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Abstract10
Satellite-driven soil moisture monitoring systems currently available fail to meet the11
spatial resolution requirement for a wide range of applications. This limitation is12
particularly critical for agricultural water management, assessing risks associated with13
extreme events, and hydrological modeling. This work aims to address the spatial14
limitations of satellite soil moisture remote sensing by developing GSSM-10, a global15
10-meter resolution surface soil moisture dataset, using multi-sensor datasets16
integrated within an ensemble machine learning framework. These datasets17
encompass diverse data types—active microwave, multispectral, thermal infrared, and18
land elevation—offering a robust and comprehensive approach to estimating surface19
soil moisture (SSM). The ensemble model incorporates TabNet, Random Forest (RF),20
and Extreme Gradient Boosting (XGBoost). The model was trained on ground-truth21
data collected from the International Soil Moisture Network (ISMN). The ensemble22
model demonstrated robust performance, achieving an R² of 0.8344, a bias of –0.0001,23
an RMSE of 0.0433 m³/m³, and an ubRMSE of 0.0433 m³/m³ in 5-fold24
cross-validation. When evaluated on a held-out test set, the model achieved similar25
levels of accuracy, with an R² of 0.8591, a bias of –0.0002 m³/m³, and an26
RMSE/ubRMSE of 0.0401 m³/m³. An interactive web platform has been developed27
for data access, visualization, and download, enabling broad adoption by researchers,28
practitioners, and policymakers. By providing globally consistent, high-resolution SM29
estimates, GSSM-10 represents a significant advancement in satellite-based soil30
moisture monitoring for environmental and agricultural applications.31
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Soil moisture plays a pivotal role in the Earth's water and energy cycles, influencing1
climate, hydrology, and ecosystem dynamics (Klein and Taylor, 2020; Porkka et al.,2
2024; Sun et al., 2025; Zhang et al., 2020). It governs the partitioning of rainfall into3
runoff or infiltration and modulates evapotranspiration, thereby affecting weather and4
climate patterns at regional to global scales (Denissen et al., 2022; Seneviratne et al.,5
2010; Sun et al., 2025). Recognized as an essential climate variable, soil moisture data6
are indispensable for climate research (Humphrey et al., 2021; Liu et al., 2023; Qiao7
et al., 2023; Seneviratne et al., 2010; Soares and Lima, 2022), hydrological modeling8
(Droppers et al., 2024; Eini et al., 2023; Fatima et al., 2024; Leonarduzzi et al., 2021;9
Mei et al., 2023), drought and flood forecasting (Lesinger and Tian, 2025; Qing et al.,10
2023; Wasko and Nathan, 2019; Wyatt et al., 2020; Yao et al., 2023), and agricultural11
management (Chatterjee et al., 2022; Li et al., 2022; Martínez-Fernández et al., 2016;12
McNairn et al., 2012; Zhou et al., 2021).13

14
Compared to traditional in-situ point measurement soil moisture (SM) sensors,15
satellite remote sensing offers cost-effective and large-scale SM monitoring solutions16
(Chaudhary et al., 2022; Cheng et al., 2022; Dubois et al., 2021). NASA's Soil17
Moisture Active Passive (SMAP) (Entekhabi et al., 2010), EUMETSAT's Advanced18
Scatterometer (ASCAT) (Wagner et al., 2013), and ESA's Soil Moisture and Ocean19
Salinity (SMOS) (Kerr et al., 2001) have demonstrated the power of spaceborne20
sensors to map surface soil moisture globally. However, their low spatial resolutions21
are not pertinent to many applications, particularly to agriculture and field-level scale22
applications (Babaeian et al., 2021; Nguyen et al., 2022). For example, SMAP's23
radiometer measures moisture at ~36 km resolution (with an enhanced 9 km product),24
ASCAT scatterometer products are available at ~12.5 km, and SMOS provides data at25
~25 km. Even multi-sensor merged datasets like the ESA Climate Change Initiative26
(CCI) soil moisture (which merges multiple satellites) are typically gridded at 0.25°27
(~25 km) (Dorigo et al., 2017). At these scales, crucial fine-scale heterogeneity is lost.28
Model-based products such as ERA5-Land (Muñoz-Sabater et al., 2021), which29
provides hourly global soil moisture data at ~9 km resolution, and GLDAS (Global30
Land Data Assimilation System), which produces 3-hourly estimates at 0.25°31
resolution (Syed et al., 2008; Zawadzki and Kędzior, 2016), offer valuable temporal32
continuity but remain too coarse for capturing sub-field heterogeneity. While these33
datasets are essential for large-scale hydrological modeling and climate analysis, their34
spatial granularity is insufficient for localized applications(Liu et al., 2019; Xu et al.,35
2021). This mismatch between the scale of observation and the scale of36
decision-making severely constrains the usability of current global datasets for37
applications such as irrigated agriculture, flood forecasting, and wildfire risk38
assessment (Gebrechorkos et al., 2023; He et al., 2023; Peng et al., 2021; Sabaghy et39
al., 2020).40

