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Abstract 21 

Biomass burning (BB) is a major source of atmospheric pollutants in Southeast and East Asia (SEA), yet 22 

most existing emission inventories lack accurate diurnal cycles and vertical injection profiles, limiting 23 

the accuracy of air quality and climate simulations. This study develops the Southeast and East Asia Fire 24 

(SEAF) inventory, an hourly 3 km three-dimensional (3D) emission dataset for 2023, by fusing fire 25 

radiative power (FRP) from Himawari-8/9 AHI and VIIRS through cloud correction, cross-calibration, 26 

and a region–vegetation-specific Gaussian diurnal reconstruction with dynamic gap filling. Vertical 27 

profiles are further constrained using a random forest (RF) – Shapley Additive Explanations (SHAP) 28 

framework trained with Multi-angle Imaging SpectroRadiometer (MISR) smoke plume heights (SPH) 29 

and ERA5 meteorology. The SEAF inventory exhibited strong consistency with TROPOMI CO, showing 30 

a correlation of R = 0.97 in monthly columns and differing by only 7.81% during a representative event 31 

on 9 March 2023. Annual PM2.5 emissions in SEAF are approximately 2362 Gg y-1, which is 67% lower 32 

than the Fire INventory from NCAR (FINN) but aligns well with the Fire Energetics and Emissions 33 
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Research (FEER) and the Quick Fire Emissions Dataset (QFED) estimates. The RF–SHAP framework 34 

successfully predicted SPH, with over 90% of estimates within ± 500 m. This approach corrects the near-35 

surface overweighting of conventional schemes by reducing emissions below 0.3 km and enhancing 36 

injection between 2.7- 5.5 km during the spring burning peak, yielding vertical profiles that closely align 37 

with satellite observations. SHAP analysis identified temperature- and radiation-related factors, 38 

particularly the vertical integral of temperature (Vit) and terrain elevation, as the primary drivers of SPH, 39 

with additional contributions from FRP, planetary boundary layer height, and seasonal–meteorological 40 

interactions. These advances in both diurnal timing and vertical injection are anticipated to provide an 41 

observation-driven, hourly 3D BB emission dataset for SEA that can improve the reliability of air quality, 42 

climate, and policy assessment models. 43 

1. Introduction 44 

Open biomass burning (BB) exerts substantial impacts on climate, ecosystems, economies, and public 45 

health by releasing large quantities of aerosols and trace gases into the atmosphere (Pullabhotla et al., 46 

2023; Reining et al., 2025; Yu et al., 2022). Black carbon (BC) and primary organic aerosols (POA) 47 

account for approximately 40–59% and 60–85% of BB aerosol emissions, respectively, while non-48 

methane organic gases and greenhouse gases such as methane (CH4), carbon dioxide (CO2), and nitrous 49 

oxide (N2O) contribute significantly to atmospheric chemistry and radiative forcing (Gkatzelis et al., 50 

2024). Through direct and indirect effects, these emissions perturb the Earth’s radiative balance, alter 51 

aerosol composition, and modulate cloud and precipitation processes (Crutzen et al., 1979). Under global 52 

warming, wildfire frequency and intensity have increased (Brown et al., 2023; Reining et al., 2025). 53 

Therefore, accurate quantification of these emissions is essential for evaluating their effects on air quality, 54 

climate systems, guiding targeted mitigation, and improving carbon inventories (Liu and Popescu, 2022). 55 

Although total BB emissions in Southeast and East Asia (SEA) are lower than in southern Africa, the 56 

largest global source region, the regional impacts on cloud properties and radiation remain substantial 57 

and environmentally consequential (Ding et al., 2021). Most BB inventories in SEA are based on daily 58 

or monthly FRP products from polar-orbiting sensors such as the Moderate Resolution Imaging 59 

Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS), which miss 60 

pronounced diurnal cycles and nocturnal burning. These limitations bias emission estimates in regions 61 

with frequent cloud cover and small-scale fires (Andela et al., 2015; Liu et al., 2024b, a). Multi-source 62 

data fusion of geostationary and polar-orbiting FRP based on a top-down approach has emerged as an 63 

effective way to address these gaps (Li et al., 2022; Nguyen et al., 2023). This multi-source data fusion 64 

addresses the shortcomings of single data sources, providing a more accurate representation of BB 65 

emissions. It is particularly beneficial for regions with frequent fires or complex meteorological 66 

conditions, offering high-resolution data to support regional air quality simulations and significantly 67 

enhancing the ability to dynamically respond to variations in fire intensity and distribution (Li et al., 68 

2019). For the contiguous United States, Li et al., (2022) integrated Geostationary Operational 69 

Environmental Satellite - R Series (GOES-R) and VIIRS produced an hourly 3 km inventory that better 70 

captured seasonal and diurnal patterns when evaluated against carbon monoxide and fine particulate 71 

matter from multiple inventories In East Asia, combinations of MODIS, VIIRS, and Himawari have 72 

yielded hourly products at kilometer scale that improve spatiotemporal characterization (Xu et al., 2023, 73 

and Xu et al., 2022). However, compared to other inventories, these integrated inventories still exhibit 74 

significant uncertainties in annual emissions (2–7 times) and monthly emissions (1–48 times) (Xu et al., 75 
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2023b; Zhang et al., 2014). In addition, most inventories apply a climatological Gaussian scheme to 76 

reconstruct the diurnal cycle of fire emissions, which tends to understate peak burning when observations 77 

are missing because of clouds or sampling gaps and may overfill periods with little activity (Li et al., 78 

2019). Importantly, our previous work showed that the large spread among available inventories over 79 

Southeast Asia strongly influences simulations of aerosol optical properties and radiative forcing (Jin et 80 

al., 2024). These results underscore the need for improved inventories with higher spatiotemporal fidelity. 81 

Accurate representation of smoke vertical injection is equally critical. Smoke plume height (SPH) 82 

determines the vertical distribution of pollutants, affecting transport, removal, and radiative effects (Jin 83 

et al., 2024; Li et al., 2023). Although a few models have attempted to account for SPH, they usually rely 84 

on fire size and heat flux estimation, which suffers from high computational cost and bias (Driscoll et al., 85 

2024). Additionally, inventories such as Integrated System for Fire Information Retrieval and Evaluation 86 

(IS4FIRE) estimate SPH using semi-empirical formulas, but their accuracy is limited due to inadequate 87 

consideration of meteorological variables (Driscoll et al., 2024; Freitas et al., 2007; Sofiev et al., 2012). 88 

To address these challenges, researchers have gradually introduced machine learning methods to capture 89 

the nonlinear relationships between meteorological factors and BB characteristics (Brown et al., 2023; 90 

Wang and Wang, 2020). However, there is still a relative lack of quantitative studies on the relationship 91 

between SPH and meteorological factors. In-depth exploration of the driving mechanism of plume rises 92 

and its integration into the three-dimensional (3D) BB emission inventory is important for improving the 93 

accuracy of the emission inventory as well as the ability of global/regional atmospheric modeling. 94 

This study develops the Southeast and East Asia Fire (SEAF) emission inventory, an hourly 3-km 95 

resolution BB emission product covering SEA in 2023. SEAF was generated by fusing FRP data from 96 

Advanced Himawari-9 Imager (AHI), VIIRS, and NOAA's Joint Polar Satellite System (NOAA20), with 97 

dynamic adjustment of Gaussian-fitted FRP daily cycles to improve temporal accuracy. The inventory 98 

was validated against Tropospheric Monitoring Instrument (TROPOMI) observations and five 99 

commonly used BB emission inventories. A 3D version is further constructed by combining Multi-angle 100 

Imaging Spectroradiometer (MISR) plume heights with ECMWF Reanalysis v5 (ERA5) meteorology 101 

through a machine-learning framework. The resulting products will provide improved data support for 102 

regional air-quality and climate modeling applications. 103 

2. Data and Methodology 104 

2.1 Satellite data 105 

To characterize BB emissions across SEA, four representative subregions were delineated using land-106 

cover and climate classifications as shown in Figure 1. This spatial framework supports the integration 107 

of geostationary and polar-orbiting satellite observations, laying the foundation for subsequent FRP-108 

based emission inventory development. 109 

2.1.1 Satellite-based Fire Radiative Power 110 

Satellite observations provide critical information on FRP, which serves as BB emission estimates. In 111 

this study, we mainly use two FRP products derived from polar-orbiting and geostationary satellites. The 112 

