
1.General Comments: 

Jin et al. clearly define the issue at hand and how they have contributed to the solution and what the 

resulting benefits are to science and society; namely, that common biomass burning emission inventories 

often omit diurnal information and vertical injection heights of fires, and that by incorporating their ideas, 

they have an emissions product for Southeast and East Asia (SEAF) that includes these two important 

pieces of information that ultimately improves the accuracy of models used for reporting and assessment 

of air quality, climate and public policy. They have done careful work to compare their results with 

measurements from TROPOMI, MISR and CALIPSO, and they present a comparison of their emissions 

dataset with common established BB emission datasets. 

Of particular note is that they have been able to generate SEAF in such a way as to closely match not 

only the 2D structure of emissions observed from satellite, but the 3D structure as well, with the help of 

machine learning, albeit difficult for them to capture short-lived fires and emissions from low-lofted 

plumes. This is an encouraging contribution to the biomass burning emissions research community, and 

furthers the community’s desire to see uncertainty in regional and global emissions decrease significantly. 

The main concern of this reviewer involves their method for generating and applying the diurnal FRP 

cycle. The authors need to include more discussion and review of the community’s efforts regarding this 

very needed step in emission inventory development, and to show how their efforts are either similar to 

these previously published methods or are an improvement upon them. 

Overall, I recommend this article for publication with minor revisions. 

Response: We sincerely thank the reviewer for the comprehensive summary and the encouraging 

assessment of our work. We fully agree that the manuscript should better position our diurnal FRP-cycle 

method within the broader community efforts and more explicitly state what is inherited from prior 

approaches and what is new in our framework. We have revised the manuscript accordingly. Please note 

that text in “italics and underlining” represents the revised sentences in the modified manuscript. 

1. Enhanced review of community efforts on diurnal FRP modeling: In the revised Introduction, we 

expanded the background discussion to provide a more complete and more balanced overview of the 

development of diurnal FRP modeling (Introduction, Lines 112–122: A critical prerequisite for reducing 

uncertainty in emission estimates is the accurate reconstruction of the FRP diurnal cycle. Vermote et al., 

(2009) and Ellicott et al., (2009) established the foundational theoretical basis for using Gaussian 

functions to fit diurnal fire cycles from geostationary data. Subsequently, Kaiser et al., (2012) 

incorporated Kalman filtering in the Global Fire Assimilation System to address cloud gaps, while 

Andela et al., (2015) demonstrated the strong dependence of diurnal cycles on ecosystem types. More 

recently, Li et al., (2019, 2022) reconstructed sub-daily FRP variability by combining polar-orbiting and 

geostationary observations, with temporal gaps filled by integrating both available observations and 

ecosystem-specific diurnal climatologies, whereas Zheng et al., (2021) utilized Himawari-8 observations 



to implement an event-based Gaussian representation of the FRP diurnal cycle, establishing a critical 

regional reference for geostationary-based fire monitoring in East Asia.).  

2. Clarification of similarities and improvements: In response to your request to show how our efforts 

are either similar to, or an improvement upon, previously published methods, we now clearly distinguish 

between methodological heritage and innovation. 

(1) Similarity (heritage): As clarified in the revised Introduction and Methodology, our approach builds 

upon the community-established Gaussian representation of diurnal FRP cycles, thereby maintaining 

physical consistency with prior work. Historical statistics are used to determine the shape parameters of 

the diurnal curve, consistent with earlier Gaussian-based frameworks (Eq. (8)). 

𝐹𝑅𝑃(𝑡) = 𝑎𝑒
−

(𝑡−𝑏)2

2𝑐2 + 𝑑 (8) 

Where 𝑎, 𝑏, 𝑐 are shape parameters controlling the amplitude, peak time, and width of the diurnal FRP 

cycle, respectively, derived from historical statistics for specific land cover types and regions. 

(2) Improvement (innovation): We explicitly articulate the limitations of commonly used static 

climatological diurnal profiles, which are often applied when observations are missing and may introduce 

biases during non-active or extreme fire periods (Introduction, Lines 122–131: Despite these advances, 

when observations are partially missing due to cloud occlusion or limited temporal sampling, many FRP-

based emission frameworks still rely on static diurnal representations to fill gaps, such as superimposing 

predefined Gaussian-shaped curves or adopting climatological diurnal profiles that are invariant in time 

(Wooster et al., 2021). Such static treatments can lead to biases in emissions during non-active periods 

or dampen peak fire activity during extreme events, thereby introducing additional uncertainty into 

emission estimates. These limitations indicate that, although Gaussian-based representations of diurnal 

FRP cycles are widely adopted and physically grounded, their application in regions with frequent cloud 

cover and episodic extreme fires requires dynamic, event-specific adjustment rather than reliance on 

climatological averages.). To overcome these limitations, we introduce a two-stage adaptive fitting 

strategy (Eq. (8)). Where 𝑎, 𝑏, 𝑐 are shape parameters controlling the amplitude, peak time, and width 

of the diurnal FRP cycle, respectively, derived from historical statistics for specific land cover types and 

regions. The parameter 𝑑 is an event-specific additive adjustment that shifts the diurnal curve vertically 

to match the observed FRP level of a given day and can either increase or decrease the overall magnitude 

relative to the climatological baseline. Distinct from traditional static climatological Gaussian schemes, 



we implement a two-stage adaptive fitting strategy. When sufficient instantaneous observations are 

available for a fire event (≥ 4 detections) and the reconstruction is stable (R2 ≥ 0.8, indicating that the 

diurnal shape is sufficiently constrained by observations), all parameters  (𝑎, 𝑏, 𝑐, 𝑑)  are jointly 

optimized to capture event-specific diurnal variability. However, when observations are sparse (< 4) or 

the reconstruction is unstable (R2 < 0.8), the shape parameters (𝑎, 𝑏, 𝑐) are fixed to their climatological 

values and only 𝑑 is solved from the available observations. This constrained formulation preserves a 

physically realistic diurnal shape while anchoring the overall magnitude to satellite observations, 

thereby reducing systematic mean-level offsets and, in a least-squares sense, providing a closer fit to the 

available observations than the pure climatological Gaussian baseline. Importantly, gap filling is not 

applied to all missing hours. Instead, the reconstruction is constrained to the high probability sustained 

burning windows determined in Table 1 for each region and vegetation type, and missing FRP is filled 

only within these statistically supported windows using Eq. (8) and the two-stage adaptive fitting strategy. 

