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Abstract. The distribution of Antarctic icebergs is crucial for understanding their impact on the Southern Ocean’s atmosphere

and physical environment, as well as their role in global climate change. Recent advancements in iceberg databases, based on

remote sensing imagery and altimetry data, have led to products like the BYU/NIC iceberg database, the Altiberg database, and

high-resolution SAR-based iceberg distribution data. However, no unified database exists that integrates various iceberg scales

and covers the entire Southern Ocean. Our research presents a comprehensive circum-Antarctic iceberg dataset, developed5

using Sentinel-1 SAR imagery from the Google Earth Engine (GEE) platform, covering the Southern Ocean south of 55°S.

A semi-automated classification method that integrates incremental random forest classification with manual correction was

applied to extract icebergs larger than 0.04 km2 , resulting in a dataset for each October from 2018 to 2023. The resulting

dataset not only records the geographic coordinates and geometric attributes (area, perimeter, long axis, and short axis) of

the icebergs but also provides uncertainty estimates for area and mass. The dataset reveals significant interannual variability10

in iceberg number and total area-the number of icebergs increased from 33,823 in 2018 to approximately 51,332 in 2021,

corresponding to major ice shelf calving events (e.g., the A68a iceberg in the Weddell Sea), followed by a decline in 2022.

The annual average total iceberg area is 44,518 ± 4800 km2, and the average mass is 8,779 ± 3,029 Gt. Validation using

test set samples and a rolling cross-validation of interannual variability shows that the integrates incremental random forest

classification achieves accuracy, recall, and F1 scores exceeding 0.90, and after manual correction, all performance metrics15

should be even better. Comparisons with existing iceberg products (including the BYU/NIC iceberg database and the Altiberg

database) indicate a high consistency in spatial distribution, while our dataset demonstrates clear advantages in terms of spatial

coverage, iceberg detection scale, and identification capabilities in regions with dense sea ice. This dataset serves as a novel

data resource for investigating the impact of Antarctic icebergs on the Southern Ocean, the mass balance of ice sheets, the

mechanisms underlying ice shelf collapse, and the response mechanisms of iceberg disintegration to climate change.20
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1 Introduction

Icebergs are large freshwater ice masses that break off from the edges of ice sheets, ice shelves, or glaciers and enter the ocean.

They are a critical component in the global climate system (Benn and Åström, 2018). Approximately half of the mass loss

from the Antarctic ice sheet is discharged into the Southern Ocean through iceberg calving (Depoorter et al., 2013; Rignot

et al., 2013; Liu et al., 2015). Annually, the dissolution of over 100,000 icebergs into the ocean is estimated to introduce a25

volume of freshwater that, according to certain calculations, exceeds the global annual freshwater consumption (Qadir et al.,

2022; Orheim et al., 2023). This resultant freshwater influx plays a critical role in influencing the thermohaline characteristics,

heat content, and freshwater balance within the impacted regions of the Southern Ocean (Gladstone et al., 2001; Hammond

and Jones, 2016). On the bottom, grounding icebergs can interact with ocean floor and leave scours as a kind of geological

record (Dowdeswell and Bamber, 2007; Li et al., 2018; Liu et al., 2021). Additionally, the nutrients carried by icebergs can30

influence the spatial distribution of primary productivity (Duprat et al., 2016), promoting the development of local ecosystems

(Smith et al., 2007; Wu and Hou, 2017; Lin et al., 2024). Furthermore, icebergs pose a potential threat to maritime activities

(Bigg et al., 2018), as human activity in the Antarctic region increases, accurate monitoring of iceberg distribution, size, and

trajectory prediction has become critical (Evans et al., 2023)

The current databases on the distribution of Antarctic icebergs, as shown in Table 1, are primarily categorized into four types:35

(1) Ship-based observations, such as the SCAR International Iceberg Database (Orheim et al., 2023), compiled and published

by the Norwegian Polar Institute (NPI) and the Scientific Committee on Antarctic Research (SCAR), which records 323,520

icebergs and serves as an important historical dataset. However, it is only confined to shipping lanes, not fully representing

the Antarctic iceberg’s spatial distribution and its interannual changes; (2) Low-resolution satellite imagery-based databases,

with the National Ice Center (NIC) and Brigham Young University (BYU) Antarctic Iceberg Database as a notable example40

(Long et al., 2002; Stuart and Long, 2011a, b). Budge and Long (2018) consolidated these databases to offer iceberg location,

length, and area data, but they are restricted to larger icebergs (length>5km) due to the limitations of low-resolution imagery;

(3) Satellite radar altimetry-based databases, like the Altiberg database from the French Research Institute for Exploitation

of the Sea (Tournadre et al., 2012, 2015, 2016, 2024). This database is effective at detecting icebergs in open waters, but in

complex scene, such as areas with dense ice or high iceberg concentrations, it becomes challenging to extract accurate iceberg45

information from the altimetric waveforms; (4) High-resolution SAR data-derived products. Wesche and Dierking (2015)

extracted icebergs larger than 0.3 km2 in the Antarctic coastal region using Radarsat-1 circum-Antarctic mosaic images. Barbat

applied a random forest algorithm to Radarsat circum-Antarctic mosaic images from 1997, 2000, and 2008 to obtain iceberg

distributions for the corresponding years (Barbat et al., 2019a); (5) circum-Antarctic iceberg calving dataset. This dataset was

derived from continuous optical (MODIS and Landsat-8) and radar (Envisat ASAR and Sentinel-1) satellite observations and50

was released by Qi et al. (2021). The product provides detailed information on each calving event, including time, area, size,

thickness, etc., but it only focused on the transient icebergs just calved from ice shelves therefore lacking the spatial distribution

across the open ocean. All above data products primarily cover the Antarctic coastal region, and the published datasets are not
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Table 1. Overview of Antarctic Iceberg Datasets.

