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Abstract. Wind power serves as a vital zero-carbon alternative to fossil fuels for climate

change mitigation. Nevertheless, the vast expansion of wind turbine installation requires
extensive terrestrial resources, raising wide concerns regarding land use competition and
ecological impacts. Quantifying these effects necessitates near real-time geospatial data on
wind turbine placement and density. However, current methods remain inadequate monitoring
for the fast-growing wind turbine deployment. Here, we developed an integrated framework
that combines OpenStreetMap (OSM) data with multi-source remote sensing images (Google
Earth and Sentinel-1/2) and deep learning and traditional machine learning models (ResNet-18
and Random Forest) to map global onshore wind turbines. Our models achieve validation
accuracy >97% while enabling cost-effective, timely updates of global onshore wind turbines.
Eventually, we established a geographical dataset covering a total of 379,595 wind turbines
globally by 2024. This dataset represents a tenfold expansion over currently available global
wind turbine inventories as of 2020. In addition, we found that 80% wind turbines are situated
on cropland and grassland, followed by forest and bare ground. This dataset facilitates essential
studies on renewable energy land management, ecological impact analysis, and data-driven
energy transition policies. The codes and dataset of the global onshore wind turbines is available

at Zenodo link: https://doi.org/10.5281/zenodo.17217523 (Shujun et al., 2025).
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1 Introduction

Wind energy will increase substantially over the coming decades to meet clean energy targets
(Mckenna et al., 2025). Under the 1.5°Cscenario, global installed wind power capacity is
projected to reach nearly 10,300 GW by 2050, with onshore wind comprising 75% of total
installations (Raimi et al., 2023). Compared to other energy technologies, wind power exhibits
relatively low land use efficiency when accounting for turbine spacing requirements (Dai et al.,
2024). Accordingly, meeting future deployment targets will necessitate substantial land
allocations, raising pressing concerns about land-use conversion and biodiversity loss that
demand urgent attention (Kati et al., 2021; Rinne et al., 2018). However, detailed geospatial
data at the facility level is particularly required for the quantification of these impacts

(Kruitwagen et al., 2021).

Indeed, asset-level data and facility arrangement are essential for power generation nowcasting
and forecasting, as well as for decision-making by grid operators and energy stakeholders
(Calvert et al., 2013; Tavakkoli et al., 2021). For instance, geospatial analysis of historical
placements can inform turbine siting decisions by revealing both human and environmental
landscape factors (Roddis et al., 2018). Previous research confirmed that substantial positional
errors exist in the current available wind facility records, especially pronounced in high-growth
renewable energy markets (Cerri et al., 2024; Effenberger and Ludwig, 2022). A timely
geospatial data set is critically needed to maintain accurate records of wind energy
infrastructure, given its unprecedented growth rate. The dataset could also support data-driven
metrics for Sustainable Development Goals (SDGs) (Mishra et al., 2024), including SDG 7

(Affordable and Clean Energy), SDG 13 (Climate Action), and SDG 15 (Life on Land).

Despite the demonstrated importance of location data, only a few spatially explicit datasets are
publicly available. At the global scale, there is a geospatial wind turbine dataset for 2020 is
introduced (Dunnett et al., 2020), but its update mechanism depends entirely on OpenStreetMap
(OSM), a crowdsourced data derived from heterogeneous contributors that could introduce
significant uncertainty. Meanwhile, while multiple frameworks exist for updating global

offshore wind turbine data (Hoeser et al., 2022; Zhang et al., 2021), onshore turbine updating
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methods remain underdeveloped due to their greater spatial distribution and environmental
variability. Recently, Microsoft and Planet's Global Renewables Watch platform employs deep
learning for global wind and solar monitoring (Robinson et al., 2025), but demands massive
computing resources and provides only web-based queries without editable datasets. At the
national level, there are geospatial datasets for the United States (Rand et al., 2020), Germany
(Manske et al., 2022), and Italy (Smeraldo et al., 2020). However, inconsistent data collection
method across datasets with delays in update frequencies could hinder their systematic
comparability. Currently, the research community lacks both a unified methodology and

accessible datasets for tracking worldwide onshore wind turbine deployments.