41
A variety of global SM datasets have been developed using remote sensing, land42
surface models, and machine learning. Recently, several products with a resolution of43
~1 km have emerged, marking a significant step toward finer spatial detail. For44
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example, Fan et al. (2025) introduced a global 1-km SM product derived from1
Sentinel-1 SAR observations. Zhang et al. (2023) generated a daily 1-km global2
surface SM dataset for 2000–2020 by integrating multi-source satellite-driven3
information (albedo, land temperature, leaf area index) and reanalysis data using an4
ensemble learning (XGBoost) model. Zheng et al., 2023 achieved a similar 1-km5
global product by downscaling the 0.25° ESA CCI satellite soil moisture with6
Random Forest, producing a gap-free daily 21-year record (2000–2020). Han et al.,7
2023 developed another 1-km global dataset (surface top 5 cm layer) using a8
physics-informed machine learning approach, achieving high accuracy (correlation9
coefficient of ~0.9) from 2000 to 2020. These high-resolution global datasets10
represent significant progress in capturing soil moisture at much finer scales than11
earlier global products. Despite their improved resolution, the ~1 km global datasets12
still fall short for applications demanding sub-field-scale detail. A 1-km pixel13
(~100 ha) averages over heterogeneous terrain and management units and is too14
coarse for field-level precision applications.15

16
To meet fine-scale needs, several regional datasets push spatial resolutions to tens or17
hundreds of meters, albeit over limited areas. Vergopolan et al. (2021) developed18
SMAP-HydroBlocks, a 30-m resolution surface 5cm soil moisture dataset for the19
conterminous U.S. (2015–2019) by integrating high-resolution land surface modeling20
with downscaled satellite observations and machine learning. Baghdadi et al., (2017)21
developed the S2MP (Sentinel‑1/Sentinel‑2-derived Soil Moisture Product), a regional22
10 m resolution soil moisture dataset. However, its coverage is presently limited to23
specific regions (e.g., parts of southern France). In summary, high spatial resolution24
satellite-derived soil moisture is available at regional scales, but current datasets are25
constrained by both limited geographic coverage and relatively short temporal records26
(Table 1). Therefore, there is a need to develop a soil moisture product that combines27
global coverage with high spatial resolution.28

29
30

Table 1 Information of common soil moisture products.31

Category Datasets Scale Period Spatial

Resolution

Temporal

Resolution

Depth (cm)

Satellite

data

SMAP Global 2015 - present 9 km 2 - 3 days 0-5; 0-100

ASCAT Global 2000 - present 12.5 / 25 km Twice per day 0-2

SMOS Global 2000 - present 35 - 50 km 2 - 3 days 0-5

Artificially

developed

products

ERA5 Global 1950 - present 11.132 Km hourly / daily 0-7, 7-28,

28-100, and

100-200

GLDAS Global 1948 - present 27.830 Km daily 0-10,; 10-40,

40-100, and
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100-200

Skulovich and

Gentine, 2023

Global 2002 - 2020 25 km 3days 0-5

Han et al., 2023 Global 2000 - 2020 1 km daily 0-5

Zheng et al., 2023 Global 2000 - 2020 1 km daily 0-5

Zhang et al., 2023 Global 2000 - 2020 1 km daily 0-5

O. and Orth, 2021 Global 2000 - 2019 0.25° (27.75

km)

0-10, 10-30, and

30-50

SMRFR (Liu et

al., 2025)

Global 2000 - 2023 9 km daily 0-5, 5-10, 10-30,

30-50, and

50-100

SMAP-HydroBloc

ks (Vergopolan et

al., 2021)