Iceberg dataset Time scale Iceberg size range Satellite data(sensors)

The SCAR Interna-

tional Iceberg Database

1982-2010 >10m -

USNIC Antarctic Ice-

berg Data

1978-Present >18 km SAR, visible, and infrared remotely sensed im-

agery

BYU Antarctic Iceberg

Tracking Database

1978 & 1992-Present >5 km SASS, ERS-1/2, NSCAT, QuikSCAT, ASCAT,

OSCAT, SeaWinds, NIC (multiple sensors)

Altiberg 1992-2023 Determined by the res-

olution of the satellite

altimeter

ERS1/2, Topex, Poseidon, Jason1/2/3, Envisat,

Cryosat, Cryosat SAR, Cryosat SARIN, AL-

TIKA, HY-2A/B/C, Sentinel-3(A&B) PLRM,

Sentinel-3(A&B) SAR, Geosat

Qi et al., 2021 2005-2020 >1 km Envisat ASAR, Sentinel-1 SAR, MODIS,

Landsat 8 OLI

real-time monitoring results, but rather used for historical scientific research. In summary, there is currently no comprehensive

iceberg database covering multiple scales and the entire Southern Ocean has been established to date.55

High-precision, large-scale, and long-term continuous remote sensing observations of circum-Antarctic iceberg distribu-

tion not only characterize the spatiotemporal patterns of iceberg occurrence but also provide critical data for elucidating the

mechanisms of iceberg formation and evolution, ice-shelf dynamics, and their complex interactions with climate change. In

this study, we leveraged the Google Earth Engine (GEE) platform to acquire Sentinel-1 SAR mosaic imagery and applied an

incremental random forest classification combined with manual correction to identify Antarctic icebergs larger than 0.04 km2,60

extracting each iceberg’s outline, location, area, mass, and associated uncertainty. Based on these results, we constructed a

circum-Antarctic iceberg distribution dataset covering each October from 2018 to 2023 and conducted a comprehensive analy-

sis of the spatiotemporal characteristics of iceberg distribution over this six-year period. To ensure the reliability of the dataset,

we performed an internal accuracy validation of the classifier and conducted external validation by comparing our results with

existing iceberg databases and data products.65

2 Data

To identify circum-Antarctic icebergs, we utilized the European Space Agency (ESA) Sentinel-1 C-band SAR Ground Range

Detected (GRD) data. Given the extensive coverage of the data, we chose the Extra Wide (EW) swath mode, which provides

a spatial resolution of 40 m. The Sentinel-1 data offers various band combinations based on different polarization modes (e.g.,

VV, HH, VV + VH, and HH + HV), with HH polarization being the primary mode available in polar regions (Koo et al., 2023;70

Ferdous et al., 2018). Therefore, only HH polarization band images were used for analysis.
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Figure 1. Time series of backscatter coefficients for typical Antarctic surfaces from 2018 to 2021: (a) iceberg, (b) first-year ice, (c) fast ice,

and (d) open water. The lines show monthly average backscatter coefficients. Shaded regions represent uncertainty intervals based on data

standard deviation. Gray-highlighted areas indicate the selected months (October of each year).

To optimize iceberg detection, we analyzed the backscatter characteristics of typical Antarctic oceanic features under HH

polarization across different seasons (Fig. 1). As noted by Drinkwater et al. (1995) in their study of sea ice in the Weddell

Sea, distinct differences in backscatter coefficients exist between various oceanic features. For instance, rough and undisturbed

first-year ice, second-year ice, and other ice types exhibit unique reflective properties, which become more pronounced with75

seasonal and environmental changes. Environmental factors such as temperature and heat flux cause significant variation in

backscatter coefficients. By comparing the interannual backscatter coefficient trends of typical Antarctic oceanic features, it

was found that from June to October, the backscatter coefficient of icebergs is significantly higher than that of fast ice, first-

year ice, and open water (Wesche and Dierking, 2012, 2015; Mazur et al., 2017), especially in October when the backscatter

coefficient of fast ice reaches its annual minimum, providing optimal conditions for distinguishing icebergs from other oceanic80

features. Based on the above analysis, we selected Sentinel-1 SAR data in October for each year.

4

https://doi.org/10.5194/essd-2025-51
Preprint. Discussion started: 15 May 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 2. Flowchart of our methodology to obtain the 2018-2023 Antarctic iceberg product.

3 Method

The semi-automated workflow for extracting Antarctic icebergs using machine learning is shown in Fig. 2 and consists of four

subprocesses: (1) Data acquisition, (2) Image segmentation, (3) Iceberg detection, and (4) Iceberg attribute extraction. In this

section, we will provide the technical methods and details for each subprocess.85

3.1 Data acquisition

GEE is a cloud-based platform developed by Google for the visualization and analysis of geospatial data. Through GEE, users

can easily access a wide area of satellite remote sensing datasets (Gorelick et al., 2017; Amani et al., 2020). The Sentinel-1 SAR

data provided by GEE have been pre-processed to remove thermal noise, apply radiometric calibration, and perform terrain

correction, resulting in GRD backscatter coefficient images (expressed in dB). Given the vast extent of the Southern Ocean,90

this study divides the region south of 55°S into 5°× 5° tiles, resulting in a total of 430 tiles annually. For each tile, we retrieved

Sentinel-1 SAR HH-polarization data from the EW swath mode acquired in October of each year between 2018 and 2023

(Fig. 3), and mosaicked the data chronologically to create monthly composite images. We delineated the effective observation

area for each year and determined the intersection and union of these areas across the different years. The intersection of the

effective observation ranges over six years has reached 16.67 million km2, nearly covering the sea regions where icebergs might95

exist, thereby providing data support for obtaining the distribution of circum-Antarctic icebergs. In the subsequent analysis of
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Figure 3. Circum-Antarctic Sentinel-1 SAR Data. The left and right columns display the Sentinel-1 mosaic images acquired from 2018 to

2023 on the GEE platform. The blue line delineates the coastline, while the red line indicates the valid observation boundaries. The central

map illustrates the intersection and union of the observation areas over the six-year period, along with the four selected 5°×5° tile sample

areas.

annual variation, we primarily focused on comparing icebergs within the intersecting observation areas across years, in order to

identify trends in iceberg numbers and distribution. We emphasized this comparison in the consistent dimension, ensuring that

the trends we observed were on an equal footing and thus more reliably indicative of actual changes in the iceberg population.

Furthermore, to quantitatively assess the issues of misclassification, omission, iceberg merging, and contour deviations in the100

iceberg dataset, we selected four 5°×5° tile sample areas with low ocean current speeds and slow iceberg drift (as indicated by

the yellow regions in Fig. 3). These sample areas effectively reflect the uncertainties in iceberg detection under complex ocean

conditions and thus serve as representative of the overall detection performance of the entire dataset.