This constraint prevents spurious reconstruction across low probability hours when sustained burning is 

unlikely, thereby preserving the physical realism of the reconstructed diurnal evolution. 

(3) Evidence of improvement: The effectiveness of the proposed dynamic adjustment is demonstrated 

by its dual capability to mitigate systematic underestimation while preventing artificial emission inflation. 

⚫ At the event scale, the method selectively recovers missing fire signals during critical windows. As 

stated in the revised manuscript: (Section 3.2.2: Across all regions and vegetation types, 

reconstructed FRP profiles showed marked enhancements, particularly during key burning periods 

underrepresented in the original observations... In Region 1, cropland fires exhibited pronounced 

morning peaks (08:00–12:00 local time), with FRP increased by 67.7% after reconstruction... In 

Region 4, shrubland FRP increased by 88.7% during 16:00–00:00 local time, revealing active 

evening-to-night burning that was systematically underestimated due to twilight detection gaps.). 

These localized adjustments ensure that missing fire activity is recovered based on physical 

evidence and agricultural practices. 

⚫ To ensure robustness when data are sparse, we implement a constrained logic: (Section 3.2.2: In 

contrast, under observation-limited or unstable fitting conditions, the method employs a physically-

constrained regularization strategy. By intentionally anchoring the diurnal shape to the established 

climatology and adjusting only the magnitude parameter, the framework effectively prevents the 



introduction of artificial peak shifts or structural artifacts...). This ensures we do not "over-fit" the 

data when observations are insufficient. 

⚫ At the regional scale, Fig. 7 demonstrates that the improvement is primarily a correction of 

systematic bias. We have added the following explanation: (Section 3.2.2: The original 

observations systematically underestimate FRP due to cloud contamination, low temporal sampling 

frequency, and twilight detection blind zones... It should be noted that the relatively small changes 

in mean FRP compared to the standard deviation reflect systematic bias adjustment rather than 

random variability... The dynamically fitted FRP showed improved regional means (e.g., 23.85 MW 

in Region 2 and 17.49 MW in Region 4), representing relative increases of 3.52% and 1.62% 

compared to the original data.). 

⚫ Overall, the dynamic adjustment framework improves the temporal representativeness of FRP by 

recovering underdetected fire activity during under-sampled periods, while avoiding artificial 

amplification associated with conventional climatological Gaussian fitting (Section 3.2.2: Across 

all regions and vegetation types, reconstructed FRP profiles showed marked enhancements, 

particularly during key burning periods underrepresented in the original observations; Overall, the 

dynamically adjusted FRP profiles exhibited markedly improved temporal continuity compared 

with the original observations, capturing the primary peaks of fire activity and recovering missing 

signals during under-sampled periods; and the Gaussian fitting method … resulting in systematic 

overestimation in certain regions, primarily due to artificial amplification during inactive periods). 

As a result, the dynamically adjusted FRP yields more realistic regional mean values and improved 

statistical representativeness at the regional scale (Section 3.2.2: The dynamically fitted FRP 

showed improved regional means … representing relative increases of 3.52% and 1.62% compared 

to the original data; and the relatively small changes in mean FRP compared to the standard 

deviation reflect systematic bias adjustment rather than random variability). 

Specific Comments: 

2.Lines 74-76: I believe this statement is a bit misleading. The authors are claiming here that 

the “integrated inventories” (i.e. the multi-source emissions datasets that incorporate diurnal 

cycles) generally have a large uncertainty when compared to the standard emission 

inventories.  There may be two issues: 1) the authors are making the case that the standard 

inventories have uncertainty themselves and thus the need for integrated inventories, so 

although comparing against these standard inventories is important, we need to know if the 

areas where these standard inventories are weak and if the integrated inventories improve upon 



them, and 2) Xu et al. 2023b is given as a paper that has assessed these integrated inventories 

and found large uncertainty (the numbers given in this sentence), but it seems as if the paper is 

only assessing their CHOBE inventory, which is not mentioned in their list of examples 

previously, and moreover, it does not assess any of the more well-known integrated inventories 

that the authors here present to us.  It would be good to better present the issues with the 

integrated inventories that already exist, and to show how they improve upon the standard 

inventories but still underperform in areas that a new inventory can accomplish. 

Response: Thank you for this careful and insightful comment. We fully agree that the statement 

in the original version of the manuscript regarding the uncertainty of “integrated inventories” 

was potentially misleading and did not clearly distinguish between the limitations of standard 

inventories and the advances achieved by multi-source integrated approaches. In response, we 

have substantially revised and restructured the Introduction to address this issue more clearly 

and transparently.  

(1) We removed the generalized claim that integrated inventories exhibit “large uncertainty” 

and revised the associated citation strategy, avoiding reliance on Xu et al. (2023b), which 

evaluates a specific inventory rather than the broader class of integrated products. This revision 

ensures that the discussion of previous work remains contextually accurate and avoids 

inappropriate generalization. 

(2) The revised Introduction now explicitly acknowledges the well-established improvements 

provided by existing integrated inventories. As stated in the revised text, recent studies 

combining geostationary and polar-orbiting FRP observations (e.g., Li et al., 2019,2022; Xu et 

al., 2023) have successfully produced hourly, kilometer-scale emission products that 

significantly improve spatiotemporal characterization compared with conventional daily or 

monthly inventories. This revision makes clear that integrated inventories represent a substantial 

methodological advancement over standard products. 

