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Abstract

Satellite-driven soil moisture monitoring systems currently available fail to meet the
spatial resolution requirement for a wide range of applications. This limitation is
particularly critical for agricultural water management, assessing risks associated with
extreme events, and hydrological modeling. This work aims to address the spatial
limitations of satellite soil moisture remote sensing by developing GSSM-10, a global
10-meter resolution surface soil moisture dataset, using multi-sensor datasets
integrated within an ensemble machine learning framework. These datasets
encompass diverse data types—active microwave, multispectral, thermal infrared, and
land elevation—offering a robust and comprehensive approach to estimating surface
soil moisture (SSM). The ensemble model incorporates TabNet, Random Forest (RF),
and Extreme Gradient Boosting (XGBoost). The model was trained on ground-truth
data collected from the International Soil Moisture Network (ISMN). The ensemble
model demonstrated robust performance, achieving an R? of 0.8344, a bias of —0.0001,
an RMSE of 0.0433 m’m? and an ubRMSE of 0.0433 m’m*® in 5-fold
cross-validation. When evaluated on a held-out test set, the model achieved similar
levels of accuracy, with an R? of 0.8591, a bias of —0.0002 m*m?3, and an
RMSE/ubRMSE of 0.0401 m*/m?. An interactive web platform has been developed
for data access, visualization, and download, enabling broad adoption by researchers,
practitioners, and policymakers. By providing globally consistent, high-resolution SM
estimates, GSSM-10 represents a significant advancement in satellite-based soil
moisture monitoring for environmental and agricultural applications.

Keywords: soil moisture, remote sensing, data fusion, machine learning.
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Soil moisture plays a pivotal role in the Earth's water and energy cycles, influencing
climate, hydrology, and ecosystem dynamics (Klein and Taylor, 2020; Porkka et al.,
2024; Sun et al., 2025; Zhang et al., 2020). It governs the partitioning of rainfall into
runoff or infiltration and modulates evapotranspiration, thereby affecting weather and
climate patterns at regional to global scales (Denissen et al., 2022; Seneviratne et al.,
2010; Sun et al., 2025). Recognized as an essential climate variable, soil moisture data
are indispensable for climate research (Humphrey et al., 2021; Liu et al., 2023; Qiao
et al., 2023; Seneviratne et al., 2010; Soares and Lima, 2022), hydrological modeling
(Droppers et al., 2024; Eini et al., 2023; Fatima et al., 2024; Leonarduzzi et al., 2021;
Mei et al., 2023), drought and flood forecasting (Lesinger and Tian, 2025; Qing et al.,
2023; Wasko and Nathan, 2019; Wyatt et al., 2020; Yao et al., 2023), and agricultural
management (Chatterjee et al., 2022; Li et al., 2022; Martinez-Fernandez et al., 2016;
McNairn et al., 2012; Zhou et al., 2021).

Compared to traditional in-situ point measurement soil moisture (SM) sensors,
satellite remote sensing offers cost-effective and large-scale SM monitoring solutions
(Chaudhary et al., 2022; Cheng et al., 2022; Dubois et al., 2021). NASA's Soil
Moisture Active Passive (SMAP) (Entekhabi et al., 2010), EUMETSAT's Advanced
Scatterometer (ASCAT) (Wagner et al., 2013), and ESA's Soil Moisture and Ocean
Salinity (SMOS) (Kerr et al., 2001) have demonstrated the power of spaceborne
sensors to map surface soil moisture globally. However, their low spatial resolutions
are not pertinent to many applications, particularly to agriculture and field-level scale
applications (Babaeian et al., 2021; Nguyen et al., 2022). For example, SMAP's
radiometer measures moisture at ~36 km resolution (with an enhanced 9 km product),
ASCAT scatterometer products are available at ~12.5 km, and SMOS provides data at
~25 km. Even multi-sensor merged datasets like the ESA Climate Change Initiative
(CCI) soil moisture (which merges multiple satellites) are typically gridded at 0.25°
(~25 km) (Dorigo et al., 2017). At these scales, crucial fine-scale heterogeneity is lost.
Model-based products such as ERAS5-Land (Mufoz-Sabater et al., 2021), which
provides hourly global soil moisture data at ~9 km resolution, and GLDAS (Global
Land Data Assimilation System), which produces 3-hourly estimates at 0.25°
resolution (Syed et al., 2008; Zawadzki and Kedzior, 2016), offer valuable temporal
continuity but remain too coarse for capturing sub-field heterogeneity. While these
datasets are essential for large-scale hydrological modeling and climate analysis, their
spatial granularity is insufficient for localized applications(Liu et al., 2019; Xu et al.,
2021). This mismatch between the scale of observation and the scale of
decision-making severely constrains the usability of current global datasets for
applications such as irrigated agriculture, flood forecasting, and wildfire risk
assessment (Gebrechorkos et al., 2023; He et al., 2023; Peng et al., 2021; Sabaghy et
al., 2020).