3.2 Image segmentation

3.2.1 Total Variation-based principal structure extraction (TV) algorithm for Sentinel-1 images smoothing105

Due to the presence of background features such as sea ice and sea water, the edges and shapes of icebergs in SAR images can

be unclear. To address this issue, we applied a Total Variation-based principal structure extraction (TV) algorithm (Xu et al.,

2012), which separates the SAR images into two layers: a background texture layer and a primary structure layer that represents
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the shape characteristics of the ocean surface. By extracting the primary structure layer, we were able to enhance the visibility

of the iceberg edges and improve the accuracy of contour detection. The TV algorithm is particularly effective when the size of110

the background textures differs substantially from that of the primary structures, as it preserves the image edges and clarifies

the boundaries. The results (Fig. 4) show that the TV algorithm successfully reduced background interference, retaining only

the main contours of the icebergs, which made the iceberg bodies and boundaries much distinct. Even in complicated scene

(Fig. 4c) or for small icebergs only a few hundred meters in size (Fig. 4b), the algorithm was able to effectively extract their

contours.115

3.2.2 Simple Linear Iterative Clustering (SLIC) image segmentation

We applied the Simple Linear Iterative Clustering (SLIC) algorithm for superpixel segmentation on the smoothed SAR images

to avoid noise amplification and reduce computational complexity that may arise from using individual pixels during the

subsequent Random Forest (RF) classification (Mazur et al., 2017; Karvonen et al., 2022; Koo et al., 2023). A superpixel is

defined as a small, contiguous cluster of adjacent pixels that share similar backscatter characteristics, effectively representing120

a meaningful image region rather than individual pixels. By grouping pixels with similar backscatter characteristics into small,

connected clusters, referred to as "superpixels", we not only improved classification efficiency but also significantly decreased

the computational burden during the classification process (Achanta et al., 2012). The results of superpixel segmentation on

the SAR images used in this study are shown in Fig. 4, with superpixel outlines displayed independently and not combined.

Compared to the original image, the SLIC algorithm effectively delineates the boundaries of oceanic features and adapts well125

to different categories.

Given the large volume of image data and the spatial variability of iceberg distribution, we adopted a two-stage segmentation

approach. In the first stage, we performed coarse segmentation using larger superpixels (40 × 40 pixels). For superpixels

exhibiting histograms with multiple peaks, we then applied finer segmentation using smaller superpixels (5 × 5 pixels). This

approach ensures that the smallest detectable iceberg has a length greater than 200 m or an area larger than 0.04 km2.130

3.3 Iceberg detection

3.3.1 Feature extraction

After image segmentation, we extracted features for each superpixel object based on the segmentation labels applied to the

original, unprocessed image. These features were then used to construct a feature set for classification. In conjunction with

manual interpretation, a sample set was created for the subsequent classification process. The extracted object features were135

categorized into three types: Statistical features, histogram-based features, and texture features, resulting in a total of 24 fea-

tures. A detailed description and explanation of these features can be found in Appendix A.
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Figure 4. The results of the TV algorithm and SLIC segmentation on SAR imagery are shown in the following panels. Panel (a) provides

an overview of the study area, with three representative sub-regions highlighted. Panels (b–d) show enlarged views of these sub-regions,

presenting the original SAR image, the denoised output from the TV-smoothing algorithm, and the segmented image generated by the SLIC

algorithm, respectively.

3.3.2 Incremental random forest classification

In this study, we employed an ensemble incremental Random Forest (RF) classifier (Zhou, 2012) to identify Antarctic circum-

polar icebergs. The process consisted of two main steps: (1) Using the training and validation sample sets, we evaluated the140

classification performance of various feature combinations, optimized the parameters of each RF classifier, determined their

weights and classification thresholds, and constructed the ensemble classifier; (2) For each tile, we performed incremental RF

training and classification on the superpixel objects, enabling automated iceberg detection.

Construction of Incremental random forest classifiers

Based on the Sentinel-1 SAR data, we manually selected approximately 2,000 sample points each year, with roughly half145

representing icebergs and the other half non-icebergs. The sample set was then divided into three subsets: an initial training

set, a validation set, and a test set, in a 6:2:2 ratio. The training set was used to train the RF classifier, the validation set was

used to evaluate the model’s performance and optimize parameters, and the test set was used for final evaluation of the model’s

generalization ability and reliability.

We developed four RF classifiers: RF1, based on statistical features; RF2, based on histogram features; RF3, based on texture150

features; and RF4, based on a combination of all features. Out-of-bag (OOB) error analysis was performed to optimize both
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the number of decision trees and feature selection for each classifier. Using the validation set, we calculated key performance

metrics, including classification accuracy, precision, recall, and F1 scores. Based on these results, we assigned weights to each

classifier and constructed an ensemble RF model. The model’s performance was then further evaluated using precision-recall

(P-R) curves and receiver operating characteristic (ROC) curves, which helped determine the optimal classification threshold155

for distinguishing icebergs from non-icebergs.

Automated Antarctic iceberg identification

After constructing the ensemble RF classifier, we predicted all the superpixels within each 5° × 5° tile. Given the complexity

of the data within each tile, image segmentation typically produces tens of thousands to hundreds of thousands of superpixels

that require classification. Given the limited size of the initial training sample and the potential variation in iceberg and non-160

iceberg characteristics across different tiles, we adopted an incremental Random Forest approach for each tile. This method

uses Mahalanobis distance to allow the classifier to adaptively learn and better match local data characteristics.

The process began by training RF1–RF4 using the initial training set, which were then combined into an ensemble classifier

to generate the initial classification results for the tile. Then, we randomly selected an equal number of iceberg and non-iceberg

samples from the newly identified objects to expand the training set. Based on feature importance ranking, we selected the165

most significant three features to construct the feature space for icebergs and non-icebergs. Subsequently, we calculated the

mean (µ) and standard deviation (σ) of the distances between iceberg samples and the center of the iceberg, as well as the

mean distance from non-iceberg samples to the iceberg center. If the mean distance from non-iceberg samples to the iceberg

center exceeds µ + σ, or the iteration count did not exceed five, we retrained the classifier with the incremental samples. The

iteration limit of five was determined through multiple experiments. The incremental learning process terminates when either170

the conditions were not met or the iteration limit was reached. The predicted iceberg results from the final iteration were then

taken as the final classification results for that tile.

3.3.3 Manual correction

The automatically classified superpixels labels identifying icebergs were used to generate iceberg outlines based on the geo-

graphic coordinates of the SAR images. These outline vectors were then manually refined in ArcMap 10.8 software interac-175

tively to ensure they accurately represent the true shapes of the icebergs as observed in the corresponding SAR image. Manual

correction addressed three main issues: (1) the automatic detection process still resulted in misclassifications and missed ice-

bergs; (2) some iceberg contours were incomplete at the tile boundaries; and (3) due to the mosaic nature of the tiles, some

fast-moving icebergs were detected in multiple segments. The results for the four sample areas after incremental random forest

classification and manual correction are shown in Fig. 5.180
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Figure 5. Iceberg identification results, panels (a)–(d) display the Sentinel-1 SAR images from the sample areas, while panels (e)–(h) present

the classification results derived from these images using an incremental random forest classification supplemented with manual corrections.