To address these gaps, our study presents a hybrid framework combining deep learning and
traditional machine learning framework for updating global onshore wind turbine data. By
integrating multi-source remote sensing data (Google Earth high-resolution images, Sentinel-
1, and Sentinel-2), our workflow systematically detects and validates global onshore wind
turbines to generate a 2024 geodatabase. With OSM turbine locations as initial inputs, the two-
stage locating process involves: (1) training a deep learning classifier (ResNet-18) on Google
high-resolution images to identify and correct erroneous OSM records, followed by (2)
detecting omitted turbines with Sentinel-1/2 spectral features and a Random Forest model
trained on Google Earth Engine (GEE). Additionally, we examined worldwide land use
characteristics of wind turbine sites and their national distribution patterns to assess current
wind energy spatial utilization. Our study delivers comprehensive monitoring tools and datasets
essential for tracking wind energy growth, enabling data-driven policy decisions to advance

sustainable wind power development worldwide.
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2 Materials and methods

2.1 Framework

The proposed framework combines OSM's crowdsourced geospatial data with a two-stage deep
learning/traditional machine learning pipeline (Figure 1) to locate a comprehensive global wind
turbine location dataset for 2024. The first part involves utilizing OSM turbine coordinates to
extract high-resolution Google Earth images, then training a ResNet-18 convolutional neural
network to classify and flag erroneous wind turbines in the OSM dataset. The second part
employs confirmed turbine locations to train a Random Forest classifier for potential omitted
wind turbines using Sentinel-1/2 features at GEE, conbining with validation through our pre-
trained ResNet-18 model applied to Google high-resolution images of the potential points. The
integrated output merges error-corrected OSM data with supplemented wind turbine omissions,
generating an enhanced global dataset that demonstrates improved spatial accuracy and
comprehensive operational wind turbine coverage.

Filtering error WT points in OSM
OSM wind turbine data

Fixing omitted WT points in OSM

Initial filtering using spectral and
SAR features in Sentinel-1/2

QGIS Google Earthl
S Go glehntnhw;n(‘ﬂi

Google Earth images acquisition Machine learning model (Random

v Forest) training
10% of WT images as training and @ i
testing samples AreGiS Pro
Omitted WT points
e %»l P

QGIS Google Earthi

Deep learning model (ResNet-18) : e
training Google Earth images acquisition

v !

Automatic classification using deep Deep learning model to enhance

learning model [ omitted WT point results
v v
WT points with error points filtered ——> Final onshore WT locations

Figure 1. Framework for mapping global onshore wind turbines. Where the WT represents
wind turbines, OSM represents OpenStreetMap.

2.2 Two-phase approach for global onshore wind turbine mapping

2.2.1 Filtering of erroneous data with deep learning model

We obtained the baseline OSM 2024 wind turbine dataset through QGIS using the Overpass
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API plugin with the query parameter: '["generator: source"="wind"]'. We refined the dataset by

applying OSM land polygons (https://osmdata.openstreetmap.de/data/land-polygons.html),

resulting in a preliminary global inventory of 377,154 geolocated onshore turbines with
complete metadata records. Given OSM's crowdsourced feature due to unverified contributors,
the extracted turbine locations serve as initial references that demand thorough validation.
Subsequent analysis must systematically address both commission errors (false positives) and

omission errors (omitted turbines) through technical verification.

3
O Selected for train model A

Remaining for model predict

Figure 2. Spatial distribution of training samples (green points).

Based on the OSM-derived turbine coordinates, we created 500m X 500m extraction zones
(QGIS Bufter Tool) to acquire high-resolution Google Earth images. This conservative spatial
buffer accounts for maximum turbine diameters (< 200m) while guaranteeing full rotor
coverage (Muller et al., 2024). The image tiles were resized to a standardized 256 X256 pixel
format, maintaining optimal input dimensions for our ResNet-18 architecture while retaining
essential turbine characteristics. For model construction, we employed a strategically sampled
10% subset (37,285 images) from the complete dataset, which balancing representativeness
with computational constraints during training. The spatial distribution of sampled turbine
points exhibits balanced representation across global regions in Figure 2, confirming our
stratified random sampling approach effectively maintained geographic diversity. This subset
was manually annotated with labels for 'turbines' and 'non-turbines'. The labeled data was then
split into training (60%, 22,372 images) and testing sets (20%, 7,457 images) validation sets
(20%, 7,456 images) for our OSM error classification model. Representative samples of the

buffered turbine images are displayed in Figure 3. The visual data reveal that turbines are
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distributed across diverse landscapes, including grasslands, bare land, cropland, and forests,

with occasional installations near water bodies and built environments.

