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Abstract. Wind power serves as a vital zero-carbon alternative to fossil fuels for climate 30 

change mitigation. Nevertheless, the vast expansion of wind turbine installation requires 31 

extensive terrestrial resources, raising wide concerns regarding land use competition and 32 

ecological impacts. Quantifying these effects necessitates near real-time geospatial data on 33 

wind turbine placement and density. However, current methods remain inadequate monitoring 34 

for the fast-growing wind turbine deployment. Here, we developed an integrated framework 35 

that combines OpenStreetMap (OSM) data with multi-source remote sensing images (Google 36 

Earth and Sentinel-1/2) and deep learning and traditional machine learning models (ResNet-18 37 

and Random Forest) to map global onshore wind turbines. Our models achieve validation 38 

accuracy >97% while enabling cost-effective, timely updates of global onshore wind turbines. 39 

Eventually, we established a geographical dataset covering a total of 379,595 wind turbines 40 

globally by 2024. This dataset represents a tenfold expansion over currently available global 41 

wind turbine inventories as of 2020. In addition, we found that 80% wind turbines are situated 42 

on cropland and grassland, followed by forest and bare ground. This dataset facilitates essential 43 

studies on renewable energy land management, ecological impact analysis, and data-driven 44 

energy transition policies. The codes and dataset of the global onshore wind turbines is available 45 

at Zenodo link: https://doi.org/10.5281/zenodo.17217523 (Shujun et al., 2025). 46 
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1 Introduction 59 

Wind energy will increase substantially over the coming decades to meet clean energy targets 60 

(Mckenna et al., 2025). Under the 1.5℃scenario, global installed wind power capacity is 61 

projected to reach nearly 10,300 GW by 2050, with onshore wind comprising 75% of total 62 

installations (Raimi et al., 2023). Compared to other energy technologies, wind power exhibits 63 

relatively low land use efficiency when accounting for turbine spacing requirements (Dai et al., 64 

2024). Accordingly, meeting future deployment targets will necessitate substantial land 65 

allocations, raising pressing concerns about land-use conversion and biodiversity loss that 66 

demand urgent attention (Kati et al., 2021; Rinne et al., 2018). However, detailed geospatial 67 

data at the facility level is particularly required for the quantification of these impacts 68 

(Kruitwagen et al., 2021). 69 

Indeed, asset-level data and facility arrangement are essential for power generation nowcasting 70 

and forecasting, as well as for decision-making by grid operators and energy stakeholders 71 

(Calvert et al., 2013; Tavakkoli et al., 2021). For instance, geospatial analysis of historical 72 

placements can inform turbine siting decisions by revealing both human and environmental 73 

landscape factors (Roddis et al., 2018). Previous research confirmed that substantial positional 74 

errors exist in the current available wind facility records, especially pronounced in high-growth 75 

renewable energy markets (Cerri et al., 2024; Effenberger and Ludwig, 2022). A timely 76 

geospatial data set is critically needed to maintain accurate records of wind energy 77 

infrastructure, given its unprecedented growth rate. The dataset could also support data-driven 78 

metrics for Sustainable Development Goals (SDGs) (Mishra et al., 2024), including SDG 7 79 

(Affordable and Clean Energy), SDG 13 (Climate Action), and SDG 15 (Life on Land). 80 

Despite the demonstrated importance of location data, only a few spatially explicit datasets are 81 

publicly available. At the global scale, there is a geospatial wind turbine dataset for 2020 is 82 

introduced (Dunnett et al., 2020), but its update mechanism depends entirely on OpenStreetMap 83 

(OSM), a crowdsourced data derived from heterogeneous contributors that could introduce 84 

significant uncertainty. Meanwhile, while multiple frameworks exist for updating global 85 

offshore wind turbine data (Hoeser et al., 2022; Zhang et al., 2021), onshore turbine updating 86 
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methods remain underdeveloped due to their greater spatial distribution and environmental 87 

variability. Recently, Microsoft and Planet's Global Renewables Watch platform employs deep 88 

learning for global wind and solar monitoring (Robinson et al., 2025), but demands massive 89 

computing resources and provides only web-based queries without editable datasets. At the 90 

national level, there are geospatial datasets for the United States (Rand et al., 2020), Germany 91 

