
We thank the reviewer for his/her time and for the constructive comments, which helped 

improve the manuscript. In the following, we have addressed all comments, with the original review 

text in italics. 

 

This is an interesting and generally well-written study addressing a worthy topic. The paper 

has good fundamentals and should be able to made into a solid contribution to the scientific 

literature.  However, I believe it requires iteration, and likely additional analysis, before it will be 

suitable for publication at this journal. 

We greatly appreciate your positive feedback on our study, specifically your recognition of its 

interesting focus, overall strong writing, and solid fundamental framework. Your comment that the 

work has the potential to make a meaningful contribution to scientific literature is particularly 

encouraging for our team. 

We agree with the reviewer that the manuscript needs further refinement. Moving forward, we 

provide a point-by-point response to your criticism and line-by-line comments, and revise 

manuscript accordingly. 

 

I have three areas of criticism and one note of caution.  The note of caution is just that I’m 

skeptical of the uinput calculation, see the line by line comments below. 

 

My first criticism is that that validation was not handled as well as it should have been.  See 

line by line comments below for an easy-to-implement and necessary improvement for the validation 

section.  Separately, a suggestion that would further reinforce the validity of the method would be 

to implement the method in a model environment.  This is now common practice for validation of 

machine learning refits of sparse observations, and is likely necessary for a first attempt with carbon 

isotopes, particularly one with such unusually sparse observations.  There are numerous model 

simulations available that have explicitly simulated carbon isotopes (e.g., 

https://doi.org/10.5194/gmd-17-1709-2024 though there are many others).  It should be workable 

to obtain one or more such set of outputs, subsample the distribution(s) across both time and space, 

apply random and cruise-wide systematic perturbations to the extracted output to represent 

measurement uncertainties, fit a ML model to the output, reconstruct the full distribution, and then 

evaluate the strengths and weaknesses of the full 4D reconstruction.  This reveals critical 

information that is not provided by a reconstruction of a sparse data product with uneven and 

imperfect measurements of an unknown true distribution. 

R: Thank you for your critical and constructive feedback on the validation section. We fully 

agree with you that strengthening validation is essential for supporting the robustness of our method.  

Regarding your valuable suggestion of validating the method in a model environment, we note 

that the model dataset you referenced (https://doi.org/10.5194/gmd-17-1709-2024) does not provide 

the related data. Instead, we downloaded the well-validated numerical model data from Claret et al. 

(2021), which includes comprehensive carbon isotope simulations suitable for our validation 

purpose. Following your proposed workflow, we conducted the model-based validation: we 

subsampled the model outputs across time and space, fitted the GPR model to the perturbed data, 

reconstructed the full 4D δ13CDIC distribution, and evaluated the model’s performance. 

This supplementary validation not only confirms the method’s ability to accurately reconstruct 

spatial-temporal patterns from sparse and noisy data but also reveals its strengths in mitigating 



sampling biases, addressing the limitations of validating solely with real-world sparse observations. 

All details of this model-based validation, including data processing steps, evaluation metrics, and 

key results, have been added to the Appendix of the revised manuscript for reference. A brief 

summary of the results is also presented in the Results (Section 3.4). 

We greatly appreciate your guidance in enhancing the validation framework, which has 

significantly strengthened the scientific rigor and reliability of our study.  

 

Claret, M., Sonnerup, R. E., and Quay, P. D.: A Next Generation Ocean Carbon Isotope Model 

for Climate Studies I: Steady State Controls on Ocean 13 C, Global Biogeochemical Cycles, 35, 

e2020GB006757, https://doi.org/10.1029/2020GB006757, 2021. 

 

The second criticism is that the paper is not very well motivated at present.  The authors state 

repeatedly that the upsampled distribution can be used for many new analyses, but the new product 

still has almost all of the limitations that the previous product… it is still sparse and uneven in space 

in time, just less so, and it now has the added complications from layers of machine learning 

smoothing.  While I admit that the new data product is smoother spatially and less biased 

temporally, I don’t see that the authors have fully solved any problem with their current presentation.  

To that point, the authors mostly suggest ways that this might now be used, but do not go so far as 

to demonstrate any such analysis that would be quantitatively improved with the new product.  I 

would like to see either more concrete examples of new analyses shown (not just listed), or, as such 

an example, a reorientation of the work toward estimating the full Atlantic distribution of the 

isotopes across space and time.  For a spatially complete record they might apply the ML model 

to the GLODAPv2 gridded product.  For a spatially and temporally complete product they might 

consider either using a time varying TS product and/or GOBAI-O2 (with estimates of the other 

predictors from other such ML refits in literature as necessary).  In both cases, there would be 

some meaningful errors in the predictors, but, at least currently, the authors are suggesting that 

their estimates are completely Insensitive to any plausible error in the predictors, so that may or 

may not be a concern (I suspect it will be after the uinput is re-evaluated). 

R: Thank you for your comments, which have helped us clarify the core value and motivation 

of this work. We appreciate your attention to the application potential of the reconstructed product. 