375m I band Level 2 active fire product from the VIIRS sensor provides observations from 113 

NASA/NOAA’s Suomi National Polar-orbiting Partnership (S-NPP) and NOAA-20 satellites (Schroeder 114 

et al., 2024). The VIIRS sensor was first deployed on the Suomi NPP satellite in October 2011 and has 115 
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since been extended with support for NOAA-20 and NOAA-21 satellites (Giglio et al., 2016). The first 116 

fire hotspot detection from the VIIRS sensor occurred on January 19, 2012. The 375 m data supplements 117 

the MODIS fire detection. Both MODIS and VIIRS products show good consistency in hotspot detection, 118 

but the VIIRS 375 m product improves spatial resolution, offering better response for relatively smaller 119 

fire areas and providing improved large fire perimeter mapping(Schroeder et al., 2014). The 375m data 120 

product also improves nighttime performance, making these data ideal for use in support of fire 121 

management (e.g., near-real-time alarm systems) and other scientific applications that require improved 122 

fire mapping fidelity (Csiszar et al., 2014). 123 

The FRP data provided by the Himawari-8/9 satellite comes from its Advanced Himawari Imager (AHI) 124 

sensor, which has a spatial resolution of 2 km and a temporal resolution of 10 minutes, offering full disk 125 

coverage (60°N-60°S, 80°E-160°W) (Bessho et al., 2016). The FRP is determined using a dual-spectral 126 

method applied to data from the 2.3µm and 3.9µm bands (JAXA/EORC, 2020). Since October 2015, the 127 

Himawari satellite has consistently supported fire monitoring and disaster response with its high-128 

precision imaging capabilities. Himawari-8 has moderate spatial resolution, very high temporal 129 

resolution, and a fixed observation area, making it particularly suitable for real-time monitoring of 130 

wildfires in SEA (Xu et al., 2022). Furthermore, unlike MODIS or Fengyun-3D fire products, which fail 131 

to capture nighttime events, Himawari-8 has the advantage of continuously monitoring wildfires after 132 

sunset, making it a valuable tool for replacing manual inspections of nighttime wildfires (Chen et al., 133 

2023). Himawari-8 is highly resistant to smoke and thin clouds, and it is very sensitive to small fires, 134 

providing valuable real-time fire information for wildfire management (Xu and Zhong, 2017). However, 135 

existing Himawari-8 fire products show poor consistency with MODIS data (Jang et al., 2019). Therefore, 136 

we first correct the Himawari-8/9 fire products using the methodology of Li et al., (2022) before 137 

performing data fusion. 138 

2.1.2 TROPOMI CO 139 

The Tropospheric Monitoring Instrument (TROPOMI) aboard the Sentinel-5 (S5-P) satellite measures 140 

the total column concentration of CO, providing daily global coverage with a high spatial resolution of 141 

5.5×7 km2 (Landgraf et al., 2018). The instrument was launched on October 13, 2017 and can measure 142 

within the visible (270-500 nm), near-infrared (675-775 nm), and short-wave infrared (SWIR, 2305-2385 143 

nm) ranges (Borsdorff et al., 2023). The TROPOMI CO data clearly shows strong sources such as 144 

wildfires, with a small mean difference (3.2 ± 5.5%) and a high correlation (R=0.97) between TROPOMI 145 

and CAMS (Borsdorff et al., 2018). Li et al., (2022) and Griffin et al., (2024) have validated TROPOMI 146 

CO as a reliable dataset for assessing the CO reliability of inverted BB emissions. In this paper, we also 147 

used these data and Eq. (1) to evaluate our fused inverted CO data for BB emissions. 148 

𝑀𝑐𝑜
′ = ∑  

𝑛

𝑖=1

(𝜌𝑠𝑚
𝑖 − 𝜌𝑏𝑔) × 𝐴𝑖 × 𝑀 (1) 

𝑀𝑐𝑜
′ represents the total CO emissions for a given fire sample. 𝜌𝑠𝑚

𝑖  and 𝐴𝑖are the observed total column 149 

CO concentration (mol m-2) and the pixel area (m2) for the 𝑖 smoke pixel. 𝜌𝑏𝑔 is the mean column density 150 

of background pixels. M is the molecular mass of CO (M = 28.01 g mol-1). 151 
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2.1.3 MISR plume height dataset 152 

SPH observations were obtained from the MISR Plume Height Project II, which assembled a dataset of 153 

smoke plumes for the summers of 2008 to 2011 and for 2017 and 2018 (Nastan et al., 2022). The MISR 154 

instrument onboard Terra acquires imagery at nine viewing angles, and heights are retrieved by stereo 155 

parallax using the MISR Interactive Explorer (MINX). Because digitization in MINX is labor intensive, 156 

data collection was conducted over multiple years by teams at the Jet Propulsion Laboratory and the 157 

Goddard Space Flight Center together with student groups at the University of Sheffield (Val Martin et 158 

al., 2018). Under favorable conditions the vertical accuracy can reach approximately 200 m (Nelson et 159 

al., 2013). The MISR smoke plume records have been widely used to characterize wildfire injection 160 

heights and have become an important observational constraint in regional and global studies (Ke et al., 161 

2021; Zhu et al., 2018). For this study the MISR Enhanced Research and Lookup Interface (MERLIN) 162 

was used to extract 2127 plume height samples from Southeast and East Asia during 2017 and 2018 as 163 

shown in Figure S1. These samples served as training data for the machine learning based estimation of 164 

SPH. 165 

2.2 ERA5 and Other Biomass Burning emissions 166 

ERA5 is the fifth generation of global climate reanalysis dataset released by the European Center for 167 

Medium-Range Weather Forecasts (ECMWF), which is widely used in global climate and weather 168 

research. The ERA5 hourly meteorological data used in this study are sourced from the Climate Data 169 

Store, offering a spatial resolution of 0.25° × 0.25°. This dataset covers several key meteorological 170 

variables relevant to BB (Bell et al., 2021). Variables relevant to BB include 2m temperature, 2m dew 171 

point temperature, 10m wind speed components, and precipitation, among others, which jointly provide 172 

the meteorological context for fire occurrence and plume development (Dong et al., 2021; Kim et al., 173 

2025; Vitolo et al., 2020). ERA5 variables were combined with FRP from VIIRS and Himawari-8/9, 174 

together with MISR SPH, to train a machine learning model to predict plume injection height in 2023. 175 

The set of ERA5 predictors used is summarized in Table S1. To assess the accuracy of the fused BB 176 

emission inventory, a detailed spatiotemporal comparison was performed against major international 177 

inventories including the Global Fire Assimilation System (GFAS), the Fire INventory from NCAR 178 

(FINN), the Fire Energetics and Emissions Research (FEER), the Quick Fire Emissions Dataset (QFED), 179 

and IS4FIRES (Table S2). 180 

2.3 Methodologies 181 

Figure 2 illustrates the framework for estimating hourly 3D BB emissions. Active fire observations from 182 

Himawari 9 AHI, Suomi NPP VIIRS I band, and NOAA 20 VIIRS I band are gridded at 3 km, corrected 183 

for cloud effects, and fused. Historical AHI records from 2016 to 2023 were analyzed to derive statistics 184 

on burn duration and observational gaps, which were then applied with Gaussian fitting to construct 185 

hourly FRP diurnal cycles. During intense burning periods, the diurnal curves were dynamically adjusted 186 

to recover missing peaks while preventing overestimation. Two products were generated: a 2D inventory 187 

providing surface emissions, and a 3D inventory that incorporates vertical injection by applying a RF 188 

model using FRP, ERA5 meteorology, and MISR SPH to predict injection height and allocate emissions 189 

vertically. This fused product is referred to as the Southeast and East Asia Fire (SEAF) inventory. This 190 

study focuses on 2023, a year that offered a unique convergence of consistent observations from the 191 

newly operational Himawari-9 and a scientifically significant, intense fire season driven by El Niño, 192 
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ideal for validating the framework (Jong, 2024). Finally, the 2D SEAF inventory was evaluated against 193 

