
We are grateful to Dr. Patrick Rafter for dedicating his time and providing constructive 

comments, which are instrumental in refining this manuscript. Below, we have thoroughly addressed 

every comment, and the original review text is presented in italics. 

 

The manuscript “Reconstruction of d13CDIC in the Atlantic Ocean…” as reviewed by 

Patrick Rafter 

First, I’d like to thank the other (anonymous) reviewer for their careful and useful review 

of this manuscript. If I were the author of this manuscript, I would greatly appreciate the many 

meaningful and well-informed comments. I don’t fully agree with all their suggestions, but it 

is undeniably a high-quality review. 

For example, I think—for the most part—this study needs less additional work than the 

other reviewer. The suggestion to implement the ML method in a model environment would 

be a very interesting and valuable addition to this work, but I predict the authors’ response 

will be “outside the scope of the current study”. It sounds to me like a huge amount of new 

work, but I may be incorrect in this (or it may just be a huge amount of work for *me* and 

not someone else (it almost surely is)). Note that I do not have the experience in this space to 

comment on whether this model environment application is “now common practice”, but I 

will say that this would have been a novel (to me), interesting, and seemingly robust 

application of the methods developed here. But I would like to note that if this manuscript / 

dataset were to follow the reviewer’s advice, it would boost my score for the “significance” 

and “data quality” categories into and above the ‘Excellent’ category. As of now, I have scored 

these as ‘good’. 

I also think the motivation is appropriate for this specific study and that the decadal 

trends in the Kernel Density Estimates (see Fig. 8) are an interesting outcome from this study 

(as it exists now). 

R: Thank you for your positive and constructive feedback on our manuscript. We greatly 

appreciate your recognition of the study’s value and your thoughtful reflections on the other 

reviewer’s comments. 

Regarding the suggestion to validate the Machine Learning method in a model environment 

(raised by the other reviewer), we are pleased to inform you that we implemented this supplementary 

validation, and it was indeed feasible within the scope of the current study. As noted in our response 

to the other reviewer, the model dataset they referenced (https://doi.org/10.5194/gmd-17-1709-2024) 

does not provide the required carbon isotope data. Instead, we adopted the well-validated model 

data from Claret et al. (2021), which includes comprehensive carbon isotope simulations ideal for 

this validation purpose. Following the proposed workflow, we subsampled the model outputs across 

time and space, reconstructed the 4D δ13CDIC distribution, and thoroughly evaluated the model’s 

performance. 

This supplementary validation not only confirms the method’s ability to accurately reconstruct 

spatiotemporal patterns from sparse and noisy data but also reveals its strengths in mitigating 

sampling biases, effectively addressing the limitations of validating solely with sparse observations. 

All details of this model-based validation, including data processing steps, evaluation metrics, and 

key results, have been added to the Appendix of the revised manuscript for transparency and 

reference. 

We are grateful for your note that this additional work would enhance the study’s “significance” 



and “data quality” categories. By incorporating this model-based validation, we aim to strengthen 

the scientific rigor and reliability of our research as you suggested. Thank you again for your 

valuable input and support. Your feedback has been instrumental in refining our work.  

 

Claret, M., Sonnerup, R. E., and Quay, P. D.: A Next Generation Ocean Carbon Isotope Model 

for Climate Studies I: Steady State Controls on Ocean 13 C, Global Biogeochemical Cycles, 35, 

e2020GB006757, https://doi.org/10.1029/2020GB006757, 2021. 

 

Where I agree with the anonymous reviewer is that I think the new “reconstructed” 

dataset could be (I think): (1) expanded spatially using the GLODAP gridded product and (2) 

that this would be a very useful addition to our community. I am assuming these are “minor 

revisions” as the ML model is already built and I assume the application to the gridded product 

will be straightforward (and worth the time for the community to use!). I would also urge the 

authors to consider the other options listed by the anonymous reviewer to expand the ML 

methods temporally, although I am unfamiliar with the reviewer’s specific suggestions and 

cannot comment on the time requirements for such new applications. 

Likewise, the other reviewer makes strong comments about the dataset itself. I agree that 

adding the reconstructed dataset as its own column (with -999 for other basins) to the existing 

GLODAP data would be very useful for the community. Even better would be for the 

community to have a gridded product! 

