We thank the reviewer for his/her time and for the constructive comments, which helped
improve the manuscript. In the following, we have addressed all comments, with the original review

text in italics.

This is an interesting and generally well-written study addressing a worthy topic. The paper
has good fundamentals and should be able to made into a solid contribution to the scientific
literature. However, I believe it requires iteration, and likely additional analysis, before it will be
suitable for publication at this journal.

We greatly appreciate your positive feedback on our study, specifically your recognition of its
interesting focus, overall strong writing, and solid fundamental framework. Your comment that the
work has the potential to make a meaningful contribution to scientific literature is particularly
encouraging for our team.

We agree with the reviewer that the manuscript needs further refinement. Moving forward, we
provide a point-by-point response to your criticism and line-by-line comments, and revise

manuscript accordingly.

I have three areas of criticism and one note of caution. The note of caution is just that I'm

skeptical of the uinput calculation, see the line by line comments below.

My first criticism is that that validation was not handled as well as it should have been. See
line by line comments below for an easy-to-implement and necessary improvement for the validation
section. Separately, a suggestion that would further reinforce the validity of the method would be
to implement the method in a model environment.  This is now common practice for validation of
machine learning refits of sparse observations, and is likely necessary for a first attempt with carbon
isotopes, particularly one with such unusually sparse observations. There are numerous model
simulations  available  that  have  explicitly  simulated  carbon  isotopes (e.g.,
https://doi.org/10.5194/gmd-17-1709-2024 though there are many others). It should be workable
to obtain one or more such set of outputs, subsample the distribution(s) across both time and space,
apply random and cruise-wide systematic perturbations to the extracted output to represent
measurement uncertainties, fit a ML model to the output, reconstruct the full distribution, and then
evaluate the strengths and weaknesses of the full 4D reconstruction.  This reveals critical
information that is not provided by a reconstruction of a sparse data product with uneven and
imperfect measurements of an unknown true distribution.

R: Thank you for your critical and constructive feedback on the validation section. We fully
agree with you that strengthening validation is essential for supporting the robustness of our method.

Regarding your valuable suggestion of validating the method in a model environment, we note
that the model dataset you referenced (https://doi.org/10.5194/gmd-17-1709-2024) does not provide
the related data. Instead, we downloaded the well-validated numerical model data from Claret et al.
(2021), which includes comprehensive carbon isotope simulations suitable for our validation
purpose. Following your proposed workflow, we conducted the model-based validation: we
subsampled the model outputs across time and space, fitted the GPR model to the perturbed data,
reconstructed the full 4D §'*Cpc distribution, and evaluated the model’s performance.

This supplementary validation not only confirms the method’s ability to accurately reconstruct
spatial-temporal patterns from sparse and noisy data but also reveals its strengths in mitigating



sampling biases, addressing the limitations of validating solely with real-world sparse observations.
All details of this model-based validation, including data processing steps, evaluation metrics, and
key results, have been added to the Appendix of the revised manuscript for reference. A brief
summary of the results is also presented in the Results (Section 3.4).

We greatly appreciate your guidance in enhancing the validation framework, which has
significantly strengthened the scientific rigor and reliability of our study.

Claret, M., Sonnerup, R. E., and Quay, P. D.: A Next Generation Ocean Carbon Isotope Model
for Climate Studies I: Steady State Controls on Ocean 13 C, Global Biogeochemical Cycles, 35,
€2020GB006757, https://doi.org/10.1029/2020GB006757, 2021.

The second criticism is that the paper is not very well motivated at present.  The authors state
repeatedly that the upsampled distribution can be used for many new analyses, but the new product
still has almost all of the limitations that the previous product... it is still sparse and uneven in space
in time, just less so, and it now has the added complications from layers of machine learning
smoothing.  While I admit that the new data product is smoother spatially and less biased
temporally, I don t see that the authors have fully solved any problem with their current presentation.
To that point, the authors mostly suggest ways that this might now be used, but do not go so far as
to demonstrate any such analysis that would be quantitatively improved with the new product. [
would like to see either more concrete examples of new analyses shown (not just listed), or, as such
an example, a reorientation of the work toward estimating the full Atlantic distribution of the
isotopes across space and time. For a spatially complete record they might apply the ML model
to the GLODAPv?2 gridded product. For a spatially and temporally complete product they might
consider either using a time varying TS product and/or GOBAI-O2 (with estimates of the other
predictors from other such ML refits in literature as necessary). In both cases, there would be
some meaningful errors in the predictors, but, at least currently, the authors are suggesting that
their estimates are completely Insensitive to any plausible error in the predictors, so that may or
may not be a concern (I suspect it will be after the uinput is re-evaluated).

R: Thank you for your comments, which have helped us clarify the core value and motivation
of this work. We appreciate your attention to the application potential of the reconstructed product.
We strengthened the motivation and better demonstrate that the new product does represent a
substantial improvement over existing datasets by adding one example, correcting an error, and
clarifying a few points.