TROPOMI CO and six major global emission inventories, while the 3D SEAF inventory was assessed 194 

using MISR, Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), 195 

IS4FIRES, and GFAS data. 196 

2.3.1 Data calibration 197 

To facilitate subsequent air-quality modeling applications, all datasets were regridded to a spatial 198 

resolution of 0.03° × 0.03°. During aggregation, the FRP within each grid cell was summed, while the 199 

geolocation of individual fire detections was retained to represent the combined intensity of co-occurring 200 

events. This procedure is consistent with the native generation of the VIIRS I band FRP product and 201 

aligns with the objectives of emission inventory construction. For cloud correction, the cloud fraction in 202 

each grid cell at the satellite overpass time was computed using the VIIRS-I SDR terrain-corrected 203 

geolocation (GITCO) files. Cloud fraction was defined as the ratio of cloud pixels to the total number of 204 

pixels in the cell, with cloud pixels identified from their latitude and longitude coordinates. The resulting 205 

calibration was then applied to the polar-orbiting observations as specified in Eq. (2). 206 

𝐹𝑅𝑃𝑉 = {

𝐹𝑅𝑃𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛
𝑉

1 − 𝛽 + 𝛼 × 𝛽2
𝛽 ≤ 95%

𝐹𝑅𝑃𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛
𝑉 𝛽 > 95%

 (2) 

where 𝐹𝑅𝑃𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛
𝑉   represents the aggregated FRP values at the grid points after regridding the 207 

VIIRS data. 𝐹𝑅𝑃𝑉 is the cloud-corrected FRP value. 𝛽 is the cloud fraction, and when the cloud fraction 208 

exceeds 95%, cloud correction is not applied to avoid overestimation. 𝛼 is the secondary coefficient, 209 

which is set to 0.25 according to the testing described in Li et al., (2022). 210 

2.3.2 Geostationary satellite FRP calibration 211 

Given the relatively large zenith angle of the Himawari-8/9 satellite over Northeast China (Region 4, 212 

Figure 1), it is essential to apply appropriate calibration to the FRP data. In this study, cloud-corrected 213 

polar-orbiting satellite data are used as the calibration reference for the Himawari satellite at matching 214 

times and location. The calibration formula is given by Eq. (3). 215 

𝐹𝑅𝑃𝑖
𝐴𝐻𝐼̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝐹𝑅𝑃𝑖

𝐴𝐻𝐼 × (1 + 𝑟𝑖) (3) 

where 𝐹𝑅𝑃𝑖
𝐴𝐻𝐼  and 𝐹𝑅𝑃𝑖

𝐴𝐻𝐼̅̅ ̅̅ ̅̅ ̅̅ ̅̅  represent the FRP of fire pixel 𝑖 before and after calibration, respectively, 216 

and 𝑟𝑖 is the calibration factor. The calibration factor is calculated based on common point pairs, which 217 

are obtained by matching AHI and VIIRS observations. Specifically, common point pairs are defined 218 

here as grid points at the same location that are simultaneously detected as fire points in both the 219 

geostationary and polar-orbiting fire product. "Simultaneously" indicates that the observation times differ 220 

by no more than ±5 minutes. If there are multiple VIIRS detections within ±5 minutes that match an AHI 221 

fire point, the point with the smallest time difference is selected for matching. For the 𝑖 common point 222 

pair, the calibration factor is given by Eq. (4). 223 
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𝑟𝑖 =
𝐹𝑅𝑃𝑖

𝑉𝐼𝐼𝑅𝑆 − 𝐹𝑅𝑃𝑖
𝐴𝐻𝐼

𝐹𝑅𝑃𝑖
𝐴𝐻𝐼  (4) 

Where 𝐹𝑅𝑃𝑖
𝑉𝐼𝐼𝑅𝑆 and 𝐹𝑅𝑃𝑖

𝐴𝐻𝐼  are the fire radiated power of the VIIRS and AHI of the corresponding 224 

point pair, respectively. 225 

In addition, when no common point pair is available, a dynamic calibration factor and an alternative 226 

calibration factor are established, depending on whether common point pairs exist at other times of the 227 

day for that fire pixel. Among these, the dynamic calibration factor is defined in Eq. (5) 228 

𝑟𝑑,𝑗 =
1

𝑛𝑑

∑ 𝑟𝑖

𝑛𝑑

𝑖=1

 (5) 

Where 𝑟𝑑,𝑗 is the dynamic calibration factor for pixel 𝑗 on day 𝑑, and 𝑛𝑑 is the number of common 229 

point pairs for that pixel on day 𝑑 across different time instances. 230 

For fire points captured by the geostationary satellite, a significant fraction lack corresponding common 231 

point pairs in the polar-orbiting satellite record on the same day. To address this, an alternative calibration 232 

factor is introduced. Previous studies have shown that BB fuel characteristics are similar within the same 233 

land cover type, and that monthly climate conditions are also comparable in SEA (Huang et al., 2024; 234 

Yin, 2020). Therefore, the calibration factor is calculated for each month and vegetation type based on 235 

the available common point pairs and then averaged, as represented by Eq. (6). 236 

𝑟𝑚,𝑙 =
1

𝑛𝑚,𝑙

∑ 𝑟𝑗

𝑛𝑚,𝑙

𝑗=1

 (6) 

Where 𝑟𝑚,𝑙 is the alternative calibration factor for month 𝑚 and land cover type 𝑙, and 𝑛𝑚,𝑙 is the 237 

number of common point pairs for month 𝑚  and land cover type 𝑙 . The results of the alternative 238 

calibration factors are shown in Table S3. 239 

Previous studies have shown that calibrated geostationary and polar-orbiting satellite data exhibit 240 

improved consistency, and that fusion of these datasets can compensate for limitations in the spatial and 241 

temporal resolution of individual datasets (Li et al., 2022; Zhang et al., 2012). For air quality modeling 242 

applications, the temporal resolution of the fusion was set to 1 hour, which satisfies the need for high 243 

temporal detail while avoiding potential incompatibility from excessively high resolution (López-Noreña 244 

et al., 2022). Specifically, the results were averaged within 1-hour intervals, while the spatial resolution 245 

was retained at 0.03°. Given the relatively high quality of polar-orbiting satellite data, these observations 246 

were prioritized in the fusion process, while geostationary satellite data were used to supplement missing 247 

detections. The specific fusion method is set in Eq. (7). 248 
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𝐹𝑅𝑃𝑖
𝑓𝑢𝑠𝑒

= {
𝐹𝑅𝑃𝑖

𝑉𝐼𝐼𝑅𝑆 𝑉𝐼𝐼𝑅𝑆 𝐹𝑅𝑃 > 0

𝐹𝑅𝑃𝑖
𝐴𝐻𝐼̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑉𝐼𝐼𝑅𝑆 𝐹𝑅𝑃 < 0 𝑎𝑛𝑑 𝐴𝐻𝐼 𝐹𝑅𝑃 > 0

0 𝑉𝐼𝐼𝑅𝑆 𝐹𝑅𝑃 < 0 𝑎𝑛𝑑 𝐴𝐻𝐼 𝐹𝑅𝑃 < 0

 (7) 

Where 𝐹𝑅𝑃𝑖
𝑓𝑢𝑠𝑒

 represents the fused fire radiative power for pixel 𝑖, 𝐹𝑅𝑃𝑖
𝑉𝐼𝐼𝑅𝑆 represents the FRP for 249 

pixel 𝑖 as detected by VIIRS, 𝐹𝑅𝑃𝑖
𝐴𝐻𝐼̅̅ ̅̅ ̅̅ ̅̅ ̅̅  represents the fire radiative power for pixel 𝑖 after calibration 250 

by AHI. 251 

2.3.3 FRP diurnal cycle 252 

The AHI FRP diurnal climatology was developed to fill missing observations caused by cloud cover, 253 

smoke, and sensor detection limits (Li et al., 2019). Prior to reconstruction, fire duration statistics were 254 

derived for four climatic regions and five vegetation types using Himawari-8/9 records from 2016 to 255 