R: Thank you for your valuable feedback and recognition of the community utility of our 

reconstructed dataset. We fully agree with your suggestions regarding spatial expansion and dataset 

compatibility.  

Regarding your suggestion to expand spatially using the GLODAP gridded product, we have 

thoroughly checked the official GLODAP repository but have not found an official gridded version 

of the dataset. We fully acknowledge the value of a gridded δ13CDIC product for the community and 

would be pleased to supplement our reconstruction with a corresponding gridded product if an 

official GLODAP gridded product becomes available. However, given the current spatiotemporal 

sparsity of the underlying δ13CDIC observations, we cautiously note that direct gridding at this stage 

may introduce additional uncertainties, including over interpolation in data-sparse regions and 

potential misrepresentation of true biogeochemical variability. This is a key consideration for 

maintaining the scientific rigor of the product, as our priority is to provide a reliable dataset that 

reflects the actual constraints of available observations. 

We also sincerely appreciate your suggestion to enhance compatibility with GLODAP. 

However, as GLODAPv2 provides separate, official datasets for individual ocean basins (e.g., 

Atlantic, Pacific, Indian, Arctic), we have retained our product’s focus on the Atlantic Ocean, which 

is consistent with this basin-specific framework, rather than adding the reconstructed δ13CDIC to the 

full global GLODAPv2.2023 dataset (with non-Atlantic basins set to -999). This approach avoids 

unnecessary redundancy, as users can already access GLODAP’s global or other basin datasets 

directly from the official repository and seamlessly merge them with our Atlantic product as needed. 

To ensure clarity and interoperability, we have updated the Zenodo archive with a detailed 

README file. This document explains the dataset structure, labels for new fields, and step-by-step 

guidance for merging our product with GLODAPv2’s global or basin-specific datasets. We have 

also clarified citation requirements in both the manuscript and Zenodo metadata, emphasizing that 



users should cite GLODAPv2 for native variables and our work for the reconstructed δ13CDIC.  

Regarding your suggestion to expand the Machine Learning method temporally, we fully 

recognize the value of a spatiotemporally continuous δ13CDIC product and view this as a critical next 

step. As noted in our response to the anonymous reviewer, the current study prioritizes addressing 

spatial sparsity, an urgent gap given the extreme paucity of δ13CDIC observations. Temporal 

extension requires robust constraints on seasonal/interannual variability, which are currently limited 

by uneven temporal coverage of existing observations (most concentrated in summer). To advance 

this, we plan to integrate long-term time-series data from programs like BIOS (Bermuda) and HOT 

(Hawaii) to calibrate the ML model for temporal dynamics, building on the validated spatial 

reconstruction framework. We will also more fully use the numerical model data to validate the 

future work.  

Again, thank you for your constructive suggestions. Your suggestions have helped us refine the 

utility and transparency of our dataset, and we remain committed to enhancing its value for the 

community in future work. 

 

Below I have listed notes I made on the manuscript as I read through it. 

Line by line notes 

27: need to define delta notation 

R: We appreciate your comment pointing out the need to define delta notation. In the revised 

manuscript, we have supplemented this definition when δ¹³C is first introduced: “The stable carbon 

isotope ratio, δ13C (expressed via the standard delta notation: δ13C=((13C/12C)sample/(
13C/12C)standard-

1)×103, with the international reference standard usually the Vienna Pee Dee Belemnite ([V]-PDB) 

fossil), has been widely applied as a tracer in marine carbon research, providing valuable insights 

into various processes within the oceanic carbon system.” 

 

79+: I don’t see a need to shorten “Section” here 

R: Thanks for your comment. We agree with your view that there is no need to abbreviate 

"Section" here. To align with your suggestion and enhance readability, we have revised the original 

text by restoring all abbreviated "Sect." to the full term "Section".  

 

100: I like the previous paragraph 

R: Thanks for your comment. 

 

132: what exactly does “exhibit high internal consistency” mean? Are there statistics to 

support this statement? 

R: Thanks for your comment. To clarify, this phrase aligns with the definition used in Becker 

et al. (2016) and refers to the quantifiable agreement between overlapping data points within the 

dataset, ensuring no contradictory or anomalous deviations that would compromise reliability. Its 

core lies in verifying the consistency of data within the dataset through quantitative calculations. 