grassland

forest

cropland bare ground

others

Figure 3. Different land types of onshore wind turbines in Google Earth images.

For automated classification of OSM wind turbine data, we employed the ResNet-18
architecture (He et al., 2016), leveraging its demonstrated image classification capabilities
while ensuring computational efficiency for geospatial applications at scale. Our optimized
ResNet-18 model processed all 339,869 candidate images, identifying 291,501 confirmed
turbine locations (85.8% positive rate) while classifying 48,368 as non-turbine cases (14.2%).
All negative classifications underwent rigorous cross-platform verification using Google Earth,
Bing Maps, and Sentinel-2 images, enabling the removal of inaccurate OSM entries. These
validated results were then integrated with the training data to generate an enhanced global

turbine dataset with improved accuracy. The dataset and codes for training model are available
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at Zenodo website: https://doi.org/10.5281/zenodo.17217523 (Shujun et al., 2025).

2.2.2 Supplementing omitted data with traditional machine learning model

Based on the deep learning-classified OSM turbine dataset, we developed an optimized
Random Forest model for comprehensive omission detection (Rigatti, 2017). The Random
Forest model was trained on GEE using verified wind turbine locations from OSM, alongside
globally sampled negative samples. We trained the Random Forest model with 10,000 globally
distributed wind turbine locations (positive samples) and 20,000 non-turbine points (negative
samples), and applied a 30m spatial buffer to negative samples to ensure characteristic
representation. The dataset was then split into 70% training and 30% testing sets as illustrated

in Figure 4.

+ Test points
+ Train points @

Figure 4. Spatial distribution of train and test datasets for the Random Forest model. The green
ones represent the points selected for model training, and the orange ones represent the points
selected for model testing.

In addition to the original spectral bands from Sentinel-1 and Sentinel-2, we incorporated the
Normalized Difference Vegetation Index (NDVI) (Huang et al., 2021) and the Normalized
Difference Built-up Index (NDBI) (Zha et al., 2003) to enhance the differentiation between
wind turbines and their background features. For comprehensive feature characterization, we
implemented a random sampling strategy across 10,000 turbine locations, while covering all
major wind development regions for reliable spectral analysis. Figure 5 presents seven selected
spectral feature value distribution of wind turbines, revealing distinct characteristic ranges for
turbine signatures across different sensor bands. This demonstrates the effectiveness of different
band features in wind turbine classification. To reduce the computational load of the Random

Forest model, we excluded the 800-m buffer area of already validated wind turbines and then
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defined upper and lower threshold boundaries to filter out non-turbine areas during the initial

processing stage. These thresholds include Sentinel-2's B2 [0, 0.3], B3 [0, 0.3], B4 [0, 0.3],

NDVI [0, 0.7], NDBI [0, 0.7], and Sentinel-1's VV [-18, 18] and VH [-25, 1].
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Figure 5. Feature value distribution of randomly selected wind turbine samples.
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Figure 6. Feature importance ranking for building a Random Forest classification model.

The final dataset incorporated 19-dimensional feature data for each sample point, which was
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utilized for training the model to detect omitted wind turbine points. Our feature importance
ranking of the 19-dimensional feature space (Figure 6) revealed that Sentinel-1's VV and VH
polarization bands are particularly effective for identifying the wind turbines. This could
contribute to the band's high sensitivity to vertical metallic structures such as turbine towers, as
these act as corner reflectors that generate distinct bright signatures in SAR imagery. The
Sentinel-2's B12 and B2 bands also show strong response to turbine structures, which enhances
their contrast against natural backgrounds like vegetation, soil, and water.