A variety of global SM datasets have been developed using remote sensing, land
surface models, and machine learning. Recently, several products with a resolution of
~1 km have emerged, marking a significant step toward finer spatial detail. For
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example, Fan et al. (2025) introduced a global 1-km SM product derived from
Sentinel-1 SAR observations. Zhang et al. (2023) generated a daily 1-km global
surface SM dataset for 2000-2020 by integrating multi-source satellite-driven
information (albedo, land temperature, leaf area index) and reanalysis data using an
ensemble learning (XGBoost) model. Zheng et al., 2023 achieved a similar 1-km
global product by downscaling the 0.25° ESA CCI satellite soil moisture with
Random Forest, producing a gap-free daily 21-year record (2000-2020). Han et al.,
2023 developed another 1-km global dataset (surface top 5 cm layer) using a
physics-informed machine learning approach, achieving high accuracy (correlation
coefficient of ~0.9) from 2000 to 2020. These high-resolution global datasets
represent significant progress in capturing soil moisture at much finer scales than
earlier global products. Despite their improved resolution, the ~1 km global datasets
still fall short for applications demanding sub-field-scale detail. A 1-km pixel
(~100 ha) averages over heterogeneous terrain and management units and is too
coarse for field-level precision applications.

To meet fine-scale needs, several regional datasets push spatial resolutions to tens or
hundreds of meters, albeit over limited areas. Vergopolan et al. (2021) developed
SMAP-HydroBlocks, a 30-m resolution surface Scm soil moisture dataset for the
conterminous U.S. (2015-2019) by integrating high-resolution land surface modeling
with downscaled satellite observations and machine learning. Baghdadi et al., (2017)
developed the S2MP (Sentinel-1/Sentinel-2-derived Soil Moisture Product), a regional
10 m resolution soil moisture dataset. However, its coverage is presently limited to
specific regions (e.g., parts of southern France). In summary, high spatial resolution
satellite-derived soil moisture is available at regional scales, but current datasets are
constrained by both limited geographic coverage and relatively short temporal records
(Table 1). Therefore, there is a need to develop a soil moisture product that combines
global coverage with high spatial resolution.

Table 1 Information of common soil moisture products.

Open Access

Category Datasets Scale Period Spatial Temporal Depth (cm)
Resolution Resolution

Satellite SMAP Global 2015 - present 9 km 2 - 3 days 0-5; 0-100
data .

ASCAT Global 2000 - present  12.5/25km  Twice perday 0-2

SMOS Global 2000 - present 35 - 50 km 2 - 3 days 0-5
Artificially ERAS Global 1950 - present  11.132 Km hourly / daily 0-7,7-28,
developed 28-100, and
products 100-200

GLDAS Global 1948 - present  27.830 Km daily 0-10,; 10-40,

40-100, and
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2. Methodology
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2.1 Data

—_
~

To address existing limitations in soil moisture monitoring, this research introduces a
global 10-m surface soil moisture dataset developed using multi-sensor remote
sensing data, including active microwave, multispectral, thermal, and elevation inputs,
and advanced ensemble machine learning techniques. The dataset provides continuous
near real-time updates and includes historical records dating back to January 2016.
We employed a variety of ensemble models, such as TabNet (Arik and Pfister, 2021),
Random Forest (Belgiu and Dragut, 2016), and XGBoost (Chen and Guestrin, 2016),
to reduce individual model bias and leverage their complementary strengths. This
work represents a significant advancement in high-resolution soil moisture mapping,
with broad applications in precision agriculture, high-resolution disaster risk
assessment, sub-catchment hydrological modeling, and (micro-) climate research.
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2.1.1 Remote Sensing Data

In this study, we utilized a variety of datasets, each with a unique role in soil moisture
analysis (Table 2). Sentinel-1 with Synthetic Aperture Radar is capable of emitting
microwaves that penetrate the surface, with varying degrees of signal reflection
indicating different levels of moisture in the soil, even under vegetation cover.