The specific explanation and statistical support are as follows.  

Here, "high internal consistency" refers to a high level of coordination and reliability among 

the various data points within the final dataset, with no significant contradictions or abnormal 

deviations. This consistency is not a subjective judgment but a conclusion drawn from quantitative 

calculations of the "offsets" at "crossovers" in the dataset, ensuring the dataset has logical stability 



internally.  

The statistical calculation for this conclusion refers to the method proposed by Tanhua et al., 

2010, with specific steps as follows: The "Weighted Mean (WM)" is used to quantify the internal 

consistency of the dataset. The weight is determined by the offset of each crossover and its standard 

deviation, which emphasizes the influence of more reliable data on the result. 

𝑊𝑀 =
∑ 𝐷(𝑖)/(𝜎(𝑖))2𝐿

𝑖=1

∑ 1/(𝜎(𝑖))2𝐿
𝑖=1

 

Parameter Definitions: 

L: Represents the total number of crossovers in the dataset. 

D(i): Refers to the respective offset of the i-th crossover (i.e., the numerical difference of 

different data at that crossover). 

σ(i): Denotes the standard deviation of the offset of the i-th crossover, which is used to measure 

the degree of dispersion and reliability of that offset. 

 

Becker, M., Andersen, N., Erlenkeuser, H., Humphreys, M. P., Tanhua, T., and Körtzinger, A.: 

An internally consistent dataset of δ13C-DIC in the North Atlantic Ocean – NAC13v1, Earth System 

Science Data 8: 559-570, https://doi.org/10.5194/essd-8-559-2016, 2016.  

Tanhua, T., van Heuven, S., Key, R. M., Velo, A., Olsen, A., and Schirnick, C.: Quality control 

procedures and methods of the CARINA database, Earth Syst. Sci. Data 2: 35-49, 

https://doi.org/10.5194/essd-2-35-2010, 2010. 

 

139: Is GPR an acronym? Perhaps not relevant, but I wanted to know 

R: Thank you for your question. GPR is the acronym for Gaussian Process Regression, which 

first appears in the Introduction (Line 74). 

 

161: Repeated text 

R: Thanks for your comment. We have deleted these sentences and reorganized the sentences 

in Section 2.2 (Line 133-135) as: “After applying additional adjustments, the δ13CDIC data for the 

remaining 37 cruises exhibit high internal consistency. These 37 cruises do not include 13 cruises 

without deep-water crossover stations (Table 1) and cruise 64TR19900417, which were excluded to 

ensure data reliability as their uncertainties cannot be objectively quantified. Collectively, these 

excluded cruises accounted for less than 3 % of total δ13CDIC measurements.” 

 

Fig. 2: I like the figure, but as the other reviewer noted, it would be better to use 

completely independent cruise datasets for the validation as well as the “independent” tests 

R: Thank you for your feedback. We would like to clarify that our existing validation 

framework design, which aligns with this core principle while balancing statistical robustness and 

practical feasibility for sparse oceanographic data. 

As detailed in our response to the first reviewer, our independent test set was intentionally 

selected to be fully decoupled from the training/validation pool, with no overlap in cruises, spatial 

regions, or temporal coverage. This means measurements from any cruise are entirely confined to 

either the training/validation set or the independent test set, ensuring the final performance 

evaluation (reported RMSE and R²) is based on completely unseen cruises, which directly addresses 

the need for independent cruise-based testing. The 10-fold cross-validation within the training set 



was solely for hyperparameter tuning, not for final performance assessment, so it does not 

compromise the independence of the test phase. 

We maintained this design because many of the 51 cruises in our dataset have small sample 

sizes. Splitting the training/validation set by cruise would result in highly imbalanced folds, leading 

to unstable hyperparameter tuning and biased cross-validation results, undermining the statistical 

rigor of the model development process. By using random splitting within the training/validation 

pool, we preserve the natural spatiotemporal variability of δ13CDIC data, ensuring the model is tuned 

to generalize across diverse oceanic conditions rather than specific cruises. This approach is 

consistent with established practices in oceanographic ML studies (e.g., Lima et al., 2023; Regier et 

al., 2023; Wu et al., 2025), as cited in our response to the first reviewer. 