2.3 Classification accuracy assessment of models

We evaluated the performance of both deep learning and traditional machine learning models
using standard classification metrics computed from confusion matrices, namely precision,
recall, and Fl-score, as shown in Eq. (1)-(3), as based on an independent validation set
(Congalton, 1991; Goutte and Gaussier, 2005). Producer's accuracy (recall) quantifies the
proportion of actual turbine locations correctly detected, while user's accuracy (precision)
represents the fraction of predicted turbines that are true positives. Where the precision equals
the number of true positives (TP) divided by the sum of true positives (TP) and false positives
(FP). Where the recall equals the number of true positives (TP) divided by the sum of true
positives (TP) and false negatives (FN). The F1-score harmonizes these metrics, providing
particularly valuable evaluation for imbalanced turbine detection scenarios where background

features significantly outnumber target objects.

Precision = e 1
recision = TP T FP )

Recall = — 2
ecall = mprny @

1 ~ox Precision X Recall 3
score = Precision + Recall @

2.4 Land use occupation analysis of onshore wind turbines

This study utilizes ESRI's 2023 Land Use/Land Cover (LULC) dataset (Karra et al., 2021),
derived from ESA Sentinel-2 images at 10-meter resolution, for analyzing land use
characteristics surrounding onshore wind turbines. The LULC composite maps integrate annual
predictions for nine defined categories, namely cropland, rangeland, forest, built-up areas, bare

ground, water bodies, flooded vegetation, snow/ice cover, and cloud cover. By conducting
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spatial overlay analysis between our finalized global onshore wind turbine dataset and the
LULC classification within GEE, we characterized land occupation patterns through the
extraction of underlying land use types at turbine sites. Additionally, we evaluated wind turbine
land use impacts by conducting 800-meter buffer analyses around turbine locations (Dunnett et

al., 2020), and converting the results to raster format for comprehensive spatial assessment.

3 Results

3.1 Evaluation results

Figure 7a displays the deep learning model's performance for onshore wind turbine error
filtering, achieving exceptional precision (99.2%), recall (97.4%), and Fl-score (98.3%),
respectively. The Random Forest model demonstrated equally strong performance, achieving
99.8% recall, 99.0% precision, and 99.4% F1-score (Figure 7b). Importantly, the deep learning
classifier achieved an 86% reduction in required manual verification (291,501 of 339,869
images). Meanwhile, our analysis revealed a 10% error rate in OSM's global wind turbine
dataset. While this validates its reliability for macro-scale trend analysis, the findings
underscore inherent limitations of data directly obtained from OSM for precision-critical wind

energy applications.

a 9950% r g9900 b 100.00% r
) 99.80%
99.00% 99.80% |
9/ L
© 98.50% b 98.30% © 99.60%
> o)
L] 8 99.40%
$ 98.00% f S
s O 99.20% |
& o7.50% | 9£:A0% & - 99.00%
.00% |
97.00% 98.80%
96.50% 98.60%
precision recall F1-score precision recall F1-score

Figure 7. Evaluation results of two models for wind turbine classification. (a) Precision, recall,
and F1-score of the deep learning model. (b) Precision, recall, and F1-score of the traditional
machine learning model.

3.2 Comparison with open-source datasets
To validate the accuracy of our wind turbine records, we cross-validated them against multiple
authoritative geospatial datasets, including the 2020 global wind and solar dataset (Dunnett et

al., 2020), along with official and research-based turbine inventories from the United States
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(Rand et al., 2020), Italy (Smeraldo et al., 2020), and Germany (Manske et al., 2022). Our 2024
global inventory documents 379,595 wind turbines (Table 1), representing a tenfold expansion
from the 2020 baseline of 33,514 turbines. Our wind turbine count closely aligns with Global
Renewables Watch's 2024 total of ~375,000 wind turbines, showing a merely 1.2% variance.
The consistency between our United States estimates (74,487 turbines) and official revealed
records (75,781 turbines, <1.8% discrepancy) also provides strong validation of our
methodology's precision. Our cross-validation across multiple data sources and regions reveals
both remarkable consistency and a substantial quantity of previously unrecorded wind turbine
installations.