First, we agree that the reconstructed product still retains some limitations. We would like to
emphasize that this manuscript is centered on developing a spatially enhanced & Cpic
reconstruction product, a critical first step to address a long-standing gap in marine biogeochemical
data. 8"3Cpic observations are far sparser than other carbonate system parameters (e.g., DIC, pH,
TA) and nutrients. Specifically, §'°Cpic data are available for only ~1 out of every 5 stations in
existing cruises and often restricted to the surface. This sparsity severely restricts quantitative
analyses of processes driving marine carbon cycles by 8'*Cpic (e.g., biological uptake, air-sea CO,
exchange) and hinders integration with other well-sampled parameters. Our reconstruction therefore
provides a significant expansion of 6*C coverage in both depth and space, enabling consistent co-
location with carbonate system and other data based on GLODAP for the first time. This
enhancement itself addresses a key limitation of previous products, whereas prior datasets remained



sparsely distributed, our product provides more continuous spatial coverage that lays the foundation
for new analyses. We think this is very different from Machine Learning-based data products for
pCO; which have many orders of magnitude richer in an observation data density, and feel it is only
prudent at this first step that we target the Machine Learning-based §'*Cpjc data product to the data
density level of the GLODAP-based predictors. We acknowledge that the manuscript focuses on
validating the reconstruction method and product reliability, but this focus aligns with the norms of
data product papers, where demonstrating the quality and utility of the product is the primary
objective.

We also note your concern about the added complications from machine learning smoothing.
We would like to clarify that the GPR model’s smoothing effect is intentionally designed to balance
spatial continuity and data fidelity, rather than introducing arbitrary complexity. The smoothing
primarily mitigates sampling noise and avoids overfitting to sparse extreme values (often linked to
transient perturbations or observational errors), while preserving meaningful biogeochemical
variability (e.g., latitudinal gradients, depth-dependent trends, and basin-scale signals). This is
validated by the KDE analysis, which shows consistent distribution characteristics between
reconstructed and observed data. We emphasize that the smoothing does not erase critical patterns
but enhances the reliability of the dataset for large-scale analyses, addressing a key limitation of
sparse raw observations, where noise can obscure true biogeochemical signals.

We agree that demonstrating potential applications would further enhance the paper, but we
view such extensive analyses as the logical next step(s) following the creation and validation of the
reconstructed product. Indeed, we are currently conducting analyses that use the reconstructed
313Cpic to revisit the long-standing 8'°C—PO4 relationship. The link between §'*Cpjc and phosphate
has long been a cornerstone for quantifying biological effects on the ocean carbon cycle (Broecker
and Maier-Reimer, 1992; Lynch-Stieglitz et al., 1995; Gruber et al., 1999). Broecker and Maier-
Reimer (1992) originally proposed an empirical relationship between 8'°Cpic and phosphate of the
form 8Cgio = 2.9 — 1.1xPO4. This empirical formula has been widely cited and applied in
subsequent observational and modeling studies (e.g., Lynch-Stieglitz et al., 1995; Gruber et al., 1999;
Sonnerup & Quay, 2012). However, based on spatially and temporally continuous model results,
Eide et al. (2017) suggested a revised intercept of 2.8, and Claret et al. (2021) reported a slope of
1.01 in the GLODAPv2.2020 deep Pacific. Because §'*Cpic measurements are much sparser and
more unevenly distributed in depth and space than common carbonate-system or nutrient variables,
pointwise comparisons are often inconclusive. In contrast, our reconstructed 3'*C product is
considerably denser than the raw observations. This increased coverage allows systematic, basin-
scale testing of empirical 5'3C—POy relationships and better quantification of biological influences
on the carbon cycle that were previously obscured by observational sparsity.

Furthermore, our ongoing work (Figure R1) shows that anthropogenic carbon estimations
based on an extended Multiple Linear regression (eMLR) method using sparse DIC or §'*Cpjc data
differ substantially from those using dense, spatially continuous data. The eMLR approach first
converts DIC to C* without water mass partitioning, then averages the regression results from
multiple variable combinations to derive the final anthropogenic carbon changes (a similar treatment
in Gao et al., 2022). Specifically, Figure R1 presents ACant and A8'*Canen along the A16N transect
between 2013 and 2023: panels (a) and (c) show results derived from the original spatial sampling
density, where both 2013 and 2023 DIC data include ~3500 samples, 2013 §'*Cpyc data consist of
~500 samples, and 2023 §'*Cpjc data comprise ~3500 samples; panels (b) and (d) display results



from the reduced spatial sampling density, with 2013 DIC samples reduced to ~500 (matching the
spatial locations of 2013 §'3Cpjc data), 2013 §'*Cpjc sample size unchanged, and 2023 DIC/8"*Cpic

samples filtered to ~500 (selected from ~23 stations near the latitudes of 2013 §'*Cpjic sampling
sites).
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Figure R1. Anthropogenic DIC and §'*Cpic changes (ACann and AS"*Canin) along A16N between
2013 and 2023. (a) & (c¢) ACanth and AS"*Can derived from the original spatial sampling density;
(b) & (d) ACanth and AS'*Canen derived from the reduced spatial sampling density.