Sentinel-2 and Landsat-8/9 provide multispectral imagery highlighting information
about vegetation and moisture using various vegetation indices such as the
Normalized Difference Vegetation Index (NDVI, eq. (1)) (Pettorelli et al., 2005; Xu et
al.,, 2025) and the Normalized Difference Moisture Index (NDMI, eq. (2))
(Mkhwenkwana et al., 2025; Monteiro et al., 2024). Both datasets were used jointly to
enrich the spectral feature space. Differences in sensor characteristics, spectral band
configurations, and observation geometries provide complementary information that
enhances the model’s ability to generalize across varying land surface and
atmospheric conditions. Moreover, land topography obtained from ALOS DSM and
STRM DEM has a significant impact on soil moisture distribution. For example, areas
at higher elevations may experience more runoff, resulting in drier soils, while areas
at lower elevations may retain more moisture. ALOS DSM is the primary elevation
data used. In areas where ALOS DSM is unavailable, the SRTM DEM is used as a
substitute.

- (D

- )

Table 2. Summary of the datasets used in the study.

Sensor Sp at1a1. Temp o.ral Features Time
resolution  resolution
Sentinel-1 10 m 3-5 days VYV, VH, incident angle 1/1/2016-12/31/2023
}Sée“““el'zA/ 10m 23days Bl -BI12, NDVI, NDMI 1/1/2016-12/31/2023
Landsat-8/9 30 8 days B1 - B11, NDVI, NDMI 1/1/2016-12/31/2023
ALOS DSM / . .
SRTM DEM 30m Static Elevation 2006/2000
Point-bas
ISMN ed Daily Soil moisture, latitude, longitude  1/1/2016-12/31/2023
(station)

2.1.2 Ground-based soil moisture dataset

We used ground data from the International Soil Moisture Network (ISMN,
https://ismn.earth/en/) for model training and validation. ISMN is a global in-situ data
hosting service that consolidates soil moisture measurements from various sources

and networks. We filtered the stations to include only those with available data from
5
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January 1, 2016, to December 31, 2023, and provided surface soil moisture
measurements for the top 5 cm of soil depth. In total, data from 699 stations were
used in this study. The spatial distribution of the selected ISMN stations used in this
study is shown in Figure 1. While a large proportion of the selected stations are
located within the United States, the selected stations span diverse climatic conditions
and land cover types.

A ISMN stations
El Country boundary
Elevation (m)

8715.63

5,000
-430 [ Kilometers

Fig. 1 Spatial distribution of the selected ISMN stations used in this study.

2.2.1 Water cloud model

To correct for vegetation effects on the radar backscatter prior to soil moisture
retrieval, a dynamic Water Cloud Model (WCM) approach was applied (Attema and
Ulaby, 1978). The WCM relates the observed radar backscatter ( ) to
contributions from vegetation and soil (Li et al., 2024; Nijaguna et al., 2023).

For each Sentinel-1 acquisition date, the closest available cloud-free Sentinel-2 image
within a +3-day window was identified to capture the most representative vegetation
conditions at the time of radar observation. From the selected Sentinel-2 image, the
NDVI was computed and sampled at the station location. The sampled NDVI value
was then used to dynamically calculate the WCM parameters, specifically the
vegetation scattering coefficient (A) and attenuation coefficient (B), for both VV and
VH polarizations. Using these dynamically adjusted parameters, vegetation effects
were removed from the Sentinel-1 VV and VH backscatter according to the standard
WCM formulation (Attema and Ulaby, 1978) Finally, the corrected soil surface
backscatter ( ) for both polarizations was retained for subsequent analysis and soil
moisture retrieval.
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where is the direct vegetation scattering contribution, 2 is the two-way
attenuation factor through the vegetation layer, and is the soil surface
backscatter.
The two-way attenuation 2 was modeled as:

2=exp(—2 x x ) )
and the vegetation scattering was modeled as:

= x x  x(1-2 5)

Where is the vegetation descriptor, here taken as NDVI, is the local incidence

angle (in radians), and and are empirical coefficients dependent on vegetation
density.