(3) Rather than attributing remaining discrepancies to vague “uncertainty,” the revised text now 

identifies a specific and common methodological limitation shared by many existing 

frameworks. We explain that when observations are partially missing due to cloud occlusion or 

limited temporal sampling, many FRP-based emission frameworks still rely on static or 

climatological diurnal representations for gap filling. Such static treatments can introduce 

systematic biases by inflating emissions during inactive periods or damping peak fire activity 



during extreme events, particularly in regions with frequent cloud cover and episodic fires such 

as Southeast Asia. 

(4) We have emphasized that while previous integrated inventories improved surface (2D) 

temporal characterization, they often lack the explicit, observation-driven vertical injection 

heights required for comprehensive 3D atmospheric modeling. This justifies the necessity of 

the new SEAF inventory, which provides an observation-driven, hourly 3D BB emission dataset 

for the broader SEA region by integrating a dynamic diurnal adjustment with a machine-

learning-based vertical injection model. 

By restructuring the Introduction in this way, we clarify that the motivation for SEAF is not a 

general deficiency of integrated inventories, but rather a remaining methodological gap in 

dynamic, event-specific reconstruction of diurnal FRP cycles and their consistent extension to 

three-dimensional emission representations. 

3.Lines 76-79: It is mentioned that using a Gaussian scheme to reconstruct the diurnal cycle is 

a problem, but the authors use a Gaussian scheme themselves, so it should be specified better 

how the authors use the Gaussian scheme differently than the other integrated inventories. These 

works should be mentioned and discussed: Ellicott et al. 2009, Vermote et al. 2009, Andela et 

al. 2015, Kaiser et al. 2012, Li et al. 2019/2022, and Zheng 2021.  Ellicott and Kaiser are not 

mentioned in the paper at all.  Kaiser in particular provides an alternative method for cloud 

correction using a Kalman filter temporal prediction. 

Response: We sincerely thank the reviewer for highlighting these foundational studies and for 

pointing out that our original manuscript did not sufficiently clarify how our Gaussian-based 

approach differs from previous integrated inventories. We agree that this distinction needed to 

be made explicit, and we have revised both the Introduction and Methodology accordingly. 

(1) Expanded and updated literature review of Gaussian-based approaches: In the revised 

Introduction, we have substantially expanded the discussion of prior work to trace the 

development of diurnal FRP modeling within the community (see our response to General 

Comments (Item 1, above): Enhanced review of community efforts on diurnal FRP 

modeling)).  

(2) Clarification of how our Gaussian implementation differs from previous approaches: 

As noted by the reviewer, our method also adopts a Gaussian representation of the diurnal FRP 



cycle. However, the key distinction lies not in the functional form itself, but in how it is applied 

under observation-limited conditions. To avoid repetition, we refer the reader to our response 

to the previous Specific Comment (see our response to General Comments (Item 2, above): 

Clarification of similarities and improvements), where we detail the adaptive two-stage 

fitting strategy implemented in SEAF. 

4.Lines 208-209: Using a beta value of 0.95 seems really high to me. Does this mean that if you 

have only 5% non-cloud, you still estimate the undetected FRP for the 95% cloud-filled portion 

of a grid cell from the 5%?  Have you tried a lower threshold to see how the results change, or 

not? 

Response: We thank the reviewer for raising this important concern regarding the choice of the 

cloud-fraction threshold. When the cloud fraction β approaches 0.95, the cloud-correction 

scheme estimates grid-cell–aggregated FRP using the available clear-sky observations; 

however, this procedure is not a simple linear extrapolation from a small non-cloud fraction, 

nor does it assume spatial homogeneity within the grid cell. 

(1) Mathematical constraint by damping term 

The formulation in Eq. (2) explicitly includes a quadratic damping term (α = 0.25) to constrain 

amplification under high cloud-cover conditions. This term suppresses the rapid growth that 

would otherwise occur under a simple reciprocal correction. For example, at β = 0.95, the 

effective correction factor is limited to approximately 3–4 times the observed clear-sky FRP, 

rather than the ~20-fold amplification implied by a purely linear extrapolation (1/(1−β)). This 

design ensures that the cloud correction remains physically bounded even under heavily 

clouded conditions. 

(2) Sensitivity analysis across cloud-fraction thresholds 

To evaluate whether a high cloud-fraction threshold introduces instability or systematic 

overestimation, we conducted a sensitivity analysis in which β was varied from 0.70 to 0.95 for 

both NOAA-20 and Suomi-NPP VIIRS observations. The results show that total annual FRP 

estimates are highly stable across this range, with variations remaining below 0.5% (Fig. S2). 

This indicates that the cloud-correction scheme does not introduce numerical artifacts or bias 

regional-scale FRP budgets, even when a high threshold is applied. 

(3) Rationale for retaining β = 0.95 



Based on the combined mathematical constraint and the demonstrated empirical stability, a 

threshold of β = 0.95 was retained to avoid systematic underestimation of FRP in persistently 

cloudy regions of Southeast Asia, while maintaining numerical stability. This choice represents 

a balance between recovering cloud-obscured fire signals and preventing excessive 

amplification under extreme cloud-cover conditions. 

A summary of this sensitivity analysis has been added to Section 2.3.1 of the revised manuscript 

(Lines 314–316), and the full results are provided in the Supplementary Material (Fig. S2). 

5.Eqs. 3 & 4: If you combine the equations, the 1 cancels out and you are simply left with 

multiplying the AHI FRP by the ratio of VIIRS to AHI FRP for the coincident data. Perhaps it 

would be simpler to define r as simply the fraction, unless it is beneficial to center the ratios 

around zero. 

Response: We thank the reviewer for this sharp observation regarding the algebraic formulation. 

