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Abstract. The distribution of Antarctic icebergs is crucial for understanding their impact on the Southern Ocean’s atmosphere

and physical environment, as well as their role in global climate change. Recent advancements in iceberg databases, based on

remote sensing imagery and altimetry data, have led to products like the BYU/NIC iceberg database, the Altiberg database, and

high-resolution SAR-based iceberg distribution data. However, no unified database exists that integrates various iceberg scales

5 and covers the entire Southern Ocean. Our research presents a comprehensive circum-Antarctic iceberg dataset, developed
using Sentinel-1 SAR imagery from the Google Earth Engine (GEE) platform, covering the Southern Ocean south of 55°S.
A semi-automated classification method that integrates incremental random forest classification with manual correction was

applied to extract icebergs larger than 0.04 km2 , resulting in a dataset for each October from 2018 to 2023. The resulting
dataset not only records the geographic coordinates and geometric attributes (area, perimeter, long axis, and short axis) of the

10 icebergs but also provides uncertainty estimates for area and mass. The resulting dataset documents the geographic coordinates
and geometric attributes of icebergs (area, perimeter, major axis, and minor axis),provides uncertainty estimates for area,

and, under a fixed density assumption, employs the Iceberg Classes Model to derive iceberg mass along with the associated

uncertainty bounds. The dataset reveals significant interannual variability in iceberg number and total area-the number of
icebergs increased from 33,82334,825 in 2018 to approximately 51,332 51,420 in 2021, corresponding to major ice shelf

15 calving events (e.g., the A68a iceberg in the Weddell Sea), followed by a decline in 2022. The annual average total iceberg

area is 44,518 ± 4800 km2 , and the average mass is 8,779 ± 3,029 9,162 ± 1,935Gt. Validation using test set samples and a
rolling cross-validation of interannual variability shows a rolling cross-validation of interannual variability a six-fold, leave-
one-year-out cross-validation scheme that the integrates incremental random forest classification achieves accuracy, recall,
and F1 scores exceeding 0.90, and after manual correction, all performance metrics should be even better. Comparisons with

20 existing iceberg products (including the BYU/NIC iceberg database and the Altiberg database) indicate a high consistency in
spatial distribution, while our dataset demonstrates clear advantages in terms of spatial coverage, iceberg detection scale, and
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identification capabilities in regions with dense sea ice. This dataset serves as a novel data resource for investigating the impact

of Antarctic icebergs on the Southern Ocean, the mass balance of ice sheets, the mechanisms underlying ice shelf collapse, and

the response mechanisms of iceberg disintegration to climate change.

25 1 Introduction

Icebergs are large freshwater ice masses that break off from the edges of ice sheets, ice shelves, or glaciers and enter the ocean.

They are a critical component in the global climate system (Benn and Åström, 2018). Approximately half of the mass loss

from the Antarctic ice sheet is discharged into the Southern Ocean through iceberg calving (Depoorter et al., 2013; Rignot

et al., 2013; Liu et al., 2015). Annually, the dissolution of over 100,000 icebergs into the ocean is estimated to introduce a

30 volume of freshwater that, according to certain calculations, exceeds the global annual freshwater consumption (Qadir et al.,

2022; Orheim et al. , 2023). This resultant freshwater influx plays a critical role in influencing the thermohaline characteristics,

heat content, and freshwater balance within the impacted regions of the Southern Ocean (Gladstone et al., 2001; Hammond

and Jones, 2016). On the bottom, grounding icebergs can interact with ocean floor and leave scours as a kind of geological

record (Dowdeswell and Bamber, 2007; Li et al., 2018; Liu et al., 2021). Additionally, the nutrients carried by icebergs can

35 influence the spatial distribution of primary productivity (Duprat et al. , 2016), promoting the development of local ecosystems
(Smith et al. , 2007 ; Wu and Hou, 2017 ; Lin et al. , 2024). Furthermore, icebergs pose a potential threat to maritime activities
(Bigg et al., 2018), as human activity in the Antarctic region increases, accurate monitoring of iceberg distribution, size, and
trajectory prediction has become critical (Evans et al., 2023)

The current databases on the distribution of Antarctic icebergs, as shown in Table1, are primarily categorized into four types:

40 (1) Ship-based observations, such as the SCAR International Iceberg Database (Orheim et al. , 2023), compiled and published
by the Norwegian Polar Institute (NPI) and the Scientific Committee on Antarctic Research (SCAR), which records 323,520
icebergs and serves as an important historical dataset. However, it is only confined to shipping lanes, not fully representing
the Antarctic iceberg’s spatial distribution and its interannual changes; (2) Low-resolution satellite imagery-based databases,
with the National Ice Center (NIC) and Brigham Young University (BYU) Antarctic Iceberg Database as a notable example

45 (Long et al., 2002; Stuart and Long, 2011a, b). Budge and Long (2018) consolidated these databases to offer iceberg location,
length, and area data, but they are restricted to larger icebergs (length>5km) due to the limitations of low-resolution imagery;

(3) Satellite radar altimetry-based databases, like the Altiberg database from the French Research Institute for Exploitation

of the Sea (Tournadre et al., 2012, 2015, 2016, 2024). This database is effective at detecting icebergs in open waters, but in
complex scene, such as areas with dense ice or high iceberg concentrations, it becomes challenging to extract accurate iceberg

50 information from the altimetric waveforms; (4) High-resolution SAR data-derived products. Wesche and Dierking (2015)

extracted icebergs larger than 0.3 km2 in the Antarctic coastal region using Radarsat-1 circum-Antarctic mosaic images. Barbat
applied a random forest algorithm to Radarsat circum-Antarctic mosaic images from 1997, 2000, and 2008 to obtain iceberg
distributions for the corresponding years (Barbat et al. , 2019a ); (5) circum-Antarctic iceberg calving dataset. This dataset was
derived from continuous optical (MODIS and Landsat-8) and radar (Envisat ASAR and Sentinel-1) satellite observations and



3

Table 1. Overview of Antarctic Iceberg Datasets.

Iceberg dataset Time scale Iceberg size range Satellite data(sensors)

The SCAR International
Iceberg Database

1982-2010 >10m -

USNIC Antarctic Iceberg
Data

1978-present >18 km SAR, visible, and infrared remotely sensed imagery

BYU Antarctic Iceberg 1978 & 1992-present >5 km SASS, ERS-1/2, NSCAT, QuikSCAT, ASCAT, OS-

Tracking Database CAT, SeaWinds, NIC analyse(multi-sensor)

Altiberg 1992-2023 Determined by the

resolution of the

satellite altimeter

ERS1/2, Topex, Poseidon, Jason1/2/3, Envisat,
CryoSat-2 (SAR, SARIn), ALTIKA, HY-2A/B/C,
Sentinel-3(A&B) PLRM, Sentinel-3(A&B) SAR,
Geosat

Wesche and Dierking, 2015 1997 >0.3 km2 Radarsat-1 SAR

Barbat et al., 2019 1997, 2000, 2008 >0.1 km2 Radarsat-1 SAR, Radarsat-2 SAR

Qi et al., 2021 2005-2020 >1 km Envisat ASAR, Sentinel-1 SAR, MODIS, Landsat

8 OLI

55 was released by Qi et al. (2021). The product provides detailed information on each calving event, including time, area, size,
thickness, etc., but it only focused on the transient icebergs just calved from ice shelves therefore lacking the spatial distribution
across the open ocean. All above data products primarily cover the Antarctic coastal region, and the published datasets are not
real-time monitoring results, but rather used for historical scientific research. In summary, there is currently no comprehensive
iceberg database covering multiple scales and the entire Southern Ocean has been established to date.