2023. Figure S2 shows that most events last 1–2 hours, and the probability of durations exceeding 3 256 

hours ranges from 11% to 31%. Therefore, in reconstructing the FRP diurnal cycle, not all fire events 257 

were extended across multiple time periods. Figure 3 characterizes periods of sustained burning of at 258 

least 3 hours, showing that high burning windows vary across regions and vegetation types. For example, 259 

cropland in Region 1 peaks between 01–03 UTC, whereas other regions peak between 06–13 UTC. The 260 

frequency of sustained burning (≥0.9) also varies, reflecting distinct fire activity regimes. These 261 

differences were explicitly accounted for in reconstructing the diurnal cycle. Table 1 reports the 262 

maximum duration of continuous high-intensity burning (T_gap) and the corresponding high burning 263 

windows used for filling. When two high burning windows occur, they are merged and treated as 264 

continuous burning if the time gap is shorter than max(T_gap1, T_gap2) and if the mean frequency within 265 

the gap is at least 0.5. 266 

After performing the high burning period statistics, curve fitting of the FRP climatological daily cycle is 267 

required to fill the missing FRP data. Figure S3 shows that the AHI FRP climatological diurnal cycle for 268 

each region consistently follows a unimodal Gaussian curve. Previous studies have indicated that because 269 

the FRP diurnal cycle follows a unimodal bell-shaped curve, Gaussian function fitting can be used to 270 

reconstruct the FRP climatological diurnal cycle (Vermote et al., 2009; Xu et al., 2022). In this paper, the 271 

Gaussian function is improved by adding a vertical adjustment factor (𝑑) to adjust the curve to the FRP 272 

distribution of a specific fire event with the following Eq. (8). 273 

𝐹𝑅𝑃(𝑡) = 𝑎𝑒
−

(𝑡−𝑏)2

2𝑐2 + 𝑑 (8) 

Where 𝑎, 𝑏, 𝑐 are variable parameters that adjust the vertical scaling of the curve, the peak position and 274 

the width of the curve, respectively, which are mainly related to the land class. The parameters 𝑎, 𝑏, 𝑐, 𝑑 275 

were dynamically adjusted using the least squares method if the number of satellite captures on the day 276 

of a specific fire event was able to reconstruct the daily cycle based on the Gaussian function (≥4 times), 277 

while d was dynamically adjusted based on the day's data only if the number of satellite captures was 278 

insufficient to reconstruct the daily cycle or if the reconstruction of the daily cycle was not good enough 279 

(r2<0.8), whereas 𝑎, 𝑏, 𝑐 were fixed values calculated based on the historical data in ecological regions 280 

and land classes. 281 
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2.3.4 Construction of emission inventories 282 

The hourly FRP product, after fusion and filling, is further used to construct the Fire Radiative Energy 283 

(FRE) using the following Eq. (9). 284 

𝐹𝑅𝐸ℎ,(𝑖,𝑗) = ∫ 𝐹𝑅𝑃𝑟𝑑𝑡
𝑡2

𝑡1

 (9) 

Where 𝐹𝑅𝐸ℎ,(𝑖,𝑗) (MJ) represents the FRE produced by the fire point (𝑖, 𝑗) from time 𝑡1 to 𝑡2, 𝐹𝑅𝑃𝑟  285 

is the reconstructed hourly FRP. 286 

Dry Matter (DM) refers to the weight of the material in BB that does not include water content. The 287 

consumption of DM is proportional to the generated flame heat (Koster et al., 2015). Based on the value 288 

of FRE, the DM consumed during BB over a given period can be estimated, as shown in Eq. (10). 289 

𝐷𝑀ℎ,(𝑖,𝑗) = 𝐹𝑅𝐸ℎ,(𝑖,𝑗) × 𝐹𝐵𝐶  (10) 

Where 𝐷𝑀ℎ,(𝑖,𝑗)  (kg) represents the DM consumed by the fire point (𝑖, 𝑗)  during one hour of 290 

combustion, which is proportional to the FRE generated. 𝐹𝐵𝐶  is the biomass combustion factor. previous 291 

studies have shown that the relationship between DM mass of manzanita and FRE can be expressed as a 292 

slope of 0.368 ± 0.015 kg MJ-1 (Wooster et al., 2005), for every 1 MJ of FRE emitted, about 0.368 ± 293 

0.015 kg of manzanita DM is consumed. On the other hand, Freeborn et al., (2008) proposed a more 294 

widely applicable BB coefficient of about 0.453 ± 0.068 kg MJ-1 through an experimental study of 295 

different plant fuel types. Therefore, this paper chose to adopt 0.453 ± 0.068 kg MJ-1 as the biomass 296 

combustion coefficient to estimate the amount of DM consumed for one hour of combustion at the fire 297 

point. 298 

The various emissions generated by biomass combustion can be estimated using the DM consumption 299 

and the corresponding emission factor (EF). The emission calculation formula is as shown in Eq. (11). 300 

𝐸𝑥 = 𝐷𝑀ℎ,(𝑖,𝑗) × 𝐸𝐹𝑥 (11) 

Where 𝐸𝑥 (kg) represents the emission of substance 𝑥 (such as CO₂, CO, NOₓ, etc.) from the fire 301 

point(𝑖, 𝑗) in one hour，𝐸𝐹𝑥 (g kg-1) is the corresponding EF for each substance, which characterizes 302 

the amount of a specific chemical produced per kilogram of DM burned. Andreae, (2019) conducted a 303 

comprehensive analysis and compilation of numerous research results. This study selects representative 304 

emission categories for BB emission estimation. The selected BB EFs for different regions are shown in 305 

Table 2. 306 

2.3.5 Random Forest prediction of SPH and SHAP models 307 

RF is an ensemble learning method based on the Bagging (Bootstrap Aggregating) principle, proposed 308 

by Breiman, (2001). Owing to its strong nonlinear modeling capability and scalability, it has been widely 309 

applied in meteorological and environmental studies to relate atmospheric variables to land surface 310 

processes (Üstek et al., 2024; Wang and Wang, 2020). For example, Agrawal et al., (2023) used machine 311 

learning techniques, along with ERA5 meteorological variables, to build a multivariate regression model 312 

https://doi.org/10.5194/essd-2025-515
Preprint. Discussion started: 21 October 2025
c© Author(s) 2025. CC BY 4.0 License.



 

10 

 

for wildfire characteristics (such as burned area), successfully predicting the occurrence of large wildfires. 313 

Moreover, Briggs, (1969) proposed a method for calculating the rise of wildfire plumes based solely on 314 

buoyancy terms, modeling the heat released by the fire, wind speed, and friction velocity (Haugen, 1982). 315 

This method is suitable for small-scale wildfires, such as those observed in prescribed burns (Achtemeier 316 

et al., 2011). However, these methods are limited in their applicability to large-scale wildfires or plume 317 

rise under complex meteorological conditions (Ferrero et al., 2019). To characterize the relationship 318 

between wildfire plume rise and meteorological controls, an RF multivariate regression was trained using 319 

MISR plume heights, ERA5 meteorology, and satellite-derived FRP. The model predicts SPH, which is 320 

then used to allocate emissions vertically. Following guidance from the Texas Commission on 321 

Environmental Quality, (2022) and the IS4Fire vertical allocation scheme (Sofiev et al., 2009), 90 % of 322 

the hourly column emissions are assigned to the upper two-thirds of the predicted plume and 10 % to the 323 

lower one-third, yielding five vertical layers in total. 324 

SHAP (Shapley Additive Explanations) is an explanation tool based on game theory, used to quantify the 325 

contribution of each feature to the predictions of a machine learning model (Mangalathu et al., 2020). By 326 

calculating the marginal contribution of each feature to the model prediction, SHAP provides 327 

transparency and interpretability for complex models, such as Random Forest, revealing interactions 328 

between features (Ekanayake et al., 2022). In this study, in addition to applying the RF model for 329 

multivariate regression, SHAP was also employed to further analyze the contribution of each 330 

meteorological variable to SPH. 331 

3. Result 332 

3.1 VIIRS and AHI Data Correction 333 

Figure 4 illustrates the spatial distribution of gridded FRP data derived from VIIRS and AHI, 334 

demonstrating the impact of cloud correction algorithms implemented through Eq. (2)–(7). The 335 

uncorrected datasets reveal that elevated FRP values are predominantly concentrated within Region 2 for 336 

both sensor systems. Due to its superior temporal resolution (10 min revisit time), AHI consistently 337 

records higher FRP magnitudes compared to VIIRS. Chen et al., (2022) demonstrated that Himawari-8, 338 

with its 2km spatial resolution, detects significantly more fire events than MODIS and VIIRS, 339 

consequently yielding elevated FRP measurements. Furthermore, comparisons of thermal anomaly 340 

observations from drones with both VIIRS and Himawari-8 data indicate that VIIRS measurements are 341 

more reliable. Therefore, this study employs cloud-corrected VIIRS data as a benchmark for calibrating 342 