We strengthened the motivation and better demonstrate that the new product does represent a 

substantial improvement over existing datasets by adding one example, correcting an error, and 

clarifying a few points.  

First, we agree that the reconstructed product still retains some limitations. We would like to 

emphasize that this manuscript is centered on developing a spatially enhanced δ13CDIC 

reconstruction product, a critical first step to address a long-standing gap in marine biogeochemical 

data. δ13CDIC observations are far sparser than other carbonate system parameters (e.g., DIC, pH, 

TA) and nutrients. Specifically, δ13CDIC data are available for only ~1 out of every 5 stations in 

existing cruises and often restricted to the surface. This sparsity severely restricts quantitative 

analyses of processes driving marine carbon cycles by δ13CDIC (e.g., biological uptake, air-sea CO2 

exchange) and hinders integration with other well-sampled parameters. Our reconstruction therefore 

provides a significant expansion of δ¹³C coverage in both depth and space, enabling consistent co-

location with carbonate system and other data based on GLODAP for the first time. This 

enhancement itself addresses a key limitation of previous products, whereas prior datasets remained 



sparsely distributed, our product provides more continuous spatial coverage that lays the foundation 

for new analyses. We think this is very different from Machine Learning-based data products for 

pCO2 which have many orders of magnitude richer in an observation data density, and feel it is only 

prudent at this first step that we target the Machine Learning-based δ13CDIC data product to the data 

density level of the GLODAP-based predictors. We acknowledge that the manuscript focuses on 

validating the reconstruction method and product reliability, but this focus aligns with the norms of 

data product papers, where demonstrating the quality and utility of the product is the primary 

objective.  

We also note your concern about the added complications from machine learning smoothing. 

We would like to clarify that the GPR model’s smoothing effect is intentionally designed to balance 

spatial continuity and data fidelity, rather than introducing arbitrary complexity. The smoothing 

primarily mitigates sampling noise and avoids overfitting to sparse extreme values (often linked to 

transient perturbations or observational errors), while preserving meaningful biogeochemical 

variability (e.g., latitudinal gradients, depth-dependent trends, and basin-scale signals). This is 

validated by the KDE analysis, which shows consistent distribution characteristics between 

reconstructed and observed data. We emphasize that the smoothing does not erase critical patterns 

but enhances the reliability of the dataset for large-scale analyses, addressing a key limitation of 

sparse raw observations, where noise can obscure true biogeochemical signals. 

We agree that demonstrating potential applications would further enhance the paper, but we 

view such extensive analyses as the logical next step(s) following the creation and validation of the 

reconstructed product. Indeed, we are currently conducting analyses that use the reconstructed 

δ13CDIC to revisit the long-standing δ13C–PO4 relationship. The link between δ13CDIC and phosphate 

has long been a cornerstone for quantifying biological effects on the ocean carbon cycle (Broecker 

and Maier-Reimer, 1992; Lynch-Stieglitz et al., 1995; Gruber et al., 1999). Broecker and Maier-

Reimer (1992) originally proposed an empirical relationship between δ13CDIC and phosphate of the 

form δ13CBIO = 2.9 – 1.1×PO4. This empirical formula has been widely cited and applied in 

subsequent observational and modeling studies (e.g., Lynch-Stieglitz et al., 1995; Gruber et al., 1999; 

Sonnerup & Quay, 2012). However, based on spatially and temporally continuous model results, 

Eide et al. (2017) suggested a revised intercept of 2.8, and Claret et al. (2021) reported a slope of 

1.01 in the GLODAPv2.2020 deep Pacific. Because δ13CDIC measurements are much sparser and 

more unevenly distributed in depth and space than common carbonate-system or nutrient variables, 

pointwise comparisons are often inconclusive. In contrast, our reconstructed δ¹³C product is 

considerably denser than the raw observations. This increased coverage allows systematic, basin-

scale testing of empirical δ13C–PO4 relationships and better quantification of biological influences 

on the carbon cycle that were previously obscured by observational sparsity. 

Furthermore, our ongoing work (Figure R1) shows that anthropogenic carbon estimations 

based on an extended Multiple Linear regression (eMLR) method using sparse DIC or δ13CDIC data 

differ substantially from those using dense, spatially continuous data. Specifically, Figure R1 

presents Canth and δ13Canth along the A16N transect between 2013 and 2023: panels (a) and (c) 

show results derived from the original spatial sampling density, where both 2013 and 2023 DIC data 

include ~3500 samples, 2013 δ13CDIC data consist of ~500 samples, and 2023 δ13CDIC data comprise 

~3500 samples; panels (b) and (d) display results from the reduced spatial sampling density, with 

2013 DIC samples reduced to ~500 (matching the spatial locations of 2013 δ13CDIC data), 2013 

δ13CDIC sample size unchanged, and 2023 DIC/δ13CDIC samples filtered to ~500 (selected from ~23 



stations near the latitudes of 2013 δ13CDIC sampling sites).  