60 High-precision, large-scale, and long-term continuous remote sensing observations of circum-Antarctic iceberg distribu-
tion not only characterize the spatiotemporal patterns of iceberg occurrence but also provide critical data for elucidating the
mechanisms of iceberg formation and evolution, ice-shelf dynamics, and their complex interactions with climate change. In
this study, we leveraged the Google Earth Engine (GEE) platform to acquire Sentinel-1 SAR mosaic imagery and applied an

incremental random forest classification combined with manual correction to identify Antarctic icebergs larger than 0.04 km2 ,

65 extracting each iceberg’s outline, location, area, mass, and associated uncertainty. Based on these results, we constructed a

circum-Antarctic iceberg distribution dataset covering each October from 2018 to 2023 and conducted a comprehensive analy-

sis of the spatiotemporal characteristics of iceberg distribution over this six-year period. To ensure the reliability of the dataset,

we performed an internal accuracy validation of the classifier and conducted external validation by comparing our results with

existing iceberg databases and data products.



4

70 2 Data

To identify circum-Antarctic icebergs, we utilized the European Space Agency (ESA) Sentinel-1 C-band SAR Ground Range

Detected (GRD) data. Given the extensive coverage of the data, we chose the Extra Wide (EW) swath mode, which provides

a spatial resolution of 40 m. The Sentinel-1 data offers various band combinations based on different polarization modes (e .g.,

VV, HH, VV + VH, and HH + HV), with HH polarization being the primary mode available in polar regions (Koo et al., 2023;
75 Ferdous et al., 2018). Therefore, only HH polarization band images were used for analysis.

To optimize iceberg detection, we analyzed the backscatter characteristics of typical Antarctic oceanic features under HH
polarization across different seasons (Fig. 1). To optimize iceberg detection, HH-polarized backscatter time series were ex-
tracted from representative fixed pixels for icebergs, first-year ice, multiyear ice and open water in Sentinel-1 GRD imagery,
sampled every five days from January 2018 to December 2021. The iceberg pixel remained grounded throughout the study,

80 yielding approximately 60 observations per year (≈5 per month), with comparable sampling frequencies for the other typi-

cal Antarctic oceanic features. Each pixel’s time series was then resampled on a monthly basis to compute mean backscatter

coefficients and variances, and the resulting mean curves with shaded standard-deviation uncertainty are shown in Fig. 1. As

noted by Drinkwater et al. (1995) in their study of sea ice in the Weddell Sea, distinct differences in backscatter coefficients

exist between various oceanic features. For instance, rough and undisturbed first-year ice, second-year ice, and other ice types

85 exhibit unique reflective properties, which become more pronounced with seasonal and environmental changes. Environmental

factors such as temperature and heat flux cause significant variation in backscatter coefficients. By comparing the interannual

backscatter coefficient trends of typical Antarctic oceanic features, it was found that from June to October, the backscatter coef-

ficient of icebergs is significantly higher than that of fast ice, first-year ice, and open water (Wesche and Dierking, 2012, 2015;

Mazur et al., 2017), especially in October when the backscatter coefficient of fast ice reaches its annual minimum, providing

90 optimal conditions for distinguishing icebergs from other oceanic features. Based on the above analysis, we selected Sentinel-1
SAR data in October for each year.

3 Method

The semi-automated workflow for extracting Antarctic icebergs using machine learning is shown in Fig. 2and consists of four
subprocesses: (1) Data acquisition, (2) Image segmentation, (3) Iceberg detection, and (4) Iceberg attribute extraction. In this

95 section, we will provide the technical methods and details for each subprocess.

3.1 Data acquisition

GEE is a cloud-based platform developed by Google for the visualization and analysis of geospatial data. Through GEE, users
can easily access a wide area of satellite remote sensing datasets (Gorelick et al., 2017;Amani et al., 2020). The Sentinel-1 SAR
data provided by GEE have been pre-processed to remove thermal noise, apply radiometric calibration, and perform terrain

100 correction, resulting in GRD backscatter coefficient images (expressed in dB). Given the vast extent of the Southern Ocean, this
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Figure 1. Time series of backscatter coefficients for typical Antarctic surfaces from 2018 to 2021: (a) iceberg, (b) first-year ice, (c) fast ice,

and (d) open water. The lines show monthly average backscatter coefficients. Shaded regions represent uncertainty intervals based on data

standard deviation. Gray-highlighted areas indicate the selected months (October of each year).

study divides the region south of 55°S into 5° × 5° tiles, resulting in a total of 430 360 tiles annually. For each tile, we retrieved

Sentinel-1 SAR HH-polarization data from the EW swath mode acquired in October of each year between 2018 and 2023 (Fig.

3), and mosaicked the data chronologically to create monthly composite images. , with later-acquired images overwriting valid

pixels in earlier ones to fill voids at the beginning of the month. Statistics show that most tiles contain 2-4 images from different

105 dates: in each year, more than 50% of tiles have a maximum date span of ≤ 5 days, and more than 90% have a maximum span
of ≤ 10 days. In addition, we We delineated the effective observation area for each year and determined the intersection and
union of these areas across the different years. The intersection of the effective observation ranges over six years has reached

16.67 million km2 , nearly covering the sea regions where icebergs might exist, thereby providing data support for obtaining the
distribution of circum-Antarctic icebergs. In the subsequent analysis of annual variation, we primarily focused on comparing

110 icebergs within the intersecting observation areas across years, in order to identify trends in iceberg numbers and distribution.
We emphasized this comparison in the consistent dimension, ensuring that the trends we observed were on an equal footing
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Figure 2. Flowchart of our methodology to obtain the 2018-2023 Antarctic iceberg product.

and thus more reliably indicative of actual changes in the iceberg population. Furthermore, to quantitatively assess the issues of

misclassification, omission, iceberg merging, and contour deviations in the iceberg dataset, we selected four 5°×5° tile sample

areas with low ocean current speeds and slow iceberg drift (as indicated by the yellow regions in Fig. 3). These sample areas

115 effectively reflect the uncertainties in iceberg detection under complex ocean conditions and thus serve as representative of the
overall detection performance of the entire dataset.

3.2 Image segmentation

3.2.1 Total Variation-based principal structure extraction (TV) algorithm for Sentinel-1 images smoothing

Due to the presence of background features such as sea ice and sea water, the edges and shapes of icebergs in SAR images can

120 be unclear. To address this issue, we applied a Total Variation-based principal structure extraction (TV) algorithm (Xu et al.,

2012), which separates the SAR images into two layers: a background texture layer and a primary structure layer that represents

the shape characteristics of the ocean surface. By extracting the primary structure layer, we were able to enhance the visibility
of the iceberg edges and improve the accuracy of contour detection. The TV algorithm is particularly effective when the size of

the background textures differs substantially from that of the primary structures, as it preserves the image edges and clarifies

125 the boundaries. The results (Fig. 4) show that the TV algorithm successfully reduced background interference, retaining only
the main contours of the icebergs, which made the iceberg bodies and boundaries much distinct. Even in complicated scene
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Figure 3. Circum-Antarctic Sentinel-1 SAR Data. The left and right columns display the Sentinel-1 mosaic images acquired from 2018 to

2023 on the GEE platform. The blue line delineates the coastline, while the red line indicates the valid observation boundaries. The central

map illustrates the intersection and union of the observation areas over the six-year period, along with the four selected 5°×5° tile sample

areas.

(Fig. 4c) or for small icebergs only a few hundred meters in size (Fig. 4b), the algorithm was able to effectively extract their

contours.