(Manske et al., 2022), and Italy (Smeraldo et al., 2020). However, inconsistent data collection 92 

method across datasets with delays in update frequencies could hinder their systematic 93 

comparability. Currently, the research community lacks both a unified methodology and 94 

accessible datasets for tracking worldwide onshore wind turbine deployments. 95 

To address these gaps, our study presents a hybrid framework combining deep learning and 96 

traditional machine learning framework for updating global onshore wind turbine data. By 97 

integrating multi-source remote sensing data (Google Earth high-resolution images, Sentinel-98 

1, and Sentinel-2), our workflow systematically detects and validates global onshore wind 99 

turbines to generate a 2024 geodatabase. With OSM turbine locations as initial inputs, the two-100 

stage locating process involves: (1) training a deep learning classifier (ResNet-18) on Google 101 

high-resolution images to identify and correct erroneous OSM records, followed by (2) 102 

detecting omitted turbines with Sentinel-1/2 spectral features and a Random Forest model 103 

trained on Google Earth Engine (GEE). Additionally, we examined worldwide land use 104 

characteristics of wind turbine sites and their national distribution patterns to assess current 105 

wind energy spatial utilization. Our study delivers comprehensive monitoring tools and datasets 106 

essential for tracking wind energy growth, enabling data-driven policy decisions to advance 107 

sustainable wind power development worldwide. 108 

109 
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2 Materials and methods 110 

2.1 Framework 111 

The proposed framework combines OSM's crowdsourced geospatial data with a two-stage deep 112 

learning/traditional machine learning pipeline (Figure 1) to locate a comprehensive global wind 113 

turbine location dataset for 2024. The first part involves utilizing OSM turbine coordinates to 114 

extract high-resolution Google Earth images, then training a ResNet-18 convolutional neural 115 

network to classify and flag erroneous wind turbines in the OSM dataset. The second part 116 

employs confirmed turbine locations to train a Random Forest classifier for potential omitted 117 

wind turbines using Sentinel-1/2 features at GEE, conbining with validation through our pre-118 

trained ResNet-18 model applied to Google high-resolution images of the potential points. The 119 

integrated output merges error-corrected OSM data with supplemented wind turbine omissions, 120 

generating an enhanced global dataset that demonstrates improved spatial accuracy and 121 

comprehensive operational wind turbine coverage. 122 

 123 

Figure 1. Framework for mapping global onshore wind turbines. Where the WT represents 124 

wind turbines, OSM represents OpenStreetMap. 125 

2.2 Two-phase approach for global onshore wind turbine mapping 126 

2.2.1 Filtering of erroneous data with deep learning model 127 

We obtained the baseline OSM 2024 wind turbine dataset through QGIS using the Overpass 128 

https://doi.org/10.5194/essd-2025-512
Preprint. Discussion started: 29 October 2025
c© Author(s) 2025. CC BY 4.0 License.



6 
 

API plugin with the query parameter: '["generator: source"="wind"]'. We refined the dataset by 129 

applying OSM land polygons (https://osmdata.openstreetmap.de/data/land-polygons.html), 130 

resulting in a preliminary global inventory of 377,154 geolocated onshore turbines with 131 

complete metadata records. Given OSM's crowdsourced feature due to unverified contributors, 132 

the extracted turbine locations serve as initial references that demand thorough validation. 133 

Subsequent analysis must systematically address both commission errors (false positives) and 134 

omission errors (omitted turbines) through technical verification. 135 

 136 

Figure 2. Spatial distribution of training samples (green points). 137 

Based on the OSM-derived turbine coordinates, we created 500m×500m extraction zones 138 

(QGIS Buffer Tool) to acquire high-resolution Google Earth images. This conservative spatial 139 

buffer accounts for maximum turbine diameters (≤200m) while guaranteeing full rotor 140 

coverage (Muller et al., 2024). The image tiles were resized to a standardized 256×256 pixel 141 

format, maintaining optimal input dimensions for our ResNet-18 architecture while retaining 142 

essential turbine characteristics. For model construction, we employed a strategically sampled 143 

10% subset (37,285 images) from the complete dataset, which balancing representativeness 144 

with computational constraints during training. The spatial distribution of sampled turbine 145 

points exhibits balanced representation across global regions in Figure 2, confirming our 146 

stratified random sampling approach effectively maintained geographic diversity. This subset 147 

was manually annotated with labels for 'turbines' and 'non-turbines'. The labeled data was then 148 

split into training (60%, 22,372 images) and testing sets (20%, 7,457 images) validation sets 149 