To enhance clarity on the independence of the cruise datasets, we have revised the relevant 

paragraph to explicitly highlight that the independent test set comprises completely separate cruises 

from the training/validation pool: “The dataset was randomly split into a training set (80%) and a 

validation set (20%), with model training and hyperparameter tuning performed using 10-fold cross-

validation within the training set to mitigate overfitting. An independent test set was reserved for 

final performance evaluation, selected to ensure no overlap with the training/validation set in cruises, 

spatial regions, or temporal coverage. We opted for random splitting over cruise-separated k-fold 

cross-validation to balance robustness and feasibility: many of the 51 cruises have small sample 

sizes, and cruise-separated splitting would cause imbalanced folds, leading to unstable 

hyperparameter tuning and biased results. Random splitting also preserves the natural 

spatiotemporal variability of δ13CDIC, tuning the model to generalize across diverse oceanic 

conditions rather than specific cruises. This framework aligns with established practices for sparse 

oceanographic datasets (Lima et al., 2023; Regier et al., 2023; Wu et al., 2025).”. This revision 

ensures the manuscript clearly conveys that our validation strategy incorporates fully independent 

cruise datasets for the critical final evaluation, while the training-phase cross-validation design 

prioritizes practical feasibility and stable model tuning. 

 

Lima, I. D., Wang, Z. A., Cameron, L. P., Grabowski, J. H., & Rheuban, J. E.: Predicting 

Carbonate Chemistry on the Northwest Atlantic Shelf Using Neural Networks. Journal of 

Geophysical Research: Biogeosciences, 128(7), e2023JG007536. 

https://doi.org/10.1029/2023JG007536, 2023. 

Regier, P., Duggan, M., Myers‐Pigg, A., & Ward, N.: Effects of random forest modeling 

decisions on biogeochemical time series predictions. Limnology and Oceanography: Methods, 

21(1), 40-52, https://doi.org/10.1002/lom3.10523, 2023. 

Wu, Z., Lu, W., Roobaert, A., Song, L., Yan, X.-H., and Cai, W.-J.: A machine-learning 

reconstruction of sea surface p CO2 in the North American Atlantic Coastal Ocean Margin from 

1993 to 2021, Earth Syst. Sci. Data, 17, 43–63, https://doi.org/10.5194/essd-17-43-2025, 2025. 

 

192: I wonder if other Earth scientists would be as surprised to learn of Mean Absolute 

Error and Mean Bias Error. I think they might and it might therefore be useful to use a sentence 

or two describing why these additional metrics are useful to the study 

R: Thank you for your suggestion. As recommended, we have supplemented the original 

sentence about model accuracy evaluation with 2-3 sentences (Line 205-209: “Among these metrics, 

MAE and MBE are valuable for evaluating the performance of the machine learning models. MAE 



quantifies the average absolute deviation between observed and predicted values; its insensitivity to 

outliers makes it ideal for handling the potential noise in δ13CDIC observational data, ensuring a 

robust measure of overall prediction error. MBE, by retaining the sign of deviations, identifies 

systematic biases (e.g., consistent overestimation or underestimation of δ13CDIC), which is critical 

for refining the machine learning model.”) explaining MAE and MBE, with a specific focus on their 

application in machine learning, to enhance the manuscript’s clarity for the broader community.  

 

202: Propagated error? 

R: Yes, the total uncertainty of the reconstructed δ13CDIC is a propagated error. As detailed in 

the revised manuscript, we assumed independence between the three uncertainty sources (uobs, uinputs, 

umap) and calculated the total uncertainty using the standard error propagation method (root-sum-of-

squares synthesis), as supported by the cited references (Hughes and Hase, 2010; Taylor, 1997). We 

have refined the text to explicitly emphasize the error propagation approach and its implementation, 

ensuring clarity on this point. 

Revised Text in Manuscript:  

The comprehensive uncertainty of the reconstructed δ13CDIC was derived via error propagation, 

assuming independence between distinct uncertainty sources. These sources of uncertainties include: 

the direct δ13CDIC measurement uncertainty from observations (uobs), the uncertainty accumulated 

from the input variables (uinputs), and the uncertainty induced by the mapping function (umap). 