3.2.2 Simple Linear Iterative Clustering (SLIC) image segmentation

130 We applied the Simple Linear Iterative Clustering (SLIC) algorithm for superpixel segmentation on the smoothed SAR images

to avoid noise amplification and reduce computational complexity that may arise from using individual pixels during the

subsequent Random Forest (RF) classification (Mazur et al., 2017; Karvonen et al., 2022; Koo et al., 2023). A superpixel is

defined as a small, contiguous cluster of adjacent pixels that share similar backscatter characteristics, effectively representing

a meaningful image region rather than individual pixels. By grouping pixels with similar backscatter characteristics into small,

135 connected clusters, referred to as "superpixels", we not only improved classification efficiency but also significantly decreased

the computational burden during the classification process (Achanta et al., 2012). The results of superpixel segmentation on

the SAR images used in this study are shown in Fig. 4, with superpixel outlines displayed independently and not combined.

Compared to the original image, the SLIC algorithm effectively delineates the boundaries of oceanic features and adapts well

to different categories.
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Figure 4. The results of the TV algorithm and SLIC segmentation on SAR imagery are shown in the following panels. Panel (a) provides

an overview of the study area, with three representative sub-regions highlighted. Panels (b–d) show enlarged views of these sub-regions,

presenting the original SAR image, the denoised output from the TV-smoothing algorithm, and the segmented image generated by the SLIC

algorithm, respectively.

140 Given the large volume of image data and the spatial variability of iceberg distribution, we adopted a two-stage segmentation

approach. In the first stage, we performed coarse segmentation using larger superpixels (40 × 40 pixels). For superpixels

exhibiting histograms with multiple peaks, we then applied finer segmentation using smaller superpixels (5 × 5 pixels). This

approach ensures that the smallest detectable iceberg has a length greater than 200 m or an area larger than 0.04 km2.

3.3 Iceberg detection

145 3.3.1 Feature extraction

After image segmentation, we extracted features for each superpixel object based on the segmentation labels applied to the
original, unprocessed image. These features were then used to construct a feature set for classification. In conjunction with
manual interpretation, a sample set was created for the subsequent classification process. The extracted object features were
categorized into three types: Statistical features, histogram-based features, and texture features, resulting in a total of 24 fea-

150 tures. A detailed description and explanation of these features can be found in Appendix A.
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3.3.2 Incremental random forest classification

In this study, we employed an ensemble incremental Random Forest (RF) classifier (Zhou, 2012) to identify Antarctic circum-

polar icebergs. The process consisted of two main steps: (1) Using the training and validation sample sets, we evaluated the

classification performance of various feature combinations, optimized the parameters of each RF classifier, determined their

155 weights and classification thresholds, and constructed the ensemble classifier; (2) For each tile, we performed incremental RF
training and classification on the superpixel objects, enabling automated iceberg detection.

Construction of Incremental random forest classifiers

Based on the Sentinel-1 SAR data, we manually selected approximately 2,000 sample points each year, with roughly half
representing icebergs and the other half non-icebergs. The sample set was then divided into three subsets: an initial training

160 set, a validation set, and a test set, in a 6:2:2 ratio. The training set was used to train the RF classifier, the validation set was

used to evaluate the model’s performance and optimize parameters, and the test set was used for final evaluation of the model’s

generalization ability and reliability.

We developed four RF classifiers: RF1, based on statistical features; RF2, based on histogram features; RF3, based on texture
features; and RF4, based on a combination of all features. Out-of-bag (OOB) error analysis was performed to optimize both

165 the number of decision trees and feature selection for each classifier. Using the validation set, we calculated key performance
metrics, including classification accuracy, precision, recall, and F1 scores. Based on these results, we assigned weights to each

classifier and constructed an ensemble RF model. The model’s performance was then further evaluated using precision-recall

(P-R) curves and receiver operating characteristic (ROC) curves, which helped determine the optimal classification threshold
for distinguishing icebergs from non-icebergs.

170 Based on the Sentinel-1 SAR imagery, we applied the SLIC algorithm to generate superpixels and then manually selected
approximately 2,000 superpixel samples per year, with roughly half representing icebergs and the remainder non-icebergs.The
sample set was then randomly divided into three subsets: an initial training set, a validation set, and a test set, in a 6:2:2 ratio.
The training set was used to train the RF classifier, the validation set was used to evaluate the model’s performance and optimize
parameters, and the test set was used for final evaluation of the model’s generalization ability and reliability.

175 Taking October 2018 as an example, we detailed how we determined the parameters for our ensemble of random forest
classifiers and performed an incremental training procedure within each 5° × 5° tile. We constructed four independent random-
forest models: RF1 trained on statistical features, RF2 on histogram features, RF3 on texture features, and RF4 on all combined
features. By analyzing out-of-bag error (OOB) curves under various hyperparameter settings, we identified the configurations
that converged stably with minimum OOB: 200 trees/3 features for RF1, 100 trees/5 features for RF2, 250 trees/7 features for

180 RF3, and 150 trees/3 features for RF4. Each model was then evaluated on the validation set to compute accuracy, precision,
recall, and F1 score; these four metrics were normalized to generate candidate weight schemes reflecting different perspectives
on sub-model importance.
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For the ensemble in 2018, we multiplied each model’s iceberg probability by its corresponding weight and summed the
results to obtain a combined discriminant score for each superpixel. We scanned decision thresholds from 0 to 1 in steps of 0.01

185 on the validation set, plotting Precision-Recall (P-R) and ROC curves for each weight scheme. The scheme that maximized the
sum of the area under the Precision-Recall curve (PR AUC) and the ROC curve (ROC AUC) was selected as optimal, yielding
weights of 0.218, 0.271, 0.246 and 0.265 for RF1-RF4, respectively. Finally, we searched for the threshold that maximized
the F1 score on the validation set and set 0.783 as the final decision threshold for iceberg detection.The same procedure was
applied to the remaining years to obtain the optimal parameter configurations for each respective year.

190 Automated Antarctic iceberg identification

After constructing the ensemble RF classifier, we predicted all the superpixels within each 5° × 5° tile. Given the complexity

of the data within each tile, image segmentation typically produces tens of thousands to hundreds of thousands of superpixels

that require classification. Given the limited size of the initial training sample and the potential variation in iceberg and non-

iceberg characteristics across different tiles, we adopted an incremental Random Forest approach for each tile. This method

195 uses Mahalanobis distance to allow the classifier to adaptively learn and better match local data characteristics.

The process began by training RF1–RF4 using the initial training set, which were then combined into an ensemble classifier
to generate the initial classification results for the tile. Then, we randomly selected an equal number of iceberg and non-iceberg
samples from the newly identified objects to expand the training set. Based on feature importance ranking, we selected the
most significant three features to construct the feature space for icebergs and non-icebergs. Subsequently, we calculated the

200 mean (μ ) and standard deviation (σ ) of the distances between iceberg samples and the center of the iceberg, as well as the
mean distance from non-iceberg samples to the iceberg center. If the mean distance from non-iceberg samples to the iceberg

center exceeds μ+ σ, or the iteration count did not exceed five, we retrained the classifier with the incremental samples. The

iteration limit of five was determined through multiple experiments. The incremental learning process terminates when either
the conditions were not met or the iteration limit was reached. The predicted iceberg results from the final iteration were then

205 taken as the final classification results for that tile.

For the final classification, all superpixels identified as icebergs were converted into a binary mask, which was then subjected
to hole filling and noise removal. We then applied a connected-component labeling algorithm to automatically aggregate all
contiguous iceberg superpixels into individual iceberg objects. Two iceberg entities were recognized as distinct only if they
were separated by at least one non-iceberg superpixel.