 

Figure R1. Anthropogenic DIC and δ13CDIC changes (Canth and δ13Canth) along A16N between 

2013 and 2023. (a) & (c) Canth and δ13Canth derived from the original spatial sampling density; 

(b) & (d) Canth and δ13Canth derived from the reduced spatial sampling density. 

 

The above two examples highlight that the increased data density directly improves the 

accuracy of key carbon cycle metrics, a critical application for understanding ocean carbon 

sequestration. However, to bring them to desired publication quality will require extensive more 

work, and we feel it is appropriate to leave them for future publications. We therefore emphasize 

that this manuscript focuses on building and validating the reconstruction framework, while detailed 

applications, such as the δ13C–PO4 relationship analysis and anthropogenic carbon estimates are 

being developed in follow-up studies. We hope that the reviewer will support our approach.   

We fully agree that developing a spatiotemporally continuous δ13CDIC product is a meaningful 

long-term goal, and your recommendations (e.g., time-varying TS products, GOBAI-O2, and 

integrating ML-derived predictors from literature) provide excellent directions for future work. On 

the point of using the GLODAPv2 gridded product for a spatially complete record: we have 

thoroughly checked the official GLODAP repository but have not found an official gridded version 

of the dataset. We acknowledge the immense value of a gridded δ13CDIC product for the community 

and would consider supplement our reconstruction with a corresponding gridded product if an 

official GLODAP gridded product becomes available. However, given the current spatiotemporal 

sparsity of the underlying δ13CDIC observations, we cautiously note that direct gridding at this stage 

may introduce additional uncertainties, including over interpolation in data-sparse regions and 

potential misrepresentation of true biogeochemical variability. This is a key consideration for 

maintaining the scientific rigor of the product, as our priority is to provide a reliable dataset that 

reflects the actual constraints of available observations. 

We also recognize that our earlier reasoning about temporal limitations could be refined. 

Capturing decadal trends (a core focus of our work) is more feasible than resolving 

seasonal/interannual variability with current data. However, developing a truly "complete" 



spatiotemporal product (encompassing both broad trends and finer-scale temporal dynamics) 

remains challenging due to the highly uneven temporal distribution of observations: even for 

decadal analyses, gaps in seasonal coverage (e.g., overrepresentation of summer data) can introduce 

biases in trend estimation if not properly constrained. Again, we argue that the goals and thus the 

detailed approaches for developing a data product for pCO2 which has high density of observational 

data and δ13CDIC, with many orders of magnitudes lower data density, are probably different. Thus, 

our current study prioritizes addressing the more urgent and fundamental gap of spatial sparsity, as 

the extreme paucity of δ13CDIC data has long prevented even basic basin-scale analyses. By 

establishing a validated, spatially enhanced product, we enable decadal trend assessments while 

laying the groundwork for future temporal extensions. We plan to build on this framework by 

integrating long-term time-series data from Bermuda Institute of Ocean Sciences (BIOS) and the 

Hawaii Ocean Time-series (HOT) programs, which will improve constraints on temporal variability 

and allow us to develop the spatiotemporally complete product you envision. This phased approach 

ensures that each step of product development is supported by sufficient observational data, 

maintaining scientific rigor.  

Finally, we sincerely appreciate your critical note on predictor uncertainty (uinput) and apologize 

for an error in the initial calculation of uinputs. After careful recalculation, the corrected uinputs is 

0.009 ‰. We would like to clarify that this revised value, while more accurate, remains smaller than 

both the observational uncertainty and the mapping function uncertainty. This indicates that the 

model’s sensitivity to plausible errors in the selected predictors is indeed low, but not "completely 

insensitive" (a misinterpretation we regret arising from the initial calculation error). We 

acknowledge that if we adopt time-varying or ML-refitted predictors (as you suggested for 

spatiotemporal extensions), the associated predictor errors may change. In such cases, the uinputs will 

be reevaluated accordingly to fully reflect the model’s sensitivity to the new predictor datasets. 

We hope these clarifications address your concerns and highlight the unique contribution of 

this work: resolving the extreme sparsity of δ13CDIC data to enable a range of long-awaited 

quantitative analyses in ocean carbon cycle research. Your feedback has been invaluable in 

strengthening the motivation, rigor, and transparency of our manuscript. 
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Finally, the presentation of the dataset is a bit confusing (I only checked the .mat, but I'm 

assuming this applies to all files at Zenodo).  The file contains essentially all of the fields from 

GLODAPv2 with their adjusted DI13C, which is called adjusted_C13, capitalizing "C" contrary to 

the GLODAP convention.  If the goal is to make the file supplemental to and interoperable with 

GLODAPv2, then it would be better to release a file that has the full >10^6 rows, but only contains 

c13 data and has -999 except for the appropriate Atlantic subset.  This way, someone could load 

GLODAPv2 and then load this file and have them both available and ready to access in identical 

formats.  They could also easily sub in data from, for example, other other basins where this data 

product is missing observations but the GLODAPv2 product has them.  This will also remind users 

to cite both products, rather than just grabbing all of the data from this new product and incorrectly 

attributing, for example, aou and cfcs to a data product that is only updating C13 and repackaging 

everything else.  Finally, I think the Zenodo link would benefit from more descriptive text or a 

readme explaining what subset of data is presented, which fields are the new fields, how they are 

labeled, and how to make the data interoperable with, for example, measurements of DI13C in other 

ocean basins. 