Following standard error propagation protocols (Hughes and Hase, 2010; Taylor, 1997), the 

comprehensive uncertainty of our estimated δ13CDIC product, 𝑢𝛿13𝐶𝐷𝐼𝐶
, was calculated as the root 

sum of the squares of the individual uncertainties: 

𝑢
𝛿13𝐶𝐷𝐼𝐶=√𝑢𝑜𝑏𝑠

2 +𝑢𝑖𝑛𝑝𝑢𝑡𝑠
2 +𝑢𝑚𝑎𝑝

2 
 

 

212: perturbed not perturbs 

R: We are grateful for you noticing this typo. The error has been fixed in the corresponding 

section of the revised manuscript. 

 

230: I’m unsure where the 10-fold cross-validation comes from 

R: 10-fold cross-validation was selected based on its availability as a standard option in 

MATLAB’s Machine Learning Toolbox, which is widely used for model training in our field (e.g., 

Wu et al., 2025), and its suitability for balancing computational efficiency and generalization 

performance with our dataset. We have added this clarification to the manuscript to enhance 

transparency (Line ): “During the training phase, we leveraged a 10-fold cross-validation approach, 

selected as it is a standard pre-implemented option in MATLAB’s Machine Learning Toolbox. This 

approach balances computational efficiency and robustness, reducing overfitting by iteratively 

splitting training data into 10 folds: 9 for training and 1 for validation per iteration, with results 

averaged across iterations to ensure stable performance. Finally, the model achieved an R² of 0.92, 

an RMSE of 0.083 ‰, an MAE of 0.056 ‰, and an MBE of −0.0003 ‰ (Fig. 3a).” 

 

Wu, Z., Lu, W., Roobaert, A., Song, L., Yan, X.-H., and Cai, W.-J.: A machine-learning 

reconstruction of sea surface p CO2 in the North American Atlantic Coastal Ocean Margin from 

1993 to 2021, Earth Syst. Sci. Data, 17, 43–63, https://doi.org/10.5194/essd-17-43-2025, 2025. 



 

249: This text is also somewhat a repetition of earlier text 

R: Thanks for your comment. We revised this sentence as: “To assess the product’s ability to 

capture δ13CDIC spatial patterns and quantify biases, we utilized the δ13CDIC distribution from 

independent test cruises 33MW19930704 and 33RO20050111 (Fig. 4).” 

 

259: larger? 

R: Thank you for pointing out this typo. We have corrected it in the revised manuscript. 

 

272: Incredibly / unbelievably low input variable uncertainty (Uinputs). I wonder if this is 

a propagation of the input variable uncertainties or an error has been made along the way. 

R: Thank you for drawing attention to the unusually low uinputs. Upon thorough rechecking, we 

confirm that the initially reported value stemmed from a computational error in the Monte Carlo 

simulation workflow. We have corrected this issue, and the revised uinputs is 0.0087 ‰, with 

contributions decomposed as follows: temperature (4.96×10-5 ‰), salinity (3.62×10-4 ‰), nitrate 

(0.004 ‰), silicate (0.002 ‰), DIC (0.005 ‰), AOU (0.004 ‰), and xCO2 (6.52×10-4 ‰). This 

revised value is consistent with the expected magnitude of input-related uncertainty for δ13CDIC 

prediction in marine biogeochemical studies, resolving the counterintuitive result noted in your 

comment.  

The corrected uinputs and detailed uncertainty decomposition have been updated in the 

manuscript to ensure transparency and accuracy. 

 

295: Maybe this is not important, but lower case “n” is typically used to describe the 

sample size 

R: Thank you for pointing out this notation consistency issue. As recommended, we have 

revised all instances of the uppercase "N" (previously used for sample size) to the lowercase "n" 

throughout the manuscript to align with academic norms. 

 

302: Is it expected that there would be a model smoothing tendency? 

R: Yes, the model’s tendency to smooth extreme values is expected. This behavior is inherent 

to the Gaussian Process Regression (GPR) model and aligned with the study’s goal of reconstructing 

a spatially continuous, reliable δ13CDIC product for the Atlantic Ocean. Below we elaborate on the 

key reasons: 1) GPR’s intrinsic smoothing property: As a non-parametric model based on Gaussian 

kernel functions, GPR inherently weights the influence of neighboring data points to produce 

continuous predictions. This kernel-based mechanism naturally mitigates the impact of extreme 

values (which are often sparse in observational data) to avoid overfitting to isolated outliers or 

sampling noise. 2) Goal of spatial reconstruction: Our study aims to capture the large-scale, intrinsic 

spatial patterns of δ13CDIC rather than replicate rare local anomalies. Smoothing extreme values 

helps filter out noise from discrete observations and enhances the spatial consistency of the 

reconstructed product. Thus, the intrinsic regularization of the GPR leads to reduced sampling noise, 

a sharper central peak and narrower tails in the reconstructed KDE compared with the empirical 

KDE from observations.  