210 3.3.3 Manual correction

The automatically classified superpixels labels identifying icebergs were used to generate iceberg outlines based on the geo-

graphic coordinates of the SAR images. These outline vectors were then manually refined in ArcMap 10.8 software interac-

tively to ensure they accurately represent the true shapes of the icebergs as observed in the corresponding SAR image. Manual

correction addressed three main issues: (1) the automatic detection process still resulted in misclassifications and missed ice-
215 bergs; (2) some iceberg contours were incomplete at the tile boundaries; and (3) due to the mosaic nature of the tiles, some
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Figure 5. Iceberg identification results, panels (a)-(d) display the Sentinel-1 SAR images from the sample areas, while panels (e)–(h) present

the classification results derived from these images using an incremental random forest classification supplemented with manual corrections.

In these panels, the red vectors denote icebergs.

fast-moving icebergs were detected in multiple segments. The results for the four sample areas after incremental random forest

classification and manual correction are shown in Fig. 5.

3.4 Iceberg attribute extraction

For each iceberg, key attributes such as area, perimeter, long axis, short axis, average thickness, mass, and the associated

220 uncertainties for these parameters were calculated. This section outlines the methods used to derive these iceberg attributes and

assess the uncertainties involved.

After obtaining the iceberg outline vector data, we calculated the area (km2) and perimeter (km) of each iceberg under the

Antarctic Polar Stereographic projection (EPSG: 3031). Based on the iceberg area data, we estimated the total mass of icebergs

in the circumpolar region for each year. Using 19,945 CryoSat-2 SARIn data points from the Altiberg database recorded

225 after 2018 (Tournadre et al., 2024), the average iceberg freeboard was found to be 40 m. Assuming average densities of 850

kg/m3 for icebergs and 1,025 kg/m3 for seawater (Silva et al., 2006), the average iceberg thickness (H) was estimated to be
approximately 232 m, based on Archimedes’ principle of buoyancy. Using the total area of the icebergs, average thickness, and

average density, the total mass (M) of icebergs with an area greater than 0.04 km2 was calculated using Equation (1):
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After obtaining the iceberg outline vector data, we calculated the area (km2) and perimeter (km) of each iceberg under

230 the Antarctic Polar Stereographic projection (EPSG:3031). Based on the area data, we applied the Iceberg Classes Model to
estimate both the mass of individual icebergs and the annual total iceberg mass across the circumpolar region (Gladstone et
al., 2001; Stern et al., 2016). Following the parameterization scheme of Nong et al. (2025), the model provides an area-volume
power-law relationship, with iceberg thickness constrained to a maximum of 250 m. This constraint implies that an iceberg
with a thickness of 250 m corresponds to an area of 0.67 km2. For icebergs smaller than this threshold, volume is calculated

235 directly from the power-law relationship (Equation 1), whereas for larger icebergs, volume is derived by multiplying the area
by the fixed thickness of 250 m. Assuming an average density of 850 kg/m3 (Silva et al., 2006), the mass of each iceberg and
the circumpolar total are then obtained accordingly in Equation (2).

VIceberg = 7.64A1.26 (1)

240 M = A Iceberg × H ×ρ Iceberg = V Iceberg × ρ Iceberg (2)

Due to the diverse shapes of icebergs, we used the principal orientation method to determine their geometric characteristics.

First, we calculated the centroid of the iceberg’s geometry, which serves as its geometric center. Then, we applied Principal

Component Analysis (PCA) to the iceberg’s boundary points to determine the directions of its principal axes. The first principal

component corresponds to the long axis of the iceberg, while the second principal component corresponds to the short axis.

245 Next, we projected the boundary points along the long axis and computed the projection length in this direction to obtain the
length of the iceberg’s long axis, and we used the same method to obtain the length of the short axis.

3.5 Uncertainty assessment

According to Equation (1), calculating the total mass of icebergs involves several sources of uncertainty, including errors in
measuring iceberg area, uncertainties in thickness estimation, and deviations in the assumed density of the iceberg. In this

250 section, we assess the primary uncertainties encountered in extracting iceberg attributes.

3.5.1 Iceberg area uncertainty

The uncertainty in iceberg area measurement primarily arises from two independent factors: (1) the spatial resolution of SAR
imagery; and (2) the detection errors introduced during iceberg identification (e.g., misclassification, omission, or merging of
iceberg targets). The uncertainty due to image resolution (U1 ) can be approximated as the product of the total iceberg perimeter

255 and the pixel size of the imagery, that is, we estimate the area uncertainty from the pixel error along the iceberg boundaries

using Equation (2):

U1 = P × ∆x (3)
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Where P is the total perimeter of all icebergs each year (km), and ∆儿 is the spatial resolution of the imagery, which is 0.04

km.

260 The second source of uncertainty (U2 ) primarily arises from errors in iceberg classification and extraction, such as omissions,

false detections, erroneous merging (i.e., mistakenly detecting adjacent icebergs as a single object), and contour deviations. To
quantitatively evaluate this component, we acquired mosaic images in the Interferometric Wide (IW) swath mode (with a spatial
resolution of 20 m) from four 5°×5° sample tile areas, while ensuring that, in iceberg-dense areas, the time interval between
the IW mode images and the EW mode images (with a spatial resolution of 40 m) did not exceed 10 days. In each sample tile

265 area, we manually digitized iceberg outlines from high-resolution IW images to construct a reference dataset representing the
“true” iceberg count and area, and then compared it with the dataset obtained from EW mode imagery using an incremental

random forest algorithm supplemented with manual corrections. As shown in Table 2, the comparison results indicate that in

the most complex sample area, the relative error in total iceberg area reached up to 3.15%. For a conservative estimation of
uncertainty, we adopt 4% as the parameter—i.e. , the uncertainty due to detection errors is calculated by multiplying the annual

270 total iceberg area by 4%.

The uncertainty in the total annual iceberg area (UA ) can be calculated using the error propagation law, as shown in Equation
(3):

It should be noted that for an individual iceberg, its area uncertainty is solely determined by the image resolution (U1 ), since

275 an iceberg is either correctly extracted or not detected at all; whereas for the total annual iceberg area, both (U1 ) and (U2 ) must

be considered, and the overall error is calculated using Equation (3).

Table 2. Validation of iceberg detection in four sample regions. Iceberg counts from EW and IW imagery, detection errors (inaccurate
outlines, merged and missed icebergs), average missed iceberg area, total iceberg areas, and relative area uncertainty (%) are presented.

Region EW

Count

IW

Count

Inaccurate
Outlines

Merged

Icebergs

Missed

Icebergs

Avg. Missed

Area (km2 )

EW Total

Area (km2 )

IW Total

Area (km2 )

Area Uncertainty

1 683 728 6 13 24 0.138 637.19 637.22 ≈0

2 695 816 12 5 103 0.142 1340.06 1353.48 1.00%

3 3151 3575 25 13 401 0.164 1895.16 1954.79 3.15%

4 583 681 9 8 86 0.126 296.73 305.09 2.82%

3.5.2 Iceberg thickness uncertainty

The uncertainty in thickness estimation primarily arises from errors in measuring the iceberg’s freeboard height and deviations
in the assumptions of physical parameters. Using the CryoSat-2 SARIn data from the aforementioned Altiberg database, we

280 calculated the standard deviation of the iceberg’s freeboard height to be 13 m, which results in an uncertainty of 76 m in the
estimated iceberg thickness.
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In previous studies, a thickness of 250 m was commonly adopted for mass estimations of icebergs (Wesche and Dierking,

2015; Rackow et al., 2017; Barbat et al., 2019a). Gladstone based on a comprehensive analysis of observational data from

Antarctic icebergs, established a size classification system for icebergs ranging from 60 to 2200 m in length (Gladstone et al.,

285 2001), noting that the thickness increases with size, culminating in a maximum thickness of 250 m for icebergs exceeding

500 m in length. In this study, we utilized the mean freeboard height of icebergs measured by CryoSat-2 SARIn from the
Altiberg database to determine the thickness of the icebergs. Given that the minimum identifiable area of icebergs in our study

is 0.04 km2 , a significant number of icebergs fall within the 200 to 500-meter length range, corresponding to classes 3 to 4 as
defined byGladstone et al.(2001), with thicknesses ranging from 133 to 175 m. Based on this analysis, we selected an average

290 thickness of 232m for the icebergs, which is slightly below the upper limit of 250 m proposed byGladstone et al. (2001), and
this choice is considered reasonable.