The soil backscatter was then retrieved by rearranging the WCM equation:

== (6)

All backscatter computations were performed on a linear scale (i.e., reflectivity
coefficient, unitless), with Sentinel-1 backscatter converted from decibels (dB) to a
linear scale prior to WCM correction and then converted back to dB afterward.

Unlike conventional methods that use static WCM parameters, this study dynamically
adjusted the WCM scattering (A) and attenuation (B) coefficients based on NDVI at
each Sentinel-1 acquisition time (Baghdadi et al., 2019, 2017; Rawat et al., 2021).
This allowed the vegetation contribution to vary spatially and temporally in response
to actual plant growth stages.

For VV polarization:

012 x <08
= {0.095 x >08 Q)
0.70 x <08
‘&56x >08 ®)
For VH polarization:
(0,05 % <08
‘%o4x >08 ©)
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Distinct WCM parameters were applied for NDVI values above and below the 0.8
threshold. These dynamic parameterizations allowed the vegetation scattering and
attenuation effects to vary smoothly with vegetation conditions.

2.2.2 Ensemble learning

The ISMN and remote sensing data were compiled into a structured tabular format,
where each row represents a specific location and acquisition time, and each column
corresponds to a predictor variable or the observed soil moisture value. To effectively
capture the complex, nonlinear relationships between multi-source remote sensing
features and in-situ soil moisture observations, this study employed three
complementary machine learning models: TabNet, Random Forest, and XGBoost.
TabNet is a deep learning architecture specifically designed for tabular datasets (Arik
and Pfister, 2021). It employs attention-based feature selection and sparse
representation to enhance interpretability and effectively model complex patterns in
high-dimensional tabular data derived from remote sensing (Khaliq et al., 2025;
Triana-Martinez et al., 2025). Random Forest (Breiman, 2001), an ensemble of
decision trees, offers high robustness to overfitting, effective modeling of nonlinear
relationships, and strong performance in the presence of noise and collinearity (Belgiu
and Dragut, 2016; Liu et al, 2025). XGBoost (Chen and Guestrin, 2016), a
regularized gradient boosting framework, has demonstrated superior predictive
accuracy across a wide range of applications. Its advantages include efficient handling
of missing data, built-in regularization, and the capacity to capture complex feature
interactions through additive model training (Aydin and Ozturk, n.d.; Deng and
Lumley, 2024; Karthikeyan and Mishra, 2021).

The SM estimation workflow is illustrated in Figure 2. We trained TabNet, Random
Forest, and XGBoost models using remote sensing features and ISMN ground
observations, with 80% of the entire dataset randomly allocated for training and 20%
for testing. A 5-fold cross-validation was performed on the entire training dataset.

To optimize the hyperparameters of each model, we employed Optuna, an
open-source hyperparameter optimization framework that uses a flexible and efficient
sampling-based approach to automate tuning (Akiba et al., 2019). In addition to
individual model optimization, Optuna was used to determine the optimal ensemble
weights for combining the outputs of TabNet, XGBoost, and Random Forest, thereby
integrating TabNet's deep learning feature extraction, XGBoost's gradient boosting,
and Random Forest's handling of nonlinear relationships.

Model accuracy was assessed using the coefficient of correlation (R2, eq(11)), bias
(eq(12)), root mean square error (RMSE, eq(13)), and unbiased root mean square
error (ubRMSE, eq(14)). Finally, the optimized ensemble model was used to generate
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10-m resolution SM maps from January 2016 onward, with real-time updates.

e (1)

== 4( -) (12)

= L= (13)

= 2— 2 (14)

Where, is the predicted value, is the observed value, is the mean of predicted

values, 1isthe mean of observed values, n is the number of observations.