U.S. 2015 - 2019 30 m 6 hours 0-5

Cui et al., 2019 Tibet

Plateau

2002 - 2015 0.25° (27.75

km)

daily 0-5

Song et al., 2022 China 2003 - 2019 1 km daily 0-10

S2MP (Lozac’h et

al., 2020)

parts of

France,

Morocco,

Germany,

U. S. A

2017 - 2024 field scale Synchronize

with

Sentinel-1/2

0-5

1
2

To address existing limitations in soil moisture monitoring, this research introduces a3
global 10-m surface soil moisture dataset developed using multi-sensor remote4
sensing data, including active microwave, multispectral, thermal, and elevation inputs,5
and advanced ensemble machine learning techniques. The dataset provides continuous6
near real-time updates and includes historical records dating back to January 2016.7
We employed a variety of ensemble models, such as TabNet (Arik and Pfister, 2021),8
Random Forest (Belgiu and Drăguţ, 2016), and XGBoost (Chen and Guestrin, 2016),9
to reduce individual model bias and leverage their complementary strengths. This10
work represents a significant advancement in high-resolution soil moisture mapping,11
with broad applications in precision agriculture, high-resolution disaster risk12
assessment, sub-catchment hydrological modeling, and (micro-) climate research.13

14
2. Methodology15

16
2.1 Data17
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1
2.1.1 Remote Sensing Data2
In this study, we utilized a variety of datasets, each with a unique role in soil moisture3
analysis (Table 2). Sentinel-1 with Synthetic Aperture Radar is capable of emitting4
microwaves that penetrate the surface, with varying degrees of signal reflection5
indicating different levels of moisture in the soil, even under vegetation cover.6

7
Sentinel-2 and Landsat-8/9 provide multispectral imagery highlighting information8
about vegetation and moisture using various vegetation indices such as the9
Normalized Difference Vegetation Index (NDVI, eq. (1)) (Pettorelli et al., 2005; Xu et10
al., 2025) and the Normalized Difference Moisture Index (NDMI, eq. (2))11
(Mkhwenkwana et al., 2025; Monteiro et al., 2024). Both datasets were used jointly to12
enrich the spectral feature space. Differences in sensor characteristics, spectral band13
configurations, and observation geometries provide complementary information that14
enhances the model’s ability to generalize across varying land surface and15
atmospheric conditions. Moreover, land topography obtained from ALOS DSM and16
STRM DEM has a significant impact on soil moisture distribution. For example, areas17
at higher elevations may experience more runoff, resulting in drier soils, while areas18
at lower elevations may retain more moisture. ALOS DSM is the primary elevation19
data used. In areas where ALOS DSM is unavailable, the SRTM DEM is used as a20
substitute.21

���� = ���−���
���+���

(1)22

���� = ���−����
���+����

(2)23

24
Table 2. Summary of the datasets used in the study.25

Sensor Spatial
resolution

Temporal
resolution Features Time

Sentinel-1 10 m 3-5 days VV, VH, incident angle 1/1/2016-12/31/2023

Sentinel-2A/
B 10 m 2-3 days B1 - B12, NDVI, NDMI 1/1/2016-12/31/2023

Landsat-8/9 30 8 days B1 - B11, NDVI, NDMI 1/1/2016-12/31/2023

ALOS DSM /
SRTM DEM 30 m Static Elevation 2006/2000

ISMN
Point-bas
ed
(station)

Daily Soil moisture, latitude, longitude 1/1/2016-12/31/2023

26
27

2.1.2 Ground-based soil moisture dataset28
We used ground data from the International Soil Moisture Network (ISMN,29
https://ismn.earth/en/) for model training and validation. ISMN is a global in-situ data30
hosting service that consolidates soil moisture measurements from various sources31
and networks. We filtered the stations to include only those with available data from32
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January 1, 2016, to December 31, 2023, and provided surface soil moisture1
measurements for the top 5 cm of soil depth. In total, data from 699 stations were2
used in this study. The spatial distribution of the selected ISMN stations used in this3
study is shown in Figure 1. While a large proportion of the selected stations are4
located within the United States, the selected stations span diverse climatic conditions5
and land cover types.6

7

8
Fig. 1 Spatial distribution of the selected ISMN stations used in this study.9

10
11

2.2.1 Water cloud model12
13

To correct for vegetation effects on the radar backscatter prior to soil moisture14
retrieval, a dynamic Water Cloud Model (WCM) approach was applied (Attema and15
Ulaby, 1978). The WCM relates the observed radar backscatter ( ������ ) to16
contributions from vegetation and soil (Li et al., 2024; Nijaguna et al., 2023).17