The above two examples highlight that the increased data density directly improves the
accuracy of key carbon cycle metrics, a critical application for understanding ocean carbon
sequestration. However, to bring them to desired publication quality will require extensive more
work, and we feel it is appropriate to leave them for future publications. We therefore emphasize
that this manuscript focuses on building and validating the reconstruction framework, while detailed
applications, such as the §'3C—POy relationship analysis and anthropogenic carbon estimates are
being developed in follow-up studies. We hope that the reviewer will support our approach.

We fully agree that developing a spatiotemporally continuous §'*Cpic product is a meaningful
long-term goal, and your recommendations (e.g., time-varying TS products, GOBAI-O2, and
integrating ML-derived predictors from literature) provide excellent directions for future work. On
the point of using the GLODAPV2 gridded product for a spatially complete record: we have
thoroughly checked the official GLODAP repository but have not found an official gridded version
of the dataset. We acknowledge the immense value of a gridded §'*Cpic product for the community
and would consider supplement our reconstruction with a corresponding gridded product if an
official GLODAP gridded product becomes available. However, given the current spatiotemporal
sparsity of the underlying §'*Cpjc observations, we cautiously note that direct gridding at this stage
may introduce additional uncertainties, including over interpolation in data-sparse regions and

potential misrepresentation of true biogeochemical variability. This is a key consideration for

maintaining the scientific rigor of the product, as our priority is to provide a reliable dataset that
reflects the actual constraints of available observations.



We also recognize that our earlier reasoning about temporal limitations could be refined.
Capturing decadal trends (a core focus of our work) is more feasible than resolving
seasonal/interannual variability with current data. However, developing a truly "complete"
spatiotemporal product (encompassing both broad trends and finer-scale temporal dynamics)
remains challenging due to the highly uneven temporal distribution of observations: even for
decadal analyses, gaps in seasonal coverage (e.g., overrepresentation of summer data) can introduce
biases in trend estimation if not properly constrained. Again, we argue that the goals and thus the
detailed approaches for developing a data product for pCO; which has high density of observational
data and 8"*Cpyc, with many orders of magnitudes lower data density, are probably different. Thus,
our current study prioritizes addressing the more urgent and fundamental gap of spatial sparsity, as
the extreme paucity of 8'°Cpic data has long prevented even basic basin-scale analyses. By
establishing a validated, spatially enhanced product, we enable decadal trend assessments while
laying the groundwork for future temporal extensions. We plan to build on this framework by
integrating long-term time-series data from Bermuda Institute of Ocean Sciences (BIOS) and the
Hawaii Ocean Time-series (HOT) programs, which will improve constraints on temporal variability
and allow us to develop the spatiotemporally complete product you envision. This phased approach
ensures that each step of product development is supported by sufficient observational data,
maintaining scientific rigor.

Finally, we sincerely appreciate your critical note on predictor uncertainty (Uinput) and apologize
for an error in the initial calculation of uinpus. After careful recalculation, the corrected Uinpuss is
0.009 %o0. We would like to clarify that this revised value, while more accurate, remains smaller than
both the observational uncertainty and the mapping function uncertainty. This indicates that the
model’s sensitivity to plausible errors in the selected predictors is indeed low, but not "completely
insensitive" (a misinterpretation we regret arising from the initial calculation error). We
acknowledge that if we adopt time-varying or ML-refitted predictors (as you suggested for
spatiotemporal extensions), the associated predictor errors may change. In such cases, the Uinpuis Will
be reevaluated accordingly to fully reflect the model’s sensitivity to the new predictor datasets.

We hope these clarifications address your concerns and highlight the unique contribution of
this work: resolving the extreme sparsity of 8'°Cpic data to enable a range of long-awaited
quantitative analyses in ocean carbon cycle research. Your feedback has been invaluable in

strengthening the motivation, rigor, and transparency of our manuscript.

Broecker, W. S. and Maier-Reimer, E.: The influence of air and sea exchange on the carbon
isotope  distribution in the sea, Global Biogeochem. Cycles, 6, 315-320,
https://doi.org/10.1029/92GB01672, 1992.

Claret, M., Sonnerup, R. E., and Quay, P. D.: A Next Generation Ocean Carbon Isotope Model
for Climate Studies I: Steady State Controls on Ocean 13 C, Global Biogeochemical Cycles, 35,
€2020GB006757, https://doi.org/10.1029/2020GB006757, 2021.
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Lynch-Stieglitz, J., Stocker, T. F., Broecker, W. S., and Fairbanks, R. G.: The influence of air-
sea exchange on the isotopic composition of oceanic carbon: Observations and modeling, Global
Biogeochem. Cycles, 9, 653—665, https://doi.org/10.1029/95GB02574, 1995.
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Finally, the presentation of the dataset is a bit confusing (I only checked the .mat, but I'm
assuming this applies to all files at Zenodo). The file contains essentially all of the fields from
GLODAPv2 with their adjusted DI13C, which is called adjusted C13, capitalizing "C" contrary to
the GLODAP convention. If the goal is to make the file supplemental to and interoperable with
GLODAPv2, then it would be better to release a file that has the full >10"6 rows, but only contains
cl3 data and has -999 except for the appropriate Atlantic subset. This way, someone could load
GLODAPv2 and then load this file and have them both available and ready to access in identical
formats. They could also easily sub in data from, for example, other other basins where this data
product is missing observations but the GLODAPv2 product has them.  This will also remind users
to cite both products, rather than just grabbing all of the data from this new product and incorrectly
attributing, for example, aou and cfcs to a data product that is only updating C13 and repackaging
everything else. Finally, I think the Zenodo link would benefit from more descriptive text or a
readme explaining what subset of data is presented, which fields are the new fields, how they are
labeled, and how to make the data interoperable with, for example, measurements of DI113C in other
ocean basins.