We fully agree that for a single instantaneous calibration, substituting Eq. (4) into Eq. (3) is 

algebraically equivalent to simply scaling AHI FRP by the VIIRS-to-AHI ratio. However, as 

the reviewer correctly surmised, we deliberately defined 𝑟𝑖  in the form of a zero-centered 

relative bias (1 + 𝑟𝑖) rather than a simple ratio, because this formulation offers significant 

advantages for statistical aggregation and numerical stability when calibration factors must be 

averaged across time and land-cover classes. We have revised Section 2.3.2 to explicitly clarify 

the statistical rationale behind this choice. 

(1) Statistical Robustness in Aggregation: Unlike a simple instantaneous correction, our 

method requires aggregating these factors to generate daily (𝑟𝑑,𝑗, Eq. 5) and monthly calibration 

factors when simultaneous observations are unavailable. Averaging zero-centered relative bias 

terms is generally more robust and statistically consistent than averaging direct ratios, which 

can be asymmetric and sensitive to outliers. 

(2) Interpretability: Defining 𝑟𝑖 as a relative bias allows 𝑟𝑖 = 0 to serve as a direct, intuitive 

baseline for perfect consistency between sensors. Positive and negative values immediately 

indicate the direction of the bias (underestimation or overestimation). 

(3) Unified Calibration Framework: This formulation provides a unified mathematical 

structure that connects the instantaneous bias (Eq. 4) with the dynamic daily aggregation (Eq. 

5) and monthly land-cover-specific adjustments (Eq. 6). This hierarchy ensures that the 



calibration logic remains consistent whether we are using a direct match or a temporal/spatial 

fallback, maintaining the integrity of the emission inventory across all scales.  

• 6.Eq. 6: I would be very interested to know if using ri instead of rml makes much of a difference 

in general. My idea would have been to prioritize the general calibration (rml) over of 

instantaneous calibrations (ri) in developing the diurnal cycle, but here you prioritize the 

instantaneous calibrations. 

Response: We thank the reviewer for raising this important question regarding the calibration 

hierarchy in Eq. (6). Below we clarify the distinct roles of the instantaneous calibration factor 𝑟𝑖 

and the monthly land-cover-specific factor 𝑟𝑚,𝑙 and explain why instantaneous calibration is 

prioritized when available. 

(1) Separation between magnitude calibration and diurnal shape reconstruction: Both 𝑟𝑖 

and 𝑟𝑚,𝑙 are applied solely to correct the magnitude (amplitude) of the AHI FRP to match the 

polar-orbiting reference. They do not determine the shape (e.g., peak time and width) of the 

diurnal cycle. As described in the Methodology, the shape parameters are derived from long-

term AHI statistics (2016–2023) using Gaussian fitting, ensuring the structural stability of the 

diurnal curve regardless of which calibration factor is used. 

(2) Rationale for Prioritizing Instantaneous Calibration ( 𝒓𝒊 ): We prioritize the 

instantaneous calibration factor (𝑟𝑖) whenever a reliable simultaneous VIIRS-AHI pair (± 5 min) 

is available. The primary reason is event-specific fidelity. 

⚫ Capturing Real Intensity: Using 𝑟𝑖 ensures that for a specific fire event, the AHI FRP 

magnitude is directly constrained by the high-quality VIIRS observation at that moment. 

⚫ Avoiding Over-smoothing: Prioritizing the general monthly average ( 𝑟𝑚,𝑙 ) would 

artificially smooth out the variations of individual fire events. For example, during extreme 

fire episodes where intensities significantly exceed the climatological mean, relying on 

𝑟𝑚,𝑙 would systematically underestimate the peak energy. 

(3) The Adaptive Hierarchy: Our approach functions as an adaptive hierarchy: instantaneous 

calibration (𝑟𝑖) is used to anchor event-specific magnitudes when available, while statistically 

robust daily or monthly averages (𝑟𝑚,𝑙) are used as a fallback under data-sparse conditions. This 

design maximizes physical fidelity at the event scale without sacrificing stability at longer 

temporal scales. While differences between using 𝑟𝑖 and 𝑟𝑚,𝑙 are most evident for individual 



high-intensity events, their influence is largely smoothed at monthly or regional scales, 

supporting the use of this hierarchical strategy. 

We have clarified this physical and statistical distinction in the revised Methodology to avoid 

any ambiguity regarding the impact of 𝑟𝑖  on the diurnal cycle structure. 

• 7.Eq. 7: Did you mean to say “VIIRS/AHI FRP = 0” instead of “… < 0”? 

Response: Yes. We thank the reviewer for pointing out this ambiguity. FRP is a physical 

quantity and cannot be negative. In the revised manuscript, we have reformulated Eq. (7) to 

remove the use of negative values and to explicitly distinguish between valid observations and 

missing data. 

𝐹𝑅𝑃𝑖
𝑓𝑢𝑠𝑒

= {
𝐹𝑅𝑃𝑖

𝑉𝐼𝐼𝑅𝑆 ⅈ ∈ Ω𝑉𝐼𝐼𝑅𝑆

𝐹𝑅𝑃𝑖
𝐴𝐻𝐼̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ⅈ ∉ Ω𝑉𝐼𝐼𝑅𝑆  ∧  ⅈ ∈ Ω𝐴𝐻𝐼

0 𝑜𝑡ℎ𝑒𝑟𝑤ⅈ𝑠𝑒

 (7) 

• 8.Line 263: I may not be understanding correctly, but if I do, I think the term “T_gap” conveys 

the opposite of what is being described. “T_gap” makes me think it is the period between high 

intensity burn periods, not how long the high intensity burn lasts. 

Response: We thank the reviewer for this helpful clarification. We agree that the notation 

“T_gap” was potentially misleading, as it could be interpreted as the interval between burning 

periods, whereas our analysis focuses on the duration of persistent burning. 

To remove this ambiguity, we have revised the manuscript by renaming “T_gap” to “T_SB” 

(sustained burning), which explicitly denotes the maximum duration of sustained burning 

derived from burning frequency statistics. We also revised the accompanying text and Table 1 

to clearly distinguish between the duration of sustained burning and the separation interval 

between adjacent burning windows. These changes clarify the physical meaning of the 

parameter and ensure consistent interpretation throughout the manuscript. 