R: Thank you for your thoughtful feedback regarding data presentation and interoperability. 

We appreciate your attention to the dataset structure and naming conventions. 

We would like to clarify that there are two distinct data components in the Zenodo archive; 

they serve different purposes and have distinct origins, which explains the naming and structure 

differences you noted: 1) The GPR-reconstructed δ13CDIC dataset (named 

“GLODAPv2.2023_Atlantic_Ocean_with_Reconstructed_d13C”), which is based on GLODAPv2 

and retains all original GLODAP variable names and structures. This file is fully interoperable with 

GLODAPv2’s Atlantic subset, with one additional variable reconstructed δ13CDIC (“ReC13”) and its 

flag (“ReC13f”) added alongside the original δ13CDIC field to facilitate direct comparison. 2) The 

Atlantic observational compilation, which includes δ¹³C data from 51 cruises (refer to Table 1 in the 

manuscript, named “Atlantic_cruises_with_c13”). The file containing "adjusted_C13" is not part of 

the reconstructed product. It is a supporting dataset of compiled raw observations from 51 Atlantic 

cruises. This dataset is not based on GLODAPv2 but combines both GLODAP and non-GLODAP 

cruises. For cruises not included in GLODAPv2, some ancillary variables (e.g., AOU, pH) were 

calculated using seawater, GSW, and CO2SYS toolboxes. Therefore, variable names and units in 

this file may differ slightly from GLODAP conventions. The variable “adjusted_C13” appears only 

in this observational dataset, not in the GPR-reconstructed product.  

We agree with your focus on interoperability with GLODAPv2, and we share your goal of 

avoiding redundancy and confusion. To clarify, GLODAPv2 already provides separate, official 

datasets for individual ocean basins (e.g., Atlantic, Pacific, Indian, Arctic Oceans) as part of its 

standard release. Our product is specifically designed to complement GLODAPv2’s Atlantic subset, 

focusing only on reconstructing δ13CDIC data for the Atlantic, while retaining consistency with 

GLODAPv2’s existing basin-specific structure. 

We respectfully note that integrating all global GLODAPv2 data into our product (with non-



Atlantic δ13CDIC set to -999) may be unnecessary for two key reasons: 1) It would duplicate 

GLODAPv2’s full global dataset, which users can already access directly from the official 

GLODAP repository. 2) GLODAPv2’s existing basin-specific subsets are widely used by the 

community, and our Atlantic-focused product aligns with this established workflow, allowing users 

to combine our updated Atlantic δ13CDIC with other GLODAP basin datasets (e.g., Pacific) as needed, 

without redundant -999-filled entries. We confirm that our current dataset structure (Atlantic-only 

subset) is fully interoperable with GLODAPv2’s standard basin datasets, as users can easily merge 

them following GLODAP’s recommended protocols. 

To prevent confusion, we add a detailed README file and expanded Zenodo description, 

clearly explaining the distinction between the two datasets, their sources, and intended uses. We also 

clarify in both the manuscript and the Zenodo metadata that users should cite GLODAPv2 for the 

original data and our dataset for the reconstructed or reprocessed δ13CDIC fields. 

We believe these clarifications will make the dataset structure transparent and ensure full 

interoperability with GLODAPv2 while preserving the added value of the independent Atlantic 

compilation. 

 

A minor criticism is that the paper is repetitive in places, repeatedly restating key claims 

throughout the manuscript. 

R: Thank you for pointing out the issue of repetitiveness in the manuscript. We appreciate this 

helpful comment, as it helps improve the readability and conciseness of the work. We thoroughly 

read through the entire manuscript and carefully identified the sections where key claims were 

repeatedly restated. Specifically, we have revised or removed redundant repetitions (e.g., Line 60, 

Line 123, Line 181, Line 261) to avoid unnecessary redundancy. These revisions ensure that the 

manuscript maintains a logical flow while conveying key information concisely, enhancing the 

overall readability for readers. We confirm that the revised version no longer contains repetitive 

restatements of the same claims. 

 

To reiterate, I generally feel this paper can become a worthwhile contribution and should not 

be rejected unless these elements cannot be addressed.  The text above is focused on constructive 

criticism, but the fundamentals of the paper remain strong. 

R: Thank you sincerely for your positive assessment and constructive feedback on the 

manuscript. We greatly appreciate your recognition of the strong fundamentals of our work and your 

thoughtful guidance on areas for improvement, which has been invaluable in refining the study. 