In these panels, the red vectors denote icebergs.

3.4 Iceberg attribute extraction

For each iceberg, key attributes such as area, perimeter, long axis, short axis, average thickness, mass, and the associated

uncertainties for these parameters were calculated. This section outlines the methods used to derive these iceberg attributes and

assess the uncertainties involved.

After obtaining the iceberg outline vector data, we calculated the area (km2) and perimeter (km) of each iceberg under the185

Antarctic Polar Stereographic projection (EPSG: 3031). Based on the iceberg area data, we estimated the total mass of icebergs

in the circumpolar region for each year. Using 19,945 CryoSat-2 SARIn data points from the Altiberg database recorded

after 2018 (Tournadre et al., 2024), the average iceberg freeboard was found to be 40 m. Assuming average densities of 850

kg/m3 for icebergs and 1,025 kg/m3 for seawater (Silva et al., 2006), the average iceberg thickness (H) was estimated to be

approximately 232 m, based on Archimedes’ principle of buoyancy. Using the total area of the icebergs, average thickness, and190

average density, the total mass (M) of icebergs with an area greater than 0.04 km2 was calculated using Equation (1):

M = AIceberg ×H × ρIceberg (1)
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Due to the diverse shapes of icebergs, we used the principal orientation method to determine their geometric characteristics.

First, we calculated the centroid of the iceberg’s geometry, which serves as its geometric center. Then, we applied Principal

Component Analysis (PCA) to the iceberg’s boundary points to determine the directions of its principal axes. The first principal195

component corresponds to the long axis of the iceberg, while the second principal component corresponds to the short axis.

Next, we projected the boundary points along the long axis and computed the projection length in this direction to obtain the

length of the iceberg’s long axis, and we used the same method to obtain the length of the short axis.

3.5 Uncertainty assessment

According to Equation (1), calculating the total mass of icebergs involves several sources of uncertainty, including errors in200

measuring iceberg area, uncertainties in thickness estimation, and deviations in the assumed density of the iceberg. In this

section, we assess the primary uncertainties encountered in extracting iceberg attributes.

3.5.1 Iceberg area uncertainty

The uncertainty in iceberg area measurement primarily arises from two independent factors: (1) the spatial resolution of SAR

imagery; and (2) the detection errors introduced during iceberg identification (e.g., misclassification, omission, or merging of205

iceberg targets). The uncertainty due to image resolution (U1) can be approximated as the product of the total iceberg perimeter

and the pixel size of the imagery, that is, we estimate the area uncertainty from the pixel error along the iceberg boundaries

using Equation (2):

U1 = P ×∆x (2)

Where P is the total perimeter of all icebergs each year (km), and ∆x is the spatial resolution of the imagery, which is 0.04210

km.

The second source of uncertainty (U2) primarily arises from errors in iceberg classification and extraction, such as omissions,

false detections, erroneous merging (i.e., mistakenly detecting adjacent icebergs as a single object), and contour deviations. To

quantitatively evaluate this component, we acquired mosaic images in the Interferometric Wide (IW) swath mode (with a spatial

resolution of 20 m) from four 5°×5° sample tile areas, while ensuring that, in iceberg-dense areas, the time interval between215

the IW mode images and the EW mode images (with a spatial resolution of 40 m) did not exceed 10 days. In each sample tile

area, we manually digitized iceberg outlines from high-resolution IW images to construct a reference dataset representing the

“true” iceberg count and area, and then compared it with the dataset obtained from EW mode imagery using an incremental

random forest algorithm supplemented with manual corrections. As shown in Table 2, the comparison results indicate that in

the most complex sample area, the relative error in total iceberg area reached up to 3.15%. For a conservative estimation of220

uncertainty, we adopt 4% as the parameter—i.e., the uncertainty due to detection errors is calculated by multiplying the annual

total iceberg area by 4%.
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The uncertainty in the total annual iceberg area (UA) can be calculated using the error propagation law, as shown in Equation

(3):

UA =
√

U2
1 + U2

2 . (3)225

It should be noted that for an individual iceberg, its area uncertainty is solely determined by the image resolution (U1), since

an iceberg is either correctly extracted or not detected at all; whereas for the total annual iceberg area, both (U1) and (U2) must

be considered, and the overall error is calculated using Equation (3).

Table 2. Validation of iceberg detection in four sample regions. Iceberg counts from EW and IW imagery, detection errors (inaccurate

outlines, merged and missed icebergs), average missed iceberg area, total iceberg areas, and relative area uncertainty (%) are presented.

Region EW

Count

IW

Count

Inaccurate

Outlines

Merged

Icebergs

Missed

Icebergs

Avg. Missed

Area (km2)

EW Total

Area (km2)

IW Total

Area (km2)

Area Uncertainty

1 683 728 6 13 24 0.138 637.19 637.22 ≈0

2 695 816 12 5 103 0.142 1340.06 1353.48 1.00%

3 3151 3575 25 13 401 0.164 1895.16 1954.79 3.15%

4 583 681 9 8 86 0.126 296.73 305.09 2.82%

3.5.2 Iceberg thickness uncertainty

The uncertainty in thickness estimation primarily arises from errors in measuring the iceberg’s freeboard height and deviations230

in the assumptions of physical parameters. Using the CryoSat-2 SARIn data from the aforementioned Altiberg database, we

calculated the standard deviation of the iceberg’s freeboard height to be 13 m, which results in an uncertainty of 76 m in the

estimated iceberg thickness.

In previous studies, a thickness of 250 m was commonly adopted for mass estimations of icebergs (Wesche and Dierking,

2015; Rackow et al., 2017; Barbat et al., 2019a). Gladstone based on a comprehensive analysis of observational data from235

Antarctic icebergs, established a size classification system for icebergs ranging from 60 to 2200 m in length (Gladstone et al.,

2001), noting that the thickness increases with size, culminating in a maximum thickness of 250 m for icebergs exceeding

500 m in length. In this study, we utilized the mean freeboard height of icebergs measured by CryoSat-2 SARIn from the

Altiberg database to determine the thickness of the icebergs. Given that the minimum identifiable area of icebergs in our study

is 0.04 km2, a significant number of icebergs fall within the 200 to 500-meter length range, corresponding to classes 3 to 4 as240

defined by Gladstone et al. (2001), with thicknesses ranging from 133 to 175 m. Based on this analysis, we selected an average

thickness of 232m for the icebergs, which is slightly below the upper limit of 250 m proposed by Gladstone et al. (2001), and

this choice is considered reasonable.
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3.5.3 Iceberg mass uncertainty