Table 1. Comparison of open-source datasets of onshore wind turbines with our results.

Scope Time Number Ours (2024)
Global (Dunnett et al., 2020) 2020 33,514 379,595
Global Renewables Watch (Robinson et al., 2025) 2024 375,000 379,595
United States (Rand et al., 2020) 2024 75,781 74,523
Germany (Manske et al., 2022) 2021 28,156 28,530
Italy (Smeraldo et al., 2020) 2020 8,729 10,147

3.3 Global onshore wind turbine installation distribution

The finalized global dataset contains 379,595 precisely georeferenced wind turbines (Figure
8a), exhibiting pronounced concentration patterns across northern hemisphere regions,
particularly in North America, Europe, and East Asia. Regional deployment patterns show clear
geographic concentrations (Figure 8b). China's overwhelming dominance in global wind
energy deployment, with 122,602 turbines representing 32.3 % of worldwide installations. The
United States ranks second (74,523 turbines), followed by India (31,736), Germany (28,530),
and Spain (19,124), collectively representing the top five national markets (Figure 8c). China
and India, collectively representing 89% of Asia's wind turbine installations, and the United
States and Brazil together comprise 92% of American deployments. Europe's wind energy
deployment is primarily concentrated in Germany, Spain, and Italy, which collectively account

for 16% of global wind turbine installations.
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Figure 8. Global onshore wind turbine installation records and spatial distribution. (a) Global
onshore wind turbine by 2024. (b) Spatial distribution of wind turbine installation statistics by
country. (¢) Percentage ranking of wind turbines for top 20 countries.

3.4 Land use types and spatial distribution of global onshore wind turbines

Our global assessment quantifies a total impacted area of 242,940 km? of the wind turbines,
which is estimated with 800-meter buffer around turbine locations (Dunnett et al., 2020).
Among the affected areas, 80% of wind turbines located within cropland and grassland
ecosystems (Figure 9¢). Specifically, croplands represent the predominant land use at 42%
(100,915 km?), followed by grasslands for 38% (93,028 km?), and forests for 12% (29,832 km?).
These proportions, however, exhibit substantial variation across national boundaries (Figure
9a, b). China, the global leader in wind capacity, exhibits unique siting patterns with over 50%

of turbines deployed in grasslands, followed by croplands (20%) and forests (15%). China
13
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demonstrates a notably higher reliance on forested areas for wind turbine siting compared to
global patterns, particularly in its southern provinces (Figure 9a), warranting careful ecological
assessment (Enevoldsen, 2016). In contrast, the United States distributes roughly half (50%) of
its wind turbines across croplands, supplemented by grassland deployments. Germany displays
the most extreme geographic specialization, with over 90% of its turbines sited exclusively on
agricultural lands. These pronounced regional variations in turbine siting patterns carry
significant implications for both renewable energy development and landscape management

policies.
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Figure 9. Land use distribution of global onshore wind turbines.(a) Land use distribution of
global onshore wind turbines. (b) Land use area statistics occupied by onshore wind turbines
by country. (¢) Percentages of difference land use deployed by onshore wind turbines.

3.5 Potential dataset applications

This open-access global onshore wind turbine dataset could establish a critical foundation for
interdisciplinary research, facilitating integrated studies in energy infrastructure planning,
ecological impact evaluation, and land use optimization. First, the geospatial wind turbine
dataset enables rigorous biodiversity impact assessments, including wildlife disturbance

patterns and habitat fragmentation analysis around wind energy installations (Bopucki and
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Perzanowski, 2018; Mckay et al., 2024). Particularly, studies have demonstrated that turbine
blade rotation creates distinct mortality patterns across bird and bat species (Marques et al.,
2020; Millon et al., 2018). Our precisely geolocated turbine records enable exact spatial
correlation between wind infrastructure and vulnerable species' high-activity areas, facilitating
data-driven assessments of avian and chiropteran collision risks.