We fully acknowledge and diligently address all the points you have raised, including 

strengthening motivation with concrete application insights, clarifying dataset presentation and 

interoperability, revising repetitive content, and correcting the predictor uncertainty calculation. We 

are committed to implementing these revisions thoroughly to enhance the manuscript’s rigor, clarity, 

and utility. 

We are confident that the revised version will meet the journal’s standards and fulfill the 

potential of a worthwhile contribution to ocean carbon cycle research. Thank you again for your 

time, expertise, and support throughout the review process. 

 

Line by line comments: 

42: lacked 



R: Thanks for your suggestion. We have revised it. 

 

94: this assertion needs further quantification in the North Atlantic, where there are routinely 

measurable decadal increases in Canth 

R: Thank you for your valuable comment. We fully agree that the assertion regarding the 

minimal impact of anthropogenic carbon on deep-water masses requires further quantification, 

especially for the North Atlantic. Our detailed response and revisions are as follows: 

For the South Atlantic, deep-water masses below 2000 m are relatively less affected by 

anthropogenic carbon increases (i.e., Gao et al., 2022, 2024), which supports the initial selection 

of this depth threshold. 

For the North Atlantic, we acknowledge that the formation of North Atlantic Deep Water 

(NADW) may lead to measurable decadal changes in anthropogenic carbon even below 2000 m. 

However, we refer to Becker et al. (2016), who noted that in high-variability North Atlantic 

regions with deep-water formation (e.g., Labrador Sea, Nordic Seas), restricting crossover analysis 

to depths > 2000 m significantly reduced the standard deviation of cruise offsets. They also 

specified that only depths > 1500 m were used for crossover analysis in other oceanic regions, 

further validating our depth selection. 

To enhance the rigor of our assertion, we have revised the original sentence to explicitly 

distinguish between the South and North Atlantic as follows (Line 93-98): “To ensure internal 

consistency, samples from depths greater than 2,000 m were selected for crossover analysis. 

Specifically, deep waters below 2000 m in the South Atlantic Ocean are most likely not impacted 

by anthropogenic carbon (i.e., Gao et al., 2022, 2024), supporting this threshold. In contrast, North 

Atlantic Deep Water (NADW) formation may drive measurable decadal anthropogenic carbon 

changes even below 2000 m. However, Becker et al. (2016) showed that restricting analysis to 

depths > 2000 m effectively reduces cruise offset variability in variable North Atlantic regions 

(e.g., Labrador Sea, Nordic Seas), further validating our 2000 m threshold for the Atlantic.” 

 

97: along A61N, no “the” is needed 

R: Thanks for your suggestion. We have revised it. 

 

123: which standard depths? 

R: Thank you for your comment, which has helped us refine the clarity of our methodology, 

especially regarding interpolation details. We apologize for the ambiguity and clarify that the code 

includes two interpolation options for crossover analysis: profiles can be interpolated to either 

specific depths or specific sigma4 (potential density referenced to 4000 m). Our original text did 

not sufficiently detail this flexibility, so we have revised the relevant sentence to "Profiles are 

interpolated to standard depths or density". 

In the present study, we specifically selected the density-based interpolation, and this revision 

has been incorporated into the manuscript: “Profiles are interpolated to standard depths or density. 

In this study, we adopted the density-based interpolation (sigma4, potential density referenced to 

4000 m): standard sigma4 surfaces are generated at 0.05-unit intervals, covering all observed 

densities, based on the interpolated density profile of the deepest station. Mean offsets between 

overlapping profiles at the selected standard densities are calculated. Detailed workflows were 

presented in Lauvset & Tanhua (2015).” 



The generation of standard sigma4 surfaces follows: First, the density profile of the deepest 

station in the overlapping region is interpolated to key pressure levels to establish a baseline. The 

sigma4 range is then extended to fully cover all observed minimum and maximum densities in the 

dataset, with reference sigma4 surfaces generated at a fixed interval of 0.05 units (e.g., from the 

minimum observed density to the maximum, incremented by 0.05). 

For completeness, the "standard depths" (the alternative option) are defined as regularly spaced 

reference depths derived from the data range: the minimum depth in the overlapping region is 

rounded up to the nearest multiple of 10, the maximum depth is rounded down to the nearest multiple 

of 10, and standard depths are generated at 20-unit intervals between these bounds. 

For full technical details on this interpolation framework, please refer to the xover_2ndQC.m 

module in Lauvset, S. K. and Tanhua, T. (2015): A toolbox for secondary quality control on ocean 

chemistry and hydrographic data, Limnol. Oceanogr. Methods, 13, 601–608, 

https://doi.org/10.1002/lom3.10050. 

 

125: how are adjustments proposed precisely? 

R: Adjustments are proposed using least squares minimization tailored to our selected sigma4 

(density) surfaces: For each pair of overlapping cruises, differences in δ13CDIC at crossover points 

are modeled as a linear function of sigma4 (i.e., bias = slope × sigma4 + intercept). The slope and 

intercept are optimized to minimize the sum of squared residuals between observed and modeled 

differences, which quantifies systematic biases specific to density layers (consistent with the 

xover_2ndQC.m logic in Lauvset & Tanhua, 2015). 