18
For each Sentinel-1 acquisition date, the closest available cloud-free Sentinel-2 image19
within a ±3-day window was identified to capture the most representative vegetation20
conditions at the time of radar observation. From the selected Sentinel-2 image, the21
NDVI was computed and sampled at the station location. The sampled NDVI value22
was then used to dynamically calculate the WCM parameters, specifically the23
vegetation scattering coefficient (A) and attenuation coefficient (B), for both VV and24
VH polarizations. Using these dynamically adjusted parameters, vegetation effects25
were removed from the Sentinel-1 VV and VH backscatter according to the standard26
WCM formulation (Attema and Ulaby, 1978) Finally, the corrected soil surface27
backscatter (�����) for both polarizations was retained for subsequent analysis and soil28
moisture retrieval.29

������ = ���� + �2 × ����� (3)30
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1

where ���� is the direct vegetation scattering contribution, �2 is the two-way2

attenuation factor through the vegetation layer, and ����� is the soil surface3
backscatter.4

5
The two-way attenuation �2 was modeled as:6

�2 = exp ( − 2� × � × ����) (4)7

8

and the vegetation scattering ���� was modeled as:9

���� = � × � × ���� × (1 − �2) (5)10

11
Where � is the vegetation descriptor, here taken as NDVI, � is the local incidence12
angle (in radians), and � and � are empirical coefficients dependent on vegetation13
density.14

15
The soil backscatter was then retrieved by rearranging the WCM equation:16

����� = ������−����

�2 (6)17

18
All backscatter computations were performed on a linear scale (i.e., reflectivity19
coefficient, unitless), with Sentinel-1 backscatter converted from decibels (dB) to a20
linear scale prior to WCM correction and then converted back to dB afterward.21
Unlike conventional methods that use static WCM parameters, this study dynamically22
adjusted the WCM scattering (A) and attenuation (B) coefficients based on NDVI at23
each Sentinel-1 acquisition time (Baghdadi et al., 2019, 2017; Rawat et al., 2021).24
This allowed the vegetation contribution to vary spatially and temporally in response25
to actual plant growth stages.26

27
For VV polarization:28

��� =
0.12 × ���� �� ���� ≤ 0.8
0.095 × ���� �� ���� > 0.8 (7)29

30
31

��� =
0.70 × ���� �� ���� ≤ 0.8
0.56 × ���� �� ���� > 0.8 (8)32

For VH polarization:33

��� =
0.05 × ���� �� ���� ≤ 0.8
0.04 × ���� �� ���� > 0.8 (9)34

35
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��� =
1.45 × ���� �� ���� ≤ 0.8
1.16 × ���� �� ���� > 0.8 (10)1

2
Distinct WCM parameters were applied for NDVI values above and below the 0.83
threshold. These dynamic parameterizations allowed the vegetation scattering and4
attenuation effects to vary smoothly with vegetation conditions.5

6
2.2.2 Ensemble learning7
The ISMN and remote sensing data were compiled into a structured tabular format,8
where each row represents a specific location and acquisition time, and each column9
corresponds to a predictor variable or the observed soil moisture value. To effectively10
capture the complex, nonlinear relationships between multi-source remote sensing11
features and in-situ soil moisture observations, this study employed three12
complementary machine learning models: TabNet, Random Forest, and XGBoost.13
TabNet is a deep learning architecture specifically designed for tabular datasets (Arik14
and Pfister, 2021). It employs attention-based feature selection and sparse15
representation to enhance interpretability and effectively model complex patterns in16
high-dimensional tabular data derived from remote sensing (Khaliq et al., 2025;17
Triana-Martinez et al., 2025). Random Forest (Breiman, 2001), an ensemble of18
decision trees, offers high robustness to overfitting, effective modeling of nonlinear19
relationships, and strong performance in the presence of noise and collinearity (Belgiu20
and Drăguţ, 2016; Liu et al., 2025). XGBoost (Chen and Guestrin, 2016), a21
regularized gradient boosting framework, has demonstrated superior predictive22
accuracy across a wide range of applications. Its advantages include efficient handling23
of missing data, built-in regularization, and the capacity to capture complex feature24
interactions through additive model training (Aydin and Ozturk, n.d.; Deng and25
Lumley, 2024; Karthikeyan and Mishra, 2021).26

27
The SM estimation workflow is illustrated in Figure 2. We trained TabNet, Random28
Forest, and XGBoost models using remote sensing features and ISMN ground29
observations, with 80% of the entire dataset randomly allocated for training and 20%30
for testing. A 5-fold cross-validation was performed on the entire training dataset.31