R: Thank you for your thoughtful feedback regarding data presentation and interoperability.
We appreciate your attention to the dataset structure and naming conventions.

We would like to clarify that there are two distinct data components in the Zenodo archive;
they serve different purposes and have distinct origins, which explains the naming and structure
differences you noted: 1) The GPR-reconstructed &°Cpic  dataset  (named
“GLODAPv2.2023 Atlantic_ Ocean_with Reconstructed d13C”), which is based on GLODAPv2
and retains all original GLODAP variable names and structures. This file is fully interoperable with
GLODAPvV2’s Atlantic subset, with one additional variable reconstructed 8"*Cpic (“ReC13”) and its
flag (“ReC13f”) added alongside the original §'*Cpjc field to facilitate direct comparison. 2) The
Atlantic observational compilation, which includes 6'*C data from 51 cruises (refer to Table 1 in the
manuscript, named “Atlantic_cruises_with_c13”). The file containing "adjusted C13" is not part of
the reconstructed product. It is a supporting dataset of compiled raw observations from 51 Atlantic
cruises. This dataset is not based on GLODAPv2 but combines both GLODAP and non-GLODAP
cruises. For cruises not included in GLODAPv2, some ancillary variables (e.g., AOU, pH) were
calculated using seawater, GSW, and CO2SYS toolboxes. Therefore, variable names and units in
this file may differ slightly from GLODAP conventions. The variable “adjusted C13” appears only
in this observational dataset, not in the GPR-reconstructed product.

We agree with your focus on interoperability with GLODAPv2, and we share your goal of
avoiding redundancy and confusion. To clarify, GLODAPv2 already provides separate, official
datasets for individual ocean basins (e.g., Atlantic, Pacific, Indian, Arctic Oceans) as part of its
standard release. Our product is specifically designed to complement GLODAPv2’s Atlantic subset,



focusing only on reconstructing 8'°Cpic data for the Atlantic, while retaining consistency with
GLODAPv2’s existing basin-specific structure.

We respectfully note that integrating all global GLODAPv2 data into our product (with non-
Atlantic §"3Cpic set to -999) may be unnecessary for two key reasons: 1) It would duplicate
GLODAPv2’s full global dataset, which users can already access directly from the official
GLODAP repository. 2) GLODAPvV2’s existing basin-specific subsets are widely used by the
community, and our Atlantic-focused product aligns with this established workflow, allowing users
to combine our updated Atlantic §'*Cpjc with other GLODAP basin datasets (e.g., Pacific) as needed,
without redundant -999-filled entries. We confirm that our current dataset structure (Atlantic-only
subset) is fully interoperable with GLODAPv2’s standard basin datasets, as users can easily merge
them following GLODAP’s recommended protocols.

To prevent confusion, we add a detailed README file and expanded Zenodo description,
clearly explaining the distinction between the two datasets, their sources, and intended uses. We also
clarify in both the manuscript and the Zenodo metadata that users should cite GLODAPv2 for the
original data and our dataset for the reconstructed or reprocessed &'*Cpc fields.

We believe these clarifications will make the dataset structure transparent and ensure full
interoperability with GLODAPv2 while preserving the added value of the independent Atlantic

compilation.

A minor criticism is that the paper is repetitive in places, repeatedly restating key claims
throughout the manuscript.

R: Thank you for pointing out the issue of repetitiveness in the manuscript. We appreciate this
helpful comment, as it helps improve the readability and conciseness of the work. We thoroughly
read through the entire manuscript and carefully identified the sections where key claims were
repeatedly restated. Specifically, we have revised or removed redundant repetitions (e.g., Line 60,
Line 123, Line 181, Line 261) to avoid unnecessary redundancy. These revisions ensure that the
manuscript maintains a logical flow while conveying key information concisely, enhancing the
overall readability for readers. We confirm that the revised version no longer contains repetitive

restatements of the same claims.

To reiterate, I generally feel this paper can become a worthwhile contribution and should not
be rejected unless these elements cannot be addressed.  The text above is focused on constructive
criticism, but the fundamentals of the paper remain strong.

R: Thank you sincerely for your positive assessment and constructive feedback on the
manuscript. We greatly appreciate your recognition of the strong fundamentals of our work and your
thoughtful guidance on areas for improvement, which has been invaluable in refining the study.

We fully acknowledge and diligently address all the points you have raised, including
strengthening motivation with concrete application insights, clarifying dataset presentation and
interoperability, revising repetitive content, and correcting the predictor uncertainty calculation. We
are committed to implementing these revisions thoroughly to enhance the manuscript’s rigor, clarity,
and utility.