3.5.3 Iceberg mass uncertainty

Since the total mass of the iceberg derived from three independent and unrelated components, we employed a synthetic standard
uncertainty to assess its uncertainty (Qi et al., 2021), which is calculated using Equation (4):

Where M is the total mass of icebergs each year, AIceberg , H and ρIceberg represent the total area, average thickness, and

density of icebergs each year, respectively. UA , UH and Uρ represent the uncertainties in the total area, thickness, and the

density of icebergs, respectively. ρIceberg and Uρ are set to 850 kg/m3 and 5 kg/m3 (Griggs and Bamber, 2011).

We employed a two-segment area–volume parameterization combined with a nonparametric bootstrap approach to assess

300 uncertainties in iceberg mass. For small icebergs with an area less than 0.67 km2 , volumes were estimated using a power-law
regression in logarithmic space (lnV = b0 +b1 lnA), calibrated against the area-thickness parameterization scheme provided
by ?. By repeatedly resampling this calibration dataset, we obtained empirical distributions of the regression parameters (b0 ,

b1) and propagated them to derive confidence intervals for total mass. For large icebergs with an area greater than 0.67 km2 ,

a fixed thickness of 250 m was assumed. To account for uncertainty in this assumption, the equivalent thickness distribution

305 inferred from the power-law fit at the threshold area was used as a proxy and extrapolated to all large icebergs to construct
mass intervals. Finally, we report point estimates and 95% confidence intervals for the mass of individual icebergs as well as
the total Antarctic iceberg mass, with mass uncertainty for small icebergs mainly arising from regression fitting and those for
large icebergs primarily arising from the fixed-thickness assumption.
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4 Validation and uncertainty

310 4.1 Accuracy assessment of Antarctic iceberg identification algorithm

Using a test set of approximately 400 manually selected samples per year, we evaluated the performance of the automated
classification results. The results show that the automatic classification algorithm achieved high accuracy in identifying circum-
Antarctic icebergs from 2018 to 2023 (Table3), with all metrics exceeding 0.9, indicating excellent classification performance.
To assess the model’s performance and adapt to the time-series nature of the data while minimizing the risks of overfitting

315 and data leakage, we employed a rolling-window validation method for time-series cross-validation (Table 4). Specifically, in
the first iteration, the model was trained on 2018 data and tested on 2019 data. In the second iteration, the model was trained

on data from 2018 and 2019, and tested on 2020 data, and so forth. These results show that, as the training data accumulated
each year, the model maintained high classification performance across the test data from different years. Notably, the recall

rate consistently remained above 0.95, demonstrating strong stability and robustness in iceberg detection. Additionally, the

320 fluctuations in accuracy (ACC) and F1 scores were minimal, further confirming the reliability of the model.

We employed a six-fold, leave-one-year-out cross-validation scheme, using approximately 400 manually annotated super-

pixel samples from each year as the test set and the remaining years’ data for training. The results show that from 2018 to 2023,

the average value of every evaluation metric exceeds 0.90, with minimal interannual variability (Table 3), thus demonstrating

the high accuracy and stability of our automated classification algorithm for circumpolar Antarctic iceberg detection.

325 After classifier performance evaluation, our data product incorporates a manual correction step in addition to the machine

learning-based automated iceberg detection (see Sect.3.3.3). By visually inspection and manually correcting the automated

classification results, we further reduced instances of false positives and false negatives. As a result, the final iceberg data

product demonstrates even higher precision across various accuracy metrics.

Table 3. Performance evaluation of the incremental random forest classifier.

Year Iceberg samples Non-iceberg samples ACC Precision Recall F1

2018 188 209 0.950 0.922 0.973 0.948

2019 188 208 0.965 0.939 0.989 0.964

2020 182 215 0.900 0.905 0.995 0.948

2021 187 213 0.943 0.906 0.979 0.941

2022 190 209 0.937 0.910 0.963 0.936

2023 185 211 0.957 0.924 0.989 0.956

4.2 Attribute uncertainties of Icebergs

330 Based on a comparison of the results from four sample areas (Table 2), we found that iceberg omissions are relatively severe,
resulting in an underestimation of the total iceberg amount by approximately 3%-15%. However, the missed icebergs are
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Table 4. Results of the time series Cross-Validation method with rolling window validation.

Iteration Iceberg samples Non-iceberg samples ACC Precision Recall F1

1 915 1056 0.950 0.915 0.985 0.948

2 917 1063 0.948 0.909 0.987 0.946

3 983 1008 0.950 0.941 0.959 0.950

4 967 1020 0.943 0.926 0.959 0.942

5 933 1036 0.963 0.938 0.988 0.962

Table 3. Performance evaluation of the incremental random forest classifier.

Year Iceberg samples Non-iceberg samples ACC Precision Recall F1

2018 198 199 0.952 0.919 0.984 0.950

2019 198 198 0.952 0.914 0.989 0.950

2020 200 197 0.945 0.890 1.000 0.942

2021 202 198 0.950 0.921 0.979 0.949

2022 201 198 0.935 0.925 0.944 0.935

2023 198 198 0.965 0.944 0.984 0.964

Average 200 198 0.950 0.919 0.980 0.948

mainly small or weak-signal targets, with an average area of only 0.126-0.164 km2 , thus having a limited impact on the total

iceberg area. In low-resolution imagery, the radar signal of small icebergs is often weak or their boundaries become blurred
due to noise and complex sea conditions, making it challenging to accurately identify all icebergs even after manual correction.

335 Furthermore, in the SLIC algorithm, the low contrast between icebergs and sea ice or open water in low-resolution images

leads to blurred iceberg edges, making the boundaries between adjacent icebergs indistinct and causing nearby icebergs to be

erroneously merged into a single object or to exhibit contour deviations. Given that false detections are negligible after manual

correction, the maximum area uncertainty due to iceberg detection errors in the tile sample areas is 3.15%. Therefore, we adopt

4% as a conservative and reasonable estimate.

340 We assessed the uncertainty in iceberg area and mass attributes using Equation (2) and (3) (4). The maximum uncertainty in

the area of a single iceberg was 22.4 km2. From 2018 to 2023, the total area uncertainty for each year was as follows: 4,549
km2 , 5,007 km2 , 5,177 km2 , 5,102 km2 , 4,371 km2 , and 4,591 km2 4,581 km2 , 5,033 km2 , 5,178 km2 , 5,148 km2 , 4,371 km2 ,

and 4,591 km2 respectively. The uncertainty in iceberg area primarily stems from the uncertainty in the iceberg perimeter,
indicating that, for icebergs of equal area, rectangular icebergs have greater area uncertainty compared to elliptical ones. The

345 uncertainty in iceberg mass is mainly influenced by the uncertainty in iceberg thickness. The average uncertainty in iceberg
mass over the six years was 3,029 Gt, with annual error fluctuations ranging from 34.07% to 34.92%. This result aligns with the
37% error margin suggested by Jacobs (Jacobs et al., 1992). The uncertainty in iceberg mass is mainly driven by the thickness
parameterization scheme, and the average uncertainty in iceberg mass over the six years was 1,935 Gt. As the upper and lower
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deviations are nearly symmetric, the uncertainty distribution can be treated as approximately symmetric, and the results are

350 therefore reported in the form of value ± uncertainty.