Features

| Microwave |—>| Sentinel-1 H VV, VH, incident angle ‘

| Multispectual }—IO{—SemL‘nel-Z H multispectral bands, NDVI, NDMI‘
R, |
‘ ! Training |

,,,,,,,,,,

| Thermal Landsat-8/9 H multispectral bands, thermal

bands, NDVI, NDMI
ALOS DSM /
SRTM DEM

Tnsemble leaming,

R*, Bias, RMSE, ubRMSE
Mapping soil moisture

Fig. 2. Workflow of SM estimation from multi-source datasets.

5-fold
Cross validation

elevation

2. Results
3.1 Model performance

Table 3 presents the average accuracy metrics obtained from 5-fold cross-validation
for each model. Among the individual models, TabNet achieved the highest
performance, with an R? of 0.7756 and the lowest RMSE (0.0506 m?*/m?), followed
closely by Random Forest (R? = 0.7702, RMSE = 0.0510 m*m?). XGBoost showed
comparatively lower accuracy, with an R? of 0.6792 and a higher RMSE of 0.0603
m?/m3. In contrast, the ensemble model outperformed all individual models, achieving
the highest R? (0.8344) and the lowest RMSE (0.0433 m*/m?), as well as near-zero
bias and the lowest unbiased RMSE (ubRMSE). These results highlight the advantage
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of ensemble learning in integrating the complementary strengths of deep learning
(TabNet), decision trees (Random Forest), and gradient boosting (XGBoost) to
enhance the accuracy and robustness of soil moisture predictions.

Table 3. Average accuracy metrics from 5-fold cross-validation for each model.

. RMSE ubRMSE
Model R? Bias
(m3/m3) (m3/m3)
TabNet 0.7756 -0.0003 0.0506 0.0506
RF 0.7702 0.0002 0.0510 0.0510
XGBoost 0.6792 0.0001 0.0603 0.0603
Ensemble 0.8344 -0.0001 0.0433 0.0433

Predicted versus actual soil moisture values on the 20% test set demonstrate strong
agreement across all models, with the ensemble model showing the highest accuracy
(Figure 3). The ensemble predictions were generated using a weighted combination of
the three models, with weights of 0.56 for Random Forest, 0.43 for TabNet, and 0.26
for XGBoost. The ensemble model achieved an R? of 0.8591, a near-zero bias
(-0.0002 m*/m?), and the lowest RMSE and ubRMSE (both 0.0401 m?*/m?), indicating
excellent predictive performance with minimal systematic error. XGBoost followed
closely with an R? of 0.8586 m*/m?® and RMSE of 0.0401 m3/m?*, while Random Forest
and TabNet yielded slightly lower accuracies (R? = 0.8346 m*/m® and 0.8302 m*/m?;
RMSE = 0.0434 m*m?® and 0.0442 m*/m?, respectively). However, the ensemble
model exhibited the tightest clustering and lowest dispersion, suggesting that it
effectively leveraged the complementary predictive capabilities of its constituent
algorithms.

TabNet Random Forest

Predicted Values

R 0.8346
Bias: -0.0000

RMSE: 0.0434
ubRMSE: 0.0434

R?: 0.8302 |
Bias: -0.0006

RMSE: 0.0440
UbRMSE: 0.0440

0.0

0.0 0.1 0.2 03 0.4 0.5 0.6 0.0 01 0.2 03 0.4 0.5 0.6
Actual Values Actual Values
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UBRMSE: 0.0401 |

R2: 0.8586|
Bias: -0.0002
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UbRMSE: 0.0401

0.0
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Actual Values Actual Values

Fig. 3 Scatter density plots of predicted versus actual surface soil moisture on the test set for
(a) TabNet, (b) Random Forest, (c) XGBoost, and (d) the Ensemble model.

3.2 Feature importance

Feature importance analysis was conducted across the three individual
models—Random Forest, TabNet, and XGBoost—as well as their ensemble to better
understand the contributions of each input variable to soil moisture prediction (Figure
4). Across all models, the Digital Surface Model (DSM) emerged as the most
influential predictor, highlighting the dominant role of topography in governing soil
moisture dynamics. Longitude and latitude were also consistently ranked among the
top features, particularly in the ensemble and Random Forest models. These spatial
coordinates likely serve as proxies for geospatial trends associated with climate zones,
soil texture, and land management practices.

