, J. L., Levine, N. M., Warner, M., and Gruber, N.: Detecting anthropogenic CO2 

changes in the interior Atlantic Ocean between 1989 and 2005, J. Geophys. Res., 115, 2010JC006251, 620 

https://doi.org/10.1029/2010JC006251, 2010. 

Wu, Z., Lu, W., Roobaert, A., Song, L., Yan, X.-H., and Cai, W.-J.: A machine-learning reconstruction of sea surface p CO2 

in the North American Atlantic Coastal Ocean Margin from 1993 to 2021, Earth Syst. Sci. Data, 17, 43–63, 

https://doi.org/10.5194/essd-17-43-2025, 2025. 

Yang, B., Emerson, S. R., and Quay, P. D.: The Subtropical Ocean’s Biological Carbon Pump Determined From O2 and 625 

DIC/DI 13 C Tracers, Geophys. Res. Lett., 46, 5361–5368, https://doi.org/10.1029/2018GL081239, 2019. 

https://doi.org/10.5194/essd-2025-517
Preprint. Discussion started: 1 September 2025
c© Author(s) 2025. CC BY 4.0 License.