4.3 Consistency of a multisource iceberg database

4.3.1 Compare Comparison with BYU/NIC iceberg database

The BYU/NIC iceberg database provides detection dates and geolocation information for icebergs with a major axis exceeding
5 km. To match the time range of this study’s iceberg dataset, we filtered the BYU/NIC iceberg database to include only the

355 October data from 2018 to 2023. To ensure comparability, our database retains only records of icebergs with a major axis
greater than 5 km. During the matching process, if an iceberg’s record within the same month exhibits consistent interannual
trajectories and its geographic location falls within a predetermined spatial threshold, it is considered a successful match.

In our dataset, the number of icebergs with a major axis greater than 5 km (ranging from 288 to 475 per year during 2018-

2023) is significantly higher than the records in the BYU/NIC iceberg database (46 to 54 per year). Our dataset achieves a recall

360 rate of approximately 96% to 98%, indicating that most of the icebergs recorded in the BYU/NIC iceberg database have been

successfully detected. The geographic locations of the matched icebergs show high consistency between the two databases,

with 92% of the BYU/NIC iceberg coordinates falling within the iceberg polygon vectors of our study, and the remaining

positional errors being within a few kilometers.

Three icebergs recorded in the BYU/NIC iceberg database were not detected in our dataset, primarily due to incomplete

365 satellite image coverage or complex sea ice conditions leading to missed detections. A few matched icebergs exhibit positional

errors of up to several tens of kilometers, 32.28 km and 44.08 km likely due to substantial differences in observation times
and high iceberg drift speeds, reflecting differences in data sources and detection methods. Moreover, our dataset detects a

large number of icebergs not recorded in the BYU/NIC database, owing to the use of higher resolution imagery and a more

sensitive detection algorithm that identifies smaller or transient icebergs.

370 4.3.2 Compare Comparison with Altiberg database

The Altiberg database provides a merged grid product of iceberg detection from multiple satellite missions, incorporating

quality control and calibration procedures to yield spatiotemporal information on iceberg volume, area, and other variables.

To evaluate both the overall consistency and local differences between our dataset and Altiberg’s, we generated our iceberg

volume data using the same 100 km × 100 km grid. Specifically, for each grid cell, we multiplied the total iceberg area in our

375 dataset by a fixed thickness of 232 m (see Sect.3.5.2), thereby obtaining the gridded average iceberg volume for 2018-2023.

We then performed a visualization and difference analysis to compare this dataset with Altiberg’s across both regional and

global domains.

In October, the extent of Antarctic sea ice remains substantial. Consequently, Altiberg’s data show missing or low-value
cells in high-latitude and coastal regions with dense sea ice, primarily due to its reliance on altimeter signals, which are easily

380 weakened or disrupted by ice cover (Tournadre et al. , 2015). This limitation makes it difficult for altimeters to distinguish or
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detect icebergs in regions of high sea-ice concentration. In contrast, our approach utilizes high-resolution SAR imagery that

can capture iceberg outlines even beneath sea ice, leading to higher iceberg volume estimates in these regions. The difference

map indicates a marked positive bias (our dataset > Altiberg) in sea ice-dominated areas. Meanwhile, the histogram reveals

that, in open-water or lower sea ice concentration zones, most grid-cell volume differences fall below 0.692 km3 , indicating

385 good overall consistency. Altiberg’s detection model was initially designed for medium- to small-scale icebergs (0.01-9 km2 ),
whereas our method imposes no upper limit on iceberg size. Consequently, if a grid cell contains extremely large or multiple
large icebergs, the total iceberg volume can become substantially higher than Altiberg’s, resulting in significant differences.

This phenomenon is reflected in the histogram, where a small number of grid cells exhibit differences exceeding 100 km3 ,

raising the overall standard deviation to 34 km3. These findings suggest that while Altiberg provides a continuous, long-term

390 record suitable for open-water regions, our dataset more comprehensively identifies and quantifies icebergs within sea ice-
covered areas.

4.3.3 Compare with other research Comparison with previous studies

Compared with the Antarctic coastal icebergs larger than 0.1 km2 identified by Barbet using RAMP data (Barbat et al., 2019b),
our dataset covers a broader area and employs a lower minimum detection threshold, thereby capturing a larger number of

395 icebergs with smaller scales and resulting in certain differences in the overall findings. Relying solely on coastal data tends

to underestimate the actual number of small icebergs, because these smaller icebergs are often rapidly transported by wind

and coastal currents to the open ocean shortly after formation. Coastal regions mainly record the icebergs released during
the initial stages of ice shelf and glacier calving, and due to their small size, small icebergs are more strongly influenced by

ocean currents; as a result, their proportion in coastal observations is significantly lower. Despite the significant differences

400 in total iceberg numbers between the two studies, as shown in Fig. 7(b), the relative proportions of icebergs by size category
are generally consistent and exhibit minimal interannual variation, indicating that the size structure of Antarctic icebergs has
maintained a certain degree of temporal stability.

5 Result and discussion

5.1 Number, area, and mass of circum-Antarctic icebergs

405 The statistics of circum-Antarctic icebergs from 2018 to 2023 are presented in Table 6, showing significant interannual vari-
ations in both iceberg number and area. In 2018, a total of 33,823 34,825 icebergs were observed in the circumpolar region,

covering an area of 37,606 ± 4,549 38,668 ± 4,581km2. In 2019, the number of icebergs increased to 40,034 39,261, and

the area rose to 42,485 ± 5,007 42,001 ± 5,033 km2. Although the number of icebergs slightly decreased to 38,086 38,066

in 2020, the total area continued to increase, reaching 45,958 ± 5,177 km2 . In 2021, both the number of icebergs and their

410 area peaked over the six-year period, with 51,332 51,420 icebergs and an area of 50,810 ± 5,103 52,276 ± 5,148 km2. In
2022, the number of icebergs dropped to 37,626 36,186, and the area decreased to 46,840 ± 4,372 km2. However, in 2023, the
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Figure 6. Panel (a) shows the six-year average iceberg volume from the Altiberg database for each October from 2018 to 2023. Panel (b)

displays the six-year average iceberg volume from our dataset over the same time period and grid. Panel (c) presents the volume differences

(our dataset minus the Altiberg database), and panel (d) summarizes the statistical distribution of these differences.

number of icebergs went up again to 44,538, with an area of 43,409 ± 4,591 km2 . The interannual variations in the number

and area of icebergs reflect the dynamic nature of the Antarctic ice sheet and its response to climate change. Furthermore, We

calculated the intersection of the effective observation areas for each year (Fig. 3) and, based on this intersected area, computed

415 the proportion of icebergs falling within it relative to the total annual iceberg number, as reported in the “percentage” column

of Table 6.
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Figure 7. Comparison with the results ofBarbat et al. (2019a): (a) Number of Antarctic icebergs and (b) Proportion of different categories.

In contrast to the variations in iceberg numbers, the total mass of Antarctic icebergs showed an increasing trend from 2018
to 2021, rising from 7,416 ± 2,590 Gt in 2018 to 10,020 ± 3,434 Gt in 2021, before decreasing to 9,237 ± 3,147 Gt in 2022,
and 8,560 ± 2,947 Gt in 2023.