The ensemble model combined predictions from TabNet, Random Forest, and
XGBoost using weighted contributions. It emphasized DSM and geolocation
(longitude and latitude) as the three most important features, suggesting strong
influence from landscape-driven and region-specific moisture patterns. Following
these, vegetation-related indicators such as Landsat-based NDMI and NDVI were
ranked highly, capturing the relationship between plant water content and soil
moisture. A range of spectral reflectance bands from both Landsat (e.g., B3, B4, B11)
and Sentinel-2 (e.g., B4, B8, Bll) were also assigned substantial importance,
reflecting their utility in detecting surface wetness and vegetation vigor. While
SAR-derived features (e.g., VV and VH backscatter) were generally ranked lower in
the ensemble, their inclusion still contributed valuable information in certain contexts,
especially under low vegetation cover.
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Fig. 4 Feature importance of each model.

3.3 Comparison to other soil moisture datasets

3.3.1 Compare to SMAP-HydroBlocks

The SMAP-HydroBlocks (SMAP-HB) dataset is a high-resolution, satellite-based
surface soil moisture product developed at 30m spatial resolution for the
conterminous United States from 2015 to 2019. It was generated by integrating
high-resolution land surface modeling, radiative transfer modeling, machine learning,
and SMAP satellite microwave observations through a scalable cluster-based merging
framework. The dataset was validated using measurements from 1,192 in situ
observational sites. SMAP-HB achieved a median temporal correlation of 0.73 +0.13
and a median Kling-Gupta Efficiency (KGE) of 0.52+0.20, indicating marked
improvements relative to the standard SMAP Level 3 products.

To assess the relative accuracy of the proposed GSSM-10 dataset, both GSSM-10 and
SMAP-HB were evaluated against independent in situ soil moisture measurements
obtained from the ISMN. The evaluation metrics summarized in Table 5. The
GSSM-10 dataset demonstrated strong agreement with ground observations,
achieving an R? of 0.8601, a near-zero bias of —0.0003 m3*/m?* and RMSE and
ubRMSE values of 0.0406 m*/m?. In contrast, the SMAP-HB dataset exhibited poor
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correspondence with the in-situ measurements, yielding a negative R? of —0.4253, a
bias of —0.0075 m*m?, and RMSE and ubRMSE values of 0.1296 m*/m*® and
0.1293 m*/m?, respectively.

These findings suggest that GSSM-10 offers substantially improved predictive
performance over SMAP-HB when benchmarked against independent field
observations. The low bias and minimal random error observed in GSSM-10 indicate
its robustness in capturing surface soil moisture variabilitys.

Table 4. Validation of SMAP-HB and GSSM-10 using 2569 in situ soil moisture observations
from ISMN.

Location R? Bias (m3/m?) RMSE ubRMSE
1
* (m*/m>) (m*/m?)
GSSM-10 0.8601 -0.0003 0.0406 0.0406
SMAP-HB -0.4253 -0.0075 0.1296 0.1293

3.3.1 Compared to S>MP

The S?MP (Sentinel-1/Sentinel-2-derived soil moisture product), developed by
Baghdadi et al. (2017), was designed to estimate surface soil moisture at the plot scale
by coupling radar backscatter from Sentinel-1 with vegetation indices derived from
Sentinel-2 imagery using a neural network inversion approach. The product has been
validated against in situ measurements collected across several regions, including
parts of France, Morocco, Germany, and the United States. It achieved a RMSE of
approximately 5 vol.%, demonstrating a high level of accuracy in agricultural regions
with vegetation cover. In addition to ground-based validation, SMP has been
compared with other widely used soil moisture products, including SMOS, SMAP,
ASCAT, and Copernicus-SSM. These comparisons revealed that SMP consistently
outperforms other products in terms of accuracy when benchmarked against ground
observations. Furthermore, S2MP exhibited strong spatial and temporal consistency
with precipitation data from the Global Precipitation Mission (GPM), suggesting that
it captures realistic hydrological patterns.