AHI FRP. Region 1, characterized by tropical rainforest (Af) and tropical monsoon (Am) climates, 343 

experiences high temperatures, humidity, and frequent rainfall, resulting in extensive cloud cover and 344 

frequently underestimated satellite-derived FRP measurements. Prior to cloud correction, the mean 345 

VIIRS FRP values in this region are 11.44 ± 21.07 MW and 11.24 ± 20.65 MW in Figure 4 (a) and (d). 346 

Following cloud correction, the mean FRP exhibits an approximate 7% increase. Region 2, defined by 347 

Am and tropical wet and dry (Aw) climates, is characterized by intense monsoon activity and frequent 348 

fire occurrences. After correction, VIIRS FRP increases by 0.6 MW, demonstrating that cloud correction 349 

not only mitigates cloud-induced errors but also enhances fire intensity estimation, enabling more 350 

accurate detection of fire activity. Regions 3 and 4 similarly exhibit increased VIIRS FRP values 351 

following cloud correction, whereas calibrated AHI FRP generally shows a decreasing trend across the 352 

study area. However, in regions with substantial BB emissions, such as northern Laos, AHI FRP still 353 
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increases, likely as cloud correction reveals additional fire activity, thereby yielding higher observed FRP 354 

values. 355 

3.2 Reconstruction of the FRP daily cycle 356 

3.2.1 Gaussian-based fitting of FRP diurnal climatology 357 

To establish a robust foundation for accurately filling temporal gaps in BB emission inventories, 358 

climatological diurnal FRP cycles were fitted using Gaussian functions. Historical Himawari-8/9 (AHI) 359 

FRP observations from 2016 to 2023 were used to derive climatological diurnal cycles for four 360 

representative regions (Regions 1–4) and five vegetation types (cropland, forest, grassland, peatland, and 361 

shrubland) in Figure S4. The Gaussian fitting performed well in most regions and vegetation types with 362 

a mean R2 exceeding 0.87, confirming its effectiveness in capturing diurnal FRP variability. However, 363 

significant differences in diurnal patterns were observed across regions and vegetation types. Region 1 364 

exhibited relatively lower fire intensity but still displayed clear unimodal diurnal patterns, peaking from 365 

morning to midday (local time), possibly related to agricultural practices or sustained peatland fires. 366 

Region 2 displayed pronounced afternoon peaks, particularly evident in grassland (R2 = 0.98). In Regions 367 

3 and 4, cropland, forest, and grassland showed excellent fitting performance (R2 ≥ 0.91), reflecting 368 

distinct anthropogenic burning patterns. For instance, cropland fires in Northeast China exhibited clear 369 

unimodal diurnal cycles, predominantly concentrated between 9:00 and 16:00 local time. These Gaussian 370 

function-based climatological FRP diurnal cycles effectively characterize the typical diurnal fire 371 

variations across different regions and vegetation types, establishing essential groundwork for further 372 

developing dynamic gap-filling methods and improving the continuity and reliability of satellite-derived 373 

fire observations. 374 

3.2.2 Dynamic adjustment and gap-filling of FRP diurnal cycles 375 

To enhance the spatiotemporal accuracy and reliability of BB emission inventories in SEA, a regionally 376 

adaptive approach was developed for dynamic adjustment and climatological gap filling of FRP based 377 

on region-specific observational characteristics. Using long-term AHI observations, climatological 378 

diurnal FRP cycles were reconstructed and applied to representative fire events in 2023 across four key 379 

regions and five vegetation types (Figure 5). The Gaussian Least Squares (GLS) fitting consistently 380 

delivered robust performance across all regions and ecosystems, with coefficients of determination (R2) 381 

reaching up to 0.98, confirming the reliability and broad applicability of the method for daily-scale FRP 382 

reconstruction. In Region 1, cropland fires exhibited a distinct and well-captured morning peak (UTC 383 

02:00–06:00, approximately 09:00–13:00 local time) that was well captured by the dynamic fitting, 384 

achieving high accuracy (R2 = 0.82) and strong agreement between the fitted curves and observations. In 385 

Region 2, dynamic Gaussian fitting methods, including GLS and Gaussian Vertical Movement (GVM), 386 

substantially outperformed conventional climatological fitting, underscoring their advantage in 387 

reproducing actual fire behavior. Regions 3 and 4 also demonstrated strong fitting results for forest and 388 

grassland fires, reflecting highly regular diurnal fire patterns and the effectiveness of dynamic parameter 389 

adjustment in identifying peak burning periods. Notably, in Northeast China, all vegetation types except 390 

grasslands, which lacked sufficient observations for fitting, exhibited the highest fitting performance (R2 391 

≥  0.8), with cropland fires showing a clearly defined unimodal diurnal pattern. This reflects the 392 

influence of well-regulated anthropogenic burning activities, such as crop residue combustion, or 393 

seasonally managed fire regimes during official fire prevention periods, underscoring the strong temporal 394 
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regularity of fires in this region and further validating the reliability of the proposed approach. 395 

The dynamic gap-filling algorithm substantially improved both the temporal continuity and quantitative 396 

accuracy of FRP diurnal cycles, effectively mitigating observational deficiencies caused by cloud 397 

contamination and the spatiotemporal sampling limitations of satellite-based fire detection (Figure 6). 398 

Across all regions and vegetation types, reconstructed FRP profiles showed marked enhancements, 399 

particularly during key burning periods underrepresented in the original observations. In Region 1, 400 

cropland fires exhibited pronounced morning peaks (08:00–12:00 local time), with FRP increased by 401 

67.7% after reconstruction, consistent with the common practice of morning crop residue burning. 402 

Shrubland fires in the same region showed a maximum enhancement of 80.6%, indicating active morning 403 

burning in tropical shrublands that was systematically underdetected in the original data. In Region 2, 404 

cropland FRP peaks during the afternoon and early evening (14:00–20:00 local time) increased by 74.2%, 405 

reflecting traditional afternoon burning practices, while overall FRP corrections were greater than in 406 

other regions. Forest fires in this region showed a 53.9% enhancement between 12:00 and 14:00, and 407 

grassland fires increased by 68.5% between 12:00 and 18:00, both highlighting intensified daytime 408 

combustion under dry conditions. In Region 3, forest and shrubland fires exhibited the highest 409 

enhancements, reaching up to 82.4%, whereas peatland fires had the lowest adjustments (25.4%), 410 

consistent with their stable smoldering characteristics and weak diurnal variability. In Region 4, 411 

shrubland FRP increased by 88.7% during 16:00–00:00 local time, revealing active evening-to-night 412 

burning that was systematically underestimated due to twilight detection gaps, with cropland fires 413 

showing the largest absolute increase (approximately 1 × 10⁶ W m-1). Overall, the dynamically adjusted 414 

FRP profiles exhibited markedly improved temporal continuity compared with the original observations, 415 

capturing the primary peaks of fire activity and recovering missing signals during under-sampled periods, 416 

particularly for long-duration events (≥3 h), thereby providing a more accurate temporal representation 417 

essential for high-resolution emission modeling and atmospheric transport simulations. 418 

Figure 7 compares the mean daily FRP distributions across SEA in 2023 under three scenarios: (a) the 419 

dynamic adjustment and gap-filling method, (b) the original observations without Gaussian fitting, and 420 

(c) conventional Gaussian fitting. The original observations systematically underestimate FRP due to 421 

cloud contamination, low temporal sampling frequency, and twilight detection blind zones. This 422 

underestimation is evident across all key regions, with low regional mean FRP values (21.34 MW in 423 

Region 1, 23.04 MW in Region 2, and 17.21 MW in Regions 3–4) and large standard deviations, 424 

indicating high spatiotemporal variability and missing peak fire activity (Figure 7 (b)). While the 425 

Gaussian fitting method improves spatial completeness by reconstructing climatological FRP diurnal 426 

curves, it neglects actual temporal fire dynamics, resulting in systematic overestimation in certain regions. 427 