(20%, 7,456 images) for our OSM error classification model. Representative samples of the 150 

buffered turbine images are displayed in Figure 3. The visual data reveal that turbines are 151 
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distributed across diverse landscapes, including grasslands, bare land, cropland, and forests, 152 

with occasional installations near water bodies and built environments.  153 

 154 

Figure 3. Different land types of onshore wind turbines in Google Earth images. 155 

For automated classification of OSM wind turbine data, we employed the ResNet-18 156 

architecture (He et al., 2016), leveraging its demonstrated image classification capabilities 157 

while ensuring computational efficiency for geospatial applications at scale. Our optimized 158 

ResNet-18 model processed all 339,869 candidate images, identifying 291,501 confirmed 159 

turbine locations (85.8% positive rate) while classifying 48,368 as non-turbine cases (14.2%). 160 

All negative classifications underwent rigorous cross-platform verification using Google Earth, 161 

Bing Maps, and Sentinel-2 images, enabling the removal of inaccurate OSM entries. These 162 

validated results were then integrated with the training data to generate an enhanced global 163 

turbine dataset with improved accuracy. The dataset and codes for training model are available 164 
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at Zenodo website: https://doi.org/10.5281/zenodo.17217523 (Shujun et al., 2025). 165 

2.2.2 Supplementing omitted data with traditional machine learning model 166 

Based on the deep learning-classified OSM turbine dataset, we developed an optimized 167 

Random Forest model for comprehensive omission detection (Rigatti, 2017). The Random 168 

Forest model was trained on GEE using verified wind turbine locations from OSM, alongside 169 

globally sampled negative samples. We trained the Random Forest model with 10,000 globally 170 

distributed wind turbine locations (positive samples) and 20,000 non-turbine points (negative 171 

samples), and applied a 30m spatial buffer to negative samples to ensure characteristic 172 

representation. The dataset was then split into 70% training and 30% testing sets as illustrated 173 

in Figure 4.  174 

 175 

Figure 4. Spatial distribution of train and test datasets for the Random Forest model. The green 176 

ones represent the points selected for model training, and the orange ones represent the points 177 

selected for model testing. 178 

In addition to the original spectral bands from Sentinel-1 and Sentinel-2, we incorporated the 179 

Normalized Difference Vegetation Index (NDVI) (Huang et al., 2021) and the Normalized 180 

Difference Built-up Index (NDBI) (Zha et al., 2003) to enhance the differentiation between 181 

wind turbines and their background features. For comprehensive feature characterization, we 182 

implemented a random sampling strategy across 10,000 turbine locations, while covering all 183 

major wind development regions for reliable spectral analysis. Figure 5 presents seven selected 184 

spectral feature value distribution of wind turbines, revealing distinct characteristic ranges for 185 

turbine signatures across different sensor bands. This demonstrates the effectiveness of different 186 

band features in wind turbine classification. To reduce the computational load of the Random 187 

Forest model, we excluded the 800-m buffer area of already validated wind turbines and then 188 

https://doi.org/10.5194/essd-2025-512
Preprint. Discussion started: 29 October 2025
c© Author(s) 2025. CC BY 4.0 License.



9 
 

defined upper and lower threshold boundaries to filter out non-turbine areas during the initial 189 

processing stage. These thresholds include Sentinel-2's B2 [0, 0.3], B3 [0, 0.3], B4 [0, 0.3], 190 

NDVI [0, 0.7], NDBI [0, 0.7], and Sentinel-1's VV [-18, 18] and VH [-25, 1].  191 

 192 

Figure 5. Feature value distribution of randomly selected wind turbine samples. 193 

 194 

Figure 6. Feature importance ranking for building a Random Forest classification model. 195 

The final dataset incorporated 19-dimensional feature data for each sample point, which was 196 
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utilized for training the model to detect omitted wind turbine points. Our feature importance 197 

ranking of the 19-dimensional feature space (Figure 6) revealed that Sentinel-1's VV and VH 198 

polarization bands are particularly effective for identifying the wind turbines. This could 199 

contribute to the band's high sensitivity to vertical metallic structures such as turbine towers, as 200 

these act as corner reflectors that generate distinct bright signatures in SAR imagery. The 201 

Sentinel-2's B12 and B2 bands also show strong response to turbine structures, which enhances 202 

their contrast against natural backgrounds like vegetation, soil, and water.  203 