 

125: how are adjustments validated precisely? 

R: Adjustments are validated by re-conducting crossover analysis on the corrected δ13CDIC 

datasets. Specifically, we check the mean offsets of adjacent cruises at nearby stations (within 222 

km) on the same sigma4 surfaces. Adjustments are accepted only if these re-calculated mean offsets 

fall within ±0.03‰ (the measurement uncertainty of δ13CDIC). 

 

133: please explain this metric.  How is consistency at 10^-5 level when the measurement 

uncertainty is orders of magnitude larger? 

R: Thanks for your comment. The definition of the metric is referenced from Becker et al., 

2016, which is quantified by the Weighted Mean (WM) of crossover offsets, as calculated using the 

method from Tanhua et al. (2010). This WM reflects the overall alignment of data points within the 

dataset: a smaller WM indicates less systematic deviation between overlapping data, thus higher 

internal consistency. Specifically, the "consistency at the 10^-5 level" refers to the magnitude of this 

WM value, meaning the weighted average of crossover offsets across the dataset is on the order of 

10^-5. This quantifies the relative agreement between data points (i.e., how closely overlapping 

measurements align), rather than the absolute measurement uncertainty of individual data points. 

This differs from measurement uncertainty: the latter describes individual measurement 

precision (e.g., random errors), while the WM reflects coherence between different measurements. 

Even with larger individual uncertainties, overlapping data can show small relative offsets (10⁻⁵ 

scale) if internally consistent. 

𝑊𝑀 =
∑ 𝐷(𝑖)/(𝜎(𝑖))2𝐿
𝑖=1

∑ 1/(𝜎(𝑖))2𝐿
𝑖=1

 



Parameter Definitions: 

L: Represents the total number of crossovers in the dataset. 

D(i): Refers to the respective offset of the i-th crossover (i.e., the numerical difference of 

different data at that crossover). 

σ(i): Denotes the standard deviation of the offset of the i-th crossover, which is used to measure 

the degree of dispersion and reliability of that offset. 
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150: typically in oceanography, the k fold cross validation is separated by cruise rather than 

by randomly selecting measurements.  This is because cruises are synoptic records of the state of 

the ocean, and having many other measurements at similar times and locations and measured by 

the same instruments and the same operators, as are provided by other measurements along a cruise, 

provides an overly-rosy set of validation statistics.  It is therefore important to only use other 

cruises to construct the validation models for measurements along any given cruise.  This 

validation exercise needs to be redone to follow this practice, or re-written to better convey that this 

practice was already adopted (if it was). 

R: Thank you for your comment. While we acknowledge that cruise-separated k-fold cross-

validation is a common practice in oceanography, our study’s validation design was intentionally 

structured to avoid overly optimistic performance estimates and ensure reliable generalization, with 

the independent test set serving as the critical safeguard. The independent test set was selected to 

ensure no overlap with the training/validation set in terms of cruises, spatial regions, or temporal 

coverage. This means measurements from any given cruise are entirely confined to either the 

training/validation pool or the test set, eliminating the possibility of "data leakage" from the same 

or similar cruise across training and final evaluation. The 10-fold cross-validation within the training 

set was solely for hyperparameter tuning, not final performance assessment. Since the independent 

test set is fully decoupled from the training/validation process, the final RMSE and R² reported 

reflect the model’s ability to generalize to unseen data (including new cruises and spatial-temporal 

domains), addressing the core concern of avoiding overly rosy statistics.  

We chose the current design primarily to balance statistical robustness and practical feasibility: 

many of the 51 cruises in our dataset have small sample sizes. Splitting by cruise would result in 

highly imbalanced folds, leading to unstable hyperparameter tuning and biased cross-validation 

results. Additionally, the random split within the training/validation pool preserves the natural 

spatial-temporal variability of δ13CDIC data, ensuring the model is tuned to generalize across diverse 

oceanic conditions, not just specific cruises. This design also has been adopted in oceanographic 

modeling studies, particularly for sparse observational datasets (e.g., Lima et al., 2023; Regier et al., 

2023; Wu et al., 2025).  