Since the total mass of the iceberg derived from three independent and unrelated components, we employed a synthetic standard245

uncertainty to assess its uncertainty (Qi et al., 2021), which is calculated using Equation (4):

UM = M ×
√

U2
A

A2
Iecberg

+
U2

H

H
2 +

U2
ρ

ρ2
Iceberg

(4)

Where M is the total mass of icebergs each year, AIceberg , H and ρIceberg represent the total area, average thickness, and

density of icebergs each year, respectively. UA, UH and Uρ represent the uncertainties in the total area, thickness, and the

density of icebergs, respectively. ρIceberg and Uρ are set to 850 kg/m3and 5 kg/m3 (Griggs and Bamber, 2011).250

4 Validation and uncertainty

4.1 Accuracy assessment of Antarctic iceberg identification algorithm

Using a test set of approximately 400 manually selected samples per year, we evaluated the performance of the automated

classification results. The results show that the automatic classification algorithm achieved high accuracy in identifying circum-

Antarctic icebergs from 2018 to 2023 (Table 3), with all metrics exceeding 0.9, indicating excellent classification performance.255

To assess the model’s performance and adapt to the time-series nature of the data while minimizing the risks of overfitting

and data leakage, we employed a rolling-window validation method for time-series cross-validation (Table 4). Specifically, in

the first iteration, the model was trained on 2018 data and tested on 2019 data. In the second iteration, the model was trained

on data from 2018 and 2019, and tested on 2020 data, and so forth. These results show that, as the training data accumulated

each year, the model maintained high classification performance across the test data from different years. Notably, the recall260

rate consistently remained above 0.95, demonstrating strong stability and robustness in iceberg detection. Additionally, the

fluctuations in accuracy (ACC) and F1 scores were minimal, further confirming the reliability of the model.

After classifier performance evaluation, our data product incorporates a manual correction step in addition to the machine

learning-based automated iceberg detection (see Sect.3.3.3). By visually inspection and manually correcting the automated

classification results, we further reduced instances of false positives and false negatives. As a result, the final iceberg data265

product demonstrates even higher precision across various accuracy metrics.

4.2 Attribute uncertainties of Icebergs

Based on a comparison of the results from four sample areas (Table 2), we found that iceberg omissions are relatively severe,

resulting in an underestimation of the total iceberg amount by approximately 3%-15%. However, the missed icebergs are

mainly small or weak-signal targets, with an average area of only 0.126-0.164 km2, thus having a limited impact on the total270

iceberg area. In low-resolution imagery, the radar signal of small icebergs is often weak or their boundaries become blurred

due to noise and complex sea conditions, making it challenging to accurately identify all icebergs even after manual correction.
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Table 3. Performance evaluation of the incremental random forest classifier.

Year Iceberg samples Non-iceberg samples ACC Precision Recall F1

2018 188 209 0.950 0.922 0.973 0.948

2019 188 208 0.965 0.939 0.989 0.964

2020 182 215 0.900 0.905 0.995 0.948

2021 187 213 0.943 0.906 0.979 0.941

2022 190 209 0.937 0.910 0.963 0.936

2023 185 211 0.957 0.924 0.989 0.956

Table 4. Results of the time series Cross-Validation method with rolling window validation.

Iteration Iceberg samples Non-iceberg samples ACC Precision Recall F1

1 915 1056 0.950 0.915 0.985 0.948

2 917 1063 0.948 0.909 0.987 0.946

3 983 1008 0.950 0.941 0.959 0.950

4 967 1020 0.943 0.926 0.959 0.942

5 933 1036 0.963 0.938 0.988 0.962

Furthermore, in the SLIC algorithm, the low contrast between icebergs and sea ice or open water in low-resolution images

leads to blurred iceberg edges, making the boundaries between adjacent icebergs indistinct and causing nearby icebergs to be

erroneously merged into a single object or to exhibit contour deviations. Given that false detections are negligible after manual275

correction, the maximum area uncertainty due to iceberg detection errors in the tile sample areas is 3.15%. Therefore, we adopt

4% as a conservative and reasonable estimate.

We assessed the uncertainty in iceberg area and mass attributes using Equation (2) and (3). The maximum uncertainty in the

area of a single iceberg was 22.4 km2. From 2018 to 2023, the total area uncertainty for each year was as follows: 4,549 km2,

5,007 km2, 5,177 km2, 5,102 km2, 4,371 km2, and 4,591 km2 respectively. The uncertainty in iceberg area primarily stems280

from the uncertainty in the iceberg perimeter, indicating that, for icebergs of equal area, rectangular icebergs have greater area

uncertainty compared to elliptical ones. The uncertainty in iceberg mass is mainly influenced by the uncertainty in iceberg

thickness. The average uncertainty in iceberg mass over the six years was 3,029 Gt, with annual error fluctuations ranging from

34.07% to 34.92%. This result aligns with the 37% error margin suggested by Jacobs (Jacobs et al., 1992).

4.3 Consistency of a multisource iceberg database285

4.3.1 Compare with BYU/NIC iceberg database

The BYU/NIC iceberg database provides detection dates and geolocation information for icebergs with a major axis exceeding

5 km. To match the time range of this study’s iceberg dataset, we filtered the BYU/NIC iceberg database to include only the
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October data from 2018 to 2023. To ensure comparability, our database retains only records of icebergs with a major axis

greater than 5 km. During the matching process, if an iceberg’s record within the same month exhibits consistent interannual290

trajectories and its geographic location falls within a predetermined spatial threshold, it is considered a successful match.

In our dataset, the number of icebergs with a major axis greater than 5 km (ranging from 288 to 475 per year during 2018-

2023) is significantly higher than the records in the BYU/NIC iceberg database (46 to 54 per year). Our dataset achieves a recall

rate of approximately 96% to 98%, indicating that most of the icebergs recorded in the BYU/NIC iceberg database have been

successfully detected. The geographic locations of the matched icebergs show high consistency between the two databases,295

with 92% of the BYU/NIC iceberg coordinates falling within the iceberg polygon vectors of our study, and the remaining

positional errors being within a few kilometers.

Three icebergs recorded in the BYU/NIC iceberg database were not detected in our dataset, primarily due to incomplete

satellite image coverage or complex sea ice conditions leading to missed detections. A few matched icebergs exhibit positional

errors of up to several tens of kilometers, likely due to substantial differences in observation times and high iceberg drift300

speeds, reflecting differences in data sources and detection methods. Moreover, our dataset detects a large number of icebergs

not recorded in the BYU/NIC database, owing to the use of higher resolution imagery and a more sensitive detection algorithm

that identifies smaller or transient icebergs.