• 9.Lines 268-269: Please explain how these Gaussian curves were constructed, e.g. were the 

peaks adjusted before averaging between days to account for any daily differences? 

Response: Thank you for this important clarification request. We agree that the construction of 

the Gaussian diurnal curves requires a clearer description, particularly regarding how daily 

variability is treated. 

(1) As clarified in the revised manuscript, the climatological Gaussian diurnal curves are 

derived from long-term Himawari-8/9 FRP observations (2016–2023), grouped by region and 

vegetation type. For each local-time bin, FRP observations from the full 2016–2023 record are 



aggregated to compute a multi-year mean FRP, yielding a 24-hour climatological mean diurnal 

profile. A Gaussian function is then fitted to this mean profile to estimate the characteristic 

diurnal shape (peak timing and width). No explicit peak shifting, temporal alignment, or 

normalization at the day level is applied prior to this fitting. The resulting curves are intended 

to represent statistically dominant diurnal fire behavior rather than day-specific variability 

(Lines 281-285: Long-term AHI observations (2016–2023) are used to derive climatological 

Gaussian representations of FRP diurnal cycles (constructed by computing multi-year mean 

FRP at each local-time bin to form a 24-hour mean diurnal profile). 

(2) Treatment of daily variability: Daily differences in fire intensity or peak strength are not 

handled through pre-alignment or averaging of daily peaks. Instead, as detailed in our response 

to the General Comments (see our response to General Comments (Item 2, above): 

Clarification of similarities and improvements), daily variability is captured through a 

subsequent dynamic adjustment step. When sufficient same-day observations are available, an 

event-specific magnitude parameter is solved while the diurnal shape remains physically 

constrained by the climatological Gaussian form (Sections 3.2.2–3.2.3). 

This clarification has been added to the revised manuscript to explicitly state that peak positions 

are not adjusted prior to averaging and that daily variability is accounted for through event-

specific dynamic adjustment rather than temporal alignment of peaks. 

• 10.Lines 340-342: citation needed 

Response: Thank you for this comment. The relevant text (Furthermore, comparisons of 

thermal anomaly observations from drones with both VIIRS and Himawari-8 data indicate that 

VIIRS measurements are more reliable.) has been fully revised in the updated manuscript 

(Section 3.1). The previous qualitative statement has been removed and replaced with a 

physically grounded, quantitative discussion of cloud-induced FRP underestimation and cross-

sensor differences, explicitly supported by established FRP-based emission and uncertainty 

studies (e.g., Kaiser et al., 2012; Andela et al., 2015b; Freeborn et al., 2014; Deng et al., 2024; 

Wickramasinghe et al., 2018; Hall et al., 2023). The revised section now includes region-

specific analyses showing 2–9% increases in VIIRS FRP due to cloud correction and explains 

the physical mechanisms behind observed sensor differences. This ensures that all statements 

are now properly referenced and methodologically justified. 



• 11.Lines 342-355: There doesn’t seem to be any citations or analysis done to show how the 

increased estimates of FRP in cloud-filled regions compare to reality. Clearly, there must be an 

increase, but without any general idea of how much is missing due to cloud cover, it doesn’t 

seem to decrease the uncertainty in the results. 

Response: We thank the reviewer for this insightful comment. We agree that it is critical to 

demonstrate that the cloud-correction scheme provides a physically constrained improvement 

rather than an arbitrary increase in FRP estimates. Accordingly, we have revised Section 3.1 to 

clarify the robustness of our results from three complementary aspects. 

(1) Physical basis and literature support: We explicitly document that persistent cloud cover 

leads to systematic underestimation of satellite-derived FRP, a limitation that has been widely 

recognized in FRP-based emission inventories and FRP field reconstruction studies (Kaiser et 

al., 2012; Andela et al., 2015b). The adopted coverage-based cloud-correction approach follows 

established practices in the literature and is therefore physically motivated rather than ad hoc. 

(2) Conservative magnitude constrained by known uncertainties: We quantify that cloud 

correction leads to a modest increase of approximately 2%–9% in VIIRS-derived FRP across 

all regions. Importantly, this adjustment range is comparable to, or smaller than, inherent sensor-

level FRP uncertainties (approximately 15–30%) and atmospheric attenuation effects reported 

in previous validation studies (Freeborn et al., 2014; Deng et al., 2024). This indicates that the 

correction is conservative and primarily reduces cloud-induced systematic low bias, rather than 

inflating FRP estimates beyond plausible physical bounds. The fact that the applied corrections 

fall well within the known sensor uncertainty envelope provides indirect validation of their 

physical reasonableness.  

(3) Cross-sensor consistency as internal validation: Crucially, the framework does not uniformly 

increase FRP values. While cloud correction increases VIIRS FRP, the subsequent cross-sensor 

calibration results in an overall decrease in AHI FRP (approximately −3% to −24%) by 

mitigating sensor-specific overestimations related to mixed-pixel effects and false detections 

(Hall et al., 2023; Wickramasinghe et al., 2018). This bidirectional adjustment—with VIIRS 

increasing and AHI decreasing—demonstrates that the method targets systematic biases in both 

directions and improves the overall physical consistency of the resulting FRP fields. This 

bidirectional behavior provides an internal plausibility check on the correction magnitude and 



demonstrates that the framework is not a uniform inflation scheme but a bias-correction system 

anchored to the cloud-corrected VIIRS reference. 

These clarifications and the corresponding quantitative analyses have been incorporated into 

the revised Results section (Section 3.1). While direct ground-truth validation in persistently 

cloudy regions remains challenging, as acknowledged in the broader FRP validation literature, 

the combination of a physically grounded methodology, conservative adjustment magnitudes 

within known uncertainty bounds, and improved cross-sensor consistency indicates that the 

applied corrections are unlikely to amplify uncertainty and instead act to reduce systematic low 

bias in the FRP estimates. 