For example, Region 2 showed a 2.17% increase in FRP relative to the original observations (23.35 MW), 428 

primarily due to artificial amplification during inactive periods (Figure 7 (c)). In contrast, the 429 

dynamically adjusted method incorporates region- and vegetation-specific diurnal characteristics, such 430 

as cropland burning peaks in the afternoon and shrubland fires occurring during twilight hours, leading 431 

to more realistic and continuous reconstructions. The dynamically fitted FRP showed improved regional 432 

means (e.g., 23.85 MW in Region 2 and 17.49 MW in Region 4), representing relative increases of 3.52% 433 

and 1.62% compared to the original data. In addition, the dynamic method effectively recovers 434 

underdetected fire signals, particularly in Regions 2 and 4 (0.81 MW and 0.23 MW, respectively), while 435 

also avoiding the overestimation seen in conventional Gaussian fitting methods (e.g., −0.51 MW in 436 
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Region 2). These results demonstrated that the proposed approach enhances both the accuracy and 437 

representativeness of FRP spatial distributions by capturing realistic fire peaks and avoiding artificial 438 

inflation during inactive hours, thus providing a more reliable input for high-resolution emission 439 

modeling. 440 

3.3 Comparison 2D BB with TROPOMI CO and five inventories 441 

In this study, a top-down BB emission inventory for SEA was developed using a sequential conversion 442 

framework (Eqs. 9-11) from FRP to fire radiative energy (FRE), dry matter (DM) consumption, and 443 

ultimately to pollutant emissions. The FRP input was obtained from dynamically reconstructed diurnal 444 

cycles (with enhanced spatiotemporal continuity). FRE was calculated by integrating the hourly FRP 445 

series, providing a quantitative measure of total fire energy release. DM consumption was estimated from 446 

FRE using a biomass combustion coefficient of 0.453 ± 0.068 kg MJ-1. Pollutant emissions, including 447 

CO2, CO, nitrogen oxides (NOₓ), PM2.5, organic carbon (OC), and BC, among others, were subsequently 448 

calculated by applying vegetation-specific emission factors (EFs, Table 2).  449 

3.3.1 Satellite-based evaluation of SEAF CO emissions 450 

Figure S5 displays the monthly mean distribution of CO column concentrations retrieved from 451 

TROPOMI over SEA for 2023, revealing a pronounced seasonal enhancement during the spring burning 452 

season (March–April). Notably elevated values, exceeding 0.08 mol m-2, are observed over northern 453 

Myanmar, northern Thailand, and western Laos. In comparison, Figure 8 (b-m) shows the monthly mean 454 

CO emissions derived from the SEAF inventory, which exhibit remarkably consistent spatial and 455 

temporal patterns with the satellite observations. The Region 2 shows a distinct emission peak during 456 

March and April, with maximum hourly emissions exceeding 0.8 × 106 g h-1, closely matching the spatial 457 

extent and intensity of TROPOMI-observed CO enhancements. Moreover, SEAF emissions also 458 

captured the temporal evolution of CO concentrations with high fidelity. The monthly SEAF-derived CO 459 

emissions in Region 2 exhibit a strong linear correlation with TROPOMI CO column densities (R = 0.97) 460 

in Figure 8 (a). Both datasets reflect a coherent seasonal trend: a progressive increase from January to 461 

March, a clear peak in March, followed by a substantial decline through September, and a modest 462 

rebound toward the end of the year. Importantly, the SEAF inventory not only reproduced the seasonal 463 

variability but also successfully captured the precise timing and magnitude of the peak fire season. 464 

To assess the accuracy of the SEAF inventory at the event scale, a representative BB episode that 465 

occurred on 9 March 2023 was examined using multi-source satellite data (Figure 9). The fire location 466 

and associated smoke plume evolution were clearly captured by VIIRS (Figure 9 (a)) and time-resolved 467 

Himawari-9 true-color imagery (Figure 9 (c-n)), with red markers indicating active fire pixels. 468 

Corresponding CO emissions were quantified from both TROPOMI satellite retrievals and the SEAF 469 

inventory (Figure 9 (b)). The SEAF-derived CO emissions for this event totaled 0.307 Gg, closely 470 

aligning with the TROPOMI-based estimate of 0.283 Gg. The relative deviation of 7.81% was well 471 

within the <10% random error margin defined for the TROPOMI CO product (Martínez-Alonso et al., 472 

2020), demonstrating the inventory’s strong capacity to reproduce fire-induced emissions from individual 473 

events with high accuracy. 474 

3.3.2 Comparison of SEAF-derived PM2.5 with five existing BB inventories 475 

To evaluate the reliability of PM2.5 emissions estimated by the SEAF inventory, a quantitative comparison 476 
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was performed against five widely used BB emission inventories (GFAS, FINN, FEER, QFED, and 477 

IS4FIRES). The SEAF inventory showed a total annual PM2.5 emission of 2362 Gg yr-1 over SEA in 478 

2023, which lies near the midpoint among the values given by the selected inventories in Figure 10 (a). 479 

This value is substantially lower than that of FINN v2.5.1 (7099 Gg yr-1), which has been shown to 480 

overestimate BB emissions in this region (Jin et al., 2024). Relative to FINN, SEAF reduced the 481 

estimated emissions by approximately 66.7%. Emission estimates from SEAF closely aligned with those 482 

of FEER v1.0 (2335 Gg yr-1) and QFED v2.6r1 (2345 Gg yr-1), suggested that the SEAF estimates are 483 

constrained and consistent with other satellite-derived products. Moreover, SEAF showed strong 484 

consistency with FEER and QFED in Regions 1 and 2. In contrast, FINN consistently produces higher 485 

estimates, with the largest discrepancy in Region 2, where its emissions are nearly four times those of 486 

SEAF (Figure 10 (b-e)). Notably, SEAF also excelled in capturing the seasonal variability of PM2.5 487 

emissions (Figure S6). In Region 2, emissions peak during March and April, reaching approximately 500 488 

Gg month-1, consistent with dry-season fire activity. This peak was reproduced by SEAF through a 489 

dynamic diurnal gap-filling approach that reconstructs temporal fire intensity patterns. GFAS and FEER 490 

underestimated the seasonal maximum, while FINN overestimated emissions and did not accurately 491 

reflect seasonal trends. 492 

Regarding spatial distribution, SEAF accurately delineated key emission hotspots over northern 493 

Myanmar, northern Thailand, and western Laos (Figure 11), showed strong agreement with observed CO 494 

column enhancements from TROPOMI. In contrast, GFAS and FEER generated more spatially diffuse 495 

and inconsistent patterns, while FINN tended to overestimate both the magnitude and spatial extent of 496 

emissions across SEA. Spatial resolution also contributed significantly to inventory performance (Figure 497 

S7). SEAF (3 km) and FINN (1 km) provided finer-scale spatial detail compared to the coarser 10 km 498 

resolution of GFAS, QFED, FEER, and IS4FIRES. SEAF demonstrated enhanced spatial fidelity, 499 

effectively capturing localized emission hotspots and surface heterogeneity, including water bodies and 500 

bare land, particularly in topographically complex regions. While FINN showed similarly fine spatial 501 

resolution, it frequently overestimated emissions across various regions, resulting in higher total 502 

emissions and exaggerated spatial coverage. In contrast, coarse-resolution inventories smooth localized 503 

features, potentially obscuring critical emission signals. 504 

3.4 Prediction of smoke plume height 505 

Figure 12 (a) presents the SPH predicted by the RF model, demonstrating a high overall consistency with 506 

the MISR observations (R2 = 0.9, RMSE = 334.68 m). Predictions falling within the reasonable range 507 

(defined as "Good", with a bias within ±500 m) accounted for 90.6% of the RF model results. In contrast, 508 

the traditional IS4FIRES achieved predictions within the "Good" range for only 57% of cases, while the 509 

PRM scheme commonly employed in air quality models performed even lower, at merely 44% (Rémy 510 

et al., 2017). Furthermore, the RMSE values for the traditional models were significantly higher, at 533 511 

m and 955 m, respectively, compared to the 334.68 m RMSE of the RF model developed in this study. 512 