Our validation strategy thus combines statistical rigor, practical feasibility, and consistency 

with established oceanographic methods, ensuring the reported performance metrics reflect the 



model’s true generalization ability to unseen δ13CDIC data. To enhance clarity, we revise this 

paragraph as: “To evaluate this approach’s performance, we compared the Matern 5/2 GPR with a 

suite of alternative regression models, including GPR with other kernels, as well as additional 

baselines such as neural networks, support vector regression, and decision trees. The dataset was 

randomly split into a training set (80%) and a validation set (20%), with model training and 

hyperparameter tuning performed using 10-fold cross-validation within the training set to mitigate 

overfitting. An independent test set was reserved for final performance evaluation, selected to ensure 

no overlap with the training/validation set in cruises, spatial regions, or temporal coverage. We opted 

for random splitting over cruise-separated k-fold cross-validation to balance robustness and 

feasibility: many of the 51 cruises have small sample sizes, and cruise-separated splitting would 

cause imbalanced folds, leading to unstable hyperparameter tuning and biased results. Random 

splitting also preserves the natural spatiotemporal variability of δ13CDIC, tuning the model to 

generalize across diverse oceanic conditions rather than specific cruises. This framework aligns with 

established practices for sparse oceanographic datasets (Lima et al., 2023; Regier et al., 2023; Wu 

et al., 2025). Predictive performance was assessed using the Root Mean Squared Error (RMSE) and 

the coefficient of determination (R²), computed separately for the validation and test sets. Among 

all tested models, including GPR with the squared exponential and other kernels (Table 2), GPR 

with the Matern 5/2 kernel achieved the best predictive performance (lowest RMSE and highest R²) 

on the validation set as well as the independent test set, while also providing meaningful uncertainty 

estimates.” Thank you again for prompting this clarification, which strengthens the manuscript’s 

methodological transparency.  
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215: following this procedure, I would expect the uinpts to be larger than it was found to be.  

To be clear, I’m not surprised that it is small, but I am surprised that it is more than 10 orders of 

magnitude smaller than other sources of error.  Surely a temperature input error of 20,000,000 

degrees C would be expected to yield a bad estimate, yet this does not currently appear to be the 

case by that estimate of uinput.  Does that suggest that the model is mostly a fit to the coordinate 

predictors that are assumed to have no uncertainty?  If so, would it make sense to include some 

uncertainty in these predictors, given that CTD rosettes are not always directly below the ship and 

the ships don’t always stay exactly on station for a profile?  Please also check that the uncertainty 

reported in the abstract isn’t the MBE of the Monte Carlo analysis.  If unchanged, please explain 

this counter intuitive finding. 

R: Thank you for your meticulous observation and insightful questions. This feedback has 



helped us identify a critical computational error in our initial estimation of uinputs. After carefully 

rechecking the code and re-evaluating the uncertainty propagation, we confirm that the previously 

reported uinputs was incorrect, resulting in a miscalculation in the Monte Carlo simulation workflow. 

The corrected uinputs (comprehensive uncertainty from all input variables) is 0.0087 ‰, with 

contributions from individual variables as follows: temperature (4.9608×10-5 ‰), salinity 

(3.6164×10-4 ‰), nitrate (0.0039 ‰), silicate (0.0019 ‰), DIC (0.0046 ‰), AOU (0.0041 ‰), and 

xCO₂ (6.5225×10-4 ‰). These values are consistent with the expected magnitude of input-related 

uncertainty for δ13CDIC prediction. 

We also revised the manuscript as: “Notably, uncertainties from input variables had a negligible 

impact, with uinputs estimated at 0.009 ‰. The uinputs contribution from individual input variables 

was decomposed as follows: temperature (4.96×10-5 ‰), salinity (3.62×10-4 ‰), nitrate (0.004 ‰), 

silicate (0.002 ‰), DIC (0.005 ‰), AOU (0.004 ‰), and xCO2 (6.52×10-4 ‰).” 

 

234: repeating comments from line 150 

R: Thanks for your comment. We have deleted this sentence. 

 

245: what is normalized sample density? 

R: "Normalized sample density" refers to the relative concentration of data points within local 

regions of the scatter plot, standardized to a 0~1 scale for clear visualization. 

To calculate it, the plot area is first divided into a 100×100 grid of small 2D "bins." For each 

bin, we count how many data points fall within it (raw local density). This count is then normalized 

by scaling the minimum density across all bins to 0 and the maximum density to 1, such that values 

between 0 and 1 represent the relative crowding of points in each bin. 

In the figure, the color of each data point corresponds to the normalized density of its bin: 

brighter colors indicate bins with more densely clustered points (higher relative density), while 

darker colors indicate sparser regions. This helps highlight patterns in where the model’s predictions 

align most consistently with observations (dense clusters near the 1:1 line) versus scattered or less 

reliable regions. 

We have added this clarification to the figure caption for clarity: “Color indicates normalized 

local data point density within 2D bins: the plot area is divided into a 100×100 grid, raw density is 

the number of points per bin, and values are normalized to 0~1 (0 = sparsest, 1 = densest).” 

 

375: This is hinting at an application, but is not itself an application.  We’ve only learned 

about KDEs here, and not about the ocean. 