2.3 Classification accuracy assessment of models 204 

We evaluated the performance of both deep learning and traditional machine learning models 205 

using standard classification metrics computed from confusion matrices, namely precision, 206 

recall, and F1-score, as shown in Eq. (1)-(3), as based on an independent validation set 207 

(Congalton, 1991; Goutte and Gaussier, 2005). Producer's accuracy (recall) quantifies the 208 

proportion of actual turbine locations correctly detected, while user's accuracy (precision) 209 

represents the fraction of predicted turbines that are true positives. Where the precision equals 210 

the number of true positives (TP) divided by the sum of true positives (TP) and false positives 211 

(FP). Where the recall equals the number of true positives (TP) divided by the sum of true 212 

positives (TP) and false negatives (FN). The F1-score harmonizes these metrics, providing 213 

particularly valuable evaluation for imbalanced turbine detection scenarios where background 214 

features significantly outnumber target objects. 215 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
    (1) 216 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
    (2) 217 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
     (3) 218 

2.4 Land use occupation analysis of onshore wind turbines 219 

This study utilizes ESRI's 2023 Land Use/Land Cover (LULC) dataset (Karra et al., 2021), 220 

derived from ESA Sentinel-2 images at 10-meter resolution, for analyzing land use 221 

characteristics surrounding onshore wind turbines. The LULC composite maps integrate annual 222 

predictions for nine defined categories, namely cropland, rangeland, forest, built-up areas, bare 223 

ground, water bodies, flooded vegetation, snow/ice cover, and cloud cover. By conducting 224 
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spatial overlay analysis between our finalized global onshore wind turbine dataset and the 225 

LULC classification within GEE, we characterized land occupation patterns through the 226 

extraction of underlying land use types at turbine sites. Additionally, we evaluated wind turbine 227 

land use impacts by conducting 800-meter buffer analyses around turbine locations (Dunnett et 228 

al., 2020), and converting the results to raster format for comprehensive spatial assessment.  229 

3 Results 230 

3.1 Evaluation results 231 

Figure 7a displays the deep learning model's performance for onshore wind turbine error 232 

filtering, achieving exceptional precision (99.2%), recall (97.4%), and F1-score (98.3%), 233 

respectively. The Random Forest model demonstrated equally strong performance, achieving 234 

99.8% recall, 99.0% precision, and 99.4% F1-score (Figure 7b). Importantly, the deep learning 235 

classifier achieved an 86% reduction in required manual verification (291,501 of 339,869 236 

images). Meanwhile, our analysis revealed a 10% error rate in OSM's global wind turbine 237 

dataset. While this validates its reliability for macro-scale trend analysis, the findings 238 

underscore inherent limitations of data directly obtained from OSM for precision-critical wind 239 

energy applications. 240 

 241 

Figure 7. Evaluation results of two models for wind turbine classification. (a) Precision, recall, 242 

and F1-score of the deep learning model. (b) Precision, recall, and F1-score of the traditional 243 

machine learning model. 244 

3.2 Comparison with open-source datasets 245 

To validate the accuracy of our wind turbine records, we cross-validated them against multiple 246 

authoritative geospatial datasets, including the 2020 global wind and solar dataset (Dunnett et 247 

al., 2020), along with official and research-based turbine inventories from the United States 248 

https://doi.org/10.5194/essd-2025-512
Preprint. Discussion started: 29 October 2025
c© Author(s) 2025. CC BY 4.0 License.



12 
 

(Rand et al., 2020), Italy (Smeraldo et al., 2020), and Germany (Manske et al., 2022). Our 2024 249 

global inventory documents 379,595 wind turbines (Table 1), representing a tenfold expansion 250 

from the 2020 baseline of 33,514 turbines. Our wind turbine count closely aligns with Global 251 

Renewables Watch's 2024 total of ~375,000 wind turbines, showing a merely 1.2% variance. 252 

The consistency between our United States estimates (74,487 turbines) and official revealed 253 

records (75,781 turbines, <1.8% discrepancy) also provides strong validation of our 254 

methodology's precision. Our cross-validation across multiple data sources and regions reveals 255 

both remarkable consistency and a substantial quantity of previously unrecorded wind turbine 256 

installations. 257 

Table 1. Comparison of open-source datasets of onshore wind turbines with our results. 258 

Scope Time Number Ours (2024) 