12.Line 370 / Fig. S4: Please list the units for time in the caption – I can’t seem to make the 

“9:00-16:00 local time” for NE China (region 4) cropland (column 1) correspond to the figure. 

The x-axis shows this to peak at ~6:00, which if in UTC would correspond to a local CST time 

of 14:00, which is not the center of 9:00-16:00.  Also, it seems as if for Region 1 the Gaussian 

doesn’t work too well because of the prolonged right tail – perhaps a skew term should be 

introduced. 

Response: We thank the reviewer for pointing out the inconsistency between the reported peak 

times and the time axis in Fig. S5 (the pre-revision Fig. S4). We agree that this required 

clarification. 

(1) Time reference and unit clarification: In the revised manuscript, we have clarified that the 

x-axis in Fig. S5 represents hours in UTC. Correspondingly, all diurnal peak times reported in 

Section 3.2.1 have been revised to UTC, with local time provided only as a reference where 

necessary. For example, cropland fires in Northeast China (Region 4) peak between 

approximately 01:00 and 08:00 UTC, corresponding to 09:00–16:00 local time (UTC+8) 

(Section 3.2.1, Lines 591–592). These revisions ensure consistency between the figure and the 

text and remove ambiguity regarding the time reference. 

(2) We agree that this asymmetry indicates a departure from an ideal symmetric Gaussian shape 

and merits explicit discussion. In the revised Discussion, we now clarify that the pronounced 

right tail in Region 1 is likely driven by region-specific fire and observational characteristics 

rather than by a deficiency of the Gaussian framework itself (The prolonged right-tailed diurnal 

patterns observed in Region 1, which are potentially driven by the high thermal inertia of 



smoldering peatlands or persistent late-afternoon cloud interference…). Such conditions are 

common in tropical peatland-dominated regions and can lead to sustained or delayed fire 

radiative signals. We further acknowledge that, under these conditions, a symmetric Gaussian 

assumption may lead to a temporal shift or partial underestimation of evening emissions (…a 

symmetric Gaussian assumption may lead to a temporal shift or underestimation of evening 

emissions). Similar deviations from unimodal symmetric diurnal behavior have been reported 

in previous studies for tropical fire regions characterized by frequent cloud cover and long-

lasting combustion processes (Page et al., 2009; Rein, 2009). 

While a skewed fitting function could potentially better represent such asymmetric structures, 

we retain the Gaussian formulation in this study as a deliberate trade-off between computational 

robustness and the primary objective of climatological diurnal fitting, namely, the stable 

characterization of dominant fire peak timing for gap filling (Although this simplification 

represents a necessary trade-off between computational efficiency and capturing primary fire 

peaks…). This methodological choice is therefore intentional rather than an oversight, and we 

explicitly acknowledge this limitation and its associated uncertainty in the Discussion. 

• 13.Lines 378-380 / Fig. 5: Would you please briefly discuss what is going on in panels g and l. 

How are the filled data points so far off the GLS in g, and why was the peak not shifted right in 

l?  Of all the panels, only a, m, p, q and t seem convincing and substantial; the rest of the panels 

have peaks that are difficult to corroborate with the presented data. 

Response: Thank you for the reviewer’s insightful observation regarding Fig. 5. We 

acknowledge that the previous presentation, which included unstable GLS fits with R2 < 0.8 for 

demonstration, could be confusing. In the revised manuscript, we regenerated Fig. 5 to strictly 

follow our two-stage gap filling strategy. Each panel now displays only the fitting mode that is 

actually used for that event. 

In the revised Fig. 5, panels a, p, q, s, and t illustrate cases where the within-day sampling is 

sufficient to constrain the diurnal curve shape (R2 ≥ 0.8, and ≥ 4 detections), therefore the 

diurnal cycle is reconstructed using a least-squares GLS fitting. In contrast, the remaining 

panels, including g and l, represent cases with sparse or uneven observations where the diurnal 

shape parameters cannot be reliably constrained. In these cases, the framework switches to the 

GVM mode, in which the diurnal shape is fixed to region- and land-cover-specific 



climatological parameters and only an event-specific additive term d is solved from the 

available detections. 

This design directly explains the two reviewer questions. First, in panel g, the filled points are 

not expected to lie on the GLS curve because GLS is not applied in this information-limited 

case. Instead, the GVM reconstruction prioritizes physical plausibility and robustness by 

avoiding underdetermined shape optimization. Second, in panel l, the peak timing is not shifted 

to the right because the available observations do not provide sufficient constraints to justify a 

data-supported peak-time adjustment. Allowing a peak shift under such sampling would 

improve the visual fit locally but would introduce spurious timing changes that cannot be 

verified. 

Although GVM retains the climatological diurnal shape, it is still mathematically and 

practically superior to using a pure climatological Gaussian curve without event-level 

adjustment. Specifically, the additive term d is solved in a least-squares sense to minimize 

residuals to the available observations, thereby correcting systematic mean-level offsets 

between the climatological baseline and the observations for that specific day. As a result, the 

GVM mode anchors the reconstructed magnitude to the observed FRP level while avoiding 

artificial peak shifts or peak broadening under sparse sampling conditions. 

Overall, Fig. 5 is intended to demonstrate that the proposed two-stage strategy does not apply a 

single fitting approach to all cases. Instead, it uses GLS when the data support event-resolved 

fitting and switches to GVM when the sampling is insufficient, which is a conservative choice 

to prevent overfitting while maintaining physical consistency. This design choice is further 

supported by independent evaluations presented later in the manuscript, including improved 

peak timing statistics (Fig. 6), enhanced recovery of daily FRP totals (Fig. 7), and strong 

agreement between emission-derived CO and satellite observations. 