32
To optimize the hyperparameters of each model, we employed Optuna, an33
open-source hyperparameter optimization framework that uses a flexible and efficient34
sampling-based approach to automate tuning (Akiba et al., 2019). In addition to35
individual model optimization, Optuna was used to determine the optimal ensemble36
weights for combining the outputs of TabNet, XGBoost, and Random Forest, thereby37
integrating TabNet's deep learning feature extraction, XGBoost's gradient boosting,38
and Random Forest's handling of nonlinear relationships.39

40
Model accuracy was assessed using the coefficient of correlation (R2, eq(11)), bias41
(eq(12)), root mean square error (RMSE, eq(13)), and unbiased root mean square42
error (ubRMSE, eq(14)). Finally, the optimized ensemble model was used to generate43
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10-m resolution SM maps from January 2016 onward, with real-time updates.1
2

�2 = 1 − ��−����
2

��−�� �� 2 (11)3

���� = 1
� �=1

� ��� − ��� (12)4

���� = 1
� �=1

� ��� − ��
2

� (13)5

������ = ����2 − ����2 (14)6

Where, ��� is the predicted value, �� is the observed value, ��� � is the mean of predicted7

values, �� is the mean of observed values, n is the number of observations.8

9
Fig. 2. Workflow of SM estimation from multi-source datasets.10

11
2. Results12

13
3.1 Model performance14

15
Table 3 presents the average accuracy metrics obtained from 5-fold cross-validation16
for each model. Among the individual models, TabNet achieved the highest17
performance, with an R² of 0.7756 and the lowest RMSE (0.0506 m³/m³), followed18
closely by Random Forest (R² = 0.7702, RMSE = 0.0510 m³/m³). XGBoost showed19
comparatively lower accuracy, with an R² of 0.6792 and a higher RMSE of 0.060320
m³/m³. In contrast, the ensemble model outperformed all individual models, achieving21
the highest R² (0.8344) and the lowest RMSE (0.0433 m³/m³), as well as near-zero22
bias and the lowest unbiased RMSE (ubRMSE). These results highlight the advantage23
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of ensemble learning in integrating the complementary strengths of deep learning1
(TabNet), decision trees (Random Forest), and gradient boosting (XGBoost) to2
enhance the accuracy and robustness of soil moisture predictions.3

4
Table 3. Average accuracy metrics from 5-fold cross-validation for each model.5

Model R2 Bias
RMSE
(m³/m³)

ubRMSE
(m³/m³)

TabNet 0.7756 -0.0003 0.0506 0.0506
RF 0.7702 0.0002 0.0510 0.0510
XGBoost 0.6792 0.0001 0.0603 0.0603
Ensemble 0.8344 -0.0001 0.0433 0.0433

6
Predicted versus actual soil moisture values on the 20% test set demonstrate strong7
agreement across all models, with the ensemble model showing the highest accuracy8
(Figure 3). The ensemble predictions were generated using a weighted combination of9
the three models, with weights of 0.56 for Random Forest, 0.43 for TabNet, and 0.2610
for XGBoost. The ensemble model achieved an R² of 0.8591, a near-zero bias11
(–0.0002 m³/m³), and the lowest RMSE and ubRMSE (both 0.0401 m³/m³), indicating12
excellent predictive performance with minimal systematic error. XGBoost followed13
closely with an R² of 0.8586 m³/m³ and RMSE of 0.0401 m³/m³, while Random Forest14
and TabNet yielded slightly lower accuracies (R² = 0.8346 m³/m³ and 0.8302 m³/m³;15
RMSE = 0.0434 m³/m³ and 0.0442 m³/m³, respectively). However, the ensemble16
model exhibited the tightest clustering and lowest dispersion, suggesting that it17
effectively leveraged the complementary predictive capabilities of its constituent18
algorithms.19

20

21
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1
2

Fig. 3 Scatter density plots of predicted versus actual surface soil moisture on the test set for3
(a) TabNet, (b) Random Forest, (c) XGBoost, and (d) the Ensemble model.4

5
3.2 Feature importance6

7
Feature importance analysis was conducted across the three individual8
models—Random Forest, TabNet, and XGBoost—as well as their ensemble to better9
understand the contributions of each input variable to soil moisture prediction (Figure10
4). Across all models, the Digital Surface Model (DSM) emerged as the most11
influential predictor, highlighting the dominant role of topography in governing soil12
moisture dynamics. Longitude and latitude were also consistently ranked among the13
top features, particularly in the ensemble and Random Forest models. These spatial14
coordinates likely serve as proxies for geospatial trends associated with climate zones,15
soil texture, and land management practices.16