Given the small sample size (n = 14), the R* was not computed, as it is sensitive to
data distribution and may not yield statistically meaningful results under such
conditions. Instead, three error metrics were used: bias, RMSE, ubRMSE.

The results of the validation are summarized in Table 5. The S2MP product exhibited
a slight negative bias of —0.0180 m*/m3?, with an RMSE of 0.0373 m*/m? and a
ubRMSE of 0.0326 m*m?. In comparison, GSSM-10 showed a small positive bias of
0.0246 m*m?, an RMSE of 0.0404 m*m?3, and a slightly lower ubRMSE of
0.0320 m¥m?*. These findings suggest that both products demonstrate reasonable
agreement with ground observations and are capable of capturing surface soil
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moisture dynamics with similar levels of accuracy, even under a limited number of
validation instances. = However, the spatial and temporal applicability of the two
products differs significantly. S2MP is limited in geographic scope, covering only
selected agricultural plots within parts of France, Morocco, Germany, and the United
States. In contrast, GSSM-10 is a globally available product, providing surface soil
moisture estimates at 10-meter resolution from 2016 to present. This extensive spatial
and temporal coverage makes GSSM-10 more suitable for operational applications in
regions where in situ data are sparse and where S2MP is unavailable, thus offering
broader utility for global soil moisture monitoring and large-scale environmental
assessments.

Table 5. Validation of S2MP and GSSM-10 using 14 in-situ soil moisture observations from
USCRN.

Locati Bias ( y ) RMSE ubRMSE
ocation m3/m

s (m*/m?) (m*/m?)
GSSM-10 -0.0180 0.0373 0.0326
SMAP-HB -0.0246 0.0404 0.0320

4. Applications

4.1 After-fire Assessment

GSSM-10 offers valuable support for wildfire monitoring, assessment, and post-fire
recovery planning by capturing high-resolution surface moisture dynamics. For
instance, the soil moisture maps of a wildfire-affected region in northern Los Angeles
demonstrate a clear contrast between November 10, 2024 and March 22, 2025. The
pre-fire condition is illustrated in the Sentinel-2 true color image (Figure 5a) and the
corresponding soil moisture map (Figure 5b). The post-fire condition, captured after
the Eaton Fire that ignited on January 7, 2025, is shown in the true color image
(Figure 5c¢) and soil moisture map (Figure 5d). The fire burned approximately 14,000
acres in the forested foothills of Los Angeles County, causing extensive
environmental damage. The post-fire maps exhibit extensive areas of low soil
moisture (reddish-brown tones), highlighting a widespread and persistent surface
dryness following the wildfire disturbance. Such depletion of soil moisture can
exacerbate erosion risks, delay vegetation recovery, and signal lasting ecosystem
stress, especially on steep, fire-exposed slopes prone to debris flows. GSSM-10 can
also be used for post-fire impact analysis, restoration monitoring, and land
management decisions, providing critical support for assessing ecosystem recovery
and mitigating secondary hazards in fire-prone regions.

4.2 Agriculture
The 10-meter resolution of GSSM-10 offers significant utility for irrigated agriculture,
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enabling spatially explicit assessments of field-scale soil moisture conditions. This
supports more efficient irrigation management, early detection of crop water stress,
and optimized resource allocation. Figure 5 presents two representative case studies in
agricultural regions. The first site, located in California's Central Valley, is shown in
the Sentinel-2 true color image (Figure 5e) and the corresponding soil moisture map
(Figure 5f) from November 3, 2016. The second site, located in South Africa, is
depicted in the true color image (Figure 5g) and soil moisture map (Figure 5h) from
October 20, 2023. The true color imagery delineates field boundaries and
management zones, while the corresponding soil moisture maps reveal considerable
intra- and inter-field variability in surface moisture conditions.

This spatial variability reflects differences in irrigation and management practices,
soil types, vegetation status, and topography—factors that are difficult to capture
using coarse-resolution satellite products. The high level of spatial detail provided by
GSSM-10 enables applications such as detecting irrigated areas, planning
variable-rate irrigation, targeting fertilizer application, detecting early water stress,
and evaluating water conservation strategies.