• 14.Lines 419-440 / Fig. 7: The differences between the original and filled mean FRP values are 

so low compared with their standard deviations that it’s hard to argue for the significance of 

these changes. Please address this.  Also, do I understand correctly that the conventional 

Gaussian fits result in lower FRP for most of the regions?  How did you define the conventional 

fit?  If simply by not using GLS and GVM, then would you mind mentioning how e.g. Ellicott 

et al. 2009, Zheng et al. 2021, and Andela et al. 2015 all have dynamic diurnal Gaussian fits 

that change amplitude and/or duration with each day’s data, and how you are similar or different 

in your approach. 



Response: We thank the reviewer for this insightful comment. We address below the 

interpretation of the mean FRP differences in Fig. 7, the definition of the conventional Gaussian 

fit, and the relationship between our approach and previously published dynamic diurnal 

Gaussian methods. 

(1) Interpretation of small mean differences relative to standard deviations: The relatively small 

changes in mean FRP compared with the large standard deviations shown in Fig. 7 do not 

indicate weak correction. Rather, they reflect the conservative nature of the reconstruction and 

the fact that the standard deviation primarily represents intrinsic spatiotemporal fire variability 

across heterogeneous fire regimes, rather than reconstruction uncertainty. In other words, the 

standard deviation shown in Fig. 7 is dominated by real fire intermittency and regional 

heterogeneity, not by the magnitude of the applied correction. Fig. 7 illustrates two opposing 

systematic effects: missing observations during sustained high-burning periods lead to 

systematic underestimation in the unfilled product, while unconditional application of diurnal 

Gaussian curves over a full 24-hour cycle tends to introduce artificial FRP during low- or non-

burning periods. The modest net change in the mean therefore reflects bias redistribution, 

whereby underestimation during active burning windows is reduced while overestimation 

during inactive hours is suppressed. As a result, statistical significance should not be assessed 

solely by the ratio of mean change to standard deviation, because the correction targets 

systematic temporal bias rather than overall variance reduction. 

(2) Definition and behavior of the conventional Gaussian fit: In this study, the “conventional 

Gaussian fit” refers to a static climatological diurnal curve derived from long-term averages 

and applied uniformly across the entire 24-hour cycle without conditioning on event duration, 

high-burning probability windows, or observation availability. This definition intentionally 

mirrors the most common implementation of climatological Gaussian gap filling used in many 

FRP-based emission frameworks. Under this definition, the conventional fit can yield either 

higher or lower regional mean FRP depending on the balance between recovered emissions 

during active periods and artificially assigned emissions during inactive periods. In several 

regions, the latter effect dominates, resulting in lower or even negative net corrections relative 

to the dynamically adjusted reconstruction shown in Fig. 7. This explains why the conventional 



Gaussian approach produces lower FRP estimates for most regions in Fig. 7, despite partially 

filling missing observations. 

(3) Relation to previous dynamic Gaussian approaches: We acknowledge that previous studies, 

including Ellicott et al. (2009), Andela et al. (2015), and Zheng et al. (2021), implemented 

dynamic diurnal Gaussian reconstructions that allow amplitude and/or duration to vary with 

daily observations. Our approach is conceptually aligned with these studies in recognizing the 

need for event-specific adjustment. However, it differs in that dynamic parameter optimization 

is explicitly conditioned on observational sufficiency and reconstruction stability. When event-

day observations are insufficient or the fit is unstable, the diurnal shape is intentionally 

constrained to climatology and only the magnitude is adjusted. This strategy avoids unsupported 

peak shifts and prevents artificial inflation of FRP outside physically meaningful burning 

periods. 

Overall, the small net differences in mean FRP shown in Fig. 7 should be interpreted as evidence 

of conservative, physically constrained bias correction rather than weak adjustment. The 

proposed method improves the realism of daily FRP distributions by redistributing bias while 

preserving the intrinsic variability of fire activity. This design choice prioritizes physical 

plausibility and stability over maximizing mean differences, consistent with the objectives of 

emission gap filling. 

15.Lines 556-557: Can you remind the reader to reference Figure 12a for this claim about the 

comparisons to MISR? 

Response: We thank the reviewer for this suggestion. We have revised Line 863 to explicitly 

reference Fig. 12 (a), which presents the MISR-based plume height comparison supporting this 

conclusion. 

• 16.Fig. 4: Please explain how the cloud-corrected AHI FRP data can be less than the non-cloud-

corrected data. 

Response: Thank you for raising this important point. We clarify that the “correction” applied 

to AHI FRP in this study is not a pure cloud-recovery procedure and therefore does not 

necessarily lead to a monotonic increase in FRP. To avoid any further ambiguity, we have 

updated the caption of Fig. 4 to explicitly distinguish between the cloud-gap correction applied 

to VIIRS and the cross-sensor calibration applied to AHI. 



In the revised manuscript, cloud correction is applied exclusively to VIIRS FRP to compensate 

for cloud-induced under-detection, whereas AHI FRP is subsequently adjusted through cross-

sensor calibration using the cloud-corrected VIIRS product as a radiometrically more reliable 

reference. This calibration is designed to improve physical consistency in FRP magnitude 

between sensors rather than to inflate AHI-derived values. The results shown in Fig. 4 and 

Section 3.1 demonstrate that after cross-sensor calibration using cloud-corrected VIIRS FRP as 

a reference, calibrated AHI FRP exhibits region-dependent responses. In most regions, AHI 

FRP decreases due to suppression of sampling-related overestimation, whereas in regions with 

substantial BB emissions (e.g., northern Laos), AHI FRP still increases as cloud correction 

reveals additional fire activity previously underestimated. Therefore, calibrated AHI FRP may 

either decrease or increase depending on the regional balance between cloud-induced 

underestimation and sampling-related overestimation already documented in the manuscript. 

• 17.Figs. 4, 7 & S7b: The resolution of the images seems to be too coarse. There appears to be a 

gridded/stripped pattern in the images – it appears to be an artifact in the data (particularly in 

Fig. 7), but it could just be the poor image resolution.  Please update the resolution – I would 

like to be able to see more detail when I zoom in.  Please also confirm what the stripped pattern 

is if it is indeed an artifact. 