17
The ensemble model combined predictions from TabNet, Random Forest, and18
XGBoost using weighted contributions. It emphasized DSM and geolocation19
(longitude and latitude) as the three most important features, suggesting strong20
influence from landscape-driven and region-specific moisture patterns. Following21
these, vegetation-related indicators such as Landsat-based NDMI and NDVI were22
ranked highly, capturing the relationship between plant water content and soil23
moisture. A range of spectral reflectance bands from both Landsat (e.g., B3, B4, B11)24
and Sentinel-2 (e.g., B4, B8, B11) were also assigned substantial importance,25
reflecting their utility in detecting surface wetness and vegetation vigor. While26
SAR-derived features (e.g., VV and VH backscatter) were generally ranked lower in27
the ensemble, their inclusion still contributed valuable information in certain contexts,28
especially under low vegetation cover.29

30
31
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1

2
Fig. 4 Feature importance of each model.3

4
3.3 Comparison to other soil moisture datasets5

6
3.3.1 Compare to SMAP-HydroBlocks7

8
The SMAP-HydroBlocks (SMAP-HB) dataset is a high-resolution, satellite-based9
surface soil moisture product developed at 30 m spatial resolution for the10
conterminous United States from 2015 to 2019. It was generated by integrating11
high-resolution land surface modeling, radiative transfer modeling, machine learning,12
and SMAP satellite microwave observations through a scalable cluster-based merging13
framework. The dataset was validated using measurements from 1,192 in situ14
observational sites. SMAP-HB achieved a median temporal correlation of 0.73 ± 0.1315
and a median Kling-Gupta Efficiency (KGE) of 0.52 ± 0.20, indicating marked16
improvements relative to the standard SMAP Level 3 products.17

18
To assess the relative accuracy of the proposed GSSM-10 dataset, both GSSM-10 and19
SMAP-HB were evaluated against independent in situ soil moisture measurements20
obtained from the ISMN. The evaluation metrics summarized in Table 5. The21
GSSM-10 dataset demonstrated strong agreement with ground observations,22
achieving an R² of 0.8601, a near-zero bias of −0.0003 m³/m³, and RMSE and23
ubRMSE values of 0.0406 m³/m³. In contrast, the SMAP-HB dataset exhibited poor24
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correspondence with the in-situ measurements, yielding a negative R² of −0.4253, a1
bias of −0.0075 m³/m³, and RMSE and ubRMSE values of 0.1296 m³/m³ and2
0.1293 m³/m³, respectively.3

4
These findings suggest that GSSM-10 offers substantially improved predictive5
performance over SMAP-HB when benchmarked against independent field6
observations. The low bias and minimal random error observed in GSSM-10 indicate7
its robustness in capturing surface soil moisture variabilitys.8

9
Table 4. Validation of SMAP-HB and GSSM-10 using 2569 in situ soil moisture observations10
from ISMN.11

Location R2 Bias (m³/m³)
RMSE
(m³/m³)

ubRMSE
(m³/m³)

GSSM-10 0.8601 -0.0003 0.0406 0.0406

SMAP-HB -0.4253 -0.0075 0.1296 0.1293

12
3.3.1 Compared to S2MP13

14
The S2MP (Sentinel-1/Sentinel-2-derived soil moisture product), developed by15
Baghdadi et al. (2017), was designed to estimate surface soil moisture at the plot scale16
by coupling radar backscatter from Sentinel-1 with vegetation indices derived from17
Sentinel-2 imagery using a neural network inversion approach. The product has been18
validated against in situ measurements collected across several regions, including19
parts of France, Morocco, Germany, and the United States. It achieved a RMSE of20
approximately 5 vol.%, demonstrating a high level of accuracy in agricultural regions21
with vegetation cover. In addition to ground-based validation, S2MP has been22
compared with other widely used soil moisture products, including SMOS, SMAP,23
ASCAT, and Copernicus-SSM. These comparisons revealed that S2MP consistently24
outperforms other products in terms of accuracy when benchmarked against ground25
observations. Furthermore, S2MP exhibited strong spatial and temporal consistency26
with precipitation data from the Global Precipitation Mission (GPM), suggesting that27
it captures realistic hydrological patterns.28