4.3.2 Compare with Altiberg database

The Altiberg database provides a merged grid product of iceberg detection from multiple satellite missions, incorporating305

quality control and calibration procedures to yield spatiotemporal information on iceberg volume, area, and other variables.

To evaluate both the overall consistency and local differences between our dataset and Altiberg’s, we generated our iceberg

volume data using the same 100 km × 100 km grid. Specifically, for each grid cell, we multiplied the total iceberg area in our

dataset by a fixed thickness of 232 m (see Sect.3.5.2), thereby obtaining the gridded average iceberg volume for 2018-2023.

We then performed a visualization and difference analysis to compare this dataset with Altiberg’s across both regional and310

global domains.

In October, the extent of Antarctic sea ice remains substantial. Consequently, Altiberg’s data show missing or low-value

cells in high-latitude and coastal regions with dense sea ice, primarily due to its reliance on altimeter signals, which are easily

weakened or disrupted by ice cover (Tournadre et al., 2015). This limitation makes it difficult for altimeters to distinguish or

detect icebergs in regions of high sea-ice concentration. In contrast, our approach utilizes high-resolution SAR imagery that315

can capture iceberg outlines even beneath sea ice, leading to higher iceberg volume estimates in these regions. The difference

map indicates a marked positive bias (our dataset > Altiberg) in sea ice-dominated areas. Meanwhile, the histogram reveals

that, in open-water or lower sea ice concentration zones, most grid-cell volume differences fall below 0.692 km3, indicating

good overall consistency. Altiberg’s detection model was initially designed for medium- to small-scale icebergs (0.01-9 km2),

whereas our method imposes no upper limit on iceberg size. Consequently, if a grid cell contains extremely large or multiple320

large icebergs, the total iceberg volume can become substantially higher than Altiberg’s, resulting in significant differences.

This phenomenon is reflected in the histogram, where a small number of grid cells exhibit differences exceeding 100 km3,
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Figure 6. Panel (a) shows the six-year average iceberg volume from the Altiberg database for each October from 2018 to 2023. Panel (b)

displays the six-year average iceberg volume from our dataset over the same time period and grid. Panel (c) presents the volume differences

(our dataset minus the Altiberg database), and panel (d) summarizes the statistical distribution of these differences.

raising the overall standard deviation to 34 km3. These findings suggest that while Altiberg provides a continuous, long-term

record suitable for open-water regions, our dataset more comprehensively identifies and quantifies icebergs within sea ice-

covered areas.325
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Figure 7. Comparison with the results of Barbat et al. (2019a): (a) Number of Antarctic icebergs and (b) Proportion of different categories.

4.3.3 Compare with other research

Compared with the Antarctic coastal icebergs larger than 0.1 km2 identified by Barbet using RAMP data (Barbat et al., 2019b),

our dataset covers a broader area and employs a lower minimum detection threshold, thereby capturing a larger number of

icebergs with smaller scales and resulting in certain differences in the overall findings. Relying solely on coastal data tends

to underestimate the actual number of small icebergs, because these smaller icebergs are often rapidly transported by coastal330

currents to the open ocean shortly after formation. Coastal regions mainly record the icebergs released during the initial stages

of ice shelf and glacier calving, and due to their small size, small icebergs are more strongly influenced by ocean currents;

as a result, their proportion in coastal observations is significantly lower. Despite the significant differences in total iceberg

numbers between the two studies, as shown in Fig. 7(b), the relative proportions of icebergs by size category are generally

consistent and exhibit minimal interannual variation, indicating that the size structure of Antarctic icebergs has maintained a335

certain degree of temporal stability.

5 Result and discussion

5.1 Number, area, and mass of circum-Antarctic icebergs

The statistics of circum-Antarctic icebergs from 2018 to 2023 are presented in Table 5, showing significant interannual varia-

tions in both iceberg number and area. In 2018, a total of 33,823 icebergs were observed in the circumpolar region, covering340

an area of 37,606± 4,549 km2. In 2019, the number of icebergs increased to 40,034, and the area rose to 42,485± 5,007 km2.

Although the number of icebergs slightly decreased to 38,086 in 2020, the total area continued to increase, reaching 45,958 ±

17

https://doi.org/10.5194/essd-2025-51
Preprint. Discussion started: 15 May 2025
c© Author(s) 2025. CC BY 4.0 License.



5,177 km2. In 2021, both the number of icebergs and their area peaked over the six-year period, with 51,332 icebergs and an

area of 50,810 ± 5,103 km2. In 2022, the number of icebergs dropped to 37,626, and the area decreased to 46,840 ± 4,372

km2. However, in 2023, the number of icebergs went up again to 44,538, with an area of 43,409 ± 4,591 km2. The interannual345

variations in the number and area of icebergs reflect the dynamic nature of the Antarctic ice sheet and its response to climate

change. Furthermore, We calculated the intersection of the effective observation areas for each year (Fig. 3) and, based on this

intersected area, computed the proportion of icebergs falling within it relative to the total annual iceberg number, as reported

in the “percentage” column of Table 5.

In contrast to the variations in iceberg numbers, the total mass of Antarctic icebergs showed an increasing trend from 2018350

to 2021, rising from 7,416 ± 2,590 Gt in 2018 to 10,020 ± 3,434 Gt in 2021, before decreasing to 9,237 ± 3,147 Gt in 2022,

and 8,560 ± 2,947 Gt in 2023.

Table 5. Total number, area, mass of icebergs and percentage of icebergs in the intersection area in the circum-Antarctic region from 2018

to 2023.

Year Total number Total area (km2) Total mass (Gt) Percentage

2018 33,823 37,606 ± 4,549 7,416 ± 2,590 96.08%

2019 40,034 42,485 ± 5,007 8,378 ± 2,917 94.81%

2020 38,086 45,958 ± 5,177 9,063 ± 3,140 93.76%

2021 51,332 50,810 ± 5,103 10,020 ± 3,434 91.19%

2022 37,626 46,840 ± 4,372 9,237 ± 3,147 97.61%

2023 44,538 43,409 ± 4,591 8,560 ± 2,947 97.47%

5.2 Spatial distribution of icebergs

Fig. 8 shows the distribution of icebergs in October for each year from 2018 to 2023. Overall, the density of icebergs is high

in the West Antarctic region (e.g., near the Thwaites and Dotson ice shelves) and in the East Antarctic region (e.g., around355

the Holmes and Mertz ice shelves), indicating that calving activity in these areas is both frequent and intense. In contrast, in

large ice shelf regions such as the Ross Sea and Weddell Sea, although calving events occur less frequently from year to year,

when a large-scale fracture does occur, it typically leads to the rapid formation of a high-density iceberg zone in a short period.