We are confident that the revised version will meet the journal’s standards and fulfill the
potential of a worthwhile contribution to ocean carbon cycle research. Thank you again for your
time, expertise, and support throughout the review process.



Line by line comments:
42: lacked

R: Thanks for your suggestion. We have revised it.

94: this assertion needs further quantification in the North Atlantic, where there are routinely
measurable decadal increases in Canth

R: Thank you for your valuable comment. We fully agree that the assertion regarding the
minimal impact of anthropogenic carbon on deep-water masses requires further quantification,
especially for the North Atlantic. Our detailed response and revisions are as follows:

For the South Atlantic, deep-water masses below 2000 m are relatively less affected by
anthropogenic carbon increases (i.e., Gao et al., 2022, 2024), which supports the initial selection
of this depth threshold.

For the North Atlantic, we acknowledge that the formation of North Atlantic Deep Water
(NADW) may lead to measurable decadal changes in anthropogenic carbon even below 2000 m.
However, we refer to Becker et al. (2016), who noted that in high-variability North Atlantic
regions with deep-water formation (e.g., Labrador Sea, Nordic Seas), restricting crossover analysis
to depths > 2000 m significantly reduced the standard deviation of cruise offsets. They also
specified that only depths > 1500 m were used for crossover analysis in other oceanic regions,
further validating our depth selection.

To enhance the rigor of our assertion, we have revised the original sentence to explicitly
distinguish between the South and North Atlantic as follows (Line 93-98): “To ensure internal
consistency, samples from depths greater than 2,000 m were selected for crossover analysis.
Specifically, deep waters below 2000 m in the South Atlantic Ocean are most likely not impacted
by anthropogenic carbon (i.e., Gao et al., 2022, 2024), supporting this threshold. In contrast, North
Atlantic Deep Water (NADW) formation may drive measurable decadal anthropogenic carbon
changes even below 2000 m. However, Becker et al. (2016) showed that restricting analysis to
depths > 2000 m effectively reduces cruise offset variability in variable North Atlantic regions
(e.g., Labrador Sea, Nordic Seas), further validating our 2000 m threshold for the Atlantic.”

97: along A6IN, no “the” is needed
R: Thanks for your suggestion. We have revised it.

123: which standard depths?

R: Thank you for your comment, which has helped us refine the clarity of our methodology,
especially regarding interpolation details. We apologize for the ambiguity and clarify that the code
includes two interpolation options for crossover analysis: profiles can be interpolated to either
specific depths or specific sigma4 (potential density referenced to 4000 m). Our original text did
not sufficiently detail this flexibility, so we have revised the relevant sentence to "Profiles are
interpolated to standard depths or density".

In the present study, we specifically selected the density-based interpolation, and this revision
has been incorporated into the manuscript: “Profiles are interpolated to standard depths or density.
In this study, we adopted the density-based interpolation (sigma4, potential density referenced to
4000 m): standard sigma4 surfaces are generated at 0.05-unit intervals, covering all observed



densities, based on the interpolated density profile of the deepest station. Mean offsets between
overlapping profiles at the selected standard densities are calculated. Detailed workflows were
presented in Lauvset & Tanhua (2015).”

The generation of standard sigma4 surfaces follows: First, the density profile of the deepest
station in the overlapping region is interpolated to key pressure levels to establish a baseline. The
sigma4 range is then extended to fully cover all observed minimum and maximum densities in the
dataset, with reference sigma4 surfaces generated at a fixed interval of 0.05 units (e.g., from the
minimum observed density to the maximum, incremented by 0.05).

For completeness, the "standard depths" (the alternative option) are defined as regularly spaced
reference depths derived from the data range: the minimum depth in the overlapping region is
rounded up to the nearest multiple of 10, the maximum depth is rounded down to the nearest multiple
of 10, and standard depths are generated at 20-unit intervals between these bounds.

For full technical details on this interpolation framework, please refer to the xover 2ndQC.m
module in Lauvset, S. K. and Tanhua, T. (2015): A toolbox for secondary quality control on ocean
chemistry and hydrographic data, Limnol. Oceanogr. Methods, 13, 601-608,
https://doi.org/10.1002/lom3.10050.

125: how are adjustments proposed precisely?

R: Adjustments are proposed using least squares minimization tailored to our selected sigma4
(density) surfaces: For each pair of overlapping cruises, differences in §'*Cpc at crossover points
are modeled as a linear function of sigma4 (i.e., bias = slope x sigma4 + intercept). The slope and
intercept are optimized to minimize the sum of squared residuals between observed and modeled
differences, which quantifies systematic biases specific to density layers (consistent with the
xover 2ndQC.m logic in Lauvset & Tanhua, 2015).

125: how are adjustments validated precisely?

R: Adjustments are validated by re-conducting crossover analysis on the corrected 8'*Cpic
datasets. Specifically, we check the mean offsets of adjacent cruises at nearby stations (within 222
km) on the same sigma4 surfaces. Adjustments are accepted only if these re-calculated mean offsets
fall within £0.03%o (the measurement uncertainty of §'*Cpjc).