Global (Dunnett et al., 2020) 2020 33,514 379,595 

Global Renewables Watch (Robinson et al., 2025) 2024 375,000 379,595 

United States (Rand et al., 2020) 2024 75,781 74,523 

Germany (Manske et al., 2022) 2021 28,156 28,530 

Italy (Smeraldo et al., 2020) 2020 8,729 10,147 

3.3 Global onshore wind turbine installation distribution 259 

The finalized global dataset contains 379,595 precisely georeferenced wind turbines (Figure 260 

8a), exhibiting pronounced concentration patterns across northern hemisphere regions, 261 

particularly in North America, Europe, and East Asia. Regional deployment patterns show clear 262 

geographic concentrations (Figure 8b). China's overwhelming dominance in global wind 263 

energy deployment, with 122,602 turbines representing 32.3 % of worldwide installations. The 264 

United States ranks second (74,523 turbines), followed by India (31,736), Germany (28,530), 265 

and Spain (19,124), collectively representing the top five national markets (Figure 8c). China 266 

and India, collectively representing 89% of Asia's wind turbine installations, and the United 267 

States and Brazil together comprise 92% of American deployments. Europe's wind energy 268 

deployment is primarily concentrated in Germany, Spain, and Italy, which collectively account 269 

for 16% of global wind turbine installations.  270 
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 271 

Figure 8. Global onshore wind turbine installation records and spatial distribution. (a) Global 272 

onshore wind turbine by 2024. (b) Spatial distribution of wind turbine installation statistics by 273 

country. (c) Percentage ranking of wind turbines for top 20 countries. 274 

3.4 Land use types and spatial distribution of global onshore wind turbines 275 

Our global assessment quantifies a total impacted area of 242,940 km² of the wind turbines, 276 

which is estimated with 800-meter buffer around turbine locations (Dunnett et al., 2020). 277 

Among the affected areas, 80% of wind turbines located within cropland and grassland 278 

ecosystems (Figure 9c). Specifically, croplands represent the predominant land use at 42% 279 

(100,915 km²), followed by grasslands for 38% (93,028 km²), and forests for 12% (29,832 km²). 280 

These proportions, however, exhibit substantial variation across national boundaries (Figure 281 

9a, b). China, the global leader in wind capacity, exhibits unique siting patterns with over 50% 282 

of turbines deployed in grasslands, followed by croplands (20%) and forests (15%). China 283 
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demonstrates a notably higher reliance on forested areas for wind turbine siting compared to 284 

global patterns, particularly in its southern provinces (Figure 9a), warranting careful ecological 285 

assessment (Enevoldsen, 2016). In contrast, the United States distributes roughly half (50%) of 286 

its wind turbines across croplands, supplemented by grassland deployments. Germany displays 287 

the most extreme geographic specialization, with over 90% of its turbines sited exclusively on 288 

agricultural lands. These pronounced regional variations in turbine siting patterns carry 289 

significant implications for both renewable energy development and landscape management 290 

policies. 291 

 292 
Figure 9. Land use distribution of global onshore wind turbines.(a) Land use distribution of 293 

global onshore wind turbines. (b) Land use area statistics occupied by onshore wind turbines 294 

by country. (c) Percentages of difference land use deployed by onshore wind turbines. 295 

3.5 Potential dataset applications 296 

This open-access global onshore wind turbine dataset could establish a critical foundation for 297 

interdisciplinary research, facilitating integrated studies in energy infrastructure planning, 298 

ecological impact evaluation, and land use optimization. First, the geospatial wind turbine 299 

dataset enables rigorous biodiversity impact assessments, including wildlife disturbance 300 

patterns and habitat fragmentation analysis around wind energy installations (Bopucki and 301 
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Perzanowski, 2018; Mckay et al., 2024). Particularly, studies have demonstrated that turbine 302 

blade rotation creates distinct mortality patterns across bird and bat species (Marques et al., 303 

2020; Millon et al., 2018). Our precisely geolocated turbine records enable exact spatial 304 

correlation between wind infrastructure and vulnerable species' high-activity areas, facilitating 305 

data-driven assessments of avian and chiropteran collision risks.  306 

Second, wind farm construction and associated infrastructure development induce significant 307 

ecological disruptions through multiple pathways (Xia et al., 2025). Integrating high-precision 308 

turbine locations with remote sensing data allows systematic evaluation of wind energy's 309 

environmental footprint, including deforestation patterns (Enevoldsen, 2018), soil erosion (Ma 310 

et al., 2023), and carbon sink loss (Gao et al., 2023). Our dataset provides a robust data 311 

foundation for both evaluating the cumulative ecological impacts of existing wind farms and 312 

optimizing future turbine siting to balance energy production with ecosystem conservation. 313 