420 Similar to the interannual variations in iceberg area, the total mass of Antarctic icebergs showed an increasing trend from
2018 to 2021, rising from 7,895 ± 1,667 Gt in 2018 to 10,656 ± 2,247 Gt in 2021, before decreasing to 9,627 ± 2,040 Gt in

2022 and 8,814 ± 1,854 Gt in 2023.

5.2 Spatial distribution of icebergs

Fig. 8 shows the distribution of icebergs in October for each year from 2018 to 2023. Overall, the density of icebergs is high

425 in the West Antarctic region (e.g., near the Thwaites and Dotson ice shelves) and in the East Antarctic region (e.g., around

the Holmes and Mertz ice shelves), Overall, iceberg density is high at the Thwaites, Dotson, Holmes, Totten, and Mertz ice

shelves, indicating that calving activity in these areas is both frequent and intense. In contrast, in large ice shelf regions such

as the Ross Sea and Weddell Sea, although calving events occur less frequently from year to year, when a large-scale fracture

does occur, it typically leads to the rapid formation of a high-density iceberg zone in a short period. Fig. 9 further illustrates

430 the distribution of icebergs by size, showing that medium-to-large icebergs tend to be concentrated in near-coastal waters and
are spatially more scattered, whereas small icebergs are widely distributed throughout the Southern Ocean.

Following Wesche and Dierking (2015)’s rule, all detected icebergs are classified into five size categories, as shown in

Fig. 10: A1 (<1 km2), A2 (1-10 km2 ), A3 (10-100 km2 ), A4 (100-1,000 km2 ), and A5 (≥1,000 km2 ). From 2018 to 2023,

the number of the smallest icebergs (A1) shows significant fluctuations, alternating between increases and decreases and

435 consistently accounting for over 85% of the total iceberg count, thus driving the overall variability in iceberg numbers. In
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Table 6. Total number, area, mass of icebergs and percentage of icebergs in the intersection area in the circum-Antarctic region from 2018
to 2023.

Year Total number Total area (km2) Total mass (Gt) Percentage

2018 33,823 37,606 ± 4,549 7,416 ± 2,590 96.08%

2019 40,034 42,485 ± 5,007 8,378 ± 2,917 94.81%

2020 38,086 45,958 ± 5,177 9,063 ± 3,140 93.76%

2021 51,332 50,810 ± 5,103 10,020 ± 3,434 91.19%

2022 37,626 46,840 ± 4,372 9,237 ± 3,147 97.61%

2023 44,538 43,409 ± 4,591 8,560 ± 2,947 97.47%

2018 34,825 38,668 ± 4,581 7,895 ± 1,667 96.08%

2019 39,261 42,001 ± 5,033 8,563 ± 1,806 94.81%

2020 38,066 45,959 ± 5,178 9,420 ± 1,993 93.76%

2021 51,420 52,276 ± 5,148 10,656 ± 2,247 91.19%

2022 36,186 46,840 ± 4,372 9,627 ± 2,040 97.61%

2023 44,537 43,409 ± 4,591 8,814 ± 1,854 97.47%

contrast, the number of medium-sized icebergs (A2 and A3) generally increases, reaching a peak in 2020 before slightly

declining; their fluctuations are much smaller compared to those of the A1 category, comprising roughly 10% of the total. Large

icebergs (A4 and A5) are relatively rare, and their occurrence is closely associated with major ice shelf calving events—years

such as 2017/18 (A68a), 2019 (D28), 2020(A69) and 2021 (A74 and A76a) see a surge in this size (Braakmann-Folgmann

440 et al. , 2022 ; Deakin et al. , 2024). Moreover, small icebergs not only result from continuous small-scale calving but can also

originate from the further breakup of large icebergs during their drift. Based on this, although the annual iceberg count is

predominantly driven by small icebergs, following a large ice shelf fracture the rapid increase in large icebergs is typically

accompanied by their subsequent fragmentation, which in turn leads to an additional rise in the number of small icebergs.

To assess the spatial distribution of icebergs, the circumpolar ocean region was divided into five sectors based on longitude:

445 Ross Sea Sector (160°E to 130°W), Amundsen and Bellingshausen Seas Sector (130-60°W), Weddell Sea Sector (60°W to
20°E), Indian Ocean Sector (20-90°E), and Western Pacific Ocean Sector (90- 160°E) (Parkinson and Cavalieri, 2012). Fig.
11(a) and (b) present the number of icebergs and their relative percentages in each sector. The results show that over these six
years, the Western Pacific Ocean Sector contributed the highest number of icebergs, while the Weddell Sea Sector recorded
the fewest from 2018 to 2021, but in 2022 its iceberg count surpassed that of the Ross Sea. In the Ross Sea Sector, the iceberg

450 proportion (i.e., the number of icebergs in the sector as a percentage of the total Southern Ocean iceberg count) remained stable
at around 16% in 2018 and 2019, increased to 21.7% in 2020, and then rapidly declined to 14% and 9.8% in 2021 and 2022,
respectively. The proportions in the Indian Ocean and Amundsen and Bellingshausen Seas sectors remained relatively stable
at approximately 20% over the six-year period.
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Figure 8. Distribution of Icebergs in the Circum-Antarctic Region from October 2018 to October 2023. The central map represents the

distribution of icebergs over the six years, with different colors indicating different years. The base map shows the iceberg density. Panels

(a)-(f) display the distribution of icebergs at the front of ice shelves that are prone to calving.

5.3 Distinctive spatial characteristics and formation mchanisms of Small-Scale icebergs in the Southern Ocean

455 This study’s dataset is unique in both the scales and quantity of icebergs, particularly as it is the first to include small icebergs

in the 0.04-0.1 km2 size area derived from remote sensing imagery. Over the six-year period, the average number of icebergs
in this size range was 8,272, accounting for 15.25% to 29.02% of the total number each year, with an average area of 559.5

km2 , contributing 0.97% to 1.93% of the total iceberg area.

To examine the spatial distribution and formation mechanisms of these small icebergs, we divided the Southern Ocean into
460 50 km × 50 km grids and calculated the average number of small icebergs in each grid from 2018 to 2023, as well as the

average distance between these small icebergs and large icebergs (>100 km2 ) (Fig. 12). The results show that small icebergs

are mainly concentrated at ice shelf fronts, though their distribution is sparse at the fronts ofthe Ross Ice Shelf, Filchner-Ronne

Ice Shelf, and Riiser-Larsen Ice Shelf. Due to their size, these icebergs have short lifespans and are more sensitive to changes

in surrounding sea ice and ocean conditions.

465 In analyzing the distances between small and large icebergs, we further validated the small iceberg formation mechanism

proposed by Tournadre (Tournadre et al., 2016). we further derived conclusions consistent with the small iceberg formation

mechanism proposed by Tournadre et al., (2016). The results indicate that small icebergs in the Southern Ocean follow two

main patterns: one where small icebergs are found near large icebergs, suggesting they may originate from fragmentation,
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Figure 9. Iceberg counts for different size classes in various sea sectors from 2018 to 2023. Each point represents an individual iceberg, point
sizes represent five size categories(A1-A5)

share a common source, or drift along similar paths; and another where small icebergs exhibit "free drift," unrelated to any

470 large icebergs, drifting far from their calving sources, such as in the Ross Sea, Bellingshausen Sea, and eastern Weddell Sea.

In these regions, the drift of small icebergs plays a key role in transporting ice shelf and large iceberg material, significantly

influencing regional ice flow and freshwater flux. The drift paths can extend thousands of kilometers, forming independent

"drifting alley".