133: please explain this metric. How is consistency at 10™-5 level when the measurement
uncertainty is orders of magnitude larger?

R: Thanks for your comment. The definition of the metric is referenced from Becker et al.,
2016, which is quantified by the Weighted Mean (WM) of crossover offsets, as calculated using the
method from Tanhua et al. (2010). This WM reflects the overall alignment of data points within the
dataset: a smaller WM indicates less systematic deviation between overlapping data, thus higher
internal consistency. Specifically, the "consistency at the 10"-5 level" refers to the magnitude of this
WM value, meaning the weighted average of crossover offsets across the dataset is on the order of
107-5. This quantifies the relative agreement between data points (i.e., how closely overlapping
measurements align), rather than the absolute measurement uncertainty of individual data points.

This differs from measurement uncertainty: the latter describes individual measurement
precision (e.g., random errors), while the WM reflects coherence between different measurements.
Even with larger individual uncertainties, overlapping data can show small relative offsets (10°



scale) if internally consistent.
i=1 D()/(a())?

M = S 1)

Parameter Definitions:

L: Represents the total number of crossovers in the dataset.

D(i): Refers to the respective offset of the i-th crossover (i.e., the numerical difference of
different data at that crossover).

o(i): Denotes the standard deviation of the offset of the i-th crossover, which is used to measure

the degree of dispersion and reliability of that offset.

Becker, M., Andersen, N., Erlenkeuser, H., Humphreys, M. P., Tanhua, T., and Kortzinger, A.:
An internally consistent dataset of §13C-DIC in the North Atlantic Ocean — NAC13v1, Earth System
Science Data 8: 559-570, https://doi.org/10.5194/essd-8-559-2016, 2016.

Tanhua, T., van Heuven, S., Key, R. M., Velo, A., Olsen, A., and Schirnick, C.: Quality control
procedures and methods of the CARINA database, Earth Syst. Sci. Data 2: 35-49,
https://doi.org/10.5194/essd-2-35-2010, 2010.

150: typically in oceanography, the k fold cross validation is separated by cruise rather than
by randomly selecting measurements. This is because cruises are synoptic records of the state of
the ocean, and having many other measurements at similar times and locations and measured by
the same instruments and the same operators, as are provided by other measurements along a cruise,
provides an overly-rosy set of validation statistics. It is therefore important to only use other
cruises to construct the validation models for measurements along any given cruise.  This
validation exercise needs to be redone to follow this practice, or re-written to better convey that this
practice was already adopted (if it was).

R: Thank you for your comment. While we acknowledge that cruise-separated k-fold cross-
validation is a common practice in oceanography, our study’s validation design was intentionally
structured to avoid overly optimistic performance estimates and ensure reliable generalization, with
the independent test set serving as the critical safeguard. The independent test set was selected to
ensure no overlap with the training/validation set in terms of cruises, spatial regions, or temporal
coverage. This means measurements from any given cruise are entirely confined to either the
training/validation pool or the test set, eliminating the possibility of "data leakage" from the same
or similar cruise across training and final evaluation. The 10-fold cross-validation within the training
set was solely for hyperparameter tuning, not final performance assessment. Since the independent
test set is fully decoupled from the training/validation process, the final RMSE and R? reported
reflect the model’s ability to generalize to unseen data (including new cruises and spatial-temporal
domains), addressing the core concern of avoiding overly rosy statistics.

We chose the current design primarily to balance statistical robustness and practical feasibility:
many of the 51 cruises in our dataset have small sample sizes. Splitting by cruise would result in
highly imbalanced folds, leading to unstable hyperparameter tuning and biased cross-validation
results. Additionally, the random split within the training/validation pool preserves the natural
spatial-temporal variability of §'3Cpjc data, ensuring the model is tuned to generalize across diverse
oceanic conditions, not just specific cruises. This design also has been adopted in oceanographic
modeling studies, particularly for sparse observational datasets (e.g., Lima et al., 2023; Regier et al.,



2023; Wu et al., 2025).

Our validation strategy thus combines statistical rigor, practical feasibility, and consistency
with established oceanographic methods, ensuring the reported performance metrics reflect the
model’s true generalization ability to unseen §'"°Cpic data. To enhance clarity, we revise this
paragraph as: “To evaluate this approach’s performance, we compared the Matern 5/2 GPR with a
suite of alternative regression models, including GPR with other kernels, as well as additional
baselines such as neural networks, support vector regression, and decision trees. The dataset was
randomly split into a training set (80%) and a validation set (20%), with model training and
hyperparameter tuning performed using 10-fold cross-validation within the training set to mitigate
overfitting. An independent test set was reserved for final performance evaluation, selected to ensure
no overlap with the training/validation set in cruises, spatial regions, or temporal coverage. We opted
for random splitting over cruise-separated k-fold cross-validation to balance robustness and
feasibility: many of the 51 cruises have small sample sizes, and cruise-separated splitting would
cause imbalanced folds, leading to unstable hyperparameter tuning and biased results. Random
splitting also preserves the natural spatiotemporal variability of 8*Cpic, tuning the model to
generalize across diverse oceanic conditions rather than specific cruises. This framework aligns with
established practices for sparse oceanographic datasets (Lima et al., 2023; Regier et al., 2023; Wu
et al., 2025). Predictive performance was assessed using the Root Mean Squared Error (RMSE) and
the coefficient of determination (R?), computed separately for the validation and test sets. Among
all tested models, including GPR with the squared exponential and other kernels (Table 2), GPR
with the Matern 5/2 kernel achieved the best predictive performance (lowest RMSE and highest R?)
on the validation set as well as the independent test set, while also providing meaningful uncertainty
estimates.” Thank you again for prompting this clarification, which strengthens the manuscript’s
methodological transparency.