These results collectively indicate a substantial advantage of the present machine learning approach for 513 

predicting SPH. 514 

SHAP analysis was applied to interpret the contribution of environmental variables to SPH predictions, 515 

providing insights into both the magnitude and direction of each factor’s influence. The SHAP value sign 516 

indicates whether a variable positively or negatively affects SPH, while color represents the variable's 517 
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magnitude (red for high, blue for low). Temperature- and radiation-related variables emerged as the 518 

dominant drivers (Figure 12 (b)), consistent with previous findings that atmospheric temperature governs 519 

the buoyant transport of BB plumes (Feng et al., 2024; Freitas et al., 2007; Val Martin et al., 2010). In 520 

particular, the vertical integral of temperature (Vit) was the most significant factor, capturing the effect 521 

of atmospheric thermal structure on plume rise: larger vertical temperature gradients provide greater 522 

buoyant energy, leading to higher injection altitudes. Terrain elevation (z) was also identified as a key 523 

factor, as elevated regions promote stronger localized convection, especially in topographically complex 524 

areas like SEA. Longitude demonstrated high importance as well, reflecting the east–west climatic and 525 

geographic heterogeneity that significantly influences plume dynamics. Other notable variables included 526 

surface solar radiation (ssr), month, and latitude. Previous studies (Cohen et al., 2018; Feng et al., 2024; 527 

Holanda et al., 2023) have shown that seasonal variations in surface heating and fire activity during dry 528 

periods can enhance plume rise. The RF-SHAP model further revealed that these seasonal variables 529 

interact in a complex and nonlinear manner, particularly involving month, solar radiation, surface heating, 530 

and fire intensity. This intricate interplay helps explain why traditional models tend to perform poorly in 531 

regions characterized by strong seasonal variability. Additional factors such as planetary boundary layer 532 

height (blh), 10 m wind speed (v10), and FRP also contributed substantially. Higher FRP increases the 533 

mechanical energy available for vertical transport, while elevated PBL height offers a channel for plume 534 

penetration into the free troposphere. Importantly, SHAP analysis revealed that the influence of FRP is 535 

highly dependent on meteorological conditions, exhibiting strong nonlinear relationships that are often 536 

oversimplified in traditional models such as PRM. Although variables such as near-surface humidity 537 

(d2m), vegetation index (lai_hv), and sensible heat flux (sshf) played relatively minor roles compared to 538 

dominant predictors, they still contributed meaningful information related to aerosol microphysics, fuel 539 

availability, and surface energy exchange. The RF-SHAP framework effectively integrates these 540 

nonlinear and region-dependent factors, providing a more comprehensive and interpretable alternative to 541 

conventional plume-rise schemes. 542 

3.5 3D Biomass Burning inventory assessment 543 

Based on the previously constructed 2D SEAF inventory and SPH derived from the RF-SHAP model, a 544 

high-resolution 3D BB emission inventory (3D SEAF) was constructed in this study. Vertical allocation 545 

followed the approach proposed by the Texas Commission on Environmental Quality and the five-layer 546 

scheme of IS4FIRES (0.025km, 0.275km, 1.0km, 2.75km, and 5.5km) (Texas Commission on 547 

Environmental Quality, 2022). This approach yields a vertically resolved PM2.5 emission dataset across 548 

five altitude bands. 549 

A comparison of monthly emissions from the 3D SEAF and IS4FIRES inventories (Figure 13) reveals 550 

similar seasonal patterns, with both inventories capturing a pronounced peak in fire emissions during 551 

March and April. Both inventories show a pronounced vertical uplift during these months, reflecting the 552 

intense burning and consequent plume rise in the dry season. Notably, during the peak period (March–553 

April), SEAF allocates less PM2.5 to the lowest layers (0.025 km and 0.275 km) than IS4FIRES, while 554 

substantially increasing emissions in the upper layers (2.75 km and 5.5 km). This suggests that IS4FIRES 555 

may underestimate upper-level emissions, whereas SEAF offers a distribution more consistent with 556 

MISR-observed plume structures. 557 

Figure 14 (a–e) illustrates the spatial distribution of 3D SEAF emissions across different vertical layers. 558 
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At the lowest level (0.025 km), emission intensities are generally low, with pronounced hotspots 559 

primarily located in northern Myanmar, northern Thailand, and Laos, where values reach up to 0.4 g m -560 

2 yr-1. With increasing altitude, particularly at 0.275 km and 1 km, emission intensities increase 561 

significantly, with peak values of approximately 1.6 g m-2 yr-1 observed across Region 2. As altitude 562 

increases further to 2.75 km and 5.5 km, emission hotspots become increasingly confined, and the spatial 563 

extent of high-emission areas is reduced. Although the emission intensity at 5.5 km decreases relative to 564 

lower layers, notable localized plumes persist, especially over northern Laos. These patterns underscore 565 

the characteristic vertical uplift of BB plumes, extending from the near-surface to the lower troposphere. 566 

Figure 14 (f) further compares the vertical frequency distribution of SEAF emissions with those from 567 

MISR, GFAS, IS4FIRES, and CALIPSO satellite observations across SEA. The SEAF inventory exhibits 568 

a strong peak in emission frequency below 1km, reaching a maximum relative frequency of ~0.7, 569 

followed by a rapid decline above 1 km. Nevertheless, SEAF still registers non-negligible emissions 570 

above 2.75 km, reflecting its ability to represent both surface-concentrated and elevated plume injection 571 

events. This vertical profile closely aligns with CALIPSO observations, which also reveal near-surface 572 

dominance in aerosol vertical structure. In contrast, MISR, GFAS, and IS4FIRES display a broader 573 

vertical distribution of emissions. Specifically, GFAS exhibits relatively high emission frequencies in the 574 

3–5 km altitude range, while MISR and IS4FIRES maintain substantial emission fractions between 2.75 575 

and 5.5 km. Although the SEAF inventory shows lower emission frequencies in the middle and upper 576 

atmospheric layers compared to these inventories, it still retains a persistent, albeit smaller, fraction of 577 

emissions at 5.5 km. Notably, this aligns well with the extended plume tails observed by CALIPSO and 578 

GFAS, indicating the SEAF inventory’s ability to represent both the near-surface concentration of BB 579 

plumes and the occurrence of elevated smoke layers. Such performance is consistent with independent 580 

satellite observations and highlights the realistic representation of plume dynamics provided by the SEAF 581 

vertical allocation scheme. 582 

4. Discussion 583 

The SEAF BB emission inventory developed in this study advances spatiotemporal resolution, dynamic 584 

adjustment, and vertical distribution modeling. Cloud correction and cross-calibration between VIIRS 585 

and Himawari-8/9 reduce biases associated with cloud cover and revisit cycles, yet uncertainties remain 586 

under extreme meteorological conditions and at large satellite zenith angles where simple cloud-fraction 587 

metrics cannot fully capture fire variability (Wang et al., 2018; Xie et al., 2018). The reconstruction of 588 

FRP diurnal cycles through Gaussian fitting effectively addresses data gaps but assumes a unimodal daily 589 

pattern. This simplification does not always reflect BB activity in SEA, where agricultural burning, 590 

peatland fires, and anomalous climate events often produce bimodal or irregular temporal structures (Fan 591 

et al., 2023; Yin, 2020). Regarding peatland fires, we acknowledge the inherent limitation of the FRP-592 

derived top-down approach in capturing emissions from deep smoldering combustion. While this study 593 

seeks to address this limitation by applying peatland-specific emission factors, a strategy that yields 594 

regional totals in broad agreement with other inventories, the potential for underestimation remains a key 595 

source of uncertainty (Fisher et al., 2020). Consequently, rapid fluctuations or emergent fire behaviors 596 

may be underestimated despite the application of dynamic adjustments. 597 

For the vertical allocation, a RF-SHAP model trained with MISR plume heights, ERA5 meteorology, 598 

and FRP was used to predict SPH, which then guided a five-layer distribution scheme following the 599 

Texas Commission on Environmental Quality and IS4FIRES. This hybrid approach links data-driven 600 
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SPH prediction with a structured allocation framework and offers advantages over conventional plume-601 

rise parameterizations. However, the coarse resolution of ERA5 together with the sparse sampling of 602 

MISR limit the representation of fine-scale convection and extreme lofting, resulting in potential 603 

underestimation during localized outbreaks (Sessions et al., 2011; Val Martin et al., 2012). Compared 604 

with GFAS, FINN, FEER, QFED, and IS4FIRES, SEAF captures emission magnitudes and seasonal 605 

variability more accurately, yet short-lived peaks and near-surface emissions remain underrepresented, 606 

reflecting the emphasis on dominant injection layers rather than rare extreme events. Further 607 

improvements will require higher-resolution meteorological fields, integration of additional 608 

geostationary platforms such as Geostationary Environment Monitoring Spectrometer (GEMS) and 609 