We have supplemented the manuscript to clarify that this smoothing tendency is expected and 

its rationale, as detailed below: “Consequently, the reconstructed values display a slightly sharper 



central peak and narrower tails than the observations, indicating a tendency of the model to smooth 

extreme values, which is expected given the intrinsic properties of the GPR model and the study’s 

objectives. Specifically, relying on Gaussian kernel functions, GPR naturally weights neighboring 

data points to produce continuous, spatially consistent predictions, which mitigates overfitting to 

sparse extreme values often linked to sampling noise or local transient perturbations.” 

 

397: Is there an expectation that the model output would closely align with the observed 

data? Wasn’t the 2023 data used to predict the “reconstructed data”? I’m not diminishing the 

work—I honestly think this is an expected outcome of using machine learning. 

R: Yes, the machine learning model outputs are expected to align with observed data when 

predictors are reliable. We would like to clarify that our workflow consists of two distinct, 

independent phases: model training/testing and prediction (detailed in Fig. 2). Specifically, during 

the training/testing phase, we utilized all available Atlantic cruise datasets containing δ13CDIC 

observations (including 2023 data along A16N) to train the model. We then validated and tested the 

model’s fitting performance through rigorous procedures, ensuring its robustness in capturing the 

relationship between input variables and δ13CDIC. In the subsequent prediction phase, we applied 

this pre-trained and validated model to the input variables from the GLODAPv2.2023 Atlantic 

dataset to generate the reconstructed δ13CDIC data. Importantly, this reconstructed δ13CDIC dataset is 

entirely independent of the original δ13CDIC observations in GLODAPv2.2023; they are two separate 

datasets.  

The reconstructed δ13CDIC data for 1993, 2003, and 2013 mentioned in this paragraph all come 

from this GLODAPv2.2023-driven prediction. Due to the fact that the observational data along 

A16N in 2023 not included in the GLODAPv2.2023 dataset, we used the same pre-trained and 

validated model, relying solely on the 2023 observational input variables (e.g., T, S, nutrients) to 

produce the predicted values. This allows the model to independently predict 2023’s δ13CDIC based 

solely on the spatiotemporal and environmental patterns it learned during training. This design 

confirms the alignment between the 2023 reconstructed and original observational data reflects the 

model’s genuine predictive ability, rather than overfitting or circular reasoning.  

To clarify, we revised this paragraph as: “Besides horizontal distributions, the reconstructed 

δ¹³CDIC dataset also provides valuable insights into vertical variability. The depth profiles along the 

North Atlantic A16N section in 1993, 2003, 2013, and 2023 (Fig. 9) show that the reconstruction 

substantially improves vertical resolution and continuity, especially for years with sparse 

measurements. For instance, the δ¹³CDIC samples were increased from 493 to 1,618 in 1993, 38 to 

2,395 in 2003, and 473 to 2,787 in 2013, respectively, enhancing data coverage across depths and 

latitudes, facilitating the detection of temporal trends associated with ocean carbon uptake and 

redistribution (Fig. 9). The reconstructed δ13CDIC for 1993, 2003, and 2013 was generated by 

applying the pre-trained model to input variables from the GLODAPv2.2023 Atlantic dataset. 

Notably, as the observational data along A16N in 2023 not included in the GLODAPv2.2023 dataset, 

we used the same pre-trained and validated model, relying solely on the 2023 observational input 

variables to produce the reconstructed values. The close alignment between 2023’s reconstructed 

and observed data (Fig. 9d vs. 9h) not only reflects the model’s reliability but also validates its 

ability to generalize, strengthening confidence in reconstructions for years with sparse 

measurements (e.g., 2003 with only 38 observations).”  

 



485: quality-controlled (?) 

R: Thank you for catching this typo. It has been corrected in the revised manuscript. 

 