Lima, I. D., Wang, Z. A., Cameron, L. P., Grabowski, J. H., & Rheuban, J. E.: Predicting
Carbonate Chemistry on the Northwest Atlantic Shelf Using Neural Networks. Journal of
Geophysical Research: Biogeosciences, 128(7), €2023JG007536.
https://doi.org/10.1029/2023JG007536, 2023.

Regier, P, Duggan, M., Myers-Pigg, A., & Ward, N.: Effects of random forest modeling
decisions on biogeochemical time series predictions. Limnology and Oceanography: Methods,
21(1), 40-52, https://doi.org/10.1002/1om3.10523, 2023.

Wu, Z., Lu, W., Roobaert, A., Song, L., Yan, X.-H., and Cai, W.-J.: A machine-learning
reconstruction of sea surface p CO2 in the North American Atlantic Coastal Ocean Margin from
1993 to 2021, Earth Syst. Sci. Data, 17, 43—63, https://doi.org/10.5194/essd-17-43-2025, 2025.

215: following this procedure, I would expect the uinpts to be larger than it was found to be.
10 be clear, I'm not surprised that it is small, but I am surprised that it is more than 10 orders of
magnitude smaller than other sources of error. Surely a temperature input error of 20,000,000
degrees C would be expected to yield a bad estimate, yet this does not currently appear to be the
case by that estimate of uinput. Does that suggest that the model is mostly a fit to the coordinate
predictors that are assumed to have no uncertainty? If so, would it make sense to include some
uncertainty in these predictors, given that CTD rosettes are not always directly below the ship and

the ships don 't always stay exactly on station for a profile?  Please also check that the uncertainty



reported in the abstract isn 't the MBE of the Monte Carlo analysis. If unchanged, please explain
this counter intuitive finding.

R: Thank you for your meticulous observation and insightful questions. This feedback has
helped us identify a critical computational error in our initial estimation of uinpus. After carefully
rechecking the code and re-evaluating the uncertainty propagation, we confirm that the previously
reported Uinputs Was incorrect, resulting in a miscalculation in the Monte Carlo simulation workflow.
The corrected Uinpus (comprehensive uncertainty from all input variables) is 0.0087 %o, with
contributions from individual variables as follows: temperature (4.9608x107 %), salinity
(3.6164x10* %o), nitrate (0.0039 %o), silicate (0.0019 %o), DIC (0.0046 %o), AOU (0.0041 %o), and
xCO:2 (6.5225%x10 %o). These values are consistent with the expected magnitude of input-related
uncertainty for §'*Cpyc prediction.

We also revised the manuscript as: “Notably, uncertainties from input variables had a negligible
impact, with Uinpuis estimated at 0.009 %o. The uinpus contribution from individual input variables
was decomposed as follows: temperature (4.96x107 %o), salinity (3.62x10* %o), nitrate (0.004 %o),
silicate (0.002 %o), DIC (0.005 %o), AOU (0.004 %o), and xCO; (6.52x10* %o).”

234: repeating comments from line 150

R: Thanks for your comment. We have deleted this sentence.

245: what is normalized sample density?

R: "Normalized sample density" refers to the relative concentration of data points within local
regions of the scatter plot, standardized to a 0~1 scale for clear visualization.

To calculate it, the plot area is first divided into a 100x100 grid of small 2D "bins." For each
bin, we count how many data points fall within it (raw local density). This count is then normalized
by scaling the minimum density across all bins to 0 and the maximum density to 1, such that values
between 0 and 1 represent the relative crowding of points in each bin.

In the figure, the color of each data point corresponds to the normalized density of its bin:
brighter colors indicate bins with more densely clustered points (higher relative density), while
darker colors indicate sparser regions. This helps highlight patterns in where the model’s predictions
align most consistently with observations (dense clusters near the 1:1 line) versus scattered or less
reliable regions.

We have added this clarification to the figure caption for clarity: “Color indicates normalized
local data point density within 2D bins: the plot area is divided into a 100x100 grid, raw density is
the number of points per bin, and values are normalized to 0~1 (0 = sparsest, 1 = densest).”

375: This is hinting at an application, but is not itself an application. We've only learned
about KDEs here, and not about the ocean.