29
Given the small sample size (n = 14), the R² was not computed, as it is sensitive to30
data distribution and may not yield statistically meaningful results under such31
conditions. Instead, three error metrics were used: bias, RMSE, ubRMSE.32

33
The results of the validation are summarized in Table 5. The S2MP product exhibited34
a slight negative bias of −0.0180 m³/m³, with an RMSE of 0.0373 m³/m³ and a35
ubRMSE of 0.0326 m³/m³. In comparison, GSSM-10 showed a small positive bias of36
0.0246 m³/m³, an RMSE of 0.0404 m³/m³, and a slightly lower ubRMSE of37
0.0320 m³/m³. These findings suggest that both products demonstrate reasonable38
agreement with ground observations and are capable of capturing surface soil39
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moisture dynamics with similar levels of accuracy, even under a limited number of1
validation instances. However, the spatial and temporal applicability of the two2
products differs significantly. S2MP is limited in geographic scope, covering only3
selected agricultural plots within parts of France, Morocco, Germany, and the United4
States. In contrast, GSSM-10 is a globally available product, providing surface soil5
moisture estimates at 10-meter resolution from 2016 to present. This extensive spatial6
and temporal coverage makes GSSM-10 more suitable for operational applications in7
regions where in situ data are sparse and where S2MP is unavailable, thus offering8
broader utility for global soil moisture monitoring and large-scale environmental9
assessments.10

11
Table 5. Validation of S2MP and GSSM-10 using 14 in-situ soil moisture observations from12
USCRN.13

Location Bias (m³/m³)
RMSE
(m³/m³)

ubRMSE
(m³/m³)

GSSM-10 -0.0180 0.0373 0.0326

SMAP-HB -0.0246 0.0404 0.0320

14
15

4. Applications16
17

4.1 After-fire Assessment18
GSSM-10 offers valuable support for wildfire monitoring, assessment, and post-fire19
recovery planning by capturing high-resolution surface moisture dynamics. For20
instance, the soil moisture maps of a wildfire-affected region in northern Los Angeles21
demonstrate a clear contrast between November 10, 2024 and March 22, 2025. The22
pre-fire condition is illustrated in the Sentinel-2 true color image (Figure 5a) and the23
corresponding soil moisture map (Figure 5b). The post-fire condition, captured after24
the Eaton Fire that ignited on January 7, 2025, is shown in the true color image25
(Figure 5c) and soil moisture map (Figure 5d). The fire burned approximately 14,00026
acres in the forested foothills of Los Angeles County, causing extensive27
environmental damage. The post-fire maps exhibit extensive areas of low soil28
moisture (reddish-brown tones), highlighting a widespread and persistent surface29
dryness following the wildfire disturbance. Such depletion of soil moisture can30
exacerbate erosion risks, delay vegetation recovery, and signal lasting ecosystem31
stress, especially on steep, fire-exposed slopes prone to debris flows. GSSM-10 can32
also be used for post-fire impact analysis, restoration monitoring, and land33
management decisions, providing critical support for assessing ecosystem recovery34
and mitigating secondary hazards in fire-prone regions.35

36
37

4.2 Agriculture38
The 10-meter resolution of GSSM-10 offers significant utility for irrigated agriculture,39
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enabling spatially explicit assessments of field-scale soil moisture conditions. This1
supports more efficient irrigation management, early detection of crop water stress,2
and optimized resource allocation. Figure 5 presents two representative case studies in3
agricultural regions. The first site, located in California's Central Valley, is shown in4
the Sentinel-2 true color image (Figure 5e) and the corresponding soil moisture map5
(Figure 5f) from November 3, 2016. The second site, located in South Africa, is6
depicted in the true color image (Figure 5g) and soil moisture map (Figure 5h) from7
October 20, 2023. The true color imagery delineates field boundaries and8
management zones, while the corresponding soil moisture maps reveal considerable9
intra- and inter-field variability in surface moisture conditions.10

11
This spatial variability reflects differences in irrigation and management practices,12
soil types, vegetation status, and topography—factors that are difficult to capture13
using coarse-resolution satellite products. The high level of spatial detail provided by14
GSSM-10 enables applications such as detecting irrigated areas, planning15
variable-rate irrigation, targeting fertilizer application, detecting early water stress,16
and evaluating water conservation strategies.17