Fig. 9 further illustrates the distribution of icebergs by size, showing that medium-to-large icebergs tend to be concentrated

in near-coastal waters and are spatially more scattered, whereas small icebergs are widely distributed throughout the Southern360

Ocean.

Following Wesche and Dierking (2015)’s rule, all detected icebergs are classified into five size categories, as shown in

Fig. 10: A1 (<1 km2), A2 (1-10 km2), A3 (10-100 km2), A4 (100-1,000 km2), and A5 (≥1,000 km2). From 2018 to 2023,

the number of the smallest icebergs (A1) shows significant fluctuations, alternating between increases and decreases and

consistently accounting for over 85% of the total iceberg count, thus driving the overall variability in iceberg numbers. In365

contrast, the number of medium-sized icebergs (A2 and A3) generally increases, reaching a peak in 2020 before slightly
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declining; their fluctuations are much smaller compared to those of the A1 category, comprising roughly 10% of the total. Large

icebergs (A4 and A5) are relatively rare, and their occurrence is closely associated with major ice shelf calving events—years

such as 2017/18 (A68a), 2019 (D28), 2020(A69) and 2021 (A74 and A76a) see a surge in this size (Braakmann-Folgmann

et al., 2022; Deakin et al., 2024). Moreover, small icebergs not only result from continuous small-scale calving but can also370

originate from the further breakup of large icebergs during their drift. Based on this, although the annual iceberg count is

predominantly driven by small icebergs, following a large ice shelf fracture the rapid increase in large icebergs is typically

accompanied by their subsequent fragmentation, which in turn leads to an additional rise in the number of small icebergs.

To assess the spatial distribution of icebergs, the circumpolar ocean region was divided into five sectors based on longitude:

Ross Sea Sector (160°E to 130°W), Amundsen and Bellingshausen Seas Sector (130-60°W), Weddell Sea Sector (60°W to375

20°E), Indian Ocean Sector (20-90°E), and Western Pacific Ocean Sector (90-160°E) (Parkinson and Cavalieri, 2012). Fig.

11(a) and (b) present the number of icebergs and their relative percentages in each sector. The results show that over these six

years, the Western Pacific Ocean Sector contributed the highest number of icebergs, while the Weddell Sea Sector recorded

the fewest from 2018 to 2021, but in 2022 its iceberg count surpassed that of the Ross Sea. In the Ross Sea Sector, the iceberg

proportion remained stable at around 16% in 2018 and 2019, increased to 21.7% in 2020, and then rapidly declined to 14%380

and 9.8% in 2021 and 2022, respectively. The proportions in the Indian Ocean and Amundsen and Bellingshausen Seas sectors

remained relatively stable at approximately 20% over the six-year period.

5.3 Distinctive spatial characteristics and formation mchanisms of Small-Scale icebergs in the Southern Ocean

This study’s dataset is unique in both the scales and quantity of icebergs, particularly as it is the first to include small icebergs

in the 0.04-0.1 km2 size area derived from remote sensing imagery. Over the six-year period, the average number of icebergs385

in this size range was 8,272, accounting for 15.25% to 29.02% of the total number each year, with an average area of 559.5

km2, contributing 0.97% to 1.93% of the total area.

To examine the spatial distribution and formation mechanisms of these small icebergs, we divided the Southern Ocean into

50 km × 50 km grids and calculated the average number of small icebergs in each grid from 2018 to 2023, as well as the

average distance between these small icebergs and large icebergs (>100 km2) (Fig. 12). The results show that small icebergs390

are mainly concentrated at ice shelf fronts, though their distribution is sparse at the fronts of the Ross Ice Shelf, Filchner-Ronne

Ice Shelf, and Riiser-Larsen Ice Shelf. Due to their size, these icebergs have short lifespans and are more sensitive to changes

in surrounding sea ice and ocean conditions.

In analyzing the distances between small and large icebergs, we further validated the small iceberg formation mechanism

proposed by Tournadre (Tournadre et al., 2016). The results indicate that small icebergs in the Southern Ocean follow two395

main patterns: one where small icebergs are found near large icebergs, suggesting they may originate from fragmentation,

share a common source, or drift along similar paths; and another where small icebergs exhibit "free drift," unrelated to any

large icebergs, drifting far from their calving sources, such as in the Ross Sea, Bellingshausen Sea, and eastern Weddell Sea.

In these regions, the drift of small icebergs plays a key role in transporting ice shelf and large iceberg material, significantly
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Figure 8. Distribution of Icebergs in the Circum-Antarctic Region from October 2018 to October 2023. The central map represents the

distribution of icebergs over the six years, with different colors indicating different years. The base map shows the iceberg density. Panels

(a)-(f) display the distribution of icebergs at the front of ice shelves that are prone to calving.

influencing regional ice flow and freshwater flux. The drift paths can extend thousands of kilometers, forming independent400

"drifting alley".

6 Conclusions

This study successfully identified circum-Antarctic icebergs from 2018 to 2023 using Sentinel-1 SAR mosaic data obtained

from the Google Earth Engine (GEE) platform, combined with an incremental random forest algorithm and manual corrections.

The smallest identifiable iceberg had an area of 0.04 km2. This is the first high-precision dataset covering the entire Southern405

Ocean, including small icebergs. Small icebergs dominate in terms of quantity, and their distribution is critical for initializing

coupled ocean-iceberg models, aiding in more accurate simulations of iceberg melting effects on ocean circulation and global

climate.

Although this study primarily used data from October each year, when the difference in backscatter characteristics between

icebergs and other oceanic features is most pronounced, and the identification results are optimal, the method is not limited410

to this period. In the future, images from other months can be obtained via the GEE platform, enabling the study of seasonal

variations and year-round iceberg dynamics. This approach compensates for the limitations of snapshot data, providing a more

comprehensive understanding of iceberg formation, drift, and melting processes.
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Figure 9. Iceberg counts for different size classes in various sea sectors from 2018 to 2023. Each point represents an individual iceberg, point

sizes represent five size categories(A1-A5)

Despite the extensive coverage of Sentinel-1 SAR data, data gaps existed in certain years and regions, such as in parts of the

Indian Ocean in 2018, which may have led to an underestimation of iceberg numbers in these areas. Additionally, in estimat-415

ing iceberg mass, fixed average thickness and density values (232 m and 850 kg/m3) were assumed, but the actual thickness

and density may vary depending on iceberg size, shape, and melting status, introducing uncertainty into mass estimates. Fur-

thermore, Although we employed a high-precision iceberg identification model supplemented by manual corrections within a

semi-automated workflow, in complex marine and terrestrial environments (e.g., regions with dense sea ice and iceberg calving

zones), the radar signals of icebergs are often weak and their boundaries blurred due to noise and adverse sea conditions, po-420

tentially resulting in varying degrees of omissions, erroneous merging, and contour deviations. Future research could consider

integrating multi-source remote sensing data and incorporating more advanced deep learning algorithms to further improve

iceberg identification accuracy.