Second, wind farm construction and associated infrastructure development induce significant
ecological disruptions through multiple pathways (Xia et al., 2025). Integrating high-precision
turbine locations with remote sensing data allows systematic evaluation of wind energy's
environmental footprint, including deforestation patterns (Enevoldsen, 2018), soil erosion (Ma
et al., 2023), and carbon sink loss (Gao et al., 2023). Our dataset provides a robust data
foundation for both evaluating the cumulative ecological impacts of existing wind farms and

optimizing future turbine siting to balance energy production with ecosystem conservation.

4 Data availability

These open-access data resources could help promote transparent and just sustainable wind
energy development, and enable detailed feature extraction and spatial analysis for future wind
energy research. The global onshore wind turbine dataset is freely available from the Zenodo

website at: https://doi.org/10.5281/zenodo.17217523 (Shujun et al., 2025).

The dataset includes:

® A comprehensive global inventory of 379,595 onshore wind turbines in the format of a
geospatial shapefile. The dataset includes geolocation coordinates for all wind turbines,
along with corresponding nation (Field: 'Nation') and land use classification (Field:
'landtype') for each wind turbine.

® The dataset comprises 37,285 carefully annotated 256 X256 pixel Google Earth image
patches, containing both positive (wind turbine) and negative (background) samples, and
is organized into folders with training (60%, 22,372 images) and testing sets (20%, 7,457
images) validating sets (20%, 7,456 images). The images could serve as foundational data
for training deep learning models in wind turbine classification, segmentation, and
detection tasks.

The code file includes:

Open Access

Earth System
Science

Data

suoIssnoasiq



https://doi.org/10.5194/essd-2025-512
Preprint. Discussion started: 29 October 2025
(© Author(s) 2025. CC BY 4.0 License.

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

® A PyTorch-based ResNet-18 implementation for classifying onshore wind turbines in
Google Earth images, including codes for model architecture and pre-trained weights.
® The GEE-based code for the Random Forest model, including sample point splitting

(training/test sets) and model training.
S Discussion and conclusion

This study introduces an advanced geospatial approach that integrates high-resolution Google
Earth images with multi-source satellite observations to construct a refined global inventory of
onshore wind turbines. Compared current datasets of available global onshore wind turbines,
our dataset more timely data that represents a tenfold expansion over the global wind turbine
inventories as of 2020. Importantly, in mapping methodology, compared to the new updating
framework of Global Renewables Watch, we propose a reproducible and straightforward
approach to identify renewable infrastructure, which can be applied in future studies and in
countries or regions with limited computational resources. The datasets and resulting 2024
global inventory documents 379,595 onshore wind turbines, serving as a critical resource for
renewable energy infrastructure planning and ecological impact studies.

The global analysis demonstrates significant spatial aggregation of wind turbines, with the
densest concentrations occurring in northern mid-latitude zones, particularly high-density
concentrations in Europe, North America, and East Asia. This spatial concentration pattern
stems from factors including optimal wind resources (Davis et al., 2023; Liu et al., 2023),
supportive policy frameworks (Godby et al., 2025; Kumar et al., 2022; Liao, 2016), and
established energy infrastructure networks (Oro et al., 2015; Rochminska, 2023) prevalent in
these mid-latitude zones. Notably, the global wind energy has developed across 242,940 km?
of land, with agricultural fields (42%) and grasslands (38%) hosting the majority (80%) of
turbine installations. This distribution reflects a strategic preference for siting turbines in
previously developed or ecologically low-sensitivity areas. However, the associated ecological
impacts, particularly habitat fragmentation and soil disturbance, require thorough
environmental evaluation and mitigation planning (Moore O'Leary et al., 2017).

Wind turbines primarily appear as point features in satellite images, presenting significant

challenges for automated large-scale detection (Zhai et al., 2024). These detection challenges
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are further intensified by visually similar infrastructure, particularly high-voltage transmission
lines and isolated structures that mimic turbine signatures. Our proposed solution combines
hybrid machine/deep learning architectures with systematic sampling approaches to enable
reliable turbine identification across diverse terrain types. Looking ahead, sustainable
renewable energy development, including wind, solar, and hydropower, requires continuous
innovation and open geospatial data to enhance planning transparency and governance. Overall,
our framework offers a novel approach and solution for cost-effective, timely updates of global
onshore wind turbine data.
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