18
19

4.3 Flood monitoring20
21

The 10-meter resolution global soil moisture dataset developed in this study provides22
fine-scale information for analyzing the hydrological impacts of extreme weather23
events. Figure 5(i) shows a Sentinel-2 true color image, and Figure 5(j) presents the24
corresponding 10-m resolution soil moisture map for an agricultural area near25
Ravenna, Italy, on May 6, 2023, shortly after severe rainfall and regional flooding in26
the Emilia-Romagna region. The soil moisture map reveals widespread saturation,27
with values ranging from 0.25 to 0.32 m³/m³, consistent with the persistent rainfall28
that affected the region in early May. In contrast, Figure 5(k) displays a true color29
image and Figure 5(m) the corresponding soil moisture map for June 27, 2023,30
following a regional heatwave. This later image reveals markedly drier soils,31
reflecting the high atmospheric demand and reduced surface moisture after the32
extreme heat event, during which daily maximum temperatures exceeded 35 °C, rising33
8 - 10 °C above long-term average. These observations highlight the dataset's ability34
to resolve intra-seasonal hydrological variability, effectively capturing both35
flood-induced soil saturation and subsequent surface drying.36

37
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1
Fig. 5. (a) Sentinel-2 true-color image and (b) corresponding 10-m resolution soil moisture2
map of northern forest of Los Angeles on Nov. 10th, 2024 (before Eaton Fire); (c) Sentinel-23
true color image and (d) corresponding 10-m resolution soil moisture map of northern forest4
of Los Angeles on Mar. 22nd, 2025 (after Eaton Fire).5

6
(e) Sentinel-2 true color image and (f) corresponding 10-m resolution soil moisture map of an7
agricultural field in California's Central Valley on Nov 3rd, 2016.8
(g) True color image and (h) corresponding 10-m resolution soil moisture map of irrigated9
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fields in South Africa on Oct 20th, 2023.1
2

(i) True color image and (j) corresponding 10-m resolution soil moisture map near Ravenna,3
Italy on May 6, 2023, shortly after extreme rainfall and regional flooding; (k) True4
color image and (m) corresponding 10-m resolution soil moisture map on June 27, 2023,5
following a regional heatwave.6

7
5. Code and Data Availability8

9
The source code and datasets associated with this research are publicly accessible.10
The code repository, titled Global-10-m-Surface-Soil-Moisture-Maps, is available on11
GitHub: https://github.com/RSNuo/Global-10-m-Surface-Soil-Moisture-Maps.git12
.13
In addition, the dataset and code have been archived on Zenodo to ensure long-term14
accessibility: https://doi.org/10.5281/zenodo.16956743 (Xu et al., 2025). The Zenodo15
record is published under a Creative Commons Attribution 4.0 International (CC BY16
4.0) license.17

18
Users are encouraged to access the repository and archive to reproduce the results and19
apply the models to new geographic regions or temporal periods.20

21
6. Conclusion22

23
This study presents the development of a global 10-meter resolution surface soil24
moisture (GSSM-10) dataset using a multi-sensor, ensemble machine learning25
framework. By integrating active microwave, multispectral, thermal, and geographical26
data from Sentinel-1, Sentinel-2, Landsat-8/9, and ALOS DSM, and by leveraging27
ensemble learning models including TabNet, Random Forest, and XGBoost, we28
produced a high-resolution product that substantially advances spatial detail and29
predictive accuracy of global SM mapping.30

31
Our ensemble model demonstrated superior performance compared to individual32
models, achieving an R² of 0.8344 and an RMSE of 0.0433 cm³/cm³ during33
cross-validation, and an R² of 0.8591 and RMSE of 0.0401 cm³/cm³ on the test set.34
Feature importance analysis highlighted the key roles of geographical features in35
shaping soil moisture patterns. The GSSM-10 dataset was validated against in situ36
observations and showed comparable or superior accuracy to S2MP and37
SMAP-HydroBlocks. Unlike these regionally limited products, GSSM-10 offers38
global coverage, 10-m spatial resolution, and near real-time updates, making it a39
robust and scalable tool for global soil moisture monitoring and environmental40
applications.41

42
43

The high spatial resolution of GSSM-10 enables a wide range of applications44
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previously hindered by the coarseness of existing SM products. We demonstrated the1
utility of this product in wildfire monitoring, irrigated agriculture, and flood analysis,2
highlighting its ability to resolve fine-scale hydrological variability associated with3
both natural and anthropogenic disturbances. The dataset also holds promise for4
supporting ecosystem restoration, climate resilience planning, and precision water5
management.6

7
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