R: We appreciate the reviewer’s comment. Our intention was not to emphasize the
methodological advantages of KDE, but to clarify why KDE-based distributions allow a more
representative comparison of 8'*Cpjc changes across decades. In the revised manuscript, we
removed language that could be interpreted as promoting the method and instead explicitly describe
the oceanographic implications revealed by the smoother and spatially coherent reconstructed
distributions: “The reconstructed KDE curves are generally smoother and more spatially coherent

than the raw observational KDE curves. The smoother and more coherent appearance of the



reconstructed KDE curves reflects the underlying basin-scale 8'*Cpic structure. This enhanced
spatial consistency allows the basin-wide decadal shift toward lower 8'*Cpyc values to emerge more
clearly by reducing the influence of uneven sampling.” The revised text now focuses on what the
KDE results tell us about the §'*Cpjc system, rather than on the general properties of KDE itself.

Figure 8b: the darkness of the borders on the mean values make this plot hard to parse.
Consider lightening the width of those black lines, somewhat.
R: Thanks for your suggestion. We have lightened the width of the black borders around the

mean values as suggested.

8c: consider changing axis limits from 0 to 3, even if this cuts off a miniscule portion of the
sample distribution

R: Thanks for your suggestion. We appreciate your attention to optimizing the visualization of
the main data distribution. However, we opted to retain the original axis limits to fully preserve the
integrity of the KDE results. The current range allows for a comprehensive presentation of the entire
sample distribution, including subtle tail characteristics that are part of the complete KDE curves.
We confirm that the core distribution features remain clearly visible in the original axis setup, and
retaining the full range does not hinder the readability or key insights of the figure. Thank you for
your understanding as we prioritize the comprehensive reflection of the KDE results.

395: couldn t you now further parse this information by holding every predictor except xCO2
constant and varying that to estimate the change in the delta that would be expected had all physical
and biogeochemical processes been held constant for a decade?

R: Thanks for your suggestion. We have directly addressed your request through a targeted
sensitivity experiment to isolate the effect of atmospheric xCO» on decadal '*Cpic changes, holding
all other physical and biogeochemical predictors constant. To this end, we used data from the 2013
A16N transect for a controlled analysis. Specifically, Figure R2a presents reconstructed §'*Cpic
using 2013 input variables such as temperature, salinity and nutrients paired with the corresponding
2013 atmospheric xCO, concentration. Figure R2b shows reconstructed §'*Cpyc from the same 2013
input variables while incorporating the May 2023 atmospheric xCO> concentration. Figure R2¢
displays A3"*Cpic, calculated as the difference between Figure R2b and R2a, which represents the

10-year 8'*Cpic change attributed exclusively to atmospheric xCO» perturbations.

(b) 2023 reconstruction (2013 inputs + 2023 xCO,)

(a) 2013 reconstruction (all 2013 inputs) (c) Difference (2023 recon - 2013 recon)
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Figure R2. (a) Reconstructed 8'*Cpyc using 2013 input variables paired with the corresponding

2013 atmospheric xCO; concentration; (b) Reconstructed 3'*Cpic using the same 2013 input

variables paired with the May 2023 atmospheric xCO, concentration; (c) A8"*Cpic (Figure R2b

minus Figure R2a), representing the 10-year §'3Cpjc change attributed exclusively to atmospheric



xCO; perturbations.

The 5'*Cpc pattern in Figure R2b is highly consistent with both the reconstructed §'*Cpic from
2023 full input variables and the 2023 observed §'*Cpic presented in main manuscript Figures 9h
and 9d. This consistency confirms that xCO> is the dominant driver of decadal §'*Cpjc changes and
our model reliably captures this signal even when other predictors remain fixed to 2013 conditions.
Additionally, the A3'*Cpic pattern in Figure R2c shows strong alignment with water mass age
distributions in Figure R3. Younger water masses, which have greater exposure to recent
atmospheric CO», exhibit more negative §'*Cpjc shifts, while older water masses show smaller
changes. These minor variations are mostly within the uncertainties, though they may also reflect
hydrological changes over the decade. This directly demonstrates that the reconstructed data

effectively isolates the anthropogenic carbon signal driven by atmospheric xCO; perturbations.
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Figure R3. Water mass age from CFC12 and TTD along A 16N in 2013. Date obtained from
Water mass ages based on GLODAPv2 data product (NCEI Accession 0226793,
https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-
system/oceans/ndp_108/ndp108.html)

448: This is a seriously dense sentence. Please break it into two or more sentences and revise
them both to employ plain language (limiting jargon and buzzwords) wherever possible.

R: Thanks for your comment. We have revised it into clear, plain-language sentences to
improve readability while preserving all core scientific meaning: “To address these challenges and
limitations, future work will be focused on enhancing mechanistic insights into how §'*Cpyc relates
to environmental factors. Subregional partitioning strategies and variable selection methods may be
developed to improve model accuracy, while process-based knowledge also should be integrated to

identify optimal predictor variables and refine regionalization schemes for biogeochemical
heterogeneity.”

451: I don't think a good predictor of local flux is going to lead to a good prediction of local
inventory. Consider deleting this sentence.

R: Thanks for your comment. Following your suggestion, we revised this sentence as:
“Additionally, uncertainty mitigation techniques will be coupled with emerging high-resolution
observations from autonomous platforms, which will be leveraged to refine spatial resolution to
fixed grids.”