4.3 Flood monitoring

The 10-meter resolution global soil moisture dataset developed in this study provides
fine-scale information for analyzing the hydrological impacts of extreme weather
events. Figure 5(i) shows a Sentinel-2 true color image, and Figure 5(j) presents the
corresponding 10-m resolution soil moisture map for an agricultural area near
Ravenna, Italy, on May 6, 2023, shortly after severe rainfall and regional flooding in
the Emilia-Romagna region. The soil moisture map reveals widespread saturation,
with values ranging from 0.25 to 0.32 m*/m?, consistent with the persistent rainfall
that affected the region in early May. In contrast, Figure 5(k) displays a true color
image and Figure 5(m) the corresponding soil moisture map for June 27, 2023,
following a regional heatwave. This later image reveals markedly drier soils,
reflecting the high atmospheric demand and reduced surface moisture after the
extreme heat event, during which daily maximum temperatures exceeded 35 °C, rising
8 - 10 °C above long-term average. These observations highlight the dataset's ability
to resolve intra-seasonal hydrological wvariability, effectively capturing both
flood-induced soil saturation and subsequent surface drying.
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Fig. 5. (a) Sentinel-2 true-color image and (b) corresponding 10-m resolution soil moisture
map of northern forest of Los Angeles on Nov. 10", 2024 (before Eaton Fire); (¢) Sentinel-2
true color image and (d) corresponding 10-m resolution soil moisture map of northern forest
of Los Angeles on Mar. 22", 2025 (after Eaton Fire).

(e) Sentinel-2 true color image and (f) corresponding 10-m resolution soil moisture map of an
agricultural field in California's Central Valley on Nov 3rd, 2016.
(g) True color image and (h) corresponding 10-m resolution soil moisture map of irrigated
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fields in South Africa on Oct 20th, 2023.

(i) True color image and (j) corresponding 10-m resolution soil moisture map near Ravenna,
Italy on May 6, 2023, shortly after extreme rainfall and regional flooding; (k) True
color image and (m) corresponding 10-m resolution soil moisture map on June 27, 2023,
following a regional heatwave.

5. Code and Data Availability
The source code and datasets associated with this research are publicly accessible.

The code repository, titled Global-10-m-Surface-Soil-Moisture-Maps, is available on
GitHub: https://github.com/RSNuo/Global-10-m-Surface-Soil-Moisture-Maps. git

In addition, the dataset and code have been archived on Zenodo to ensure long-term
accessibility: https://doi.org/10.5281/zenodo.16956743 (Xu et al., 2025). The Zenodo
record is published under a Creative Commons Attribution 4.0 International (CC BY
4.0) license.

Users are encouraged to access the repository and archive to reproduce the results and
apply the models to new geographic regions or temporal periods.

6. Conclusion

This study presents the development of a global 10-meter resolution surface soil
moisture (GSSM-10) dataset using a multi-sensor, ensemble machine learning
framework. By integrating active microwave, multispectral, thermal, and geographical
data from Sentinel-1, Sentinel-2, Landsat-8/9, and ALOS DSM, and by leveraging
ensemble learning models including TabNet, Random Forest, and XGBoost, we
produced a high-resolution product that substantially advances spatial detail and
predictive accuracy of global SM mapping.

Our ensemble model demonstrated superior performance compared to individual
models, achieving an R? of 0.8344 and an RMSE of 0.0433 cm*cm?® during
cross-validation, and an R? of 0.8591 and RMSE of 0.0401 cm3/cm? on the test set.
Feature importance analysis highlighted the key roles of geographical features in
shaping soil moisture patterns. The GSSM-10 dataset was validated against in situ
observations and showed comparable or superior accuracy to S2MP and
SMAP-HydroBlocks. Unlike these regionally limited products, GSSM-10 offers
global coverage, 10-m spatial resolution, and near real-time updates, making it a
robust and scalable tool for global soil moisture monitoring and environmental
applications.

The high spatial resolution of GSSM-10 enables a wide range of applications
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previously hindered by the coarseness of existing SM products. We demonstrated the
utility of this product in wildfire monitoring, irrigated agriculture, and flood analysis,
highlighting its ability to resolve fine-scale hydrological variability associated with
both natural and anthropogenic disturbances. The dataset also holds promise for
supporting ecosystem restoration, climate resilience planning, and precision water
management.
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