Response: Thank you for your careful review and the opportunity to clarify our visualization 

approach. We have carefully examined Figs. 4, 7, and S7b regarding the "grid/striping" patterns. 

We would like to clarify that these patterns are not instrumental artifacts (such as VIIRS 

detector striping) or algorithmic errors. Instead, they represent the native resolution of our 

gridded product. The "blocky" appearance is a deliberate choice for the following reasons: 

(1) Data Fidelity and Transparency: We used a pixel-wise rendering method (pcolormesh with 

no interpolation). This ensures that each pixel's color accurately represents the underlying 

aggregated FRP value. Spatial interpolation (smoothing) often creates a false sense of continuity, 

which can misrepresent the magnitude of fire intensity and artificially "smear" fire signals into 

non-fire areas. 

(2) Product Characteristics: Since the data is aggregated into a regular 0.03°×0.03° grid, the 

boundaries between grid cells are inherently discrete. The "striping" the reviewer observed is 

the alignment of these discrete grid cells at the boundaries of fire plumes. 



To facilitate detailed inspection during the review process, we have additionally provided ≥300 

dpi versions of Figs. 4, 7, and S7b in the response to reviewers, allowing the grid structure and 

spatial gradients to be examined clearly when zoomed in. The figures included in the manuscript 

follow the journal’s standard publication resolution, and no spatial smoothing or interpolation 

has been introduced in either case. 

 

Figure 4 

 

 

 

 



 

Figure 7 



 

Panel from Figure S8 (formerly Figure S7) 

• 18.Fig. 11: I think the images would be easier to interpret if you kept the SEAF panel as is and 

converted the rest of the panels to difference maps. 

Response: We thank the reviewer for this helpful suggestion. Fig. 10 (formerly Fig. 11) has 

been revised accordingly. The figure caption and the corresponding text in the manuscript have 

been updated to reflect this change (Section 3.3.2). 

• 19.Fig. 14: It appears to me that the SEAF emissions in panel d is greater than that of panel e, 

but in panel f, it is reported as lower. Is this a mistake, or is there a dynamic that is not visually 

observable with panels d and e? 



Response: Thank you for raising this point. We apologize that the distinction between panels 

(a–e) and panel (f) was not sufficiently clear in the original manuscript. The apparent 

inconsistency does not indicate an error, but rather reflects that these panels represent different 

quantities. 

Panels (a–e) show the layer-resolved PM2.5 emission mass after vertical allocation to five 

altitude layers (0.025 km, 0.275 km, 1.0 km, 2.75 km, and 5.5 km). In SEAF, smoke plume 

heights (SPH) are first predicted using our machine-learning model, and the predicted SPH is 

then used to guide the vertical allocation of emissions. Importantly, the allocation scheme 

distributes the emission mass across the layers that a plume is assumed to traverse, rather than 

assigning all mass exclusively to the highest layer. Consequently, the 2.75 km layer (panel d) 

can integrate contributions from both moderate injection cases and the lower portions of high-

reaching plumes, whereas the 5.5 km layer (panel e) only contains the fraction assigned to the 

uppermost layer. This mechanism can lead to larger allocated emission mass at 2.75 km than at 

5.5 km, even when high SPH occurrences are present. Panel (f), in contrast, compares the 

relative frequency distribution of SPH, that is, the frequency with which plume tops fall within 

each height interval. Therefore, the frequency at 5.5 km being higher than at 2.75 km does not 

imply larger emission mass allocated to the 5.5 km layer. As discussed in the revised text, the 

SEAF SPH distribution exhibits a relative dip near 2.75 km, which is consistent with a regime 

in which plumes either remain largely within the boundary layer or are lofted to higher altitudes 

under strong convection, resulting in fewer plume tops occurring at intermediate heights. 

Notably, SEAF retains a non-negligible occurrence at 5.5 km (approximately 0.12), which is 

broadly consistent with the MISR and CALIPSO distributions, while conventional inventories 

such as GFAS v1.2 tend to under-represent these high-altitude injection signals. 

To prevent misinterpretation, we have revised panel (f) by changing the y-axis label from 

“Height” to “Smoke Plume Heights (SPH)”, and we have updated the Figure 14 caption to 

explicitly distinguish layer-allocated emission mass in panels (a–e) from the SPH frequency 

distribution in panel (f). 

• 20.Fig. S7: The color scale is a bit unhelpful since the values saturate too quickly to be able to 

do any useful visual comparisons. Either stretch the scale, or as suggested with Fig. 11, convert 

the images to difference maps.  Also, the units need to be changed to do proper comparisons 



since the spatial resolutions are different between the panels.  Please convert them to 

Mg/yr/km^2. 

Response: We thank the reviewer for this helpful suggestion. Fig. S7 has been revised by 

rescaling the color bar to avoid saturation and by converting all emission fields to area-

normalized units (Mg yr⁻¹ km⁻²), thereby enabling consistent spatial comparison across 

inventories with different native resolutions. 

Technical Corrections: 

• 21.Line 72: missing period 

Response: Thank you for pointing out this minor typographical issue. We note that the sentence 

referred to in the original manuscript has been removed in the revised version as part of a 

substantial reorganization and condensation of the Introduction section. The revised 

Introduction now presents a more concise and focused discussion of prior work on diurnal FRP 

reconstruction and multi-source fire emission inventories, and the specific punctuation issue at 

Line 72 is therefore no longer applicable. 

• 22.Line 77: “understate” might not be the best word, maybe underestimate, limit, etc. 

Response: Thank you for this helpful suggestion regarding word choice. We note that the 

sentence containing the term “understate” in the original manuscript has been removed in the 

revised version as part of a substantial reorganization of the Introduction.  

• 23.Line 120: missing space 

Response: Thank you for pointing this out. The missing space has been corrected in the revised 

manuscript. 

• 24.Line 332: delete first comma? 

Response: Thank you for pointing this out. The formatting has been corrected to “Texas 

Commission on Environmental Quality (2022)” in the revised manuscript. 

 