6 Conclusions

475 This study successfully identified circum-Antarctic icebergs from 2018 to 2023 using Sentinel-1 SAR mosaic data obtained

from the Google Earth Engine (GEE) platform, combined with an incremental random forest algorithm and manual corrections.

The smallest identifiable iceberg had an area of 0.04 km2. This is the first high-precision dataset covering the entire Southern

Ocean, including small icebergs. Small icebergs dominate in terms of quantity, and their distribution is critical for initializing
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Figure 10. Annual distribution characteristics of Antarctic icebergs of five categories from October 2018 to October 2023. Panels (a)- ( c)
present the number, area, and number percentage of icebergs of five categories, respectively.

Figure 11. Annual variation trends of icebergs in five major Southern Ocean sectors from Oct. 2018 to Oct. 2023. Panels (a) and (b) present
the number and percentage of icebergs of five categories in different sea sectors.

coupled ocean-iceberg models, aiding in more accurate simulations of iceberg melting effects on ocean circulation and global

480 climate.

Although this study primarily used data from October each year, when the difference in backscatter characteristics between
icebergs and other oceanic features is most pronounced, and the identification results are optimal, the method is not limited
to this period. In the future, images from other months can be obtained via the GEE platform, enabling the study of seasonal
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Figure 12. The spatial distribution characteristics of icebergs with sizes between 0.04 and 0.1 km2 in 50 km × 50 km grids in the Southern

Ocean. Panel (a) represents the average number of icebergs in each grid cell from 2018 to 2023; Panel (b) shows the average distance from
the icebergs in each grid to the nearest large iceberg (area greater than 100 km2 ).

variations and year-round iceberg dynamics. This approach compensates for the limitations of snapshot data, providing a more

485 comprehensive understanding of iceberg formation, drift, and melting processes.

Despite the extensive coverage of Sentinel-1 SAR data, data gaps existed in certain years and regions, such as in parts of the

Indian Ocean in 2018, which may have led to an underestimation of iceberg numbers in these areas. Additionally, in estimating

iceberg mass, fixed average thickness and density values (232 m and 850 kg/m 3 ) were assumed, but the actual thickness and

density may vary depending on iceberg size, shape, and melting status, introducing uncertainty into mass estimates. In terms of

490 mass estimation, the adopted parameterization constrains small icebergs through an area-volume scaling and assumes a fixed

maximum thickness of 250 m for large icebergs. These simplifications do not fully capture the variability in iceberg geometry,
calving source, or melt state, and may therefore introduce biases (Dowdeswell and Bamber, 2007b). Furthermore, Although

we employed a high-precision iceberg identification model supplemented by manual corrections within a semi-automated

workflow, in complex marine and terrestrial environments (e.g., regions with dense sea ice and iceberg calving zones), the radar

495 signals of icebergs are often weak and their boundaries blurred due to noise and adverse sea conditions, potentially resulting
in varying degrees of omissions, erroneous merging, and contour deviations. Future research could consider integrating multi-
source remote sensing data and incorporating more advanced deep learning algorithms to further improve iceberg identification

accuracy.
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Overall, this study provides the first high-precision iceberg distribution dataset for the Southern Ocean, including small

500 icebergs. It lays the foundation for a deeper understanding of the impact of icebergs on the marine environment and global
climate and offers valuable data support for future research. Moving forward, we plan to use imagery from additional months
to study seasonal and interannual variations in iceberg distribution and their long-term impacts on marine ecosystems and
climate systems. Besides, we attempt to backtrack and update this product as a "living" dataset, meaning it will be continuously
updated and expanded as new input observations available, such as Sentinel-1A/B before 2018 and Sentinel-1C after 2024.

505 7 Code and data availability

510 Appendix A: Feature descriptio

The GEE code for data acquisition, the MATLAB code for image segmentation, feature extraction, and the dataset of icebergs
outlines in shapefile format along with their latitude and longitude, area, perimeter, and other attribute information, are all avail-
able at https://doi.org/10.5281/zenodo.15332566 (Liu and Chen,2025), last access: 3 May 2025. https://doi.org/10.5281/zenodo.16913262 

(Liu and Chen, 2025), last access: 20 August 2025.

n

Table A1. Feature Categories and Descriptions

Category Feature Note

Statistical features

CenterBackscatter

CenterStd

WeightedMean

Energy

Calculated from the pixel backscatter values of each segment

Histogram-based features

Mean

Variance

Skewness

Kurtosis

Mode

Median

Slope

Calculated from the histogram of each segment

Texture features

Entropy

Contrast0/45 /90 /135。

Correlation0/45/90/135。

Homogeneity0/45/90/135。

Calculated from the Grey Level Co-occurrence Matrix (GLCM) of each segment

(1) Statistical features: Calculated from the pixel backscatter values of each segment

https://doi.org/10.5281/zenodo.15332566
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1. CenterBackscatter: The grayscale value at the center position of the superpixel object. A superpixel is defined as a small,
contiguous cluster of adjacent pixels that share similar backscatter characteristics, effectively representing a meaningful image
region rather than individual pixels.

515 2. CenterStd: The standard deviation within a 3×3 range near the center of the superpixel. If there are fewer than 3×3 pixels
around the center, then CenterStd = 0.

3. WeightedMean: Obtained from Equation A1:

WeightedMean xij (A1)

where xij is the grayscale of the pixel at position (i,j), and Dij is the distance from that pixel to the centroid of the superpixel.

520 4. Energy: Obtained from Equation A2:

where N is the total number of pixels within the superpixel.

(2) Histogram-based features (bin=0.1): Calculated from the histogram of each segment.

525 1. Mean: The average of all pixel grayscale values within the superpixel.

2. Variance: The variance of all pixel grayscale values within the superpixel.

3. Skewness: Used to measure the asymmetry of the histogram distribution of grayscale values of all pixels within a super-

pixel.It can derived from the equation A3:

530 4. Kurtosis: Characterizes the height of the peak at the mean of the probability distribution curve, that is, the shape of the
curve’s peak. The larger the kurtosis, the sharper the peak.

5. Mode: The most frequent value in the grayscale values of the superpixel. If multiple values occur with the same frequency,
the Mode is the smallest of these values.

535 6. Median: The median of the grayscale values of all pixels within the superpixel.

7. Slope: The one-sided slope of the probability distribution curve.

Where M is the median of the grayscale values, and P(M) is the probability density corresponding to the median.

(3) Texture features: Calculated from the Grey Level Co-occurrence Matrix(GLCM) of each segment.
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540 1. Entropy: It characterizes the overall distribution of grayscale values in the image.

Entropy = —
Σ

n

P(i)·log2 P(i) (A6)

where n is the number of grayscale levels obtained by binning the histogram of all pixel grayscale values within a superpixel
with bin = 0.1, and P(i) is the probability density value corresponding to the i-th grayscale level.

2. Contrast0/45 /90/135。

545 3. Correlation0/45/90/135。

4. Homogeneity0/45 /90 /135。

In our research, the Gray-Level Co-Occurrence Matrix (GLCM) is used to calculate the texture features of superpixels. The

GLCM characterizes the texture of an image by calculating the frequency of occurrence of pixel pairs with specific values and

spatial relationships in the image (Haralick et al., 1973). The elements of the Gray-Level Co-Occurrence Matrix are calculated

550 using the Equation A7:

The element P(i,j) in the matrix represents the probability of the occurrence of pixel pairs at a distance d in the direction

θ . In this study, we consider the GLCM for the cases when d = 0 and θ = 0。, 45。, 90。, 135。. For non-rectangular superpixels,
missing pixels are filled with 0. After calculating the GLCM for each superpixel in these four directions, we can further

555 compute metrics that describe contrast, correlation, and homogeneity. The equation is as follows:
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