4 Data availability 314 

These open-access data resources could help promote transparent and just sustainable wind 315 

energy development, and enable detailed feature extraction and spatial analysis for future wind 316 

energy research. The global onshore wind turbine dataset is freely available from the Zenodo 317 

website at: https://doi.org/10.5281/zenodo.17217523 (Shujun et al., 2025). 318 

The dataset includes: 319 

⚫ A comprehensive global inventory of 379,595 onshore wind turbines in the format of a 320 

geospatial shapefile. The dataset includes geolocation coordinates for all wind turbines, 321 

along with corresponding nation (Field: 'Nation') and land use classification (Field: 322 

'landtype') for each wind turbine. 323 

⚫ The dataset comprises 37,285 carefully annotated 256×256 pixel Google Earth image 324 

patches, containing both positive (wind turbine) and negative (background) samples, and 325 

is organized into folders with training (60%, 22,372 images) and testing sets (20%, 7,457 326 

images) validating sets (20%, 7,456 images). The images could serve as foundational data 327 

for training deep learning models in wind turbine classification, segmentation, and 328 

detection tasks. 329 

The code file includes: 330 
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⚫ A PyTorch-based ResNet-18 implementation for classifying onshore wind turbines in 331 

Google Earth images, including codes for model architecture and pre-trained weights. 332 

⚫ The GEE-based code for the Random Forest model, including sample point splitting 333 

(training/test sets) and model training. 334 

5 Discussion and conclusion 335 

This study introduces an advanced geospatial approach that integrates high-resolution Google 336 

Earth images with multi-source satellite observations to construct a refined global inventory of 337 

onshore wind turbines. Compared current datasets of available global onshore wind turbines, 338 

our dataset more timely data that represents a tenfold expansion over the global wind turbine 339 

inventories as of 2020. Importantly, in mapping methodology, compared to the new updating 340 

framework of Global Renewables Watch, we propose a reproducible and straightforward 341 

approach to identify renewable infrastructure, which can be applied in future studies and in 342 

countries or regions with limited computational resources. The datasets and resulting 2024 343 

global inventory documents 379,595 onshore wind turbines, serving as a critical resource for 344 

renewable energy infrastructure planning and ecological impact studies. 345 

The global analysis demonstrates significant spatial aggregation of wind turbines, with the 346 

densest concentrations occurring in northern mid-latitude zones, particularly high-density 347 

concentrations in Europe, North America, and East Asia. This spatial concentration pattern 348 

stems from factors including optimal wind resources (Davis et al., 2023; Liu et al., 2023), 349 

supportive policy frameworks (Godby et al., 2025; Kumar et al., 2022; Liao, 2016), and 350 

established energy infrastructure networks (Oró et al., 2015; Rochmińska, 2023) prevalent in 351 

these mid-latitude zones. Notably, the global wind energy has developed across 242,940 km² 352 

of land, with agricultural fields (42%) and grasslands (38%) hosting the majority (80%) of 353 

turbine installations. This distribution reflects a strategic preference for siting turbines in 354 

previously developed or ecologically low-sensitivity areas. However, the associated ecological 355 

impacts, particularly habitat fragmentation and soil disturbance, require thorough 356 

environmental evaluation and mitigation planning (Moore O'Leary et al., 2017). 357 

Wind turbines primarily appear as point features in satellite images, presenting significant 358 

challenges for automated large-scale detection (Zhai et al., 2024). These detection challenges 359 
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are further intensified by visually similar infrastructure, particularly high-voltage transmission 360 

lines and isolated structures that mimic turbine signatures. Our proposed solution combines 361 

hybrid machine/deep learning architectures with systematic sampling approaches to enable 362 

reliable turbine identification across diverse terrain types. Looking ahead, sustainable 363 

renewable energy development, including wind, solar, and hydropower, requires continuous 364 

innovation and open geospatial data to enhance planning transparency and governance. Overall, 365 

our framework offers a novel approach and solution for cost-effective, timely updates of global 366 

onshore wind turbine data. 367 
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