GOES-R, and complementary lidar observations (e.g., CALIPSO) to better constrain vertical injection 610 

under extreme and under-sampled conditions. 611 

5. Conclusion 612 

The SEAF emission inventory was developed as an hourly 3 km resolution 2D/3D dataset for 2023, 613 

addressing deficiencies in diurnal profiles and vertical injection of BB emissions. The inventory 614 

integrates cloud-corrected, cross-calibrated FRP from AHI and VIIRS with a region- and vegetation-615 

specific Gaussian reconstruction and dynamic gap filling, restoring missing peaks while minimizing 616 

artificial inflation. Validation against TROPOMI CO (R = 0.97) and independent estimates indicates high 617 

reliability, with annual PM2.5 emissions (2362 Gg) consistent with FEER and QFED and substantially 618 

lower than FINN. The vertical dimension is constrained through a RF-SHAP interpretation trained with 619 

MISR and ERA5, achieving an R2 = 0.90 and an RMSE = 335 m, and reallocating injection from near 620 

surface layers toward 2.75 and 5.5 km during the spring burning peak in closer accordance with MISR 621 

and CALIPSO structures. These improvements in temporal completeness and vertical realism enhance 622 

the representation of BB emissions in chemical transport models, supporting more robust assessments of 623 

air quality, transboundary smoke transport, and radiative impacts in SEA. 624 

Data Availability 625 

The SEAF emission inventory developed in this study, including 2D/3D hourly products at 3 km 626 

resolution for 2023, is publicly available at Zenodo (https://doi.org/10.5281/zenodo.16793129) (Jin et 627 

al., 2025). Satellite datasets used include FRP from the AHI onboard Himawari-8/9 provided by the Japan 628 

Meteorological Agency (JMA), FRP from the VIIRS onboard Suomi-NPP and NOAA-20 provided by 629 

NASA/NOAA, column carbon monoxide (CO) from the TROPOMI operated by the European Space 630 

Agency (ESA), and plume height observations from the MISR provided by NASA. ERA5 meteorological 631 

reanalysis data were obtained from the ECMWF. All datasets are openly accessible from their respective 632 

providers. 633 
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Table 1. Statistics on the duration of sustained burning and periods of high probability of burning 927 

in different regions and vegetation types (Figure 1). 928 

Regions Vegetation T_gap (hours)a Filling periods (UTC) 

1 Croplands 3 1-3 

1 Forests 4 2-5 

1 Grasslands 3 1-3 

1 Peatlands 3 4-6, 20-22 

1 Shrublands 10 1-10 

2 Croplands 7 7-13 

2 Forests 3 5-7 

2 Grasslands 7 5-11 

2 Peatlands 3 21-23 

2 Shrublands 3 5-7 

3 Croplands 3 6-8 

3 Forests 10 0-9 

3 Grasslands 3 1-3 

3 Peatlands 3 20-22 

3 Shrublands 9 0-8 

4 Croplands 5 7-11 

4 Forests 6 5-10 

4 Grasslands 14 0-13 

4 Peatlands 10 13-22 

4 Shrublands 3 3-5 

aT_gap: longest continuous fire duration within a high-burning period (frequency ≥ 0.9), allowing 929 

merging if separated by short gaps (mean frequency ≥ 0.5). 930 
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Table 2. Emission factors (unit: g kg−1) 931 

Species Forest Shrubland, Grassland Cropland Peatland 

CO2 1570 1660 1430 1590 

CO 113 69 76 260 

NOx  3.0 2.5 2.4 1.2 

NH3 0.98 0.89 0.99 4.2 

SO2 0.70 0.47 0.80 4.3 

PM2.5 18.5 6.7 8.2 18.9 

OC 10.9 3.0 4.9 14.2 

BC 0.55 0.53 0.42 0.10 

 932 
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 945 

Figure 1. (a) MODIS land cover for 2023 in Southeast and East Asia. (b) Köppen climate 946 

classification Map (climate baseline 1991-2020), with representative high biomass burning 947 

emission regions based on Giglio et al., (2006), including 1. Southern Southeast Asia, 2. Mainland 948 

Southeast Asia, 3. Southern China, and 4. Northern China. Climate types include Af (tropical 949 

rainforest), Am (tropical monsoon), Aw (tropical savanna), Bwk (cold desert), Bsk (cold semi-arid), 950 

Cwa (humid subtropical with dry winter and hot summer), Cwb (temperate highland tropical 951 

climate with dry winter and warm summer), Cfa (humid subtropical with hot summer and no dry 952 

season), Dwa (humid continental with dry winter and hot summer), Dwb (humid continental with 953 

dry winter and warm summer), Dwc (subarctic with dry winter and cold summer), and ET 954 

(tundra). 955 
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 957 

Figure 2. Methodological framework for constructing hourly three-dimensional biomass burning 958 

emission inventories in Southeast and East Asia. 959 
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 960 

Figure 3. Characterizes the temporal distribution of sustained burning ≥ 3 hours in different 961 

regions and land types. 962 
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 963 

Figure 4. Cloud correction of gridded FRP data from VIIRS and AHI. The first row shows the 964 

correction for NPP, the second row for NOAA20, and the third row for Himawari-9. The last 965 

column displays the difference between the corrected and uncorrected FRP data. 966 
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 973 

Figure 5 Dynamically adjusted Gaussian gap-filling of FRP diurnal cycles for representative 974 

regions and vegetation types in 2023. Solid black circles represent original observed FRP data, solid 975 

red triangles represent gap-filled FRP values for missing observations, gray solid lines are original 976 

climatological Gaussian fitting, blue dash-dot lines show dynamically adjusted Gaussian fitting 977 

results (Gaussian Least Squares, GLS), green dotted lines represent climatological Gaussian fitting 978 

with adjustment factor d only (Gaussian Vertical Movement, GVM). 979 
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 981 

Figure 6. Bar chart comparing the total hourly FRP (2023) before and after Gaussian fitting 982 

adjustments across four climatic regions and five vegetation types. The time of the maximum 983 

proportion of filled FRP to unfilled FRP is also annotated, with some panels displaying enlarged 984 

insets. 985 
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 1000 

Figure 7 Spatial comparison of mean daily fire radiative power (FRP) distributions in the SEA 1001 

region during 2023. (a) gap-filled dynamic reconstruction, (b) original observations, (c) traditional 1002 

Gaussian fitting, (d) difference between (a) and (b), and (e) difference between (a) and (c). 1003 
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 1005 
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 1010 

Figure 8 Monthly CO emissions over SEA in 2023 based on the SEAF inventory and comparison 1011 

with satellite observations. (a) Temporal variation of monthly CO emissions from SEAF and CO 1012 

column concentrations from TROPOMI over Region 2; (b–m) Spatial distribution of monthly 1013 

mean CO emissions derived from SEAF. 1014 

 1015 

 1016 

https://doi.org/10.5194/essd-2025-515
Preprint. Discussion started: 21 October 2025
c© Author(s) 2025. CC BY 4.0 License.



 

37 

 

 1017 

Figure 9 (a) True-color image from VIIRS, (b) comparison between CO emissions from TROPOMI 1018 

observations and the SEAF emission inventory, and (c) true-color image from Himawari-9, with 1019 

red dots indicating fire locations. 1020 
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 1024 

Figure 10 Comparison of SEAF PM2.5 emissions with five BB emission inventories. 1025 
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 1030 

Figure 11 Spatial comparison of PM2.5 emissions from SEAF and five BB emission inventories. 1031 
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 1036 

Figure 12 (a) Random Forest (RF)-based prediction of BB plume height and (b) SHAP-based 1037 

analysis of key driving variables (Table S1). 1038 
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 1043 

Figure 13 Vertical distribution comparison of SEAF and IS4FIRES PM2.5 (Jan-Dec) emissions. 1044 
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 1049 

Figure 14 (a-e) Spatial distribution of SEAF PM2.5 emissions at vertical five altitude levels (0.025-1050 

5.5 km), and (f) vertical comparison. 1051 

 1052 

 1053 

 1054 

https://doi.org/10.5194/essd-2025-515
Preprint. Discussion started: 21 October 2025
c© Author(s) 2025. CC BY 4.0 License.