R: We appreciate the reviewer’s comment. Our intention was not to emphasize the 

methodological advantages of KDE, but to clarify why KDE-based distributions allow a more 

representative comparison of δ13CDIC changes across decades. In the revised manuscript, we 

removed language that could be interpreted as promoting the method and instead explicitly describe 

the oceanographic implications revealed by the smoother and spatially coherent reconstructed 

distributions: “The reconstructed KDE curves are generally smoother and more spatially coherent 

than the raw observational KDE curves. The smoother and more coherent appearance of the 

reconstructed KDE curves reflects the underlying basin-scale δ13CDIC structure. This enhanced 

spatial consistency allows the basin-wide decadal shift toward lower δ13CDIC values to emerge more 

clearly by reducing the influence of uneven sampling.” The revised text now focuses on what the 



KDE results tell us about the δ13CDIC system, rather than on the general properties of KDE itself. 

 

Figure 8b: the darkness of the borders on the mean values make this plot hard to parse.  

Consider lightening the width of those black lines, somewhat. 

R: Thanks for your suggestion. We have lightened the width of the black borders around the 

mean values as suggested. 

 

8c: consider changing axis limits from 0 to 3, even if this cuts off a miniscule portion of the 

sample distribution 

R: Thanks for your suggestion. We appreciate your attention to optimizing the visualization of 

the main data distribution. However, we opted to retain the original axis limits to fully preserve the 

integrity of the KDE results. The current range allows for a comprehensive presentation of the entire 

sample distribution, including subtle tail characteristics that are part of the complete KDE curves. 

We confirm that the core distribution features remain clearly visible in the original axis setup, and 

retaining the full range does not hinder the readability or key insights of the figure. Thank you for 

your understanding as we prioritize the comprehensive reflection of the KDE results. 

 

395: couldn’t you now further parse this information by holding every predictor except xCO2 

constant and varying that to estimate the change in the delta that would be expected had all physical 

and biogeochemical processes been held constant for a decade? 

R: Thanks for your suggestion. We have directly addressed your request through a targeted 

sensitivity experiment to isolate the effect of atmospheric xCO2 on decadal δ13CDIC changes, holding 

all other physical and biogeochemical predictors constant. To this end, we used data from the 2013 

A16N transect for a controlled analysis. Specifically, Figure R2a presents reconstructed δ13CDIC 

using 2013 input variables such as temperature, salinity and nutrients paired with the corresponding 

2013 atmospheric xCO2 concentration. Figure R2b shows reconstructed δ13CDIC from the same 2013 

input variables while incorporating the May 2023 atmospheric xCO2 concentration. Figure R2c 

displays Δδ13CDIC, calculated as the difference between Figure R2b and R2a, which represents the 

10-year δ13CDIC change attributed exclusively to atmospheric xCO2 perturbations. 

 
Figure R2. (a) Reconstructed δ13CDIC using 2013 input variables paired with the corresponding 

2013 atmospheric xCO2 concentration; (b) Reconstructed δ13CDIC using the same 2013 input 

variables paired with the May 2023 atmospheric xCO2 concentration; (c) Δδ13CDIC (Figure R2b 

minus Figure R2a), representing the 10-year δ13CDIC change attributed exclusively to atmospheric 

xCO2 perturbations. 

The δ13CDIC pattern in Figure R2b is highly consistent with both the reconstructed δ13CDIC from 

2023 full input variables and the 2023 observed δ13CDIC presented in main manuscript Figures 8h 



and 8d respectively. This consistency confirms that xCO2 is the dominant driver of decadal δ13CDIC 

changes and our model reliably captures this signal even when other predictors remain fixed to 2013 

conditions. Additionally, the Δδ13CDIC pattern in Figure R2c shows strong alignment with water 

mass age distributions in Figure R3. Younger water masses, which have greater exposure to recent 

atmospheric CO2, exhibit more negative δ13CDIC shifts, while older water masses show smaller 

changes. This directly demonstrates that the reconstructed data effectively isolates the 

anthropogenic carbon signal driven by atmospheric xCO2 perturbations. 

 

Figure R3. Water mass age from CFC12 and TTD along A 16N in 2013. Date obtained from 

Water mass ages based on GLODAPv2 data product (NCEI Accession 0226793, 

https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-

system/oceans/ndp_108/ndp108.html) 

 

448: This is a seriously dense sentence.  Please break it into two or more sentences and revise 

them both to employ plain language (limiting jargon and buzzwords) wherever possible. 

R: Thanks for your comment. We have revised it into clear, plain-language sentences to 

improve readability while preserving all core scientific meaning: “To address these challenges and 

limitations, future work will be focused on enhancing mechanistic insights into how δ13CDIC relates 

to environmental factors. Subregional partitioning strategies and variable selection methods may be 

developed to improve model accuracy, while process-based knowledge also should be integrated to 

identify optimal predictor variables and refine regionalization schemes for biogeochemical 

heterogeneity.” 

 

451: I don’t think a good predictor of local flux is going to lead to a good prediction of local 

inventory.  Consider deleting this sentence. 

R: Thanks for your comment. Following your suggestion, we revised this sentence as: 

“Additionally, uncertainty mitigation techniques will be coupled with emerging high-resolution 

observations from autonomous platforms, which will be leveraged to refine spatial resolution to 

fixed grids.” 