Overall, this study provides the first high-precision iceberg distribution dataset for the Southern Ocean, including small

icebergs. It lays the foundation for a deeper understanding of the impact of icebergs on the marine environment and global425
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Figure 10. Annual distribution characteristics of Antarctic icebergs of five categories from October 2018 to October 2023. Panels (a)-(c)

present the number, area, and number percentage of icebergs of five categories, respectively.

Figure 11. Annual variation trends of icebergs in five major Southern Ocean sectors from Oct. 2018 to Oct. 2023. Panels (a) and (b) present

the number and percentage of icebergs of five categories in different sea sectors.

climate and offers valuable data support for future research. Moving forward, we plan to use imagery from additional months

to study seasonal and interannual variations in iceberg distribution and their long-term impacts on marine ecosystems and

climate systems. Besides, we attempt to backtrack and update this product as a "living" dataset, meaning it will be continuously

updated and expanded as new input observations available, such as Sentinel-1A/B before 2018 and Sentinel-1C after 2024.
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Figure 12. The spatial distribution characteristics of icebergs with sizes between 0.04 and 0.1 km2 in 50 km × 50 km grids in the Southern

Ocean. Panel (a) represents the average number of icebergs in each grid cell from 2018 to 2023; Panel (b) shows the average distance from

the icebergs in each grid to the nearest large iceberg (area greater than 100 km2).

7 Code and data availability430

The GEE code for data acquisition, the MATLAB code for image segmentation, feature extraction, and the dataset of icebergs

outlines in shapefile format along with their latitude and longitude, area, perimeter, and other attribute information, are all

available at https://doi.org/10.5281/zenodo.15332566 (Liu and Chen, 2025), last access: 3 May 2025.

Appendix A: Feature description

(1) Statistical features: Calculated from the pixel backscatter values of each segment435

1. CenterBackscatter: The grayscale value at the center position of the superpixel object. A superpixel is defined as a small,

contiguous cluster of adjacent pixels that share similar backscatter characteristics, effectively representing a meaningful image

region rather than individual pixels.

2. CenterStd: The standard deviation within a 3×3 range near the center of the superpixel. If there are fewer than 3×3 pixels

around the center, then CenterStd = 0.440

3. WeightedMean: Obtained from Equation A1:

WeightedMean =
∑

ij

1
Dij

xij (A1)
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Table A1. Feature Categories and Descriptions

Category Feature Note

Statistical features

CenterBackscatter Calculated from the pixel backscatter values of each segment

CenterStd

WeightedMean

Energy

Histogram-based features

Mean Calculated from the histogram of each segment

Variance

Skewness

Kurtosis

Mode

Median

Slope

Texture features

Entropy Calculated from the Grey Level Co-occurrence Matrix (GLCM) of each segment

Contrast0/45/90/135◦

Correlation0/45/90/135◦

Homogeneity0/45/90/135◦

where xij is the grayscale of the pixel at position (i, j), and Dij is the distance from that pixel to the centroid of the superpixel.

4. Energy: Obtained from Equation A2:

Energy =
1
N

∑

ij

x2
ij (A2)445

where N is the total number of pixels within the superpixel.

(2) Histogram-based features (bin=0.1): Calculated from the histogram of each segment.

1. Mean: The average of all pixel grayscale values within the superpixel.

2. Variance: The variance of all pixel grayscale values within the superpixel.450

3. Skewness: Used to measure the asymmetry of the histogram distribution of grayscale values of all pixels within a super-

pixel.It can derived from the equation A3:

Skewness = E

[(
x−µ

σ

)3
]

(A3)

4. Kurtosis: Characterizes the height of the peak at the mean of the probability distribution curve, that is, the shape of the

curve’s peak. The larger the kurtosis, the sharper the peak.455

Kurtosis = E

[(
x−µ

σ

)4
]

(A4)
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5. Mode: The most frequent value in the grayscale values of the superpixel. If multiple values occur with the same frequency,

the Mode is the smallest of these values.

6. Median: The median of the grayscale values of all pixels within the superpixel.

7. Slope: The one-sided slope of the probability distribution curve.460

Slope = tan−1

(
P (M)

max(x)−M

)
(A5)

Where M is the median of the grayscale values, and P (M) is the probability density corresponding to the median.

(3) Texture features: Calculated from the Grey Level Co-occurrence Matrix(GLCM) of each segment.

1. Entropy: It characterizes the overall distribution of grayscale values in the image.

Entropy =−
∑

n

P (i) · log2 P (i) (A6)465

where n is the number of grayscale levels obtained by binning the histogram of all pixel grayscale values within a superpixel

with bin = 0.1, and P (i) is the probability density value corresponding to the i-th grayscale level.

2. Contrast0/45/90/135◦

3. Correlation0/45/90/135◦

4. Homogeneity0/45/90/135◦470

In our research, the Gray-Level Co-Occurrence Matrix (GLCM) is used to calculate the texture features of superpixels. The

GLCM characterizes the texture of an image by calculating the frequency of occurrence of pixel pairs with specific values and

spatial relationships in the image (Haralick et al., 1973). The elements of the Gray-Level Co-Occurrence Matrix are calculated

using the Equation A7:

P (i, j) =
P (i, j,d,θ)∑

i

∑
j P (i, j,d,θ)

(A7)475

The element P (i, j) in the matrix represents the probability of the occurrence of pixel pairs at a distance d in the direction

θ. In this study, we consider the GLCM for the cases when d = 0 and θ = 0◦,45◦,90◦,135◦. For non-rectangular superpixels,

missing pixels are filled with 0. After calculating the GLCM for each superpixel in these four directions, we can further

compute metrics that describe contrast, correlation, and homogeneity. The equation is as follows:

Contrast =
∑

i,j

(i− j)2P (i, j) (A8)480

Correlation =
∑

i,j

(i−µi)(j−µj)P (i, j)
σiσj

(A9)

Homogeneity =
∑

i,j

P (i, j)
1 + (i− j)2

(A10)
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